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Abstract

Context: Most modern software systems exist in different variants to address a variety of
requirements, such as customer requests, regulations, or hardware restrictions. To benefit
from the high commonality between variants, such variant-rich systems (e.g., Linux kernel,
automotive software, webservers) usually reuse existing artifacts (which implement so-called
features). In fact, in many organizations, a variant-rich system establishes itself over time
through developers using clone&own (i.e., copying and adapting a variant) as a reuse
strategy. Typically, the maintenance burden of having numerous separated variants forces
an organization to re-engineer its cloned variants into a reusable platform by adopting
concepts of software product-line engineering. Despite the practical prevalence of this
re-engineering scenario, most research on decision support has focused on the proactive
adoption (i.e., starting from scratch) of platform engineering.

Objective: In this dissertation, we empirically study four closely related properties in the
context of variant-rich systems, namely economics, knowledge, traceability, and practices.
Note that, while we focus on the re-engineering of cloned variants into a platform, many of
our findings are relevant for engineering any (variant-rich) software system. More precisely,
we aim to contribute an empirics-based body-of-knowledge that can guide organizations in
planning and monitoring their (re-)engineering projects. In parallel, our studies advance on
educated guesses, which are widely used to reason on variant-rich systems. To this end,
we aim to provide economical data that allows to compare and understand the differences
between clone& own and platform engineering. Since our findings highlight the economical
impact and close relation of knowledge and feature traceability, we further aim to provide a
detailed understanding of these two properties in the context of re-engineering projects.
Finally, we aim to synthesize all of our findings and connect them to contemporary software-
engineering practices to derive processes and recommendations for planning, initiating,
steering, and monitoring platform engineering.

Method: To address our objectives, we relied on a number of empirical research methods
to collect data from various sources. In most cases, we built on eliciting qualitative data
from the literature, which we identified through systematic literature reviews. To enrich
that data, we conducted interview and online surveys, measurement and multi-case studies,
as well as experiments; which we selected and employed based on their feasibility to address
a certain objective. By synthesizing from different sources, we aimed to improve the validity
of our data to provide reliable insights for researchers and practitioners.

Results: On an abstract level, we can summarize four key contributions. First, we con-
tribute a rich dataset on the economics of (re-)engineering variant-rich systems, from which
we derive the core insight that moving towards platform engineering (e.g., more systematic
clone management) is economically promising. Second, we contribute an understanding of
developers’ memory and how to support their knowledge needs, leading to the core insight
that expensive recovery activities can be mitigated by enforcing suitable documentation
techniques (e.g., feature traceability). Third, we contribute insights on how different feature
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traces impact developers’ program comprehension, based on which our core insight is that
feature traceability should ideally be independent of configurability. Finally, we contribute a
process model and recommendations on how to (re-)engineer variant-rich systems, with our
core insight being that carefully planning and periodically assessing a variant-rich system
helps to exploit its full potential (e.g., in terms of cost savings).

Conclusion: Overall, we provide detailed insights into four important properties that
help organizations as well as researchers understand and guide (re-)engineering projects
for variant-rich systems. We discuss these insights and their connections to each other as
well as to contemporary software-engineering practices, enabling others to adopt them to
different scenarios. So, our contributions involve the synthesis and considerable extension
of the existing body-of-knowledge on (re-)engineering variant-rich systems.

Keywords

Software reuse, Software economics, Re-engineering, Platform engineering, Clone&own,
Software product line, Knowledge, Traceability
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Zusammenfassung

Kontext: Moderne Softwaresysteme werden in einer Vielzahl an Varianten angeboten um
verschiedenste Anforderungen von Kunden, Regulierungen oder der Hardware zu bedienen.
Da sich die einzelnen Varianten solcher variantenreichen Systeme (z.b. der Linux Kernel,
Fahrzeugsoftware oder Webserver) sehr ähneln, können Entwickler die Wiederverwendung
existierender Artefakte, die ein bestimmtes Feature implementieren, während der Entwick-
lung ausnutzen. Dabei werden in den meisten Fällen Varianten zuerst nur kopiert und
an neue Anforderungen angepasst. Da solche kopierten Varianten voneinander losgelöst
sind, wird deren Wartung in den meisten Fällen immer kostenintensiver, was oftmals dazu
führt, dass die Entwickler eine wiederverwendbare Softwareplattform aus diesen extrahieren.
Obwohl dieser extraktive Ansatz in der Praxis am verbreitetsten ist, fokussiert sich die
Forschung meistens darauf, Entscheidungshilfen für die proaktive Neuentwicklung einer
Plattform zu entwickeln.

Ziele: In dieser Dissertation werden empirische Methoden genutzt, um vier zusammen-
hängende Eigenschaften mit Bezug zu variantenreichen Systemen zu untersuchen: Kosten,
Wissen, Nachvollziehbarkeit und Verfahren. Anzumerken ist, dass trotz unseres Fokus
auf den extraktiven Ansatz, viele unserer Erkenntnisse für jegliche (variantenreiche) Soft-
waresysteme relevant sind. Wir sammeln empirische Daten um den wissenschaftlichen
Stand in Bezug auf variantenreiche Systeme zu erweitern und Unternehmen bei der Planung
und Beobachtung von Softwareprojekten zu unterstützen. Dazu vergleichen wir zuerst
die Kosten um Varianten basierend auf Kopien oder einer Plattform zu entwickeln. Bei
dieser Untersuchung haben wir festgestellt, dass insbesondere das Wissen der Entwickler
und dessen Nachvollziehbarkeit die Entwicklung variantenreicher Systeme beeinflussen.
Nachdem wir diese beiden Eigenschaften detaillierter untersucht haben, kombinieren wir
alle unsere Ergebnisse um Methodiken und Empfehlungen für die Planung, Initialisierung
und Beobachtung von Softwareplattformen zu definieren.

Methodik: Unsere Forschung basiert auf verschiedenen empirischen Methoden um Daten
aus unterschiedlichen Quellen zu erheben. Durch dieses Vorgehen konnten wir die Validität
unserer Ergebnisse verbessern und liefern damit eine Alternative zu den begründeten
Vermutungen auf denen sich Entscheidungen bezüglich variantenreicher Systeme bisher
meist stützen. Wir haben meist systematische Literaturreviews genutzt um qualitative
Daten aus existierenden Arbeiten zu erheben. Um diese Daten zu komplementieren, haben
wir dem jeweiligen Ziel angepasste Methoden genutzt, beispielsweise Interviews, Umfragen,
Fallstudien oder Experimente.

Ergebnisse: Stark zusammengefasst können wir vier Kernergebnisse definieren. Erstens
liefern wir Daten zu den Kosten der Entwicklung variantenreicher Systeme, die zeigen, dass
Unternehmen darauf hinarbeiten sollten, ihre Entwicklung in Richtung einer Plattform zu
systematisieren. Zweitens bieten wir Einsichten dazu, welches Wissen Entwickler benötigen
und aus welchen Quellen sie dieses gewinnen können, wobei unsere zentrale Einsicht die
Notwendigkeit geeigneter Dokumentationen ist. Drittens haben wir die Nachvollziehbarkeit



vi

von Features als eine Art der Dokumentation untersucht und festgestellt, dass diese ide-
alerweise nicht auf Techniken für die Konfiguration von Software aufbaut. Zuletzt haben
wir Methodiken und Empfehlungen aus unseren Ergebnissen synthetisiert und die Einsicht
gewonnen, dass die Planung und regelmäßige Evaluierung variantenreicher Systeme hilft,
deren Nutzen zu maximieren.

Fazit: Insgesamt beschreiben wir in dieser Dissertation detaillierte Einsichten zu vier
essentiellen Eigenschaften für die Entwicklung und Extraktion von variantenreichen Sys-
temen. Damit diese Eigenschaften an verschiedene Szenarien angepasst werden können,
diskutieren wir ihre Zusammenhänge miteinander und mit aktuellen Methoden der Softwa-
reentwicklung. Daraus resultiert eine Synthese und erhebliche Erweiterung des existierenden
Wissensstandes bezüglich der Entwicklung variantenreicher Systeme.
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1. Introduction

This chapter builds on publications at ICSE [Krüger, 2017, 2018a], ESEC/FSE [Krüger,
2019a; Krüger and Berger, 2020b], SAC [Krüger, 2018b], and VaMoS [Krüger et al., 2020b].

Variant-rich
systems

Most modern software systems are variant-rich systems; systems that exist in different
variants to fulfill varying customer requirements, hardware limitations, regulations, or other
restrictions. Consequently, most organizations have to develop and maintain a portfolio
of similar, yet customized variants, also referred to as a product family [Apel et al., 2013a;
Berger et al., 2020; Fenske et al., 2013; Pohl et al., 2005; van der Linden et al., 2004,
2007]. Such variant-rich systems are common for industrial and open-source systems in any
domain, including, for instance, the Linux Kernel, operating systems (e.g., Windows, Linux
distributions), firmware (e.g., Marlin 3D printers, HP printers), webservers (e.g., Apache),
program interpreters (e.g., GCC, Python), Android applications, databases (e.g., Oracle
Berkeley DB), automotive systems (e.g., Volvo, Opel, Rolls Royce), embedded systems (e.g.,
Hitachi engine control, Axis cameras, Keba robotics, Danfoss frequency converters), or IoT-
and web-services (e.g., at Google) [Abbas et al., 2020; Bauer et al., 2014; Berger et al., 2015,
2020; Birk et al., 2003; Bosch and Bosch-Sijtsema, 2010; Businge et al., 2018; Fogdal et al.,
2016; Ham and Lim, 2019; Krüger and Berger, 2020b; Krüger et al., 2018a,b; Kuiter et al.,
2018b; Liebig et al., 2010, 2011; Nolan and Abrahão, 2010; Stănciulescu et al., 2015; van der
Linden, 2002; van der Linden et al., 2007; Yoshimura et al., 2006b]. The main challenge of
establishing such a variant-rich system is to select a strategy for reusing existing artifacts.

Software reuseSoftware reuse is one of the most fundamental concepts to decrease the development costs,
improve the quality, and reduce the time-to-market of a new variant [Krueger, 1992; Krüger
and Berger, 2020b; Long, 2001; Mili et al., 2000; Standish, 1984; van der Linden et al., 2007].
The basic idea is to reuse existing artifacts (e.g., code, models, requirements) that represent
user-visible functionalities— called features [Apel et al., 2013a; Berger et al., 2015; Classen
et al., 2008]— and integrate these into a new variant. While various reuse techniques with
individual pros and cons are used in practice, they can be distinguished based on certain
properties, for example, whether artifact reuse is planned or pragmatic [Holmes and Walker,
2012; Kulkarni and Varma, 2016; Tomer et al., 2004]. We distinguish two reuse strategies:

Clone&own Clone&own(also called ad hoc, opportunistic, pragmatic, and scavenging reuse or cloning
in the large) refers to developers creating a copy of a variant that they adopt to
new customer requirements [Dubinsky et al., 2013; Rubin et al., 2015; Stănciulescu
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et al., 2015]. Using clone&own is cheap, readily available, and supported by many
version-control systems (e.g., branching in Git) [Gousios et al., 2014; Krüger and
Berger, 2020b; Krüger et al., 2019c; Lillack et al., 2019; Stănciulescu et al., 2015].
For this reason, most organizations and developers initially employ clone&own,
until an increasing number of cloned variants challenges maintenance, for instance,
because features and bug fixes must be propagated or developers loose their overview
understanding of which cloned variants comprise which features [Bauer and Vetrò,
2016; Berger et al., 2020; Krüger, 2019b; Kuiter et al., 2018b; Long, 2001; Pfofe et al.,
2016; Rubin et al., 2015; Yoshimura et al., 2006b]. We remark that clone&own
can be considered to represent copy&paste (or cloning in the small) [Bellon et al.,
2007; Cheung et al., 2016; Li et al., 2006; Narasimhan and Reichenbach, 2015; Roy
et al., 2009], but it is employed on a larger scale and causes more severe consequences
considering an organization’s development processes and infrastructure, for instance,
to enable developers to efficiently manage the cloned variants with tools [Fischer et al.,
2014; Lillack et al., 2019; Linsbauer, 2016; Pfofe et al., 2016; Rubin et al., 2012, 2013].

Platform engineeringPlatform (also called systematic, [pre-]planned, and strategic reuse) refers to
developers engineering a single codebase from which they can derive customized vari-
ants [Meyer and Lehnerd, 1997]. This strategy usually involves concepts and methods
from software product-line engineering [Apel et al., 2013a; Clements and Northrop,
2001; Pohl et al., 2005; van der Linden et al., 2007], employing a variability mechanism
to implement variation points (e.g., using preprocessor macros, runtime parameters, or
components) in the codebase to control features [Apel et al., 2013a; Gacek and Anasta-
sopoules, 2001; Schaefer et al., 2012; Svahnberg et al., 2005], variability models [Berger
et al., 2013a; Chen and Babar, 2011; Czarnecki et al., 2012; Nešić et al., 2019; Schaefer
et al., 2012], as well as tools to configure and automatically derive a variant [Beuche,
2012; Horcas et al., 2019; Krueger, 2007; Meinicke et al., 2017; Thüm et al., 2014b]. A
platform requires investments into technical (e.g., the platform architecture) and non-
technical (e.g., development processes) aspects, before its benefits can be achieved, for
instance, decreased maintenance and development costs as well as substantially reduced
time-to-market [Böckle et al., 2004b; Bosch and Bosch-Sijtsema, 2010; Clements and
Krueger, 2002; Krüger and Berger, 2020a,b; Krüger et al., 2016a; Lindohf et al., 2021;
Schmid and Verlage, 2002; van der Linden, 2005; van der Linden et al., 2004, 2007].

Re-engineer-
ing variant-
rich systems

Initially, most variant-rich systems are engineered based on clone&own, and later trans-
formed into a platform [Berger et al., 2013a, 2020; Duszynski et al., 2011; Krüger, 2019b;
Kuiter et al., 2018b; Long, 2001; Pohl et al., 2005; Yoshimura et al., 2006b]. The subsequent
evolution of re-engineering cloned variants into a platform remains a common practical
problem— considering its costs and risks, despite decades of research aiming to facilitate
this process [Assunção et al., 2017; Berger et al., 2020; Clements and Krueger, 2002; Krueger,
2002; Krüger, 2019b; Krüger et al., 2016a; Laguna and Crespo, 2013; Schmid and Verlage,
2002]. Just as one example, Fogdal et al. [2016] report that introducing a platform based on
re-engineering cloned variants at Danfoss took 36 months for 80% of the code, instead of the
intended 10 months for the whole re-engineering (also involving, e.g., tools and variability
models). We remark that we rely on the term re-engineering in this dissertation, while other
researchers have defined synonymous terms, for example, Krueger [2002] refers to extractive
product-line adoption and Fenske et al. [2013] refer to variant-preserving migration.

1.1 Goals and Contributions
Scope As described, clone&own and platform engineering require developers to adopt different

tools, processes, and techniques to reuse artifacts and customize variants effectively. Choos-
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Figure 1.1: Conceptual framework of our research objectives and their relations to each
other as well as to the reuse strategy employed (in gray). The boxes with rounded corners
exemplify concrete instances related to the concepts.

ing either strategy is an important strategical decision that defines an organization’s ability
to engineer a variant-rich system. Unfortunately, researchers and practitioners are missing
a detailed understanding and reliable data on various properties of these strategies that
would help to decide which strategy to use, how to steer re-engineering projects, and how
to facilitate the conduct of such projects [Krüger and Berger, 2020a,b]. In this dissertation,
we are concerned with improving this understanding, which is why our scope is mainly on
knowledge creation and verification, building on evidence-based software engineering [Dybå
et al., 2005; Kitchenham et al., 2004, 2015; Shull et al., 2008]. Our results help practitioners
to decide for a reuse strategy as well as to scope and execute corresponding projects, and
researchers to design new techniques that are in line with real-world needs. To obtain these
results, we used empirical research methods, such as surveys, experiments, and systematic
literature reviews, to synthesize and strengthen the understanding of four properties (ex-
plained below)— that we found to be closely related, but miss detailed analyses: economics,
knowledge, traceability, and practices [Krüger, 2017, 2018a,b, 2019a; Krüger and Berger,
2020b; Krüger et al., 2020b].

Research objec-
tives

To investigate these four properties, we defined a respective research objective (RO) for
each. Despite extensive research on software reuse and variant-rich systems [Assunção
et al., 2017; C and Chandrasekaran, 2017; Heradio et al., 2016; Krueger, 1992; Laguna
and Crespo, 2013; Rabiser et al., 2018; Schaefer et al., 2012], recent reviews, experience
reports, and surveys agree that these properties in particular are still not well understood.
In the following, we briefly motivate our research objectives and their relations, for which
we sketch a coarse-grained conceptual framework in Figure 1.1— in which we also indicate
the relations to the employed reuse strategy in gray. We provide a more detailed framework
and description of each objective in the corresponding chapters. Note that the central
element that is common in our fine-grained conceptual frameworks are the developers, who
we aim to support with all of our research objectives.

EconomicsUnderstanding the economics (i.e., costs and benefits) of (re-)engineering variant-rich
systems is essential to support an organization’s decision making regarding which reuse
strategy to use and what traceability techniques as well as practices to implement. For
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instance, cost models and scoping techniques for software product lines [Ali et al., 2009;
Bayer et al., 1999; Koziolek et al., 2016; Nolan and Abrahão, 2010; Rincón et al., 2018;
Thurimella and Padmaja, 2014; van der Linden, 2005] have been investigated and used for
a long time, but are often based on single experiences instead of systematically elicited
data [Krüger, 2016; Krüger and Berger, 2020a,b; Lindohf et al., 2021]. Consequently, it is not
surprising that the most common reasoning on adopting a platform is still the experience-
based rule-of-thumb that it will pay off after developing three variants [Knauber et al., 2002;
van der Linden et al., 2007]. For this reason, the need to better understand the economics of
(re-)engineering variant-rich systems is regularly mentioned as a an open problem in literature
reviews, for example, by Laguna and Crespo [2013] or Assunção et al. [2017]. Similarly,
surveys with practitioners repeatedly highlight the expenses associated with variant-rich
systems and organizations’ demands for improving decision support based on reliable
economic data [Berger et al., 2020; Ghanam et al., 2012]. Apparently, this long-standing,
highly important research problem has not been well investigated, neither by research
nor by industry [Rabiser et al., 2019], arguably due to the challenges of understanding
economics in software engineering and systematically eliciting datasets [Boehm, 1984; Bosu
and Macdonell, 2019; Heemstra, 1992; Jørgensen, 2014; Mustafa and Osman, 2020]. In this
dissertation, we shed light into such economics based on the following research objective:

Economics (Chapter 3)

RO-E Establish a body-of-knowledge on the economics of clone& own, platform engi-
neering, and the re-engineering of cloned variants into a platform.

