
Towards Improving Industrial Adoption: The Choice of
Programming Languages and Development Environments

Ivonne von Nostitz-Wallwitz∗

METOP GmbH

Otto-von-Guericke-University

Magdeburg, Germany

ischroet@ovgu.de

Jacob Krüger
Otto-von-Guericke-University

Harz University of Applied Sciences

Magdeburg & Wernigerode, Germany

jkrueger@ovgu.de

Thomas Leich
Harz University of Applied Sciences

METOP GmbH

Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

ABSTRACT

While promising software engineering approaches are proposed

every day, only few are adapted by professional developers. There

are many potential reasons for this, such as, problems in identifying

helpful approaches, missing tools, or lacking practical relevance.

With our current research, we are concerned to improve the knowl-

edge transfer from research to practice. In this paper, we discuss

the impact of development environments and programming lan-

guages on knowledge transfer – considering that many scientific

approaches and tools are interesting for professional developers,

but rarely adopted by them. We base our discussion mainly on

our personal experiences with industry-academia collaborations.

To determine whether these experiences also apply to other de-

velopers, we additionally conducted a survey with 89 participants

from academia and industry. The first results of our on-going work

indicate a gap between the development environments and pro-

gramming languages that are supported or used by researchers and

those that are applied in industry. Based on our results, we describe

initial discussions that can help to improve collaborations between

industry and research.

CCS CONCEPTS

• General and reference → Empirical studies; • Software and

its engineering→ Software notations and tools;

ACM Reference Format:

Ivonne von Nostitz-Wallwitz, Jacob Krüger, and Thomas Leich. 2018. To-

wards Improving Industrial Adoption: The Choice of Programming Lan-

guages and Development Environments. In Proceedings of SER&IP’18:IEEE/

ACM 5th International Workshop on Software Engineering Research and In-

dustrial Practice (SER&IP’18). ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3195546.3195548

1 INTRODUCTION

Software engineering research focuses on many different aspects of

software development that can potentially improve the daily work

∗This author previously published as Ivonne Schröter.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SER&IP’18, May 29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5744-9/18/05. . . $15.00
https://doi.org/10.1145/3195546.3195548

of professional developers, for example, embedding programming

context into source code [3], bug fixing assistance [12], and auto-

matic documentation generation [17]. Regularly, new approaches

and tools are proposed that facilitate such aspects. Still, while the

number of research publications and tools continuously grows [18,

29], few are adopted in practice [7, 25, 26].

One barrier to the practical applicability of research proposals is

the fact that they rarely exceed a preliminary evaluation status [22].

Thus, tools and concepts that are developed to improve developers’

daily work are hardly applicable in real-world settings, hampering

not only knowledge transfer but also the practical evaluation of such

approaches. In this context, the question arises how approaches

and tools have to be designed and implemented to improve their

practical applicability.

To investigate this issue, we report and discuss our personal

experiences with the industrial adoption of scientific tools and

barriers we faced in corresponding collaborations. In addition, we

conducted a survey with 89 participants from research and industry

to support our arguments. Here, we especially consider limitations

in the participants’ free choice regarding programming languages

and environments.We remark that these are first findings of a larger

body of research we are currently investigating and extending to

contribute a more complete view on barriers of knowledge transfer.

Based on our first insights, we propose recommendations to

help researchers during the initial phase of developing new ap-

proaches and tools to have a stronger impact on industry. For in-

stance, our recommendations can help to decide which program-

ming languages and tools may be more suitable. While some of the

results may be known, we are not aware of empirical evidence in

this regards and, thus, aim to provide a basis for further research. In

particular, we hope to raise researchers’ awareness on improving

knowledge transfer and cooperation to industry by scoping our

software development accordingly.

2 SURVEY CONDUCT

The motivation for our study originated from our personal expe-

riences with industry-academia collaborations and, consequently,

these also contribute to our work. Our experiences are based on

several years of working in multiple projects and positions. For

example, we work as software engineers, project managers, and

consultants – supporting industrial, scientific, and collaborative

projects with different domains, goals, and sizes [15, 28, 29]. In par-

ticular, we obtained our experiences from working at the METOP

GmbH, a company focusing on transferring research into practice.

Besides reporting our own experiences, we base the identified

barriers and recommendations on a survey. Within this survey, we

This is the author' version of this article and posted here for personal use only. For any

other use please contact the ACM.

doi: https://doi.org/10.1145/3195546.3195548

SER&IP’18, May 29, 2018, Gothenburg, Sweden Ivonne von Nostitz-Wallwitz, Jacob Krüger, and Thomas Leich

asked the participants to specify their working situation, focusing

especially on limitations in the programming languages and devel-

opment environments they can use. In this section, we report the

purpose, conduction, and participants of our survey.

2.1 Purpose

In our industry-academia collaborations, we often face the situ-

ation that helpful scientific approaches exist and corresponding

tools have been implemented. However, there are several known

limitations that prevent the inclusion of such implementations

into practice, for example, missing maintenance support, outdated

versions, or poor documentation [22]. Still, even if we are able to

work with a scientific tool, we often face other limitations, for ex-

ample, dependencies to legacy software, support only for certain

operating systems, or rarely used development environments and

programming languages. Especially industry requires tools that

are maintained, are adoptable to either multiple or specific envi-

ronments, and are reliable. Thus, it seems to us that research and

practice face a gap in the way they scope the tooling for develop-

ment projects. Our investigations on this issue are guided by the

following two research questions:

RQ1 What are the characteristics of preferred programming lan-

guages and environments?

RQ2 Are professional developers more limited in their choice to use

programming languages and environments than researchers?

We are not aware of empirical evidence connected to such issues,

despite some potential gaps being well-known. To obtain initial

answers in this paper, we use a survey in which we focus on the

participants’ freedom when choosing programming languages and

environments in their daily work. This freedom defines to which

extent they can adopt scientific approaches in their daily work or

may have to disregard such approaches, as these do not suit their

requirements. In our survey, we compare researchers, developers,

and those working in both areas, as we assume that their situations

differ. Depending on these differences, researchers have to better

scope their approaches to the targeted users’ limitations, if they

aim to improve the practical impact.

2.2 Questionnaire and Conduct

To answer our research questions, we designed a questionnaire

comprising the questions we show in Table 1. We started with par-

ticipants’ meta data, including the number of years they are already

programming and their current working position. First, we assessed

the diversity among the programming languages and environments.

Thus, we asked them which programming languages they are fa-

miliar with and which development tools they are working with.

Afterwards, we determined the freedom of choice the participants

have concerning these two aspects to identify potential limitations

especially between the different groups.

The survey was available online and required approximately

10 minutes. We distributed it in organizations and universities

to receive feedback from participants with different backgrounds.

Additionally, we promoted it on social media platforms in groups

related to software engineering to reduce a potential selection bias.

�

��

�

�� �� ��
�

��

��

��

��

�	
���� ��� ��������

���������	���������	��������������	�� ��!�	���	

"
�
�
��

Figure 1: Number of participants and their programming experi-

ence in years separated by their stated working position.

2.3 Participants

Overall, 89 developers participated in our survey and we illustrate

their current employment area and experience at this point in Fig-

ure 1. We see that – at the time of answering our survey – 39 (43.8%)

of the participants are employed in industry while 38 (42.7%) are

working in research, meaning an almost equal distribution of both

groups. In addition, 12 (13.5%) of the participants are working in

both areas at the same time.

Considering their experience in programming, we see that the

median value of all three groups is around 9 years. The distributions

we show in Figure 1 also indicate that we have some more experi-

enced participants, especially in the industrial group. Surprisingly,

some participants of the research group state that they have not

even one full year of programming experience.

Additionally to their experience, we also find that the distribution

of used programming languages and tools is similar to the TIOBE

index.1 Considering their origin, most of our participants are from

Germany (59) but approximately a third (30) of them are from

around the world, mainly from the United States and India (5 each).

Altogether, we argue that our sample consists of participants with

different experiences and backgrounds. Thus, the results we derive

may not apply to specific domains or areas, but provide a good

overview on software development in general.

3 RESULTS AND DISCUSSION

Based on our experiences and the results of our survey, we in-

vestigate two issues – corresponding to our research questions –

on knowledge transfer in this section. Each of these issues com-

prises a set of problems that can hamper the adoption of tools and

1https://www.tiobe.com/tiobe-index//

Towards Improving Industrial Adoption SER&IP’18, May 29, 2018, Gothenburg, Sweden

Table 1: Questions in the survey to assess the participants meta data and to address our research questions.