Knowledge Numerous factors (e.g., of the system, developers, practices) impact the economics of
(re-)engineering variant-rich systems. However, most costs in software engineering and
particularly re-engineering can be attributed to developers’ knowledge needs and program
comprehension— consequently defining the extent of traceability and what practices for
managing a variant-rich system are required. Systems evolve, developers forget over
time [Kang and Hahn, 2009; Krüger et al., 2018e], and features are usually not traced properly
in the code, which is why developers must comprehend the code again and perform feature
location [Andam et al., 2017; Assunção and Vergilio, 2014; Krüger, 2019a; Krüger and Berger,
2020b; Krüger et al., 2019a; Tiarks, 2011; Wang et al., 2013; Wilde et al., 2003]; which are
human-centered and expensive activities, due to the concept-assignment problem [Biggerstaff
et al., 1993]. It is not surprising that literature reviews of automated feature-location
techniques (and other techniques for reverse engineering knowledge) highlight the expensive
adaptations required and missing evaluations [Alves et al., 2010; Bakar et al., 2015; Dit
et al., 2013; Razzaq et al., 2018; Rubin and Chechik, 2013b], making it hard to judge the
usability of such techniques. Moreover, studies in industry indicate that developers can, and
have to, improve their knowledge regarding additional properties (e.g., quality attributes)
to understand the features, similarities, and differences of variant-rich systems [Berger et al.,
2015; Ghanam et al., 2012; Tang et al., 2010]. For these reasons, we focus on human factors
(i.e., developers’ knowledge) of re-engineering in this dissertation, which motivate, but are
actually not well investigated compared to, reverse-engineering techniques [Krüger et al.,
2019a; Rabiser et al., 2018]. So, we defined the following research objective:

Knowledge (Chapter 4)

RO-K Provide an understanding of the importance and recovery of developers’ knowl-
edge for enabling the re-engineering of cloned variants into a platform.

Traceability Software traceability can cover various artifacts (e.g., requirements, features, tests) and
dimensions (e.g., development activities, system evolution), intending to facilitate practices,
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and thus reduce costs, by encoding knowledge into a system and allowing tools to automat-
ically analyze such traces [Andam et al., 2017; Antoniol et al., 2017; Ji et al., 2015; Krüger,
2019a; Krüger et al., 2019b; Nair et al., 2013; Vale et al., 2017]. We focus on feature trace-
ability in source code, which helps developers to recover their knowledge (e.g., easing feature
location), to establish a knowledge base regarding what features are implemented where in a
variant-rich system, and to document the evolution of features. In particular, while optional
(i.e., configurable) features in a platform are often traceable based on the used variability
mechanism (e.g., preprocessor annotations), this is rarely the case for mandatory features
or in cloned variants. Introducing feature traceability (e.g., while re-engineering cloned vari-
ants) is challenging and not well understood, as highlighted by literature reviews [Assunção
et al., 2017; Laguna and Crespo, 2013] and industrial investigations [Berger et al., 2020].
Most importantly, Vale et al. [2017] identify several open challenges that we are concerned
with, namely, applying feature traceability in practice, strengthening the empirical evidence
in this regard, and understanding the differences between variability mechanisms and
traceability. To tackle these challenges, we defined the following research objective:

Traceability (Chapter 5)

RO-T Improve the evidence on how to implement feature traceability in a variant-rich
system and during the re-engineering of cloned variants into a platform.

PracticesWhile addressing our previous objectives, we investigated the practices (e.g., activities,
techniques, tools) employed for each reuse strategy, and how these define the economics,
traceability, as well as knowledge required for (re-)engineering variant-rich systems. Inter-
estingly, particularly the software product-line community still builds heavily on process
models established around two decades ago that strictly separate domain and application
engineering [Apel et al., 2013a; Northrop, 2002; Pohl et al., 2005; van der Linden et al., 2007].
We found that these do neither incorporate current practices in industry nor advancements
in research [Krüger and Berger, 2020a,b; Krüger et al., 2020d]. Similarly, Rabiser et al.
[2018] and Berger et al. [2020] argue that process topics have not been well investigated by
research recently and require an update to better support industry. An updated process
model and analysis of current practices is important to support not only organizations,
but also researchers to identify and scope open directions based on how variant-rich sys-
tems are engineered with modern technologies— and to understand how costs, knowledge,
and traceability are connected to modern round-trip engineering practices employed for
(re-)engineering variant-rich systems. So, we defined our last research objective as follows:

Practices (Chapter 6)

RO-P Define a practice-oriented round-trip engineering process model for implement-
ing, re-engineering, and evolving variant-rich systems.

Dissertation
contributions

By addressing our research objectives, we created and verified knowledge that helps
researchers and practitioners alike. In particular, our overarching goal for practitioners is
to support the decision making of organizations regarding whether they can benefit from
(re-)engineering a platform, how to do this, and how to tackle the associated problems. For
research, our results provide insights into open problems that require further analyses and
novel techniques. In a nutshell, our contributions represent an empirics-based work that
extends the existing body-of-knowledge on:

C1 The costs of clone&own, platform engineering, and the re-engineering of cloned
variants into a platform (Chapter 3).
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Figure 1.2: Overview of the goals of our studies, the methodologies (italic), key publications
(in parentheses), results (square rectangles), corresponding sections in this dissertation, and
(roughly) which results inspired, or contributed to, which other studies (gray arrows).

C2 Developers’ knowledge (Chapter 4) and feature traceability (Chapter 5) in the context
of reusing, re-engineering, and evolving software.

C3 Processes and recommendations for (re-)engineering variant-rich systems that involve
modern software-engineering practices (Chapter 6).

As described, these contributions help to solve several long-standing research and industrial
problems. We provide a more detailed discussion of each objective and the consequent
contributions in the corresponding chapters. On a final note, we want to emphasize that our
results are related to numerous research fields and provide insights that exceed the scope of
this dissertation (e.g., on the importance of developers’ memory for program comprehension).

1.2 Structure

Research
overview

In Figure 1.2, we sketch the overall structure of our core chapters. We show our research
objective for each section, what methods we used to address it, our key publications
(alphabetical order; we show a detailed list at the beginning of each chapter), and our
results. Moreover, we use the gray arrows to indicate which results motivated which studies.
Note that this is a coarse overview focusing on the most prominent relations. Also, we
remark that the publications seem to be out of order, but this is mostly due to the time it
took to publish some of them—and because we worked on several studies in parallel based on
intermediate results. For instance, our economical comparison of clone& own and platform
engineering [Krüger and Berger, 2020b] took several years, while early insights confirmed
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that knowledge is an important cost factor— partly inspiring our study on developers’
memory [Krüger et al., 2018e]. Consequently, we did not structure this dissertation solely
based on the order of publications, but focused on improving the comprehensibility of our
research and the connections therein. Still, we can see in Figure 1.2 that all of our research
originates from an economical perspective, that we studied knowledge and traceability
largely in parallel (they are closely connected, and thus motivated by similar results), and
integrated all of our findings into practices.

StructureMore detailed, this dissertation is structured as follows:

In Chapter 2, we introduce concepts of variant-rich systems that are needed to understand
this dissertation. Note that we aimed to improve the comprehensibility of this
dissertation by refining our conceptual framework and introducing more specific
background knowledge in the individual chapters.

In Chapter 3, we report our research on the economics of variant-rich systems. To this
end, we first provide an overview of existing cost models and feature location as
a major cost factor for re-engineering variant-rich systems. Then, we present our
empirical comparison of developing variants via clone& own and platform engineering—
confirming and refuting established hypotheses. Finally, we synthesize our lessons
learned and data from five re-engineering case studies. Put very concisely, our results
indicate that organizations should strive towards more systematic software reuse.

In Chapter 4, we describe our research on developers’ knowledge. To this end, we report
an empirical study in which we investigated developers’ information needs and their
motivation to remember different types of knowledge. Afterwards, we present our
survey on developers’ memory performance regarding their source code. Since our
insights show that developers have to recover knowledge particularly for the code
level, we show which information sources of software-hosting platforms (i.e., GitHub)
can help recover the required knowledge on features (e.g., their locations) . Put very
concisely, our results indicate that documenting and tracing knowledge is key to
reduce the costs of (re-)engineering variant-rich systems.

In Chapter 5, we present our research on feature traceability. To this end, we define
three dimensions of feature traces and their potential trade offs based on different
types of studies. This inspired two experiments on program comprehension: First we
report an experiment on the impact of different feature representations (i.e., feature
annotations and feature modules) on developers’ task performance and memory.
Second, we present our results regarding the use of a variability mechanism (i.e., the
C preprocessor) for feature traceability. Put very concisely, our results indicate that
feature traceability supports program comprehension by facilitating feature location,
and should ideally be separated from variability mechanisms.

In Chapter 6, we explain our research on contemporary practices for variant-rich systems.
To this end, we detail a novel process model for (re-)engineering variant-rich systems
that we constructed based on recent experience reports and our previous findings.
We enrich our process model by providing a set of 34 feature-modeling principles,
highlighting that they relate repeatedly to our other research objectives. Finally,
we report our experiences of assessing the maturity of variant-rich systems, which
allows to monitor the system’s evolution and plan investments. Put very concisely,
our results indicate that the processes and recommendations we constructed can help
to systematically manage a variant-rich system, and thus to increase its value.
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In Chapter 7, we conclude this dissertation by summarizing our core findings and dis-
cussing directions for future work.

Please note that we do not provide a separate related-work chapter. We built extensively
on systematic literature reviews to synthesize knowledge reported in the related work and
typically involved similar literature reviews in the process, too (e.g., to define a starting set
for snowballing or to assess the completeness of our samples). Consequently, we involve the
related work directly in our actual research and the corresponding chapters, which is why
we decided against reporting it separately.



2. Variant-Rich Systems

This chapter builds on publications at ESEC/FSE [Nešić et al., 2019], SPLC [Krüger et al.,
2020d; Strüber et al., 2019] and Empirical Software Engineering [Lindohf et al., 2021].

Variant-rich
systems

A variant-rich system is a portfolio of similar variants that share common code, but include
also customized features for specific customers [Berger et al., 2020; Krüger et al., 2020b;
Strüber et al., 2019; Villela et al., 2014]. So, while a variant-rich system allows to customize
variants to different requirements, the high similarity between the variants promotes software
reuse to improve software quality and reduce costs [Krueger, 1992; Krüger and Berger,
2020b; Long, 2001; Mili et al., 2000; Standish, 1984; van der Linden et al., 2007]. In fact,
many variant-rich systems originate from developers cloning (i.e., reusing) a software system
and adapting it to new requirements. There are numerous different techniques [Frakes
and Kang, 2005; Krueger, 1992] for reusing software, and thus to implement a variant-rich
system. Adapting the established distinction of pragmatic and planned reuse [Holmes and
Walker, 2012; Kulkarni and Varma, 2016; Tomer et al., 2004], we distinguish two main
strategies: clone&own (pragmatic) and platform engineering (planned). In this chapter,
we first introduce these two strategies in Section 2.1 and Section 2.2, respectively. Finally,
we describe concepts and methods of software product-line engineering that are typically
used to systematically manage a platform in Section 2.3.

2.1 Clone&Own
Clone&ownClone& own is a simple and readily available reuse strategy that builds on cloning an existing

variant and customizing that clone to new customer requirements [Dubinsky et al., 2013;
Rubin et al., 2015; Stănciulescu et al., 2015]. This cloning mechanism is also well-supported
by existing version-control systems (e.g., Git) and software-hosting platforms (e.g., GitHub)
based on their branching and forking mechanisms [Fischer et al., 2014; Gousios et al., 2014;
Krüger and Berger, 2020b; Krüger et al., 2019c; Lillack et al., 2019; Stănciulescu et al., 2015].
To exemplify this reuse strategy, we display a conceptual sketch in Figure 2.1. We can
see that each variant (except for the first one) is created by cloning (e.g., forking) another
variant. Over time, developers evolve each variant individually, for instance, by introducing
new features, bug fixes, or performance improvements. Such changes can be propagated to
other variants by synchronizing them [Strüber et al., 2019], and researchers have proposed
several techniques to help developers manage and synchronize cloned variants [Fischer et al.,
2014; Pfofe et al., 2016; Rubin and Chechik, 2013a; Rubin et al., 2012, 2013].
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s2

Figure 2.1: Conceptual sketch of clone&own-based variant development.

Pros of
clone&own

Clone&own is a viable reuse strategy that promises several benefits besides software reuse
itself [Fischer et al., 2014; Jansen et al., 2008; Rubin et al., 2012]. For instance, developers
require no preparation or advanced tooling to use clone& own. On the contrary, clone& own
is a cost-efficient reuse strategy for delivering new variants to customers without the need to
invest into a common codebase. So, it is not surprising that many organizations start to reuse
their existing variants by cloning a variant and adapting it to customers’ individual feature re-
quests—avoiding costs and allowing them to fulfill strict deadlines. Moreover, clone& own of-
fers independence by keeping variants separated (i.e., not synchronizing them), which allows
to assign them more easily to developers and keep different customer features strictly apart.

Cons of
clone&own

Despite its benefits, industrial practice shows that clone& own is often insufficient to manage
an ever-increasing number of variants [Bauer and Vetrò, 2016; Berger et al., 2020; Krüger,
2019b; Kuiter et al., 2018b; Long, 2001; Pfofe et al., 2016; Rubin et al., 2015; Yoshimura
et al., 2006b]. Particularly, it becomes more and more challenging to keep an overview
understanding of which features are implemented in which variants and to synchronize
features, bug fixes, or improvements. For instance, the first variant in Figure 2.1 is cloned
(c1) for a second time right before it is synchronized (s1). Consequently, the third variant
may miss some important updates. Similarly, the later synchronizations (s2, s3) may be
expected to align the second and third variant. However, the third synchronization (s3)
includes additional changes from the first variant, which may cause different side effects in
the third variant compared to the second one. This highlights that, even if variants are
synchronized, developers must inspect and test all changes in each variant individually to
identify potential faults. Due to such problems, many organizations re-engineer their cloned
variants towards a software platform at some point.

2.2 Software Platforms

Software
platforms

A software platform represents a set of common artifacts from which a portfolio of variants
can be derived [Meyer and Lehnerd, 1997]. Developing a platform requires more investments
than developing a single variant, but the faster time-to-market, reduced development as well
as maintenance costs, and improved software quality usually pay off in the long run [Böckle
et al., 2004b; Bosch and Bosch-Sijtsema, 2010; Clements and Krueger, 2002; Krüger and
Berger, 2020a,b; Krüger et al., 2016a; Lindohf et al., 2021; Schmid and Verlage, 2002;
van der Linden, 2005; van der Linden et al., 2004, 2007]. Moreover, a platform enables an
organization to manage its software more systematically, and to coordinate its development
around smaller increments (e.g., feature teams [Ghanam et al., 2012; Holmström Olsson
et al., 2012]). Thus, platforms have become a widely established practice in software
engineering, facilitating or enabling various other methodologies, for instance, agile and
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continuous software engineering [Bosch, 2014; Meyer, 2014; Moran, 2015], software-ecosystem
engineering [Bosch and Bosch-Sijtsema, 2010; Lettner et al., 2014], or software product-line
engineering [Apel et al., 2013a; Pohl et al., 2005; van der Linden et al., 2007]. While such
methodologies employ platforms with different ideas in mind, they are often closely related
and build on similar to identical concepts to develop and manage the platform itself.

FeaturePlatform engineering is usually structured around the notion of features, which are an
established concept in software engineering with an intuitive meaning to most developers.
For this reason, unfortunately, a multitude of definitions for the term feature exist [Apel and
Kästner, 2009a; Apel et al., 2013a; Berger et al., 2015; Classen et al., 2008], spanning from
high-level domain abstractions down to implementation-level concepts. In this dissertation,
we rely on the definition of Apel et al. [2013a] to capture features as domain abstractions:

“A feature is a characteristic or end-user-visible behavior of a software system.”

Note that this definition does not enforce that a feature is optional (i.e., representing a
functionality that can be enabled or disabled), which is often explicitly defined in the
software product-line community. Instead, a feature is a unit of functionality, which also
captures mandatory features (i.e., those that are part of every variant). We rely on this
notion of features as units of functionality [Berger et al., 2015; Krüger et al., 2019c], mainly
for three reasons:

1. To recognize that mandatory features are an essential part of any variant-rich system
and provide most of the cost savings of reusing software.

2. To represent that mandatory features must also be developed and maintained, which
is why they should be systematically managed, too.

3. To reflect that most software-engineering methodologies (e.g., for agile software
engineering) follow this notion (e.g., in the product backlog [Sedano et al., 2019]).

So, features can serve as an abstraction for specifying, documenting, comprehending,
managing, and reusing any functionality of a platform (or any other variant-rich system).

AssetAccording to our definition, features are domain abstractions belonging to the so-called
problem space [Apel and Kästner, 2009a; Apel et al., 2013a; Czarnecki, 2005]. To use
the platform, features must be implemented—mapping them to the solution space. We
refer to the actual implementations of a feature as assets [Northrop, 2002; Pohl et al.,
2005]. Note that asset may refer to various types of artifacts, such as source code, models,
documentation, or tests.

2.3 Software Product-Line Engineering
Software prod-
uct-line engi-
neering

Software product-line engineering [Apel et al., 2013a; Czarnecki, 2005; Northrop, 2002; Pohl
et al., 2005; van der Linden et al., 2007] defines methods and tools to systematically engineer
and manage a software platform, allowing organizations to mass-customize (i.e., reuse and
configure) variants. In the following, we discuss the three adoption strategies (Section 2.3.1)
and two engineering processes (Section 2.3.2) that have been defined by the software
product-line community. Then, we describe individual concepts used to engineer a platform
systematically: variability models (Section 2.3.3), variability mechanisms (Section 2.3.4),
and configuring (Section 2.3.5).