Nr. Options Answers

1 What is your current position? Multiple choice

2 How long is your programming experience in research? Free-text

3 How long is your programming experience in industry? Free-text

4 Which programming languages are you familiar with? Multiple choice

5 Which development tools are you working with? Multiple choice

6 What is your current area of activity? � Research � Industry

7 Can you freely choose the programming language you are using in your current area of activity? ◦ Yes ◦ No ◦ Partly

8 Can you freely choose the development tools you are using in your current area of activity? ◦ Yes ◦ No ◦ Partly

��

��

��

��

��

��

��

��

��

��

�	

��

��

��

��

�

��

���

	��

	
�

	
�

���

���

���

�
�

�	�

���

���

���

�	�

���

���

���

�������

����

�������

������������

��� ��

!�"#

$%�&%�

%���'"�#

!

�&()*&

�+�

,-

�#�./

,00

1�2�)���

,

1�2�

 �� �
 ��

��'"���.3�!�� ./���

(a) Programming languages.

��

��

��

��

��

��

��

�	

��

��

�

�

�

�

�

�

��

	�

�	

��

��

��

��

��

��

��

��

��

	

	

	

	

	

��
����

����

��������

������

������

��� !�"

#$!��

%�&���'

(�"

)!"

 ��*�"����

(+,!��

��,���"

(�'��* ���!

-��**�.+-/�)

%!�0��11

�$*�0'�

� �� �� ��

%�"���+!2+��'0!�'�'

(b) Tools.

Figure 2: Participants’ used (a) programming languages and (b) tools.

approaches into industry. For each issue, we first motivate its im-

portance for knowledge transfer from our experience. Afterwards,

we describe the corresponding results of our survey and derive

concrete barriers.

3.1 Tool and Language Preferences

In our experience, there exist several issues connected to the pro-

gramming languages and development environments used to de-

velop new approaches. For example, developers’ preferences, do-

main restrictions, or project requirements are changing over time

and for different projects. While researchers are aware of these

factors, we still experienced that they sometimes rely on rare lan-

guages and tools, as these suit their purpose best. This facilitates

their development process, but hampers the practical applicability

of research approaches. For instance, during several projects we

worked on, we found suitable research tools that would have facili-

tated our work, but that did not suit the industrial requirements.

Consequently, we investigated in our survey, which programming

languages and development environments are preferred and discuss

the implications considering our first research question. We dis-

play a summary of the corresponding survey responses in Figure 2,

which displays the distributions of used programming languages

and tools.

Dominating Programming Languages and Environments. In our

survey, we identify few dominating programming languages and

environments, with Java and Eclipse on top. As we can see in Fig-

ure 2, the responses of our participants show that they prefer those

languages and environments highly ranked in popularity indexes.

For example, considering the September 2017 ranking of the TIOBE

index, the first seven programming languages are in almost the

same order, with only JavaScript and C# being slightly higher and

lower rated, respectively. The results indicate that object-oriented

languages are most commonly used, which is also an observable

trend in language indexes. Out of the most familiar ones, only C

does not support this programming paradigm.

SER&IP’18, May 29, 2018, Gothenburg, Sweden Ivonne von Nostitz-Wallwitz, Jacob Krüger, and Thomas Leich

Multi-Language Support. The results indicate that programming

environments that can support more than one programming lan-

guage are preferred. This includes complex integrated development

environments (e.g., Eclipse, Visual Studio) as well as text edi-

tors with extended functionality, such as syntax highlighting (e.g.,

Notepad++). Few of the most used tools are specialized in support-

ing only a single programming language, despite offering plug-in

capabilities (e.g., PyCharm).

Close Connection between Programming Languages and Environ-

ments. Unsurprisingly, there seems to be a close connection be-

tween the used programming environments and known program-

ming languages. For example, Eclipse and IntelliJ IDEA are

well-known for their Java support while PyCharm is designed ex-

clusively for Python. The programming languages and their corre-

sponding tools are rated similarly. Furthermore, tools are used less

often if they support a programming language that is less known.

One Languages for One Domain. The programming languages

on top differ primarily in their scope of applications: For example,

JavaScript is used for client-side applications, PHP on servers,

PL/SQL in databases, and C for embedded systems. Thus, it seems

not surprising that multiple programming languages for the same

domain are rarely on the top spots.

IDEs vs. Editors. It also seems that many developers prefer sim-

ple text editors, such as Notepad++. This may indicate that they

prefer to scope the functionalities of their development tools to a

minimum and customize them with plug-ins. For instance, Eclipse

automatically provides syntax highlighting and method call out-

lines for different languages. In contrast, Notepad++ by default only

supports syntax highlighting. Unsurprisingly, the results indicate

that different developers prefer language-specific environments,

multi-language environments, or simple editors.

Discussion. The results substantiate our experiences that the

usage of programming languages and environments depends on

several factors. While not surprising, it seems obvious that well-

established and domain-specific languages are preferred by most

developers. Consequently, corresponding environments are also

used more often. Still, competition and trends can result in changes

and may make a language or tool obsolete at one point. Some

examples for this are the absence of languages that do not support

the object-oriented paradigm or the rise of IntelliJ IDEA that –

from our experience – is preferred by many younger developers

that dislike Eclipse.

For us, the most interesting insight is the preference towards

multi-language tools and editors. We also experienced that such

tools are more helpful for projects that require multiple languages

and are faster to set-up. However, we did not expect that this ten-

dency applies in general. While further studies seem necessary to

investigate potential causations for these preferences, some reasons

could be simplicity, multi-language support, domain-independence,

and also the usage when teaching programming (e.g., Java).

3.2 Differing Restrictions

During our projects, we often experience that researchers prefer

and have already used programming languages and tools that do

not meet the industrial requirements. In particular, organizations

often ask – besides fulfilling domain requirements – for industrially

maintained and established tools. This way, they can ensure that

the used tools have already a certain quality, have a contractor who

fixes bugs, and fulfill necessary quality criteria. As a result of this

policy, there apply other, stricter restrictions in the programming

languages and environments used in industry compared to research.

To investigate this issue and answer our second research questions,

we asked our participants if they can freely pick these parts of their

daily work. We display the corresponding results in Figure 3.

Language Restrictions. As we can see in Figure 3, developers

working in industry are mostly not or only partly allowed to freely

choose their programming language, with 20 (51%) and 10 (26%)

responses, respectively. In contrast, developers in research face

fewer limitations: 16 (42%) can freely and 16 (42%) can partly choose

the used programming language. While the group of participants

working in both areas is rather small, their responses align better

to these from industry.

Programming Tool Restrictions. For the used tools, the outcome

of our survey varies heavily. Almost none of our participants is

always forced to use a specific tool set, with only 3 (8%) and 1 (8%)

of the participants employed in industry or both areas stating no

free choice at all, respectively. In the industry group, 16 (41%) can

freely choose their tools and 20 (51%) are only partly limited. For

the research area, even up to 31 (82%) can completely freely select

the used tools. Again, the responses of the mixed group align better

to these of the industrial developers.

Discussion. Industrial developers facing language restrictions

seems not surprising. They may work for a longer time on existing

systems and applications, focus on a specific (language-dependent)

domain, and have to use established languages to increase avail-

ability [19]. For example, Javascript and PHP are used more fre-

quently for web development while C is more suitable for embedded

systems. As a result, they have to rely on specific programming

languages and cannot freely switch between them. Still, such re-

strictions potentially depend on project specifics and a developers’

position, wherefore they do not exist in every case. Thus, industrial

developers can partly select the programming languages they use.

In contrast to industrial developers, researchers are often work-

ing on smaller projects matching their current problem. Approaches

are often developed from scratch and solely for evaluation pur-

pose [2, 16]. Thus, researchers face restrictions mainly when they

reuse another tool or work in a specific domain. However, this seems

not to apply for researchers working in industry-academia collab-

orations, as their responses align better to those of the industrial

developers. This also suites our experience that some researchers

who never worked with industry do not care about the practical

applicability of their research. While practicability may not be the

main purpose of researchers, it is still beneficial and indicates a

missing awareness of real-world scenarios.

Considering tools, the results indicate that most developers in

both areas can choose those more freely. This can be explained, as

many tools provide similar to identical functionalities, are freely

available, and are established. Thus, restrictions may derive from

project recommendations, specific extensions being only available

Towards Improving Industrial Adoption SER&IP’18, May 29, 2018, Gothenburg, Sweden

�

��

�

�

��

��

�
�

��

��	

���	

���	

���	

���	

���	

���	

���	

���	

�

��

��

��

�� ������ ��

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�
�

(a) Programming languages.