2.3.1 Adopting a Platform

Adoption
strategies

The software product-line community distinguishes three core strategies for adopting a
platform [Apel et al., 2013a; Berger et al., 2013a; Clements and Krueger, 2002; Fenske
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Figure 2.2: Overview of the BAPO concerns based on van der Linden et al. [2004].

et al., 2013; Krueger, 2002; Schmid and Verlage, 2002]: proactive, incremental, and re-
engineering. Note that, while we rely on these rather intuitive terms, the terminology
varies within the software product-line community (e.g., extractive [Krueger, 2002], variant-
preserving mapping [Fenske et al., 2013]). Precisely, each adoption strategy is defined as
follows (combinations are possible):

Proactive: In this strategy, an organization basically starts from scratch by planning and
engineering a completely new platform. Consequently, this strategy requires high in-
vestments in the beginning, but it also promises the most long-term savings and a fast
break-even point (i.e., an established rule-of-thumb is after three variants [Knauber
et al., 2002; van der Linden et al., 2007]). Nonetheless, a proactive adoption is a risky,
idealized, and rather academic strategy that rarely occurs in its pure form in practice.

Incremental: In this strategy, an organization develops a single variant and incrementally
advances it into a platform by adding new features. As a result, this strategy is less
expensive compared to a proactive adoption and follows a more agile methodology.

Re-engineering: In this strategy, an organization already has a set of similar variants, for
instance, a variant-rich system that is developed via clone& own. While this strategy
poses the least risks (i.e., the variants are already established in the market), it also
requires additional investments for re-engineering that may not pay off in the future.

We focus on the re-engineering of cloned variants towards a platform, since experience
reports and research indicate that this is the most relevant strategy in practice [Berger
et al., 2013a, 2020; Duszynski et al., 2011; Fogdal et al., 2016; Krüger, 2019b; Kuiter et al.,
2018b; Long, 2001; Pohl et al., 2005; Yoshimura et al., 2006b]. Still, many of our findings
are just as relevant for other adoption strategies.

BAPO model To adopt a platform and the corresponding software product-line concepts, most organiza-
tions have to implement substantial changes regarding four dimensions. These dimensions,
which we display in Figure 2.2, are known as the BAPO concerns [van der Linden, 2002,
2005; van der Linden et al., 2004, 2007] and have been elicited during industry-academia
collaborations. In detail, the concerns cover:

Business: A platform requires different financial and strategical planning compared to
individual projects. For example, organizations that previously developed and sold
individual systems have to plan the platform funding, which promises long-term
benefits for all customers and the organization, but is not payed for by customers.

Architecture: Adopting a software platform requires an architecture that manages the
features’ assets. Typically, software product-line concepts are adopted for this pur-
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Figure 2.3: Typical software product-line process model based on Pohl et al. [2005].

pose, for instance, variability mechanisms (cf. Section 2.3.4), variability models (cf.
Section 2.3.3), and configurator tools (cf. Section 2.3.5).

Process: Software product-line engineering is usually separated into two different processes
that an organization has to adopt: domain and application engineering. We describe
these processes in more detail in Section 2.3.2.

Organization: Employing a platform and the corresponding processes requires the def-
inition of appropriate roles and responsibilities. For example, a platform team is
usually responsible for maintaining the platform itself, while feature teams develop
and contribute individual features.

Note that these concerns are not independent, but impact each other. For illustration,
consider the following short examples from an organization we studied [Lindohf et al., 2021]:

Business – Organization: If a new system is marketed as a platform, the organization
adapts its structures accordingly.

Business – Process: Whether a new variant is marketed as platform-based or as individ-
ual system, directly impacts the change propagation to the platform.

Architecture – Business: Features that are visible to, and can be selected by, customers
are easily configurable in the architecture (e.g., based on plug-ins).

Architecture – Process: Technical processes (e.g., testing, continuous integration) are
directly connected to the platform architecture.

Architecture – Organization: Specific organizational units are responsible for certain
parts of the platform architecture, which is partitioned based on these responsibilities.

Process – Organization: The employed processes are structured around organizational
units, which, in turn, are defined based on the processes.

Overall, the BAPO model is a helpful means to identify and understand the dependencies
between the different concerns of platform engineering.

2.3.2 Engineering Processes

Process modelsIn Figure 2.3, we display a typical software product-line process model. As we can see, most
of such process models distinguish between domain and application engineering [Apel et al.,
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Figure 2.4: A feature model based on Lopez-Herrejon and Batory [2001].

2013a; Pohl et al., 2005; van der Linden et al., 2007]. The individual processes comprise
five and four activities, respectively.

Domain en-
gineering

Domain engineering defines the process of developing the software platform (i.e., developing
for reuse). The first step during domain engineering is the product management, which
essentially covers the business concern of the BAPO model (cf. Section 2.3.1). Consequently,
this step is concerned with scoping the platform (i.e., defining the variant portfolio),
organizing the funding, and defining a market strategy. Using the defined scope, the next
step is to elicit actual platform requirements and derive features from those. So, mandatory
and optional features, as well as their dependencies, are defined and documented, for
instance, by using a variability model (cf. Section 2.3.3). Next, the platform architecture is
designed and implemented, for which a variability mechanism (cf. Section 2.3.4) is used to
enable that optional features can be configured. Finally, the platform is tested and can
then be used to derive actual variants by reusing the implemented features.

Application
engineering

Application engineering defines the process of developing a customer-specific variant (i.e.,
developing with reuse). First, the customer requirements for a new variant must be
elicited. Then, the design of the variant is defined by mapping the requirements to features.
Ideally, all required features have already been implemented in the platform, in which
case the variant can simply be configured and derived (cf. Section 2.3.5). Otherwise, new
features may be introduced into the platform, or directly into the variant if they shall not
be integrated into the common codebase. Finally, the resulting variant is tested before
delivering it to the customer.

2.3.3 Variability Modeling

Variabil-
ity model

A variability model allows an organization to capture the features of a domain (e.g., for
scoping) or platform (e.g., for configuring) as well as the dependencies between them. Conse-
quently, variability models are a key artifact for managing a software platform, documenting
features (ideally also tracing to their assets), and defining constraints that must be enforced
while configuring variants. Various different notations for variability models have been
proposed and are used in practice [Berger et al., 2013a; Chen and Babar, 2011; Czarnecki
et al., 2012; Schaefer et al., 2012], for instance, feature models [Kang et al., 1990; Nešić et al.,
2019], decision models [Schmid et al., 2011], or UML [Object Management Group, 2017].
In research and practice, feature models are the most established notation for variability
modeling [Benavides et al., 2010; Berger et al., 2013a; Lettner et al., 2015; Thüm et al.,
2014a]. For this reason, we also focus on feature models, and their graphical representation
as feature diagrams [Apel et al., 2013a; Schobbens et al., 2006], in this dissertation.

Feature model We show a small example feature model based on the well-known graph library [Lopez-
Herrejon et al., 2011] in Figure 2.4. A feature model captures the features of a platform in
a tree-like structure, and defines all valid configurations by specifying constraints as follows.
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The tree structure of a feature model represents a hierarchy of parent-child constraints,
which enforce that all parents of a selected feature are also selected. Features may be
optional (i.e., algorithms), allowing developers to disable or enable them for a variant, or
mandatory (i.e., graph, edges). Additionally, features can be grouped into or-groups (i.e.,
cycle, shortest) and alternative-groups (i.e., directed, undirected). All constraints
that cannot be defined with those constructs can be added as cross-tree constraints. Cross-
tree constraints are usually expressed as propositional formulas over features, for instance,
to express imply (i.e., cycle ⇒ directed) or exclude dependencies between features in
different sub-trees of the feature model— and are typically listed below the actual model.
Finally, abstract features (i.e., algorithms, edges) can be used to improve the structure of
a feature model. However, they have no implementation (i.e., assets), which means that
only concrete features actually contribute to variants. We remark that other notations of
feature models provide additional constructs that are not relevant for us [Apel et al., 2013a;
Benavides et al., 2010; Berger et al., 2013b]. For instance, some notations allow to use
other types of features besides Boolean or to assign feature attributes.

2.3.4 Variability Mechanisms

Implementa-
tion techniques

Variability mechanisms are implementation techniques for variation points; points at which a
platform can be configured by enabling or disabling optional features to derive a customized
variant. Numerous mechanisms can be used to implement variation points [Apel et al.,
2013a; Bachmann and Clements, 2005; Berger et al., 2014b; Gacek and Anastasopoules, 2001;
Svahnberg et al., 2005; Zhang et al., 2016], for instance, preprocessors, components, plug-ins,
version-control systems, feature-oriented programming [Prehofer, 1997], or simply runtime
parameters. Each variability mechanism exhibits different properties with own pros and cons.

Dimensions of
variability

Apel et al. [2013a] classify variability mechanisms along three dimensions:

Binding time refers to the point in time at which features are included (i.e., bound) into a
variant. Generally, we can distinguish compile-time binding (i.e., features are selected
before, and disabled ones ignored while, compiling), load-time binding (i.e., features
are selected at program start), and runtime binding (i.e., features are selected during
program execution). In that order, examples for variability mechanisms that support
each binding time are preprocessors, plug-ins, and runtime parameters. However, a
variability mechanism may support different bindings times (e.g., parameters). Note
that more fine-grained classifications and various terminologies regarding binding
times exist [Apel et al., 2013a; Berger et al., 2015; Rosenmüller, 2011].

Technology distinguishes whether a variability mechanism is language-based or tool-
based. A language-based mechanism, such as feature-oriented programming, relies
on the capabilities (potentially based on extensions) of the programming language
itself to implement variation points. In contrast, a tool-based mechanism, such as a
preprocessor, introduces external tools to implement and manage variation points.

Representation refers to how variation points are expressed in the source code. Annota-
tion-based mechanisms (e.g., preprocessors) add annotations to the source code that
map to features. If a feature is disabled, the corresponding code can be removed or
simply ignored when deriving a variant. Composition-based mechanisms (e.g., feature-
oriented programming) implement features in separated assets (e.g., a class or module
for each feature). When deriving a variant, all assets belonging to an enabled feature
are composed (i.e., integrated into each other to build the variant).

Next, we exemplify two variability mechanisms in more detail that we used in our research:
preprocessors and feature-oriented programming.
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1 public class Graph {
2 private List <List <Integer >> edges;
3 // ...
4 public void addEdge(
5 int from , int to) {
6 /* if [ directed ] */
7 edges.get(from).add(to);
8 /* else [ directed ] */
9 edges.get(from).add(to);

10 edges.get(to).add(from);
11 /* end [ directed ] */
12 }
13 // ...
14 }

(a) Annotated codebase.

1 public class Graph {
2 private List <List <Integer >> edges;
3 // ...
4 public void addEdge(
5 int from , int to) {
6 edges.get(from).add(to);
7 }
8 // ...
9 }

(b) Preprocessed variant.

Figure 2.5: Conceptual example of using a preprocessor.

Preprocessors

Preprocessors Preprocessors, most prominently the C preprocessor [Kernighan and Ritchie, 1978], ar-
guably represent the most widely used variability mechanism in industrial and open-source
systems [Apel et al., 2013a; Hunsen et al., 2016; Liebig et al., 2010, 2011; Medeiros et al.,
2015]. While some preprocessors support a variety of additional purposes (e.g., macro
definition, file inclusion), we focus on the concept of conditional compilation. Conditional
compilation allows to implement variation points by annotating the source code with so-
called directives (e.g., #ifdef). Each directive involves a macro that defines a (sometimes
arbitrarily complex) condition under which it is true or false. For instance, the C prepro-
cessor’s #ifdef is shorthand for evaluating a single constant (i.e., a feature name), while
its #if accepts any regular expression over features connected via logical operators (e.g.,
||, &&). While preprocessing, each macro is compared against the provided configuration
to evaluate its condition. Based on this evaluation and the corresponding directive (e.g.,
#ifdef and #ifndef are opposites for the same condition), the preprocessor prunes the
source code to involve only enabled source code. Note that many preprocessors are purely
text-based tools, which is why they can be adopted for any form of text. For this reason,
each preprocessor typically defines an own syntax for, and set of, directives— often inspired
by those of the C preprocessor (i.e., #ifdef, #if, #ifndef, #else, #elif, and #endif).

Code example In Figure 2.5, we show a conceptual example (aligning to Figure 2.4) to illustrate how a
preprocessor works. Since we display Java code, we adopted the annotation syntax of a
corresponding preprocessor, namely Munge.2 In Figure 2.5a, we sketch how directed and
undirected edges could be added to a graph. This code can be compiled into two versions by
configuring the feature directed. If enabled, the annotation in line 6 becomes true, while
the one in line 8 is false. Thus, lines 9–10 are removed from the source code if the feature
directed is enabled (cf. Figure 2.5b). Note that the feature undirected does not appear,
but is implicitly specified by the /* else */ in line 8. This is only made explicit in the
feature model we display in Figure 2.4, and shows that there can be comprehension problems
(e.g., regarding what feature the /* else */ refers to) if the developer does not know about
the alternative dependency. Note that another implementation that defines both features
individually (i.e., ending directed and starting undirected instead of the /* else */)
would actually allow to derive four variants. This would violate the feature model and
allow to configure two faulty variants (i.e., both features could be enabled or disabled at

2https://github.com/sonatype/munge-maven-plugin

https://github.com/sonatype/munge-maven-plugin
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1 public class Graph {
2 private List <List <Integer >> edges;
3 // ...
4 public void addEdge(
5 int from , int to) {
6 // to refine in features
7 this.refresh ();
8 }
9 // ...

10 }

(a) Feature graph.

1 public class Graph {
2 private List <List <Integer >> edges;
3 // ...
4 public void addEdge(
5 int from , int to) {
6 edges.get(from).add(to);
7 original(from , to);
8 }
9 // ...

10 }

(b) Feature directed.

1 public class Graph {
2 private List <List <Integer >> edges;
3 // ...
4 public void addEdge(
5 int from , int to) {
6 edges.get(from).add(to);
7 // to refine in features
8 this.refresh ();
9 }

10 // ...
11 }

(c) Composed variant.

Figure 2.6: Conceptual example of using feature-oriented programming.

the same time). Due to such problems, preprocessors have often been criticized in research,
even though empirical studies do not fully support the critique [Fenske et al., 2020].

Feature-Oriented Programming

Feature-ori-
ented program-
ming

Instead of annotating features in a single codebase, feature-oriented programming [Prehofer,
1997] relies on physically separating their assets into modules. A feature can refine any
other feature, which is why feature modules may comprise a number of assets that specify
extensions to the codebase. To derive a variant, these assets are composed by merging their
structures (e.g., based on feature-syntax trees with classes and methods as nodes [Apel and
Lengauer, 2008; Apel et al., 2013b]). For this purpose, the composition mechanism relies on a
keyword-like method (e.g., original()) to identify at what position in the structure feature
refinements are integrated. If this method is missing, the refinement represents either new
code or overwrites the existing code (i.e., similar to inheritance). Since a variant is derived by
iteratively composing feature modules that extend or overwrite existing assets, it is important
to define a proper composition order. This order can be freely defined by developers, but
more advanced tools build upon feature models to derive a suitable order (e.g., based on the
feature hierarchy). Over time, several tools have been adopted to support feature-oriented
programming, for instance, AHEAD [Batory, 2006; Batory et al., 2004], FeatureHouse [Apel
et al., 2009, 2013b], or FeatureIDE [Meinicke et al., 2017; Thüm et al., 2014b].

Code exampleIn Figure 2.6, we display a conceptual example (again aligning to Figure 2.4) to explain
more intuitively how feature-oriented programming works. Our example resembles Fea-
tureHouse [Apel et al., 2009, 2013b], but we adapted it to improve its readability. In
Figure 2.6a, we can see that the base feature graph has one method, which shall be refined
by other features and involves a method call for refreshing the graph. We display the
feature directed in Figure 2.6b, which has the same structure (i.e., class, method) as the
base feature to enable composition. The original() method defines at which position the
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refinement shall be introduced into the previously composed assets. In this case, line 6 of
Figure 2.6b shall be placed before the code it is composed into. As a results, a composition
of both modules would lead to the code we display in Figure 2.6c.

2.3.5 Configuring

Configuring Based on the previous concepts, a platform allows developers to configure and derive
variants [Apel et al., 2013a; Meinicke et al., 2017]. For this purpose, developers can use
configurator tools that present all configuration options (i.e., features) in a GUI, typically as
a list of checkboxes that can be selected. While configuring remains a manual process (except
for deriving the exact same variant again), configurator tools guide the process by using
the defined feature dependencies (e.g., specified in the feature model) to identify whether a
configuration becomes invalid (i.e., it violates dependencies) [Benavides et al., 2010]. There
are different resolution strategies to handle invalid configurations, particularly if customers
can configure the variants themselves [Thüm et al., 2018]. Many advanced configurator tools
actually support developers by propagating their decisions, meaning that they automatically
select and deselect features to prevent invalid configurations (e.g., selecting all features
that are required by the one a developer selected) [Apel et al., 2013a; Hubaux et al., 2012;
Krieter, 2019; Krieter et al., 2018b]. Using a complete configuration, a variant can be
automatically derived from the platform. While new customer requirements may still
require glue code, the ability to derive variants fully automatically allows to assemble assets
with almost no costs, to reuse configurations (e.g., for continuous delivery [Humble and
Farley, 2010], and to automatically test variants.

2.4 Summary

Chapter
summary

In this chapter, we introduced the basics of variant-rich systems and particularly software
product-line engineering. First, we distinguished between clone&own and platform en-
gineering as the two strategies for reusing software. We discussed how these strategies
are employed and what pros as well as cons they have to highlight how they are used to
engineer variant-rich systems. Then, we described the different concepts related to software
product-line engineering that are relevant for this dissertation. Namely, we introduced
adoption strategies, engineering processes, variability modeling, variability mechanisms,
and configuring. Note that we focused on explaining those concepts that are fundamental
to all parts of this dissertation. We introduce further concepts in the chapters for which
they are relevant or in which we investigated them in great detail for the first time. For
this purpose, we define a detailed conceptual framework at the beginning of each chapter
to establish key terms and explain the required background knowledge as far as needed.



3. Economics of Software Reuse

This chapter builds on publications at ESEC/FSE [Krüger and Berger, 2020b], ICSE [Krüger,
2018a], SEVIS [Krüger et al., 2019a], SPLC [Åkesson et al., 2019; Debbiche et al., 2019;
Krüger et al., 2016a, 2017a, 2018a; Kuiter et al., 2018b; Strüber et al., 2019], VaMoS
[Krüger and Berger, 2020a], Empirical Software Engineering [Lindohf et al., 2021], and
Software: Practice and Experience [Krüger et al., 2018d].