�

��

��

��

��

�
�

����	

���	

���	

���	
���	

���	

��	

��	

��	

�

��

��

��

�� ������ ��

��������

��������

��������

 ���

(b) Tools.

Figure 3: Participants’ freedom to choose (a) the programming languages and (b) the tools they are working with.

in some tools, and customer requirements – but seem to mainly

focus on a working product. As a result, industrial and collaborating

developers face partial restrictions more often.

4 IMPLICATIONS

Considering the previously described results, we derive preliminary

answers to our research questions in this section. Afterwards, we

derive recommendations that can help to improve the practical

adoption of research approaches. While these recommendations

may be intuitive for researchers often collaborating with industry,

we experienced that others are completely unaware of them. Again,

we emphasize that these are initial results of on-going work and

will be refined in more extensive investigations.

4.1 Research Questions

Our first research question is concerned with the characteristics of

the preferred programming languages and environments. While

this is a preliminary assessment, we still find that most preferred

programming languages are domain specific and support object-

orientation. Considering the tools, we find that they often support

multiple languages, can be extended, or are simplified text editors.

An unsurprising outcome of these observations is that languages

and environments seem to align.

The second research question addresses the developers’ free

choice to select the programming languages and tools they use.

From our point of view, the results are less surprising and indicate

that industrial developers often need to use specific ones. In the re-

search community however, there seems to be a difference between

those that collaborate with industry and those that do not. While

this is reasonable, we find it interesting to further investigate how

this free choice and experiences with collaborations may influence

later projects of these scientists: Do researchers focus more on prac-

tical applicability after they worked in industrial collaborations or

does it have no impact?

4.2 Recommendations

Focus onPopular ProgrammingLanguages andTools. If there

is no concrete project to which an approach has to be scoped, we rec-

ommend to rely on more popular programming languages and envi-

ronments, considering, for example, the TIOBE index. As developers

cannot freely choose the programming languages they are working

with, researchers should focus on the ones that are frequently used

in their specific domain or are generally used. This does not only

support knowledge transfer, but also facilitates extending and main-

taining tools. In contrast, if the approach is developed to support

researchers, language restrictions are less important – but we still

recommend to rely on well-known languages and tools. Otherwise,

our experiences are that others may have problems and may not

reuse an approach.

Prefer Pluggable over Stand-Alone Tools. Researching on pro-

gramming tools can improve practical applicability, as developers

can more freely select which tools they use. Nevertheless, most of

the time developers use only their preferred programming envi-

ronment. Thus, the development of plug-ins for frequently used

programming environments or importable components (e.g., as

jar files) should be preferred over the development of completely

new tools. However, it may be problematic to identify which envi-

ronment should be supported. For some languages, such as Java,

several different environments and editors, for example, Eclipse,

IntelliJ IDEA, and Notepad++, exist. The question arises, whether

SER&IP’18, May 29, 2018, Gothenburg, Sweden Ivonne von Nostitz-Wallwitz, Jacob Krüger, and Thomas Leich

a single (i.e., plug-in) or multiple (i.e., a component) of these tools

should be supported to be applicable by most developers. This also

includes considering the purpose of the approach: Shall it only be

used by developers or integrated into other tools?

Consider Tools’ Functionalities.Considering evaluations of new

approaches and tools, we remark that programming environments

often contain partly complex functionalities and can often be freely

chosen. This must be taken into account while scoping approaches

and their evaluations. For example, if different programming lan-

guages are used, such as, in static and dynamic type systems, it is not

always possible to use the same programming environment with the

same functionalities. This can influence, for instance, performance

measurements while solving programming or comprehension tasks.

Still, if in such cases only text editors with limited functionality are

used, the results of an evaluation may be not valid in practice. Tools

with richer functionality may decrease possible disadvantages of

one approach but are commonly used in practice and developers

are familiar with them.

5 THREATS TO VALIDITY

In this section, we discuss potential threats to the validity of our

work. Here, we rely on common distinctions [6, 24, 34] for empir-

ical studies in software engineering. Consequently, we separate

construct, internal, and external validity as well as reliability.

5.1 Construct Validity

The construct validity of our study is potentially threatened by the

questions and terms we used. Our participants may have misunder-

stood something, for example, due to language barriers. Still, the

terminology should be easy to understand for experienced develop-

ers and in an according question, none of the participants reported

problems regarding the questions. Overall, we argue that there is

no threat to the construction validity of our questionnaire.

5.2 Internal Validity

As for the question regarding knowledge and usage of program-

ming languages and tools, we provided a predefined set of selectable

options. Further languages and tools could be added by the partici-

pants. Thus, the answers may be biased, as participants may not

remember all programming languages and tools they are familiar

with or they are using. If they were not included in our options, the

participants may have missed these. While this threat can hardly

be completely overcome, we derived the options for languages and

tools from popularity ratings, such as the TIOBE index. For this

reason, we argue that we cover the most important of them, which

reduces the potential bias.

5.3 External Validity

There is a potential selection bias, as we received more answers

from developers we could contact directly. As a result, most of the

participants are from Germany. Still, we received several additional

answers from around the world. Thus, we argue that the results

are valid and the identified issues are important to address.

Another threat to the external validity are the questions we

used. For example, we did not precisely ask for the reasons why

participants cannot freely choose the used tools and languages.

While there may be additional reasons for this, we argued about the

differences based on the results and our experiences. Furthermore,

the different reasons for limitations in using languages and tools do

not directly affect the derived recommendations. Thus, we argue

that our recommendations are valid and reasonable, but can be

refined in further studies that include additional questions.

5.4 Reliability

Overall, there are potential threats to the reliability of our work:

The results and outcome of the survey may differ depending on

the considered participants. Still, any researcher can replicate this

study and will face the same threats. Consolidating and validating

our findings with replication studies is important and can help to

reduce this threat to reliability.

As we also mentioned before, our experiences do not represent

those of all researchers. Consequently, in several collaborations –

especially with researchers commonly performing collaborative

projects – such experiences may differ. However, we argue that

some researchers and, in particular, those that cooperate with in-

dustry for the first time, are less aware of the described issues. We

also addressed this threat by conducting a survey that illustrates

some of our experiences being apparently common.

6 RELATEDWORK

There is considerable work related to knowledge and technology

transfer issues from research into industry [9–11, 25, 35]. Different

reasons have been determined, for example, lacks of credibility,

missing awareness and discrepancies between research topics and

those with practical relevance, as well as difficulties to survey, un-

derstand, and use research [11, 25, 26, 29, 31, 32]. These works are

related to ours as they also investigate potential barriers of knowl-

edge transfer. However, we complement such works by focusing

specifically on discrepancies of languages and tools used in research

and industry. We are not aware of studies addressing these issues.

To overcome the aforementioned issues, technology transfer

models have been proposed. These, for instance, demand close co-

operations between research and industry [10], because research

results cannot be transferred directly. In addition, scientific publi-

cations are not designed to be a communication channel between

research and industry [27, 33]. Technology and knowledge transfer

research is related to our work, as we address the same issues. Still,

we focus on another point of view: How must approaches and tools

be implemented to improve their applicability in the daily work of

industrial developers? Thus, existing models can be extended and

refined to consider the results of our work.

There are several works concerning the interests of professional

developers regarding, for example, programming tools, concepts,

and algorithms [1, 4, 5, 14]. Other works analyze topics researchers

focus on, including the identification of gaps between research

and industry [5, 8, 11, 30]. The results are not only interesting for

developers aiming to use the investigated techniques, but also for

researchers that aim to propose new approaches and tools that

can be used in industry. As we investigate the diversity among

used programming languages and tools as well as the freedom of

choice in this regard, we complement such works. In particular,

works exploringwhy specific approaches are not adopted in practice

Towards Improving Industrial Adoption SER&IP’18, May 29, 2018, Gothenburg, Sweden

are not only related to ours but the results may be compared to

consolidate the findings.

Other works investigate how developers use development tools

or perform specific tasks [13, 20, 21, 23]. Such works improve the

understanding of how tools can be extended to facilitate the practi-

cal applicability of new approaches. Thus, we complement these

investigations by identifying which languages and tools are popular,

and to which extent developers can freely choose them. Combin-

ing the results of both areas supports researchers while scoping

concrete tools extensions.