Chapter struc-
ture

In this chapter, we investigate the economics of software reuse (RO-E). First, we discuss
cost models for software product-line engineering to establish an intuition on how to decide
for a reuse strategy and to identify open challenges (Section 3.1). Second, we provide
and compare empirical data on the economics of clone&own and platform engineering
(Section 3.2). Finally, we report experiences and data from five case studies in which we
re-engineered real-world, variant-rich systems towards systematically managed platforms
(Section 3.3). Building on these insights, the contributions in this chapter allow practitioners
to make empirics-based decisions on whether (re-)engineering a platform is useful, and with
which reuse strategy a new variant should be developed. For researchers, we contribute
insights regarding the most expensive and most important challenges of (re-)engineering
variant-rich systems that require further investigations and novel techniques. In particular,
these challenges highlight our motivation for investigating our other research objectives.

Conceptual
framework of
economics

We display a more detailed overview of our conceptual framework regarding reuse economics
in Figure 3.1. Within a project, an organization develops a new variant that is defined by a
number of requirements. Depending on these requirements, the organization must decide
which reuse strategy to employ (i.e., clone&own or a platform), potentially involving the
re-engineering of an existing variant-rich system. The selected reuse strategy defines the
concrete process used for developing, and finally delivering, the specified variant. Such a
development process involves activities, for instance, implementing features or fixing bugs,
which are performed by the organization’s developers. All activities cause costs (i.e., money
spent) that are influenced by the cost factors (a.k.a., cost drivers) relating to the project,
such as the number of developers or the size of the variant [Boehm, 1984; Heemstra, 1992;
Leung and Fan, 2002]. In this chapter, we show that cost factors that are important in
the context of software reuse relate particularly to the other objectives in our conceptual
framework. Therefore, the economics of software reuse should be used to define these
objectives, which consequently cause costs.
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Figure 3.1: Details of the economics objective in our conceptual framework (cf. Figure 1.1).

3.1 Cost Estimation for Variant-Rich Systems

Decision
making

Developing a new variant, and particularly (re-)engineering a variant-rich system, requires
an organization to decide for a specific development process and reuse strategy. Such a
decision causes costs, is risky, and has long-term impact on an organization’s structure. For
this reason, most organizations conduct a domain and market analysis to compare between
different options before deciding how to engineer a variant. While the specifics of such an
analysis can vary (e.g., employed methods, considered properties), cost estimations are
usually a core aspect and key to manage a project effectively [Bayer et al., 1999; Berger
et al., 2020; Biffl et al., 2006; Boehm and Huang, 2003; Dolado, 2001; Jørgensen, 2014;
Koziolek et al., 2016; Northrop, 2002; Trendowicz, 2013]. Regarding variant-rich systems, it
is particularly challenging to estimate costs and compare reuse strategies, since clone& own
is readily available and causes few adoption costs, while a platform requires large upfront
investments that cannot be directly assigned to a specific project or customer. Consequently,
an organization must compare the investments into a platform against its uncertain benefits
in the future [Krüger et al., 2016a; Martinez et al., 2015; Schmid and Verlage, 2002].

Section con-
tributions

In this section, we investigate cost estimation for (re-)engineering variant-rich systems by
addressing three sub-objectives of RO-E [Krüger, 2016, 2018a; Krüger et al., 2016a, 2019a]:

RO-E1 Identify and compare existing software product-line cost models.

Cost models provide guidance for estimating the costs and understanding the
economic impact of a development or reuse strategy [Boehm, 1984; Heemstra, 1992;
Jørgensen and Boehm, 2009; Leung and Fan, 2002]. We surveyed existing software
product-line cost models, since these compare platform engineering with single-
system development or clone&own. Analyzing these cost models helps to elicit
relevant cost factors, understand the models’ limitations, decide which model to
select, and identify opportunities for improvement.

RO-E2 Analyze cost estimations in the context of (re-)engineering variant-rich systems.

While surveying the cost models, we found that few involve the re-engineering of
variant-rich systems. To tackle this issue, we analyze the cost functions defined in
the SIMPLE cost model [Böckle et al., 2004a,b; Clements et al., 2005], particularly
in the context of such a re-engineering and of economical cost curves. By dis-
cussing these adaptations, we provide an intuition for practitioners and researchers
regarding what properties and cost factors are important to adapt.

RO-E3 Discuss feature location in the context of re-engineering economics.

Feature location [Dit et al., 2013; Duszynski, 2010; Rubin and Chechik, 2013b;
Strüber et al., 2019] is expensive, and a key activity regarding the re-engineering
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of a variant-rich system. We relate manual feature location and the consequent
program comprehension to the results we obtained for our previous sub-objectives.
Using our insights, we motivate our remaining research objectives in more detail.

In the remainder of this section, we first report our survey of existing cost models for
software product lines in Section 3.1.1. Then, we analyze the SIMPLE cost model and
its adaptations for re-engineering variant-rich systems in Section 3.1.2. To motivate our
research objectives, we discuss our insights in the context of feature location in Section 3.1.3.

3.1.1 RO-E1: Cost Models for Software Product-Line Engineering

Cost modelsSoftware cost estimation is the process of predicting the costs, benefits, and risks of
developing, extending, or re-engineering a software system [Boehm, 1984; Heemstra, 1992;
Leung and Fan, 2002]. Various methods with different pros and cons can be used to
estimate costs, of which the reliable ones are cost models, expert judgment, and analogies
to historical data [Boehm, 1984; Heemstra, 1992; Jørgensen, 2014; Jørgensen and Boehm,
2009; Jørgensen and Shepperd, 2007; Leung and Fan, 2002]. Typically, different methods
are combined to improve the reliability of an estimate. In the following, we focus on
cost models, which are mathematical functions whose variables represent cost factors. By
analyzing existing cost models, we can obtain an overview of what cost factors researchers
and practitioners consider relevant in the context of software reuse. Note that we involve
expert judgments and analogies in Section 3.2.

Literature
survey

Numerous cost models have been proposed to help organizations estimate the costs of
developing a new software system and of employing different reuse techniques [Boehm
et al., 2000; Jørgensen and Shepperd, 2007; Lim, 1996; Mili et al., 2000]. We conducted
a literature survey of software product-line cost models [Krüger, 2016] using an automated
search on five digital libraries: Google Scholar, ACM Digital Library, IEEE Xplore, Springer
Link, and Science Direct. To this end, we defined the following search string:

(“software product line” OR “software product family”) AND
(“cost estimation” OR “cost model” OR “investment”)

In the returned publications, we identified three literature surveys on software product-line
cost models [Ali et al., 2009; Blandón et al., 2013; Charles et al., 2011] and two systematic
literature reviews on software product-line economics that involve cost models [Heradio
et al., 2013; Khurum et al., 2008]. From these five literature surveys, we extracted all cost
models and matched these with the remaining publications. Moreover, we used forwards and
backwards snowballing [Wohlin, 2014] on all included publications to add novel cost models
and their extensions (e.g., by Tüzün and Tekinerdogan [2015]). We included any publication
that defines a cost model for software product-line engineering. Note that we did not have
access to some publications at that point in time (e.g., to those by Schmid [2002], Matsumoto
[2007], or Nonaka et al. [2007a,b]), which is why these were excluded in our original literature
survey. To tackle this issue, we checked the availability of all publications again. We also
included additional literature surveys that were not available to us before (e.g., by Thurimella
and Padmaja [2014]), were published more recently (i.e., by Heradio et al. [2018]), or that
involve cost models, but only as a background or a side topic (e.g., by Parmeza [2015]).

Results and Findings

Identified cost
models

We display the mapping of the ten literature surveys and 14 cost models (described and re-
fined in 26 publications) we identified in Table 3.1. Note that we consolidate all publications
relating to or extending a cost model, for instance, Tüzün and Tekinerdogan [2015] add an
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Table 3.1: Overview of software product-line cost models surveyed in the literature. The cost-
models, references, and literature surveys are ordered by publication year and alphabetical.
Our previous literature survey is highlighted by the gray column.
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Withey [1996] # #  # #     #

Poulin [1997]  #         

Schmid
[Schmid, 2002] #  # # # # # # # #
[Schmid, 2003] # #  # # # #   #
[Schmid, 2004] #  # # # # # # # #

ABC Analysis
[Cohen, 2003] # #  # #   #   

Peterson [2004] #   #   # #   

(q)COPLIMO
[Boehm et al., 2004]           
[In et al., 2006] #          
[Heradio et al., 2012] # # # # #  # #  #

SIMPLE
[Böckle et al., 2004a] #  # # #  #  # #
[Böckle et al., 2004b]   # #    #  #
[Clements et al., 2005] # #         
[Pohl et al., 2005] # # # # # #  # # #
[Tüzün and Tekinerdogan, 2015] # # # # # # # #  #

Tomer et al. [2004]  # # # # # # # # #

SoCoEMo-PLE(2)
[Ben Abdallah Ben Lamine et al., 2005a]  # # # #  #  # #
[Ben Abdallah Ben Lamine et al., 2005b] #    #  # #  #
[Ben Abdallah Ben Lamine et al., 2005c] # #   # # # #  #

Ganesan et al. [2006] #   # # # # #  #

Wesselius [2006] # #  # #  # #  #

Matsumoto [2007] #  # # # # # # # #

Nonaka
[Nonaka et al., 2007a] #  # # # # # # # #
[Nonaka et al., 2007b] #  # # # # # # # #

InCoME
[Nóbrega, 2008] # # # # # # #  # #
[Nóbrega et al., 2008] # #  # #  #   #

 : covered – #: not covered – �: not included in our previous literature survey
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experience factor to SIMPLE. Moreover, not all cost models mentioned or referenced in a liter-
ature survey are actually discussed in that survey, for example, Blandón et al. [2013] focus on
a comparison of COPLIMO and SIMPLE. We can see that software product-line cost models
have been proposed particularly in the 2000s, aligning to a bibliographic analysis of the soft-
ware product-line community by Heradio et al. [2016]. By triangulating the findings of all sur-
veys and verifying these findings with the cost models, we identified three major challenges.

Diversity of
cost factors

First, existing software product-line cost models are diverse and have varying levels of
granularity regarding the cost factors they consider [Ali et al., 2009; Charles et al., 2011;
Krüger, 2016; Nóbrega et al., 2006; Thurimella and Padmaja, 2014]. For instance, SIMPLE
defines cost functions on an abstract level (e.g., organizational costs) that must be estimated
by an expert, and thus are more suitable for an overarching understanding of costs. In
contrast, other cost models (e.g., COPLIMO) are far more fine-grained in their cost factors
(i.e., lines of code reused as black-box), and thus also more complex. Similarly, some
cost models cover only the adoption phase of a platform, disregarding that the platform
must be maintained throughout its whole life-cycle, including quality assuring, feature
enhancing, and bug fixing [Ali et al., 2009; Krüger, 2016]. Such diversity makes it harder to
select a cost model for a specific scenario and organization, particularly since it is unclear
for what reasons what cost factors are considered. Interestingly, despite this diversity,
most cost models consider knowledge about a variant-rich system and locating features
(or assets), either directly as cost factors (e.g., “unfamiliarity factor” [Boehm et al., 2004])
or by indirectly referring to them (e.g., included in “skill” [Withey, 1996]) [Böckle et al.,
2004a,b; Clements et al., 2005; Nóbrega, 2008; Nóbrega et al., 2008; Peterson, 2004; Pohl
et al., 2005; Poulin, 1997; Schmid, 2002, 2003]. Notably, Tüzün and Tekinerdogan [2015]
focus solely on integrating an estimation of developers’ knowledge into SIMPLE.

Missing val-
idations and
empirical data

Second, validating cost models is a challenging task, and most of the software product-line
cost models build on single experiences or fictional data instead of real-world validations [Ali
et al., 2009; Jørgensen and Shepperd, 2007; Khurum et al., 2008; Krüger, 2016; Leung and
Fan, 2002; Nolan and Abrahão, 2010]. The main challenge for validating cost models is
the availability of reliable, empirical data that exceeds single studies, allows for deeper
insights into cost factors, and represents real projects [Ali et al., 2009; Khurum et al.,
2008; Krüger and Berger, 2020a,b; Mustafa and Osman, 2020]. Usually, such economic
data is not published, because it represents critical business information that organizations
do not want to share [Koziolek et al., 2016; Yoshimura et al., 2006a]. Moreover, there is
a missing understanding of most cost factors and their actual impact on costs. For this
reason, several cost models define rating scales for such cost factors, which, unfortunately,
are rarely reliable and sparsely based in empirical evidence [Ali et al., 2009; Jørgensen,
2014; Leung and Fan, 2002].

Cost model for
re-engineering
variant-rich
systems

Third, existing software product-line cost models consider the re-engineering of cloned
variants towards a platform insufficiently [Koziolek et al., 2016; Krüger et al., 2016a]. Few
models mention that a platform may be adopted from a set of existing variants, and most
focus solely on the proactive adoption of a platform. Even though some cost models include
re-engineering scenarios (e.g., SIMPLE), these scenarios are usually on an abstract level
and neither explain how to adapt cost factors nor what the impact of existing assets or
knowledge on the economics of a platform is. Consequently, we are lacking a detailed
understanding of how the “remains” of previous projects (e.g., knowledge, experiences,
assets) can lead to varying results [Jørgensen, 2004, 2007; Krüger and Hebig, 2020; Tüzün
and Tekinerdogan, 2015]—which requires further analyses before an actual evidence-based
cost model for re-engineering variant-rich systems can be defined.
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RO-E1: Cost Models for Software Product-Line Engineering
We analyzed existing software product-line cost models and learned:

• At least 14 cost models for platform engineering have been proposed, of which
COPLIMO and SIMPLE seem to be the most prominent ones.

• The cost factors considered in the cost models are highly diverse, rarely well
understood or measurable, and often focused solely on adopting a platform.

• We miss reliable empirical data for investigating cost factors as well as constructing
and validating cost models.

• Particularly re-engineering cloned variants into a platform is rarely considered
explicitly in cost models.

Threats to Validity

Completeness We did not conduct this study as a systematic literature review. Instead, we relied on
ten existing surveys to identify software product-line cost models and understand their
properties. We mitigated the threat of missing relevant cost models by employing an
automated and a snowballing search to improve completeness. In Table 3.1, we can see that
a few cost models seem particularly prominent— namely, Poulin’s model, (q)COPLIMO,
SIMPLE, and SoCoEMo-PLE(2). Of these, COPLIMO and SIMPLE are arguably the
most established ones [Blandón et al., 2013; Lindohf et al., 2021]. Furthermore, of all cost
models covering the whole life-cycle of a platform, we [Krüger, 2016] found reports on
(partial) considerations in practice only for COPLIMO [Nolan and Abrahão, 2010] and
SIMPLE [Koziolek et al., 2016; Nolan and Abrahão, 2010; Tang et al., 2010]. This improves
our confidence that we covered the most relevant cost models and that the findings, which
we derived from the surveys as well as the cost models, are reasonable.

3.1.2 RO-E2: The SIMPLE Cost Model and Re-Engineering

SIMPLE Since we found that re-engineering economics are rarely considered in existing software
product-line cost models, we [Krüger, 2016; Krüger et al., 2016a] now build on SIMPLE (the
Structured Intuitive Model for Product Line Economics) [Böckle et al., 2004a,b; Clements
et al., 2005] to discuss these economics. SIMPLE itself is actually not a fine-grained algo-
rithmic model, but provides a classification of costs (called cost functions) and exemplifies
relevant cost factors. For each cost function, a concrete cost estimation must be provided,
for instance, by using a judgment-based estimate or another algorithmic cost model. We
selected SIMPLE for our discussion, since its high level of abstraction allows us to more intu-
itively explain adaptations for re-engineering. Moreover, SIMPLE is one of few cost models
defining example scenarios, and one concretely for re-engineering variant-rich systems.

Scenarios and
cost functions

SIMPLE defines a general scenario in which an organization may intend to estimate the
costs of a platform. One instance of this general scenario covers the re-engineering of
(cloned) variants into a platform as follows:

“An organization has a set of products in the marketplace that were developed more
or less independently. It wishes to explore the possibility of redeveloping them using
a product line engineering approach.”

[Böckle et al., 2004a,b]

To estimate the costs of such a scenario, SIMPLE defines five core cost functions (C):

Corg represents organizational costs for establishing platform engineering in an organization
involving, for instance, training, reorganization, or process improvements.
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Ccab represents the costs of developing the core asset base involving, for instance, common-
ality and variability analysis, introducing tools, or designing the platform architecture.

Cunique represents the costs of implementing unique parts of a variant involving, for instance,
glue code or features that shall not be integrated into the platform.

Creuse represents the costs of reusing features of the platform in a variant involving, for
instance, identifying, integrating, and testing assets.

Cevo represents the costs of evolving the platform in terms of new releases involving, for
instance, bug fixes, feature enhancements, or quality improvements.

Adoption costs
in SIMPLE

In Equation 3.1, we display how the first four cost functions relate to each other considering
a number n of distinct variants vi that an organization intends to develop in their platform
(i.e., causing the adoption costs Cplatform).

Cplatform = Corg + Ccab +

n∑
i=1

(Cunique(vi) + Creuse(vi)) (3.1)

To decide between platform engineering and clone&own, an organization has to compare
the costs for a platform to those of developing a new variant independently, represented
by the function Cc& o(vi). The savings that can be achieved by developing variants with a
platform instead of clone&own can then be estimated using Equation 3.2.

Csavings =

n∑
i=1

Cc& o(vi)− Cplatform (3.2)

Finally, an organization can calculate the return on investment (ROI) of a potential
platform by comparing its savings to the required investments, as we show in Equation 3.3.

ROI =
Csavings

Corg + Ccab
(3.3)

Evolution costs
in SIMPLE

SIMPLE considers evolution and maintenance based on the costs of releasing a new revision
of the platform and its variants (Cevo). For this purpose, three cost functions are defined
and summed according to the formula we display in Equation 3.4.

Cevo =
n∑

i=1

(Ccabu(vi) + Cunique(vi) + Creuse(vi)) (3.4)

In this formula, Ccabu(vi) represents the costs of updating the core asset base, which may
include asset improvements, feature enhancements, or bug fixes, among others. Since any
update is potentially propagated to all variants of the platform, updates can cause side
effects in any variant [Bogart et al., 2016; Cotroneo et al., 2019]. For this reason, SIMPLE
also considers the costs for updating unique parts (e.g., adapting glue code and feature
interactions) and re-integrating reused features for each variant again. In the following, we
discuss the five core cost functions with respect to re-engineering variant-rich systems.

Organizational Costs (Corg)

Organization
of re-engineer-
ing

To establish platform engineering, an organization must invest into the BAPO concerns
(cf. Section 2.3), three of which are non-technical and relate to the organizational costs of
SIMPLE. Contrary to proactive engineering, re-engineering a platform from cloned variants
involves developers that have a knowledge base about their established processes for cloning
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(e.g., using branches in Git). This has important implications for the cost functions of
SIMPLE. On the one hand, an organization has to train its developers to employ different
processes, use new tools, and communicate differently. Particularly, this requires investments
into unifying workflows and programming styles as well as implementing traceability across
different assets to ensure that the platform is compatible throughout all processes [Böckle
et al., 2002; Gacek et al., 2001; Mansell, 2006; Northrop, 2002; Pohl et al., 2005; van der
Linden, 2002, 2005; van der Linden et al., 2004]. Consequently, the organizational costs of
SIMPLE are firstly defined by the investments needed to change the developers’ culture, and
the costs heavily depend on whether the developers can be convinced. On the other hand,
an organization can build upon its experiences and developers’ knowledge, for instance, to
define which features are within the platform’s scope and have also an appropriate quality.
This reduces the overall risks (the variants are established in the market) and investments
compared to proactive engineering— if we exclude the investments into the cloned variants.

Costs for the Core Asset Base (Ccab)

Platform re-
engineering

The fact that an organization is considering to re-engineer its variants into a platform has
three major implications [Clements and Krueger, 2002; Krüger, 2016; Krüger et al., 2016a;
Schmid and Verlage, 2002]: First, the organization successfully developed variants with
clone&own, reducing the risk that the platform may fail in the market. Consequently, a
domain and market analysis may be less extensive, but the organization still needs to decide
which features to re-engineer into the platform. Second, the economical burden of developing
with clone&own is high enough for the organization to consider to re-invest into a pure
re-engineering project that may yield only long-term benefits. So, the organization must
decide which features have the right trade off between investments into the re-engineering
and pay off during maintenance and future development. Finally, the organization may
(but does not have to) reuse existing assets and developers’ knowledge to reduce the costs
of developing the platform compared to a proactive adoption. However, there may be
quality problems and inconsistencies between existing assets that are expensive to resolve—
potentially to the point at which implementing them anew is the better solution. As a
result, the economical decisions for re-engineering the core asset base of a platform arguably
comprise more facets than in proactive engineering.

Costs for New Variants (Cunique & Creuse)

Developing
variants

In SIMPLE, variant development consists of two cost functions to account for unique
and reused features of a variant. Arguably, these two cost functions change the least for
re-engineering a variant-rich system compared to the previous two cost functions, since
developing a new variant based on the re-engineered platform is the same as developing
it from any other platform with the same properties (e.g., quality, features, variability
mechanism). Still, these cost functions indicate important decisions for a re-engineering
project. For example, an organization must assess the costs of re-engineering a feature into
the core asset base against the costs of developing it anew as a unique part of a variant or as
a reusable feature of the platform. Since this decision is a trade off between the costs for re-
engineering features into the core asset base or re-developing them, a feature-based estima-
tion perspective seems more relevant for re-engineering variant-rich systems— in contrast
to the mostly variant-based perspective of existing software product-line cost models.

Maintenance Costs (Cevo)

Maintaining
the platform

Maintaining a re-engineered platform does not differ from maintaining a proactively en-
gineered one, which is why no adaptations are required for the corresponding cost function.
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However, since maintenance burdens are often a primary reason to re-engineer a platform
from cloned variants, it is key to estimate the corresponding costs. In contrast to the costs
of adopting and using a platform, such costs must be compared over the time in which
either strategy is used. For example, an organization may decide against a platform if re-
engineering it does not pay off within a few years. Since quality issues and design flaws are
major pitfalls of software reuse, the additional investments into re-engineering a platform
can help an organization to improve its software development. Still, a re-engineered platform
comprises more complexity than individual cloned variants, which is why new types of flaws
may be introduced that require novel testing capabilities [Engström and Runeson, 2011;
Fenske and Schulze, 2015; Ghanam et al., 2012; Mukelabai et al., 2018b; Strüber et al., 2019].

Re-Engineering Costs as Economical Cost Curves

Fixed and
variable costs

In economics, cost curves are used to model the costs of producing a product [Dorman,
2014; Eiteman and Guthrie, 1952; Viner, 1932]. We build upon two concepts of cost curves
to intuitively relate the re-engineering cost functions of SIMPLE to each other, the defined
scenario, and cost estimations:

Fixed costs (Cf ) cover all costs that do not depend on the number of products, and
thus stay constant during production. We remark that such costs are fixed only for a
defined period of time, and later investments may be required to improve production.

Variable costs (Cv) cover all costs of developing a number of products, and may cause a
different shape of the cost curve depending on the marginal costs for any new product.

In Equation 3.5, we associate these concepts (top) to the cost functions of SIMPLE (bottom).

C =

Cplatform =

Cf︷ ︸︸ ︷
Corg + Ccab

+

+

Cv ∗ n︷ ︸︸ ︷
n∑

i=1

(Cunique(vi) + Creuse(vi))
(3.5)

We can see that organizational costs and developing the core asset base are independent
from the number of variants, which is why they represent fixed costs. Costs for developing
unique features or reusing features of the platform depend on the number of variants in
which those are used, which is why they represent variable costs.

Cost curvesIn Figure 3.2, we display simplified cost curves comparing clone&own, an appropriate
platform (i.e., one that reaches the break-even point to achieve a return on investment), and
an inappropriate platform (i.e., one that does not reach the break-even point). The necessary
investments to establish a platform are often called adoption barrier [Clements and Krueger,
2002; Krüger et al., 2016a] and represent the fixed costs of SIMPLE (∆Cf ). Experiences
indicate that the fixed costs can already pay off after proactively developing three variants
with a platform compared to developing the same variants with clone&own [McGregor
et al., 2002; Pohl et al., 2005; van der Linden et al., 2007]. However, since platforms are
usually re-engineered in practice, this assumption may be challenged, considering that
the organization already invested into developing variants and then into a re-engineering
project. Furthermore, as we exemplify in Figure 3.2, varying investments into a platform
(e.g., its quality, reuse of cloned variants) impact the achievable benefits for developing
and maintaining variants later on (∆Cv). As a result, a platform may be an inappropriate
strategy, for instance, because the organization invested too much to reach a break-even
point or did not invest enough to justify the investments with the gained benefits. So,
organizations that (re-)engineer a variant-rich system face the question, which investments
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Figure 3.2: Simplified cost curves for (re-)engineering variant-rich systems comparing
different scenarios (i.e., clone&own, an appropriate platform that would pay off, and an
inappropriate platform that would not pay off).

promise which benefits, and can thus be justified to achieve a return on these investments?
Reflecting on the various cost factors as well as missing empirical and systematically elicited
data (cf. Section 3.1.1), we can see that further research is needed to understand how to
decide this question and guide practitioners.

RO-E2: The SIMPLE Cost Model and Re-Engineering
We discussed SIMPLE to show that the economics of re-engineering a variant-rich
system differ mainly in terms of the required investments (fixed costs) involving, for
instance, ensuring platform quality, re-engineering existing assets, and improving
developers’ knowledge. It is key to assess the trade-offs between investing more into the
fixed costs and the potential benefits on variable as well as maintenance costs.

3.1.3 RO-E3: Economics and Feature Location

Feature
location

As indicated, feature location (i.e., locating the source code that implements a feature) is
a core activity while re-engineering a variant-rich system that is usually required because
features are not explicitly traced in the source code [Assunção and Vergilio, 2014; Dit et al.,
2013; Rubin and Chechik, 2013b; Strüber et al., 2019; Wilde et al., 2001; Xue et al., 2012].
Due to missing traceability and fading knowledge [Krüger and Hebig, 2020; Krüger et al.,
2018e; Parnin and Rugaber, 2012], developers have to identify, locate, map, and comprehend
the behavior of features as well as their variations among the variants that shall be re-
engineered—summarized as feature location in most definitions [Krüger et al., 2019a]. The
obtained knowledge helps the organization to scope its platform, decide which features to re-
engineer, and refine its economic assessments. Since the program comprehension involved in
feature location requires considerable mental effort and time, feature location is considered
to be one of the most expensive activities in software engineering [Biggerstaff et al., 1993;
Poshyvanyk et al., 2007; Tiarks, 2011; Wang et al., 2013]. Unfortunately, but not surprising,
automated feature-location techniques are rarely reliable: it is expensive to impossible to
adapt them to domain specifics [Biggerstaff et al., 1993; Kästner et al., 2014] and they lack
accuracy [Ji et al., 2015; Krüger et al., 2018b; Wilde et al., 2003]. In the following, we [Krüger
et al., 2019a] report a systematic literature review of existing empirical studies on manual
feature location to account for these limitations and establish a better understanding of the
economical consequences. We connect our insights to those of our previous sub-objectives
to motivate our remaining research objectives [Krüger, 2018a; Strüber et al., 2019].
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Methodology and Results

Research ques-
tions

While automated feature location has been researched extensively [Assunção and Vergilio,
2014; Dit et al., 2013; Razzaq et al., 2018; Rubin and Chechik, 2013b], little and mostly
recent research aims to understand how developers actually locate features. To better
understand feature location and its impact on the economics of re-engineering a variant-
rich system, we conducted a systematic literature review of empirical studies investigating
manual feature location. To guide our systematic literature review, we defined two research
questions regarding manual feature location:

RQ1 What topics have been investigated in existing studies?

RQ2 What topics have been neglected in existing studies?

Building on these two research questions, we analyzed whether the economics of feature
location have been investigated (RQ1), and what topics remain open regarding our other
research objectives (RQ2). To answer our research questions, we synthesized the goals
and research questions defined in all included studies into topics (e.g., developers’ search
patterns) using an open-card-like sorting method [Zimmermann, 2016].

Automated
search

To identify relevant publications, we conducted an automated search through DBLP, which
we last updated on November 13, 2017. Note that DBLP covers publications of most pub-
lishers in computer sciences, including ACM, IEEE, Springer, Elsevier, and Wiley. Aiming
to capture all relevant publications, we defined the following search string:

“feature location”

Using this search string, we obtained 271 publications, which we inspected based on title,
abstract, and then the whole document to decide whether they were relevant.

Selection crite-
ria

We deemed any publication relevant that fulfilled the following inclusion criteria:

IC1 The publication is written in English.

IC2 The publication has been peer-reviewed.

IC3 The publication reports an empirical study.

IC4 The publication is concerned (at least in parts) with manual feature location.

We did not employ an additional quality assessment, but relied on the peer-review criterion.

Snowballing
and check

To complement the selected publications, we used Google Scholar for backwards and
forwards snowballing, last updated on November 15, 2017. For every new publication we
selected, we again employed snowballing—meaning that we did not stop after a specific
number of iterations. After this snowballing, we also checked our set of publications using
Scopus on January 26, 2018. This time, we used a more specific search string to see whether
we missed any prominent publication:

manual AND “feature locat*”

With this search, we obtained a total of 37 publications, but no relevant ones that we did not
already include. As a result, we are confident that our systematic literature review covers
the most important research on manual feature location, providing a reliable foundation to
answer our research questions.

Selected publi-
cations

We provide an overview of the eight publications we selected in Table 3.2. During our
automated search, we found only two publications, with snowballing leading to four more.
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Table 3.2: Overview of the eight publications on manual feature location. We combine
studies and their extensions (i.e., of Wang et al. [2013] and our own [Krüger et al., 2019c]).
The last four columns map the topics we identified to each study.

reference methodology loc subjects F Pe Pr ST

Wilde et al. [2003] case study 2,350 Fortran 1 #  #  

Revelle et al. [2005] multi-case study 2,100 C 2  #  #3,000 Java

Wang et al. [2011, 2013] experiment

72,911 Java 20
   #

2,314 Java
43,957 Java 2 * 1818,755 Java

Jordan et al. [2015] field study 3 mill. COBOL 2   #  

Damevski et al. [2016] field study — 67+ 6̃00 # #   

Krüger et al. [2018b, 2019c] multi-case study 53,015 C++ 2
 # # #18,079 Java 2

F: Factors – Pe: Performance – Pr: Processes – ST: Search Tools

We remark that we added our own study involving manual feature location [Krüger et al.,
2018b, 2019c] that had been accepted, but not indexed. In Table 3.2, we can see that most
studies involved authors’ experiences or work (i.e., case studies), resulting in a small number
of subjects. Other researchers observed developers in practice (i.e., field studies), with only
one set of actual experiments. The small number of publications on manual feature location
and their focus on individual experiences highlight that we are likely missing a detailed
understanding of how developers locate features in practice.

Findings and Discussion

Investi-
gated topics

Next, we are concerned with answering RQ1. To this end, we identified identical and related
terms from each publication to derive topics. For instance, several studies referred to search
tools, factors, or actions. We show our mapping of topics and publications in the last four
columns of Table 3.2. In the following, we describe all topics with a focus on those related
to this dissertation (i.e., factors, processes).

Factors summarize all influences (e.g., system properties, developer characteristics) that
impact feature location— representing cost factors in our conceptual framework (cf.
Figure 3.1). Wang et al. [2013] provide the most detailed insights into such factors
based on their experiments, defining three different types of factors ordered from most
to least important: (1) human factors, such as knowledge, experience, or preferences;
(2) task properties, such as the system under investigation or feature that shall be
located; and (3) in-process feedback, such as the results of a search query. As we
can see, human factors and particularly knowledge have been identified to have the
greatest impact on feature location, which is also supported by the studies of Revelle
et al. [2005] and Jordan et al. [2015].

Performance is concerned with the effectiveness, pros, and cons of manual feature location,
for instance, compared to automated techniques. Unfortunately, this topic is heavily
mingled with the other topics, which complicates deriving concrete insights regarding
the effectiveness of manual feature location with respect to specific factors.

Processes describe how developers execute manual feature location (relating to activ-
ities in our conceptual model). The studies agree that feature location is a loop
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between searching, extending, and validating feature seeds. Regarding the search
and extension of feature seeds, Wang et al. [2013] further identify three different
patterns: (1) information retrieval-based patterns involve search tools that allow
developers to locate keywords they deem relevant; (2) execution-based patterns rely
on developers executing the program with a specific feature activated and setting
suitable breakpoints; and (3) exploration-based patterns refer to developers following
static dependencies in the code, such as method calls. In the study of Damevski et al.
[2016], 97% of the subjects relied on information retrieval-based patterns and only
3% used execution-based patterns to extend seeds. Both patterns require developers
to have or obtain a deeper understanding of the system and its domain in order to
know suitable keywords or set breakpoints.

Search Tools are used by developers during feature location, for example, to identify
seeds based on keywords. The findings regarding this topic are inconclusive, but seem
to support the argument that automated feature-location techniques lack effectiveness
and are expensive to adopt to domain specifics.

In summary, we can see that particularly the process of manual feature location has been
investigated in detail. Interestingly, several results are inconclusive or are not detailed
enough to actually derive a deeper understanding regarding the economics of feature location.
Still, we found supportive evidence that feature location is an expensive activity while re-
engineering variant-rich systems, and is heavily knowledge dependent.

Neglected
topics

As described, several of the topics we identified have not been investigated in great detail.
Next, we discuss such open gaps to address RQ2 and detail our motivation to tackle our
remaining research objectives.

Economics have not been covered by any of the studies we investigated (besides few
reports of the time spent), particularly not for re-engineering variant-rich systems.
Among other issues, the missing knowledge regarding such economics prevents us
from understanding what activities are more expensive, require more support, or can
be facilitated with what techniques (e.g., feature traceability). So, we do not have
enough empirical data to actually understand the challenges and problems of locating
features in practice, hampering software maintenance and re-engineering.

Factor Studies in the selected publications are limited to identifying factors that impact
feature location, but without analyzing any of these factors in detail. For instance,
most studies agree that knowledge and experience have the greatest impact on feature
location, but the effect sizes are unclear. Better understanding such factors, not only
for feature location, but whole re-engineering projects, would provide guidance for
organizations to decide where to invest. For instance, an organization may decide to
invest more into knowledge recovery to reduce the later costs of re-engineering and
maintaining a platform from cloned variants.

Comparisons to Automated Techniques have only been conducted by Wilde et al.
[2003] in a small setup. We argue that more extensive analyses and comparisons of
manual feature location are needed to properly understand developers’ tool needs and
potentially improve automated techniques.

Search Tools studies have been mostly limited to simple tools that allow to search
keywords in source code. Due to new technologies (e.g., searches in version-control
systems or software-hosting platforms), novel studies that utilize such technologies
for feature location are highly valuable to reflect modern practices.
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Overall, it seems that the economic impact of feature location is still not well understood and
requires more analyses— considering that it is arguably the most expensive and challenging
activity needed to initiate the re-engineering of a variant-rich system.

Decision
support

To improve an organization’s confidence whether to re-engineer a platform or not, decision
support would be helpful, but requires further research [Krüger, 2018a]. We found that the
topics investigated as well as neglected for feature location align to our research objectives.
In particular, we argue that practitioners require a deeper understanding of the economics of
(re-)engineering variant-rich systems based on reliable empirical data (RO-E). We further
found that especially the knowledge factor seems to impact the economics of variant-rich sys-
tems and feature location (RO-K), which can be tackled by establishing feature traceability
(RO-T). Finally, even though we have an understanding of developers processes for feature
location, we are missing reliable insights for (re-)engineering variant-rich systems (RO-P).
As a consequence, the existing body-of-knowledge regarding feature location reflects well on
the challenges of whole re-engineering projects and motivate our research objectives further.

RO-E3: Economics and Feature Location
We found that the economics and processes of manual feature location have been studied
to some extent. The results highlight that both properties are highly knowledge-dependent
and require further analyses.

Threats to Validity

Search strategy Threats to the internal validity of our systematic literature review are that we focused
on one research area, used rather narrow search strings, and searched only two databases.
Consequently, we may have missed publications that are closely related to manual feature
location, but use a different terminology or are not indexed in these databases. We mitigated
this threat by employing snowballing. Moreover, we consciously used two databases that
index various publishers and peer-reviewed publications, ensuring a certain quality.