7 CONCLUSION

The number of research projects focusing on approaches and tools

to improve programming is continuously growing. This growth

can hamper the decision-making process of professional developers

to adopt research approaches. Still, this is not the only reason for

limited knowledge and technology transfer between research and

industry. In our on-going work, we addressed this issue by investi-

gating aspects that influence the probability that a new approach

or tool can be used in practice. To this end, we relied on our ex-

periences with collaborative projects and conducted an empirical

study to support these. Overall, we identify the diversity among

used programming languages and environments, as well as the free-

dom of choice in this regard. In particular, we separated between

professional developers working in research, industry, and both to

identify differences between these groups.

We identified a set of dominating programming languages and

environments that most developers use or are familiar with. Less

surprising, we find a close connection between languages and envi-

ronments. Furthermore, professional developers are more likely to

be limited in their freedom to choose programming languages. In

contrast, tools are much rarer fixed among all groups.

Overall, we derive the following recommendations to improve

the potential of approaches and tools being used in industry:

• Researchers should focus on domain specific and popular

programming languages and tools.

• Developing pluggable tools and extensions should be pre-

ferred over developing new stand-alone tools.

• As complex development environments seem to be preferred

by practitioners, researchers have to consider their function-

alities to evaluate practical applicability.

In future works, we aim to refine our survey by consolidating

existing works on barriers that hamper knowledge transfer towards

practice. Furthermore, we will refine and extend our survey to

identify concrete reasons why approaches and tools are not adopted.

Additional future work includes the definition of guidelines that

summarize best practices to improve knowledge transfer.

ACKNOWLEDGMENTS

This research is supported by DFG grant LE 3382/2-1 and Volkswa-

gen Financial Services AG.

REFERENCES
[1] Chris Barry and Michael Lang. 2001. A Survey of Multimedia and Web De-

velopment Techniques and Methodology Usage. IEEE MultiMedia 8, 2 (2001),
52–60.

[2] Andrew Bragdon, Robert C. Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola Jr. 2010. Code Bubbles: A Working Set-Based Interface for Code Un-
derstanding and Maintenance. In International Conference on Human Factors in
Computing Systems (CHI). ACM, 2503–2512.

[3] Alexander Breckel and Matthias Tichy. 2016. Inline: Now You’re Coding with
Portals. In International Conference on Program Comprehension (ICPC). IEEE, 1–3.

[4] John Businge, Alexander Serebrenik, andMark van den Brand. 2010. An Empirical
Study of the Evolution of Eclipse Third-Party Plug-Ins. In Joint ERCIM Work-
shop on Software Evolution and International Workshop on Principles of Software
Evolution (EVOL/IWPSE). ACM, 63–72.

[5] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. 2011. Factors
Limiting Industrial Adoption of Test Driven Development: A Systematic Review.
In International Conference on Software Testing, Verification and Validation (ICST).
IEEE, 337–346.

[6] Thomas D Cook and Donald Thomas Campbell. 1979. Quasi-Experimentation:
Design & Analysis Issues for Field Settings. Houghton Mifflin.

[7] James R. Cordy. 2003. Comprehending Reality-Practical Barriers to Industrial
Adoption of Software Maintenance Automation. In International Workshop on
Program Comprehension (IWPC). IEEE, 196–205.

[8] Dan Craigen, Susan Gerhart, and Ted Ralston. 1993. An International Survey of
Industrial Applications of Formal Methods. In Annual Z User Meeting. Springer,
1–5.

[9] Philipp Diebold and Antonio Vetro. 2014. Bridging the Gap: SE Technology
Transfer into Practice: Study Design and Preliminary Results. In ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). ACM, 52:1–52:4.

[10] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. 2006. A Model for
Technology Transfer in Practice. IEEE Software 23, 6 (2006), 88–95.

[11] Vladimir Ivanov, Alan Rogers, Giancarlo Succi, Jooyong Yi, and Vasilii Zorin.
2017. What Do Software Engineers Care About? Gaps Between Research and
Practice. In Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 890–895.

[12] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta. 2009. BugFix: A
Learning-Based Tool to Assist Developers in Fixing Bugs. In International Con-
ference on Program Comprehension (ICPC). IEEE, 70–79.

[13] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006.
An Exploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (2006), 971–987.