Derived topics We derived topics that are investigated or missing in the identified studies. Other re-
searchers may identify other topics, particularly with respect to those requiring further
research. However, we focused on the topics of this dissertation, and thus the practical
and economical implications of feature location. While this threatens the external validity,
other researchers can replicate our analysis and derive additional topics by investigating
the selected publications.

3.2 Clone&Own Versus Platform

Studying reuse
economics

Software reuse has been intensively studied in the last three decades [Assunção et al., 2017;
Barros-Justo et al., 2018; Bombonatti et al., 2016; C and Chandrasekaran, 2017; Fenske et al.,
2013; Heradio et al., 2016; Laguna and Crespo, 2013; Rabiser et al., 2018], involving different
techniques (e.g., testing, variability mechanisms, variability modeling) for (re-)engineering
variant-rich systems. Unfortunately, the economics of software reuse have not been studied
based on systematically elicited data, but are usually only mentioned as a motivation or
a byproduct. In this section, we [Krüger and Berger, 2020b] present a systematic study
of reuse economics by investigating the activities, costs, cost factors, and benefits (e.g.,
monetary savings) of developing a new variant with either reuse strategy— clone&own or
platform engineering. For this purpose, we collected and triangulated data from two sources:
First, we conducted an interview survey with 28 practitioners of a large organization (i.e.,
Axis AB) that employs both reuse strategies. Second, we used a systematic literature
review to complement the interviews with empirical data from existing case studies and
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experience reports. Using these two sources, we mitigated the problem that costs in software
engineering can hardly be quantified and assigned to specific activities [Heemstra, 1992;
Jørgensen, 2014; Jørgensen and Moløkken-Østvold, 2004; Trendowicz, 2013]. More precisely,
we combine two widely used, reliable cost estimation methods— expert judgment (i.e.,
interviews) and analogies to historical data (i.e., systematic literature review)— to improve
the validity of our data and elicit a reasonable basis for understanding the economics of
software reuse [Boehm, 1984; Heemstra, 1992; Jørgensen, 2004, 2014; Jørgensen and Boehm,
2009; Moløkken and Jørgensen, 2003]. Our study is of the rare breed that tackles the
problem of software economics based on empirical evidence reported for more than 100
organizations, providing novel insights that confirm and refute established hypotheses.

Section contri-
butions

In detail, we contribute a dataset of systematically elicited, empirical data on the economics
of engineering variants with clone&own and a platform, which we use to derive evidence
for confirming or refuting established hypotheses on software reuse. For this purpose, we
defined three sub-objectives to RO-E:

RO-E4 Identify the processes and activities of reusing software for a new variant.

While collaborating with practitioners [Kuiter et al., 2018b; Lindohf et al., 2021;
Nešić et al., 2019], we experienced that the concepts of pure clone& own or a full-
fledged platform are rarely employed. Instead, most organizations combine both
strategies or employ the one that seems more convenient for a new variant. Due
to these experiences, we first aimed to understand the processes and activities of
software reuse employed in practice.

RO-E5 Understand the costs associated with the activities identified.

Second, we aimed to understand the costs the identified activities cause in either
reuse strategy. Differences in these costs provide an understanding of which
activities are more costly, and thus challenging, for which reuse strategy. So, the
results can help to decide which reuse strategy to employ, and to identify what
activities require more research and tool support.

RO-E6 Determine the impact of cost factors on either reuse strategy.

Finally, we aimed to investigate the cost factors that impact either reuse strategy.
Understanding cost factors helps to tune reuse strategies by understanding which
cost factors may be altered to potentially reduce costs (e.g., investing in higher
platform quality to achieve more long-term benefits). For this purpose, we analyzed
cost factors based on economical costs and benefits (i.e., reduced costs).

Our data and interview guides are available as an evaluated open-access replication package.

©Association for
ComputingMa-
chinery, Inc. 2021
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Next, we first report how we elicited data based on our interview survey (Section 3.2.1) and
systematic literature review (Section 3.2.2). Then, we discuss potential threats to validity
of our methodology in Section 3.2.6. Finally, we present and discuss the results for each
sub-objective individually in Section 3.2.3, Section 3.2.4, and Section 3.2.5.

Discussion
structure

We remark that we use median values to discuss the elicited data to provide intuitive
examples for costs and savings that have been reported. However, we have to be careful
with these, since actual costs heavily depend on an organization’s and a project’s properties,
which is reflected by the large ranges some of our data spans. Since our data aligns overall,
we still argue that these examples are good intuitions to compare the reuse strategies. In
our discussion, we display how our data relates to established hypotheses (e.g., by Knauber
et al. [2002]) on clone&own and platform engineering by denoting confirmations as -,
refutations as ,, and inconclusive results as �.
3https://doi.org/10.5281/zenodo.3993789

https://doi.org/10.5281/zenodo.3993789
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Table 3.3: Overview of the interviews we conducted at Axis on software-reuse economics.

id phase hours interviewees strategy data

I1 EXP ∼0.5 system architect platform qualitative
I2 EXP ∼0.5 software engineer c& o qualitative
I3 EXP ∼0.5 release engineer platform qualitative
I4 EXP ∼0.5 technical lead c&o→ platform qualitative
I5 EXP ∼0.5 technical lead c&o→ platform qualitative
I6 EXP ∼0.5 project manager c& o→ platform qualitative
I7 EXP ∼0.5 2 software engineers c& o+platform qualitative

I8 PD >3 firmware architect c& o+platform qualitative
I9 PD >3 software engineer platform qualitative
I10 PD ∼1 system architect platform qualitative
I11 PD ∼1 software engineer c& o+platform qualitative
I12 PD ∼1 2 software engineers c& o+platform qualitative

I13 CA ∼1 firmware developer c&o+platform qualitative&quantitative
I14 CA ∼1 software developer c& o qualitative&quantitative
I15 CA ∼1 technical lead c&o+platform qualitative&quantitative
I16 CA ∼1 technical lead c&o+platform qualitative&quantitative
I17 CA ∼1 software developer c& o+platform qualitative&quantitative
I18 CA ∼1 technical lead platform qualitative&quantitative
I19 CA ∼1 system architect c& o qualitative&quantitative
I20 CA ∼1 technical lead c&o+platform qualitative&quantitative
I21 CA ∼1 software developer platform qualitative&quantitative
I22 CA ∼1 system architect c& o qualitative&quantitative
I23 CA ∼1 software developer c& o+platform qualitative&quantitative
I24 CA ∼1 software developer c& o+platform qualitative&quantitative
I25 CA ∼1 firmware architect c& o+platform qualitative
I26 CA ∼1 software architect c& o→ platform qualitative

EXP: EXPloration – PD: Process Definition – CA: Cost Assessment
c&o: clone&own – +: both strategies – →: re-engineering

3.2.1 Eliciting Data with an Interview Survey

Interview
survey

Initially, we conducted an interview survey with practitioners to elicit economical data for
addressing our sub-objectives. We summarize these interviews in Table 3.3, and use the
displayed identifiers as references within this section.

Interviewees

Interviewees Our interview survey built on a collaboration with Axis Communications AB. Axis is a large,
international organization that develops network equipment, particularly network cameras
and various server infrastructures. We collaborated closely with two contacts: A system
architect (I8) and a product manager (I9) who were interested in analyzing the economics
of their reuse strategies, and who have an overview understanding of Axis’ practices. With
our two contacts, we identified 26 interviewees that we found to be knowledgeable experts.
As we can see in Table 3.3, these interviewees had different roles (e.g., software engineers,
technical leads), which allowed us to obtain a broader understanding of the reuse practices
employed at Axis. Most of our interviewees developed Axis’ large portfolio of network
cameras and stated to have between three to more than 20 years of experiences with
software reuse in their current position (excluding previous employments). While we aimed
to interview each interviewee individually, we twice interviewed two of them in the same
interview (i.e., I7, I12). We regularly discussed our findings and goals with our two contacts.
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Design of the Interviews

Interview sur-
vey structure

We conducted 26 interviews throughout three consecutive phases: exploration, process
definition, and cost assessment. For the first two phases, we had open discussions with semi-
structured guides, and took notes. For the last phase, we constructed a semi-structured
interview guide based on the obtained insights and our research questions. We recorded
and transcribed 13 of these interviews, and took notes for all of them (one interviewee
asked us not to record the interview). The three phases were structured as follows:

Exploration: We started with seven interviews of roughly half an hour each. In this phase,
we aimed to explore the development processes and reuse practices at Axis. Based on
our insights, we discussed with our contacts how to design the remaining study.

Process definition: We conducted five semi-structured interviews to define the concrete
development processes we identified. While most of these interviews took around one
hour, we discussed our findings extensively with our contacts, which is why those
interviews took far longer. In the end, we constructed a unified reuse process (i.e.,
combining clone&own and platform engineering) that comprises 10 activities.

Cost assessment: Finally, we conducted 14 semi-structured interviews to collect quanti-
tative and qualitative data on the reuse economics at Axis. With each interviewee, we
iterated through the process we constructed and asked them to distribute the overall
development costs (in percent) of a new variant across the 10 activities. Finally,
we asked each interviewee to assess the impact of cost factors we identified in the
previous phases on a seven-point Liker scale, ranging from strongly reduces to strongly
increases costs. We elicited data for both reuse strategies if an interviewee had worked
with both, and asked particularly those to explain the differences they experienced.

We allowed our interviewees to look up data during the interviews to enrich their knowledge,
for instance, on the size of the platform. Still, most interviewees relied on their expertise.

Elicited Data

Survey dataDuring the first two phases, we elicited qualitative data (i.e., natural-language descriptions)
on the development processes, reuse practices, and cost factors at Axis. In the last phase,
we elicited qualitative and quantitative data. Namely, we elicited one or two (if experienced
with both reuse strategies) datasets for every interviewee, comprising estimated distributions
(percent for each activity) of the costs of developing a new variant as well as assessments of
cost factors’ impact (Likert ranking). We could not fully elicit this data, because:

• One interviewee (I23) was not confident in estimating cost distributions, since they
always joined running projects.

• For the same reason, one interviewee (I24) was not confident in assessing the costs of
the first two activities we identified (i.e., SV and DR in Table 3.5).

• Two interviewees (I25, I26) did not develop variants, but maintained Axis’ platform—
which is why we did not elicit quantitative data, but obtained qualitative insights.

We elicited eight and seven datasets for clone& own and platform engineering, respectively.
For cost factors, we elicited one additional dataset for each reuse strategy from I23. Still, we
miss three values of individual cost factors for which our interviewees were not confident to
provide an assessment (team size once for either strategy, number of teams for clone& own).
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Table 3.4: Overview of the 58 publications on economics of variant-rich systems.

source reference rm organizations (subjects) strategies

V Incorvaia et al. [1990] MCS 5 c&o+platform
K Bowen [1992] ER IBM platform

Lim [1994] MCS HP platform
K Henry and Faller [1995] ER MatraCapSystems c&o
R Brownsword and Clements [1996] CS CelsiusTech platform
V Ganz and Layes [1998] ER ABB platform

Rine and Sonnemann [1998] IS 83 (109) platform
R Bass et al. [1999] ERs Cummins,Dt. Bank,HP,Nokia, Philips, USNRO platform
V Lee et al. [2000] ER LG c&o→ platform
KR Clements and Northrop [2001] ERs Cummins, CelsiusTech,MarketMaker, USNRO platform
R Clements et al. [2001] ER USNRO platform
V Frakes and Succi [2001] QE 4 (4) c& o
R Gacek et al. [2001] ER MarketMaker platform
R Clements and Northrop [2002] IS Salion platform
R Cohen et al. [2002] ER DoD-NUWC platform
R Buhrdorf et al. [2003] ER Salion platform

Ebert and Smouts [2003] ER Alcatel c& o→ platform
Faust and Verhoef [2003] CS Dt.Bank c&o→ platform

V Bergey et al. [2004] ER Argon platform
Staples and Hill [2004] CS Dialect Solutions c&o→ platform

R BigLever Software, Inc. [2005] ER Engenio c&o→ platform
R Clements and Bergey [2005] ER TAPO,RCE c&o→ platform
K Pohl et al. [2005] ERs HP, Lucent, Siemens c&o→ platform, platform
KR Hetrick et al. [2006] ER Engenio c& o→ platform

Kolb et al. [2006] CS TestoAG c&o→ platform
Slyngstad et al. [2006] IS Statoil ASA (16) platform

V Jensen [2007] ER OTs c&o→ platform
R Jepsen et al. [2007] ER Danfoss c& o→ platform
K van der Linden et al. [2007] ERs AKVAsmart, Bosch,DNV,MarketMaker platform

Jansen et al. [2008] MCS 2 c&o
K Kapser and Godfrey [2008] MCS Apache,Gnumeric c& o
R Krueger et al. [2008] ER HomeAway platform

Lucrédio et al. [2008] S 57 (57) platform
Sharma et al. [2008] IS 1 (11) platform
Jensen [2009] ER Overwatch Systems c&o→ platform

R Li and Chang [2009] ER FISCAN c&o→ platform
R Li and Weiss [2011] ER FISCAN c&o→ platform
R Otsuka et al. [2011] ER FujitsuQNET c&o→ platform
V Quilty and Cinnéide [2011] ER ORisk platform
R Zhang et al. [2011] CS Alcatel-Lucent c&o→ platform
K Dubinsky et al. [2013] IS 3 (11) c& o+platform
R Lanman et al. [2013] ER USArmy platform
K van der Linden [2013] ER Philips platform

Bauer et al. [2014] IS Google (49) c& o
R Clements et al. [2014] ER GeneralDynamics, Lockheed platform
R Dillon et al. [2014] ER USAmry c&o→ platform
K Duc et al. [2014] IS Multiple (10) c& o
R Gregg et al. [2014] ER DoD c&o→ platform
R Gregg et al. [2015] CS DoD c&o→ platform
M Bauer and Vetrò [2016] IS Google, 1 (108) platform, c&o+platform
KM Bogart et al. [2016] IS Eclipse, R, node.js (28) platform
KMR Fogdal et al. [2016] ER Danfoss c& o→ platform
M Nagamine et al. [2016] CS Mitsubishi platform
K Walker and Cottrell [2016] IS Multiple (59) c& o
M Cortiñas et al. [2017] ER Enxenio platform
KM Kuiter et al. [2018b] ER TA,HCP c&o→ platform
KMR Martinez et al. [2018] MCS OSS (6) c& o→ platform
M Ham and Lim [2019] ER Samsung c&o→ platform

K: Knowledge – R: Resources – M: Manual search – V: Validation with related work
CS: Case Study – ER: Experience Report – IS: Interview Survey – MCS: Multi-Case Study – S: Survey – QE: Quasi-Experiment

rm: research method – c&o: clone&own – +: both strategies – →: re-engineering

3.2.2 Eliciting Data with a Systematic Literature Review

Systematic lit-
erature review

Besides our interview survey, we conducted a systematic literature review [Kitchenham
et al., 2015] to elicit data and experiences that have been reported for other organizations.
For this purpose, we focused on a qualitative analysis of the identified publications, omitting
the typical publication statistics of systematic literature reviews. We provide an overview
of all 58 publications that we selected in Table 3.4.
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Search Strategy

Literature
sources

We conducted our systematic literature review based on five different sources:

Source1 – Knowledge: First, we identified publications that we deemed relevant based on
our knowledge. After applying our selection criteria (explained shortly), we included
15 publications for this study. We mark these publications with a K in Table 3.4.

Source2 – Manual Search: We investigated particularly recent publications to address
our sub-objectives. To this end, we manually searched through the last three com-
pleted editions (in July 2019) of relevant journals and conferences. Via DBLP, we
considered the 2016–18 editions of ESE, ESEC/FSE, ICSME, IST, JSS, IEEE Soft-
ware, SPE, SPLC, TOSEM, and TSE, as well as the 2017–19 editions of ICSE, ICSR,
and VaMoS. We mark the eight publication we included from this manual search with
an M in Table 3.4.

Source3 – Resources: We know of four collections from the software product-line com-
munity that include real-world case studies on (re-)engineering experiences. The
collections we considered are the (1) ESPLA catalog [Martinez et al., 2017], (2) SEI
technical reports on software product lines,4 (3) BigLever case-study reports,5 and
(4) SPLC Hall of Fame.6 We mark the 24 publications we included from these
resources with an R in Table 3.4.

Source4 – Backwards Snowballing: From the previous three sources, we included 38
publications and used these as starting set for backwards snowballing. We did not
conduct a defined number of iterations, but snowballed on every newly included
publication. After all iterations, we included 12 publications (unmarked in Table 3.4).

Source5 – Validation with Related Work: We validated the completeness of our sys-
tematic literature review against related overviews of case studies and experience
reports on (re-)engineering variant-rich systems. Some introductions to software
product-line engineering include a number of practice reports [Krueger and Clements,
2013; Northrop, 2002; Pohl et al., 2005; van der Linden et al., 2007]. Often, we already
included the original publications from which these practice reports stem from, so
we used these overviews to verify the data and included only new or updated data.
Barros-Justo et al. [2018] present a systematic literature review on reuse benefits that
have been transferred to industry. In their mapping study, Bombonatti et al. [2016]
investigate the impact of software reuse on non-functional properties. Mohagheghi and
Conradi [2007] conducted a systematic literature review on the benefits reported for
software reuse in industrial contexts. Finally, the Software Engineering Institute [2018]
published a catalog of software product-line engineering publications on various topics.
Our study is complementary to such overviews, since we aim to collect and synthesize
empirical data on the costs of (re-)engineering variant-rich systems—whereas none of
these overviews presents such an analysis. We remark that we employed snowballing
on the publications we included from these overviews, too. In Table 3.4, we mark
the seven newly included publications with a V.

Since we did not have access to all publications we found, we excluded a minority of
potentially relevant publications. Note that we did not employ an automated search, since
these are problematic to replicate and would arguably need to be too broad (e.g., involving

4https://www.sei.cmu.edu/publications/technical-papers
5https://biglever.com/learn-more/customer-case-studies/
6https://splc.net/fame.html

https://www.sei.cmu.edu/publications/technical-papers
https://biglever.com/learn-more/customer-case-studies/
https://splc.net/fame.html
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any publication mentioning software reuse and costs) to even retrieve all results [Kitchenham
et al., 2015; Krüger et al., 2020c; Shakeel et al., 2018].

Selection Criteria

Literature
selection

For each publication, we checked the following four inclusion criteria:

IC1 The publication is written in English.

IC2 The publication describes empirical findings on the costs of reusing software.

IC3 The publication is concerned with clone&own, platform engineering, both, or the
migration from one to the other.

IC4 The publication reports experiences or actual data on the costs, not only estimates
for planning the (re-)engineering of a variant-rich system.

Furthermore, we checked the following two exclusion criteria:

EC1 The publication does not clarify whether the reuse built on clone& own or a platform.

EC2 The publication only cites costs reported in previous publications without providing
new or updated data on its own (cf. Source5).

To check EC1, we read each publication and classified the reuse strategy based on keywords.
For instance, using components or the C preprocessor implies a platform, while copying
systems or modules (i.e., not just copy&paste) implies clone&own.

Quality Assessment

Quality as-
sessment

The economics of software reuse are usually mentioned as a motivation or byproduct of
experience reports and case studies. So, we were interested in data that is rarely collected
systematically, and not reported prominently. For this reason, we decided to skip a quality
assessment, since the included publications have no common goal or research methodology
that we could base that assessment on. Moreover, for our goal of structuring and classifying
previous experiences, a quality assessment is also less important [Kitchenham et al., 2015].

Data Extraction

Data ex-
traction

From each included publication, we extracted standard bibliographic data, namely authors,
title, venue, and year. To address our sub-objectives, we further extracted the reuse strategy
employed (cf. Selection Criteria), the research method used, the organizations as well as
subjects (e.g., for surveys) involved, as well as described cost factors, qualitative insights,
and quantitative data. In detail, we identified instances in the publications that concretely
state experienced or measured costs, benefits, and problems of either reuse strategy. We
used a semi-structured document to collect the data and added references to trace each
instance back to its source. To identify synonyms and analyze our data, we relied on an
open-card-like sorting method [Zimmermann, 2016].

Elicited Data

Elicited data In total, we included 58 publications for our analysis. We expected, and can see in Table 3.4,
that only few (10) publications report costs and benefits of clone& own [Jansen et al., 2008;
Kulkarni and Varma, 2016]. Moreover, most of these publications solely discuss the pros and
cons of this reuse strategy, while only four provide a total of five instances of quantified data
regarding its economics [Frakes and Succi, 2001; Henry and Faller, 1995; Incorvaia et al.,
1990; Otsuka et al., 2011]. Far more publications are concerned with the re-engineering
from clone&own towards a platform (23) and the economics of a platform itself (28).
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Table 3.5: Overview of the activities we elicited at Axis.

id activity

SV Scoping the Variant based on customer requirements
DR Defining the Requirements to specify what must be implemented
FEV Finding an Existing Variant that is similar to the requirements
DF Designing the Features needed to implement the requirements
PI Planning the Implementation of the features
IF Implementing the Features of the scoped variant
QA Quality Assuring the implemented variant
BF Bug Fixing the variant
PBF Propagating Bug Fixes to other variants and/or the platform
CD Coordinating the Development between developers and teams

3.2.3 RO-E4: Development Processes and Activities

Development
process

We summarize the 10 core activities we identified at Axis in Table 3.5, and the unified
development process we constructed in Figure 3.3. This process integrates clone& own and
platform engineering, since we found that Axis employs the same activities for each new
variant, only with varying details.

Results

Results devel-
opment process

Research usually assumes that organizations employ either clone&own or platform engi-
neering. In contrast, we found that Axis employs a combination of both strategies. To
develop a new variant, Axis starts by scoping the required features based on novel customer
requirements. Using this scoping, a variant (or the complete platform) that is similar to the
requirements is derived into a separate clone. The developers design and implement the
features on this clone until they can release the new variant. At this point, Axis has to make
a core decision: On the one side, the developers and platform engineers can immediately
integrate the new variant into the platform to incorporate its features. We referred to such
variants as short-living clones (i.e., platform engineering), which is most commonly applied
at Axis. On the other side, the new variant may be kept outside of the platform, to which
we referred to as long-living clone (i.e., clone&own). Such variants may diverge from the
platform, increasing the integration costs— if the variant is integrated at all. The main
difference between these strategies at Axis is that short-living clones are maintained by
platform maintainers, while the long-living clones are maintained be the variant developers.
Despite such differences, both reuse strategies build on the same 10 activities we display in
Table 3.5, and we use the identifiers to refer to these activities.

Discussion

Integrated
process

Similar processes to ours have been identified for other organizations [Dubinsky et al., 2013;
Krüger et al., 2020d; Varnell-Sarjeant et al., 2015] and open-source communities [Krüger
et al., 2018b, 2019c; Stănciulescu et al., 2015], but they are rarely considered relevant
in research ,. So, it may be problematic to directly transfer research, for example, on
migrating clone& own into a full-fledged platform, to industry. Still, these findings indicate
that the combination of both reuse strategies occurs regularly in practice. Particularly,
it seems that organizations developing a variant-rich system (should) strive for platform
engineering to some degree, for instance, employing clone&own with a clone-management
framework [Rubin et al., 2015] or tools for change propagation [Pfofe et al., 2016].
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Figure 3.3: Axis’ development process with blue abbreviations relating to Table 3.5 (CD
impacts all activities).

Selecting
a process

Considering that organizations employ an integrated reuse process, the question seems not
to be whether to employ pure clone&own or platform engineering, but for what variant
which strategy is more beneficial? For example, Axis rapidly integrates short-living clones,
often before any major changes happened on the platform. These clones are usually used
to implement well-defined features that can benefit several variants and customers. Long-
living clones, in contrast, are sometimes only integrated after years or even not at all. We
found that Axis employs this form of clone&own mostly to advance independent variants
into completely new markets or to test innovative features. However, an apparent problem
is that if such features are considered highly valuable and shall be integrated after long co-
evolution, this becomes a far more expensive process -.

RO-E4: Development Process and Activities
We constructed a variant-development process (cf. Figure 3.3) with 10 activities (cf.
Table 3.5) that integrates clone& own and platform engineering. One strategy is selected
for a concrete variant, but both may be employed for the same variant-rich system.

3.2.4 RO-E5: Costs of Activities

Develop-
ment costs

Next, we analyze the costs of clone&own and platform engineering. For this purpose,
we use qualitative insights and relative, quantitative data because: (1) Eliciting precise
data on development costs is problematic, which we mitigate with qualitative insights.
(2) Absolute values are not representative, since they can be in completely different orders
of magnitude for a specific organization (e.g., large organization versus start-up). Also, we
combine the results of our interview survey and systematic literature review to improve our
quantification. (3) We avoid repetitions and clarify relations or discrepancies in the data.

Results

Cost dis-
tributions

In Figure 3.4, we show how our interviewees assessed the cost distributions for developing
a new variant with clone&own or a platform. Since not all interviewees reported a total
of 100% (min 68%, max 133%, avg 99.6%), we normalized the values to compare them.
To mitigate biases, we verified the normalized distribution with each interviewee and
asked whether we forgot to elicit important activities. Some of our interviewees mentioned
integration, but we purposefully excluded this assessment at this point.

Data in the
literature

From our systematic literature review, we extracted quantitative data on the costs of
activities, benefits, and total costs of platform engineering, which we show in Figure 3.5.
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Figure 3.4: Relative cost distributions for developing a variant (activities in Table 3.5) with
clone&own or a platform, elicited with our interview survey.

The numbers in parentheses show how many values we found (we display only those with
three or more occurrences), and the dots indicate medians. In total, we found quantitative
data for three activities (left side): feature development (FD), quality assurance
(QA), and variant development (VD). We also found data for three benefits of platform
engineering (in the middle), namely identified bugs (IB), staffing (S), and time-to-
market (TM). On the right of Figure 3.5, we display the five data points reported on the
total cost savings of using a platform—which indicate that implementing new variants
upon an established platform can save around 52% of the costs. We found that the values
reported for re-engineering (compared to clone& own) and platform engineering (compared
to individual systems) do not differ much, and thus summarized them for simplicity.

Discussion

Paragraph
structure

Next, we discuss our data based on related activities (e.g., to set up development). To map
the data, we reference the abbreviations in Table 3.5 and the previous paragraph.

Set up develop-
ment

SV, DR, FEV. For developing a new variant from their platform, one interviewee stated:

“That’s something that you understand way in the beginning when you get the
requirement[s] for the project. You understand now, it’s a derivative of this one,
which will be very obvious [...]”

We can see in Figure 3.4 that this statement aligns to all activities related to setting up the
development of a variant. Defining requirements (DR) and finding a similar variant (FEV)
are less expensive for platform engineering than for clone&own, while the initial scoping
(SV) is similarly costly for both -. Also, we find confirmations in our systematic literature
review, including that a platform can improve developers’ knowledge on the variability
of a variant-rich system [Bowen, 1992; Clements and Northrop, 2001; Cohen et al., 2002;
Faust and Verhoef, 2003], that this knowledge is key for clone&own [Bauer et al., 2014;
Dillon et al., 2014; Duc et al., 2014; Faust and Verhoef, 2003], and that scoping and finding
variants is problematic for clone&own [Dubinsky et al., 2013; Faust and Verhoef, 2003].

DF, PI, IF, FD, VD. Developing a
variant

Clone& own can already considerably reduce the development costs
for a new variant [Bauer and Vetrò, 2016; Incorvaia et al., 1990; Kapser and Godfrey, 2008;
Walker and Cottrell, 2016] -. For example, Henry and Faller [1995] report that clone& own
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Figure 3.5: Effects of platform engineering on activities’ costs (left, RO-E5), benefits
(middle, RO-E6), and total development costs (right) elicited from our systematic literature
review for re-engineering or proactively adopting a platform

reduces development costs by 35%. Still, also confirming established hypotheses, most
insights from our systematic literature review suggest that platform engineering reduces
development costs even further [Bauer and Vetrò, 2016; Bergey et al., 2004; Brownsword
and Clements, 1996; Buhrdorf et al., 2003; Clements and Northrop, 2001, 2002; Clements
et al., 2014; Cohen et al., 2002; Quilty and Cinnéide, 2011; Sharma et al., 2008; Slyngstad
et al., 2006; van der Linden, 2013] -. We can see in Figure 3.5 that the nine studies
reporting corresponding data (VD) indicate median savings of around 67%

Develop-
ing features

Besides such benefits, we also found confirmations for the hypothesis that developing
new features for reuse (FD) is usually more expensive than developing them for a single
variant [Bergey et al., 2004; Lim, 1994; van der Linden, 2013] -. The data we extracted
from five publications suggests a median increase of approximately 20%. Our interviewees
confirm this tendency: We can see in Figure 3.4 that designing (DF) and implementing
(IF) features is considered more expensive for platform engineering than for clone&own,
with drastic outliers towards high expenses. Consequently, a platform will only pay off if its
features are reused in multiple variants. One of our interviewees summarized this insight
by describing the need to align a feature’s implementation to the platform architecture:

“For short-living clones, we have to design [...] it to be able to be used by others. A
long-lived clone, with that, we can ignore that.”

Efficiency Five publications indicate that an organization can develop more features with a platform,
but they do not report concrete costs for a single feature [BigLever Software, Inc., 2005;
Ebert and Smouts, 2003; Hetrick et al., 2006; Staples and Hill, 2004] -. For example,
Fogdal et al. [2016] describe that Danfoss could develop more than 2,500 feature in a year
instead of fewer than 300 before adopting platform engineering. Unfortunately, it is unclear
where this benefit originated from. Still, seeing that feature development is more expensive
for a platform, it must be caused by other factors (e.g., more reuse, higher software quality).

BF, PBF, QA.Propagating
bugs and fixes

Researchers usually argue that propagating bug fixes (PBF) to other vari-
ants is a major challenge of clone& own. This is confirmed by several publications [BigLever
Software, Inc., 2005; Dillon et al., 2014; Dubinsky et al., 2013; Faust and Verhoef, 2003; Fog-
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dal et al., 2016; Hetrick et al., 2006; Kuiter et al., 2018b; Li and Chang, 2009]— indicating
that longer co-evolution of variants is the problem, requiring that bug fixes are propagated
and also adapted to the other variant -. Platforms, in contrast, are challenging to test in
their entirety [Bauer and Vetrò, 2016; Bogart et al., 2016; Sharma et al., 2008], but argued
not to require such propagation [Ebert and Smouts, 2003; Staples and Hill, 2004].

Propagating in
a platform

Interestingly, our data is contradicting this argumentation. In Figure 3.4, we can see that
our interviewees think bug fixing (BF) is more expensive in clone& own, while propagating
the fixes is more costly for platform engineering ,. One interviewee explained:

“Propagate bug fixes, of course, is longer for the short-living clones because we
would actually have to do it. For long-living clones, we don’t do it at all.”

Obviously, propagating bug fixes is important, but researchers must re-evaluate its use in
practice. Apparently, propagating changes between cloned variants may not be intended, and
thus is no problem—while a platform requires developers to always investigate all relevant
feature dependencies and adapt the bug fix accordingly (cf. Section 3.2.5). Nonetheless, the
data from our systematic literature review (median: -60%) and interview survey confirm
that platform engineering can drastically decrease the costs for quality assurance (QA) -.

CD. Coordinating
development

Coordinating is a core activity to ensure the success of a variant-rich system. In-
terestingly, we found contradicting insights considering that research usually argues that
clone&own allows for independence, while a platform requires clearly defined roles and
responsibilities (e.g., which developer owns a feature) �. In most cases, coordination is
only mentioned as a problem in clone&own [Bauer and Vetrò, 2016; Faust and Verhoef,
2003] and platform engineering [Bauer and Vetrò, 2016; Dillon et al., 2014; Duc et al.,
2014; van der Linden et al., 2007]. We found only one publication to support the argument
that a platform facilitates coordination [Jepsen et al., 2007]. The data from our interview
survey also indicates this ambiguity. We can see in Figure 3.4 that our interviewees consider
coordination similarly costly for clone&own (5%) and platform engineering (7%).

Integration. Integrating
variants

We elicited four cost estimations each for the integration and re-engineering
of cloned variants into a platform, which align to the insights from our systematic literature
review. Not surprisingly, it can become far more time consuming to re-integrate a long-
living clone into a platform than a short-living one -. The costs heavily depend on the
amount (i.e., delta) of co-evolution between variants and platform, which is also mentioned
in other publications [BigLever Software, Inc., 2005; Dillon et al., 2014; Duc et al., 2014;
Hetrick et al., 2006; Kapser and Godfrey, 2008; Kuiter et al., 2018b]. One of our interviewees
summarized this situation, highlighting their preference for platform engineering:

“I think a lot of time is wasted on the long-living clones, because, if you wait one-
and-a-half years until you merge, everything [has] changed, maybe. The new Linux
kernel, a new version of something else, and then suddenly, your branch is just
not working anymore. The longer you wait, the more pain it is. [...] It’s always
better to be up-to-date with master.”

This statement also indicates the causes for the higher costs, such as updating old features,
understanding the co-evolution, or fixing outdated bugs and dependencies.

RO-E5: Costs of Activities
Our results strengthen the evidence that successful software reuse heavily depends on
a platform [Lucrédio et al., 2008; Rine and Sonnemann, 1998]. Furthermore, our
systematic literature review indicates overall savings of around 52% and that:

• Setting up variant development is cheaper with platform engineering.
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• Developing reusable features for platform engineering is more expensive (+20%),
but pays off with decreased variant-development costs (-67%)—which is why a
platform outperforms clone& own (-35%).

• Platform engineering increases software quality, consequently reducing the costs
for quality assurance (-60%).

• Co-evolving variants (and platform) result in higher integration costs.

• Surprisingly, propagating bug fixes is more expensive for a platform.

• Coordinating development is similarly costly for both reuse strategies.

3.2.5 RO-E6: Cost Factors and Benefits

Cost factors Lastly, we analyzed cost factors and benefits that relate to either reuse strategy. Again, we
consider our data in combination and structure this section based on related insights.

Results

Results
cost factors

We display the Likert-scale ratings for the cost factors we elicited during our interview survey
in Figure 3.6. A negative rating (e.g., a variant requires a larger delta) indicates that our
interviewees consider that factor to increase development costs. Contrary, a positive rating
(e.g., the amount of reusable code for a variant) indicates that our interviewees consider
that factor to reduce development costs. We separate the assessment for clone&own and
platform engineering, and show average values in the middles to allow for easier comparisons.

Discussion

Reuse & Delta.Code reuse First, we investigated the cost factors of reusable and newly required
code (the delta). Not surprisingly, either strategy benefits from more code being reusable
for a variant, while larger deltas cause additional costs -. Interestingly, reuse impacts both
strategies similarly, but we can see one outlier for clone& own indicating a negative impact:

“Basically, for us it would be more of an effort to remove things, stuff we don’t
need compared to just having it there.”

While scalability and change propagation have been investigated for clone& own, this issue
of removing unwanted features is less known. Also, it is interesting that our interviewees
consider larger deltas to have a smaller impact on platform engineering, contradicting our
finding that developing a new platform feature is more expensive (cf. Section 3.2.4) �.

Developers & Staffing.Develop-
ment staff

During our study, we found the number of developers to be an
important cost factor. We can see in Figure 3.5 that ten publications report that fewer staff
(S) is required to develop a new variant based on a platform (median: -75%) [Bass et al.,
1999; Clements and Northrop, 2001; Clements et al., 2001; Cortiñas et al., 2017; Faust
and Verhoef, 2003; Fogdal et al., 2016; Krueger et al., 2008; Li and Chang, 2009; Li and
Weiss, 2011; Pohl et al., 2005]. This insight is in line with the established hypothesis that
a (maintained) platform allows the same number of developers to develop more variants
compared to clone&own -. Similar to Kolb et al. [2006], one of our interviewees stated:

“We had fewer products and fewer developers in the company, the platform was in
a horrible state, so you [couldn’t] really use it to release. [It] got more stable, but
also the products that were using the platform increased exponentially. Instead of
having 10 products on a lousy platform, you have a hundred products on a good
platform.”
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Figure 3.6: Likert-scale ratings for cost factors we elicited during our interview survey.

In both cases, the organization’s growth was so large that it required even more staff to
address new customer demands. For developing a single variant, our interviewees consider
having more developers as beneficial—with the outliers representing cases in which the
teams became too large and coordination was challenged.