[14] Jacob Krüger, Niklas Corr, Ivonne Schröter, and Thomas Leich. 2017. Digging
into the Eclipse Marketplace. In International Conference on Open Source Systems:
Towards Robust Practices (OSS). Springer, 60–65.

[15] Jacob Krüger, Stephan Dassow, Karl-Albert Bebber, and Thomas Leich. 2017.
Daedalus or Icarus? Experiences on Follow-the-Sun. In International Conference
on Global Software Engineering (ICGSE). IEEE, 31–35.

[16] Aniket Kulkarni and Ravindra Metta. 2014. A Code Obfuscation Framework
Using Code Clones. In International Conference on Program Comprehension (ICPC).
ACM, 295–299.

[17] Paul W. McBurney and Collin McMillan. 2014. Automatic Documentation Gen-
eration via Source Code Summarization of Method Context. In International
Conference on Program Comprehension (ICPC). ACM, 279–290.

[18] Matthew RMcGrail, Claire M Rickard, and Rebecca Jones. 2006. Publish or Perish:
A Systematic Review of Interventions to Increase Academic Publication Rates.
Higher Education Research & Development 25, 1 (2006), 19–35.

[19] Leo A. Meyerovich and Ariel S. Rabkin. 2013. Empirical Analysis of Programming
Language Adoption. In International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA). ACM, 1–18.

[20] Gail C. Murphy, Mik Kersten, and Leah Findlater. 2006. How are Java Software
Developers Using the Elipse IDE? IEEE Software 23, 4 (2006), 76–83.

[21] Emerson Murphy-Hill and Andrew P Black. 2008. Refactoring Tools: Fitness for
Purpose. IEEE Software 25, 5 (2008).

[22] Donald A. Norman. 2010. The Research-Practice Gap: The Need for Translational
Developers. Interactions 17, 4 (2010), 9–12.

[23] Semih Okur and Danny Dig. 2012. How Do Developers Use Parallel Libraries?. In
International Symposium on the Foundations of Software Engineering (FSE). ACM,
54:1–54:11.

[24] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. 2000. Empirical
Studies of Software Engineering: A Roadmap. In International Conference on
Software Engineering (ICSE). ACM, 345–355.

[25] Shari Lawrence Pfleeger. 1999. Understanding and Improving Technology Trans-
fer in Software Engineering. Journal of Systems and Software 47, 2-3 (1999),
111–124.

[26] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
Do Professional Developers Comprehend Software?. In International Conference
on Software Engineering (ICSE). IEEE, 255–265.

SER&IP’18, May 29, 2018, Gothenburg, Sweden Ivonne von Nostitz-Wallwitz, Jacob Krüger, and Thomas Leich

[27] Per Runeson. 2012. It Takes Two to Tango - An Experience Report on Indus-
try - Academia Collaboration. In International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 872–877.

[28] Martin Schäler, Thomas Leich, Marko Rosenmüller, and Gunter Saake. 2012.
Building Information System Variants with Tailored Database Schemas Using
Features. In International Conference onAdvanced Information Systems Engineering
(CAiSE). Springer, 597–612.

[29] Ivonne Schröter, Jacob Krüger, Philipp Ludwig, Marcus Thiel, Andreas Nürn-
berger, and Thomas Leich. 2017. Identifying Innovative Documents: Quo Vadis?.
In International Conference on Enterprise Information Systems (ICEIS), Vol. 1.
ScitePress, 653–658.

[30] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-
prehending Studies on Program Comprehension. In International Conference on
Program Comprehension (ICPC). IEEE, 308–311.

[31] Mary Shaw. 2002. What Makes Good Research in Software Engineering? Inter-
national Journal on Software Tools for Technology Transfer 4, 1 (2002), 1–7.

[32] Margaret-Anne Storey. 2006. Theories, Tools and Research Methods in Program
Comprehension: Past, Present and Future. Software Quality Journal 14, 3 (2006),
187–208.

[33] Claes Wohlin. 2013. Empirical Software Engineering Research with Industry:
Top 10 Challenges. In International Workshop on Conducting Empirical Studies in
Industry (CESI). IEEE, 43–46.

[34] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer.

[35] Marvin V. Zelkowitz, Dolores R. Wallace, and D. Binkley. 1998. Culture Con-
flicts in Software Engineering Technology Transfer. In NASA Goddard Software
Engineering Workshop. 1–17.