Knowledge. Developers’
knowledge

Developers require detailed knowledge to develop a variant-rich system,
not only to comprehend source code, but also features, variability mechanisms (platform),
and existing variants (clone&own). Particularly for clone&own, knowledge loss about
variants is considered a major problem that can motivate the re-engineering towards a
platform [Berger et al., 2020]. Two publications also raise the issue that missing knowledge
is a major challenge for establishing a platform [Bauer and Vetrò, 2016; Slyngstad et al.,
2006]. Our interviewees support these insights, indicating that knowledge is the cost factor
with most impact on either reuse strategy. To tackle this problem, Axis has specific policies:

“[...] we try to have teams with experienced people together with new people.”

The results show that developers’ knowledge is a primary cost factor in software reuse
and for developing variant-rich systems. Interestingly, we do not know of a hypothesis or
research that is concerned with knowledge in the context of re-engineering variant-rich
systems �—motivating our own research in this direction (cf. Chapter 4).

Teams & Hand Overs. Developers’
collaboration

In close relation to their knowledge, developers usually have to
collaborate across different teams (e.g., variant development versus platform maintenance)
to develop a variant-rich system. Consequently, our interviewees stated that clearly defined
teams and the corresponding hand overs are important cost factors:

“I think that the more people you have, it becomes a lot of coordination, and also
responsibilities [are] not as clear. If you are three people, it’s hard to hide.”

We can see in Figure 3.6 that the number of teams with certain responsibilities is considered
similarly positive for both reuse strategies. Not surprisingly, additional hand overs between
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the teams (e.g., from variant development to platform maintenance) are perceived slightly
negative. Still, for collaboration overall, we found no major differences between clone& own
and platform engineering, which aligns to our previous insights �.

Bugs & Quality.Software
quality

Researchers and practitioners expect software reuse to improve the
quality of the software and to reduce the number of bugs. We found three publication
that support this hypothesis for clone&own [Bauer et al., 2014; Frakes and Succi, 2001;
Walker and Cottrell, 2016], while three others state that quality is a problem [BigLever
Software, Inc., 2005; Hetrick et al., 2006; Jansen et al., 2008] �. In contrast, numerous
publications support this hypothesis for platform engineering [Clements and Northrop,
2001; Dillon et al., 2014; Ebert and Smouts, 2003; Ganz and Layes, 1998; Jepsen et al.,
2007; Kolb et al., 2006; Li and Chang, 2009; Li and Weiss, 2011; Lim, 1994; Quilty and
Cinnéide, 2011; Sharma et al., 2008; Slyngstad et al., 2006; Staples and Hill, 2004; van der
Linden, 2013] -. Surprisingly, only one publication mentions quality as a costly challenge
to ensure successful platform engineering [Kolb et al., 2006].

Platform
quality

Our interviewees provided further supportive experiences in this regard. For example, one
interviewee stated that Axis pushed strongly against clone&own to avoid quality and
compatibility problems that could originate from long-living clones:

“I guess we tried to kill them off because it is a hassle to maintain. [...] If it’s not
tested every day, if it’s not daily rebuilt and checked, [...] something is rotting in
the code, it’s not being compatible anymore with the platform.”

We found similar insights for RO-E5, where quality assurance was considered less expen-
sive for platform engineering. Despite the high quality of platform-based variants, our
interviewees also stated that getting to this point was expensive. Initially, the platform
had a low quality, and thus the developers did not trust it. So, it is not surprising that
our interviewees considered the quality of the variant-rich system to be one of the most
important cost factors, particularly for establishing platform engineering -.

Bugs A major benefit assumed for platform engineering is that the improved quality leads to fewer
bugs. We can confirm this hypothesis, seeing that several publications report a considerable
decrease in bugs identified in a platform (median: -70%) [Bass et al., 1999; Clements and
Northrop, 2001; Clements et al., 2001, 2014; Fogdal et al., 2016; Lim, 1994; Otsuka et al.,
2011; Quilty and Cinnéide, 2011] -. For clone& own, we find similar insights, with two stud-
ies indicating a reduction in the number of bugs of 35% [Henry and Faller, 1995] to 66.7% [Ot-
suka et al., 2011] -. Our interviewees expected that the number of bugs in a variant-rich
system has a similar impact on the costs of developing a variant for either reuse strategy.

Modularity & Dependencies.Independence
of variants

A benefit of clone&own is the independence of variants,
allowing developers to freely implement features, test them, and reply faster to customer
requests. Similar to other cases [Dillon et al., 2014; Dubinsky et al., 2013; Duc et al., 2014;
Staples and Hill, 2004; Walker and Cottrell, 2016], Axis uses clone&own to innovate:

“If it’s a new business, we don’t want it [in the platform] because we don’t want to
maintain it.”

Moving faster to new markets is usually considered as the main reason to use clone&own
instead of a platform -. Surprisingly, two publications state that a platform facilitated
this innovation even more [Clements and Northrop, 2001]. Particularly, Kolb et al. [2006]
state that only a platform enabled their organization to develop highly complex variants
for new markets. One of our interviewees provided a similar insight:

“I would not be able to have such a complex product if I would not be able to reuse.”
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This opposes established hypotheses ,, and we need to better understand what enables an
organization to move to new markets: independent variants or an established platform?

DependenciesWhile the independence of clone&own is assumed to free developers of dependencies, we
found contradicting insights in our systematic literature review �. For example, Bowen
[1992] reports that a platform can actually resolve dependencies between clones, which
several other publications mention as a problem [Bauer and Vetrò, 2016; Bauer et al., 2014;
Jensen, 2009; Walker and Cottrell, 2016]. On the contrary, we found little evidence for
the assumption that platforms cause dependency problems [Bauer and Vetrò, 2016; Kuiter
et al., 2018b]. The core problem of dependencies in a platform may be best analyzed
by Bogart et al. [2016], aligning to a statement of one of our interviewees:

“Since we’re not part of the platform [...], they can sometimes break things they
think [...] no one is using [...]. Then, we found out they broke something that we
actually use.”

Together with policies and unintended side effects, we again identified missing knowledge
as a problem that can easily lead to misbehaving or completely missing features that break
some variants. However, this situation is not unique to platform engineering, but may occur
in any variant-rich system in which changes are propagated. Our interviewees consider a
modular structure of the variant-rich system to have a positive impact on resolving such
dependency issues, and thus to reduce costs -.

Time-to-market. Time-to-mar-
ket

Software reuse, and particularly platform engineering, is assumed to
reduce the time-to-market for a new variant. We found four publications that confirm
this hypothesis for clone&own [Bauer et al., 2014; Duc et al., 2014; Jansen et al., 2008],
with Otsuka et al. [2011] reporting a reduction of around 30% -. However, a platform
(median: -63%) can drastically outperform clone&own in this regard [Bass et al., 1999;
Bergey et al., 2004; Clements and Northrop, 2001; Cohen et al., 2002; Ebert and Smouts,
2003; Ganz and Layes, 1998; Jensen, 2007, 2009; Kolb et al., 2006; Li and Chang, 2009;
Li and Weiss, 2011; Lim, 1994; Otsuka et al., 2011; Sharma et al., 2008; Slyngstad et al.,
2006; van der Linden, 2013; van der Linden et al., 2007], since a new variant can ideally be
derived instantly— if all required features have already been implemented -.

RO-E6: Cost Factors & Benefits
For the cost factors of software reuse, our data shows that:

• More code reuse reduces and more new code increases costs, with platform engi-
neering being impacted more positively than clone& own.

• The ideal number of developers who should develop a variant is challenging to
assess for either reuse strategy, but a platform allows the same staff to develop
more features and variants in the same time.

• Developers’ knowledge about a variant-rich system is a core cost factor, indepen-
dently of the reuse strategy employed.

• Coordinating development activities is challenging, and thus having teams with
well-defined roles is beneficial for either reuse strategy. However, hand overs
between these teams is associated with a slight negative impact on costs.

• Ensuring the quality of a platform is key for its success and leads to fewer bugs
(-70%). Still, clone& own benefits similarly from a higher system quality.
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• Independently managed variants can be developed with clone& own and platform
engineering. Surprisingly, both reuse strategies suffer from dependencies and
rippling effects, which is why they can both benefit from modularity.

• Clone&own reduces the time-to-market (-30%), but platform engineering can
considerably outperform it (-63%), since a wide range of features can be combined
more easily.

3.2.6 Threats to Validity

Threats
to validity

In the following, we describe threats to the validity of our study and how we aimed
to mitigate them. Note that most of these threats relate to correctly eliciting costs and
assigning them to the right reuse strategy as well a activities. We employed several measures
to ensure the credibility of the economical data we collected.

Construct Validity

Interview
terminology

Most of our 28 interviewees have not been familiar with the research terminology on
software reuse. We aimed to mitigate the threat of misunderstandings by investigating
the terminology used at Axis during our exploratory interviews. Since our two contacts
were familiar with both terminologies, they helped us clarify all research terms and adapt
them to the ones used at Axis. Also, at least one author was present during each interview,
allowing interviewees to clarify any construct they did not understand. Furthermore, each
interview started with an introduction of the purpose and current scope of the study.

Terminology
in publications

Similarly, the 58 publications we considered use different terminologies depending on the
domain and authors. We carefully read each publication and used keywords to categorize
them according to the two reuse strategies. To mitigate the threat that we may have falsely
classified publications, and thus the corresponding data, we used an open-card-like sorting
method to unify synonyms. In the end, we aligned the terminologies at Axis and in the
publications to triangulate the data from both sources.

Internal Validity

Eliciting soft-
ware costs

Precisely assigning costs to activities and assessing cost factors in software engineering is
challenging to impossible. Also, copying or deriving an existing variant and delivering it
directly to a customer has close to zero costs, while the costs of developing and propagating
new features may be distributed among variants. Consequently, software-engineering
economics are harder to quantify and assign compared to manufacturing, particularly
because most organizations do not track their costs on this level of detail. We aimed to
mitigate this threat by triangulating data from two sources that rely on different, reliable cost
estimation methods: historical data and expert judgment [Boehm, 1984; Jørgensen, 2014].

Data ver-
ification

With our systematic literature review, we aimed to avoid threats that may be caused by
conducting our interview survey only at a single organization. So, we tried to strengthen
the internal validity of our study by relying on the experiences of skilled software engineers
and adding data reported in research. We intended to improve the completeness of our
systematic literature review by using five sources and verifying it against related work.
Furthermore, we discussed regularly with our two contacts to make sense of our data and
results. After the actual study, we also discussed our findings with three practitioners from
another organization (i.e., Grundfos) that uses platform engineering to conduct a sanity
check. Even though all these measures indicated that our findings are reasonable, we may
still have collected wrong or misinterpreted data, which threatens our results.
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External Validity

Generalizing
the interview
survey

Obviously, we can hardly generalize an interview survey at one organization directly for
other organizations. However, many software platforms exhibit similar properties, even
when comparing open-source and industrial ones [Hunsen et al., 2016]. In addition, most
organizations employ similar practices for clone&own and platform engineering [Berger
et al., 2020; Dubinsky et al., 2013]. Consequently, while we cannot overcome this threat,
the results of our interview survey are still relevant for other organizations.

Data of other
organizations

With our systematic literature review, we aimed to improve particularly the external
validity of our study, adding data from over 100 different organizations. The systematic
literature review comprises publications reporting on different domains, levels of maturity,
programming languages, and countries. We argue that our systematic literature review is a
suitable method to mitigate threats to the external validity of our study, especially since
its results are similar to our interview survey.

Conclusion Validity

Data availabil-
ity

While we cannot fully overcome the aforementioned threats, we argue that we employed
appropriate mitigation strategies to obtain reliable results. Our findings represent an
extensive body of knowledge on the economics of software reuse that can guide organizations
and help researchers to scope their work. For confidentially reasons, we cannot release the
interview recordings or transcripts. Still, we reported our methodology in detail and make
all relevant artifacts publicly available to allow others to replicate and verify our study.

3.3 Feature-Oriented Re-Engineering

Re-engineering
economics

Our previous findings provide an understanding of the economics of (re-)engineering variant-
rich systems and empirical data on the costs associated with developing variants based on
either reuse strategy. Considering that our findings indicate that an organization should
strive to adopt platform engineering, we now investigate the economics and challenges
of re-engineering a platform in more detail. For this purpose, we synthesize the results
of multiple case studies in which we re-engineered real-world variant-rich systems into
platforms [Åkesson et al., 2019; Debbiche et al., 2019; Krüger and Berger, 2020a; Krüger
et al., 2017a, 2018d; Kuiter et al., 2018b].

Section contri-
butions

More precisely, we synthesize our cases to address the following sub-objectives of RO-E:

RO-E7 Identify and analyze the activities of re-engineering variant-rich systems.

While re-engineering has been extensively studied in the past, the activities per-
formed are reported inconsistently and on coarse levels [Assunção et al., 2017]. To
tackle this problem, we synthesize the activities we executed during each of our
cases and discuss their purpose. Similar to RO-E4, this overview helps to better
understand how such a re-engineering can be executed.

RO-E8 Assess the costs of the identified activities and compare between the cases.

For three of our cases, we involved economic assessments based on experiences,
and for two of these by documenting efforts. We employed different strategies,
particularly concerning the variability mechanism, and thus traceability, employed.
Our results help to better understand the economics of re-engineering a platform
and the impact of deciding for a specific architecture.
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Figure 3.7: Overview of the methodologies for our five re-engineering cases.

RO-E9 Discuss lessons learned by synthesizing the experiences of all cases.

Finally, we synthesize the experiences we obtained from each case, shedding light
into potential pitfalls and challenges an organization may face. These insights help
to avoid costly rework and can raise the awareness regarding critical decisions. We
hope that these experiences guide organizations during their decision making and
researchers in tackling important problems.

In the following, we describe our methodology in Section 3.3.1 and threats to validity in
Section 3.3.5. Afterwards, we present and discuss the results for each of our sub-objectives
in Section 3.3.2, Section 3.3.3, and Section 3.3.4, respectively.

3.3.1 Eliciting Data with a Multi-Case Study

Multi-case
study design

Our methodology is based on a multi-case study design [Bass et al., 2018; Leonard-Barton,
1990; Runeson et al., 2012] comprising five cases that we compare against each other. Each
of the cases was performed by different developers on varying systems, helping us to obtain
transferable findings and verify those obtained in different cases. Except for Case 3, we
advised the developer teams in regular discussions in order to react to new problems and
experiences, which means that we followed an action-research-like methodology [Davison
et al., 2004; Easterbrook et al., 2008; Staron, 2020]. In Figure 3.7, we display an overview
of the concrete methodology we employed in each case. We adapted the methodologies
based on the scenario we focused on in each case, and the experiences we gained in previous
cases. In Table 3.6, we summarize the system properties and scenarios.

Subject Systems

Subject
systems

We [Strüber et al., 2019] found no existing dataset on the evolution of variant-rich systems
that provides a reliable ground truth, supports the scenarios we are concerned with, or in-
volves real-world cloned variants. This has been a challenging problem for research, since vari-
ants derived from a platform are not ideal to simulate clone& own, for instance, because they
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Table 3.6: Overview of our five re-engineering cases, the systems used, and scenario
employed. Case 2 comprises several personal variants developed for individuals. In Case 5,
the developers did analyze all, but re-engineered only the asterisked, variants.

system(s) year loc scenario

C
as
e
1

ApoClock 2012 3,615

feature location for clone&own Android Apo-Games

[K
rüger

et
al.,

2017a]

ApoDice 2012 2,523
ApoSnake 2012 2,965
ApoMono 2013 6,487
MyTreasure 2013 5,360

C
as
e
2

re-engineering an annotation-based C database into a
partly composition-based platform

[K
rüger

et
al.,

2018d]

Berkeley DB 2014 229,419

C
as
e
3

re-engineering web-based clone&own heat control
software into a platform

[K
uiter

et
al.,

2018b]

Personal — —
TempLog 2013 6,837
Uvr2web 2013 5,148

C
as
e
4

ApoClock 2012 3,615

re-engineering clone&own Android Apo-Games into
an annotation-based platform

[Å
kesson

et
al.,

2019]

[K
rüger

and
B
erger,

2020b]

ApoDice 2012 2,523
ApoSnake 2012 2,965
ApoMono 2013 6,487
MyTreasure 2013 5,360

C
as
e
5

ApoCheating 2006 3,960

re-engineering clone&own Java Apo-Games into a
composition-based platform

[D
ebbiche

et
al.,

2019]

ApoStarz 2008 6,454
ApoIcarus* 2011 5,851
ApoNotSoSimple* 2011 7,558
ApoSnake* 2012 6,557

do not involve dead code that may occur in actually cloned variants [Debbiche et al., 2019;
Schultheiß et al., 2020]. To tackle such problems, we focused on using real-world systems that
allowed us to still conduct manual analyses. In the end, we relied on two sets of cloned vari-
ants (i.e., Apo-Games, heat control software) that we re-engineered towards platforms. More-
over, we used a platform-like variant-rich system (i.e., Berkeley DB) to investigate the impact
of different variability mechanisms during the re-engineering towards a full-fledged platform.

Apo-GamesTo address the problem that real-world cloned variants are not publicly available, we [Krüger
et al., 2018a] contributed the Apo-Games—which are 89 quite successful games in total (i.e.,
used for programming competitions, between 100 and 50,000 downloads for the Android
games). The Apo-Games dataset7 includes 20 Java and five Android games that have been
developed by a single developer using clone&own. All games range from 1,659 to 19,558
lines of code and have been developed between 2006 and 2013. Due to the lack of other
datasets, it is not surprising that the Apo-Games have already been used extensively in
research, for instance, to compare the effectiveness of analysis techniques on simulated and
real-world cloned variants [Schultheiß et al., 2020], to propose refactorings for re-engineering

7https://bitbucket.org/Jacob_Krueger/apogamessrc

https://bitbucket.org/Jacob_Krueger/apogamessrc
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variants into a platform [Fenske et al., 2017a], and to design recovery techniques for platform
architectures [Lima et al., 2018] or domain knowledge [Reinhartz-Berger and Abbas, 2020].

Berkeley DB For one of our cases, we relied on the industrial Berkeley DB,8 an embedded database
management system developed by Oracle. We relied on the C version that uses preprocessor
annotations to control features. While this system does not represent cloned variants, we
focused on understanding the pros and cons of using annotations or composition in the
corresponding case. In that context, the results are comparable to those we obtained for re-
engineering cloned variants, and they motivate particularly our traceability objective (RO-
T). Similar to the Apo-Games, Berkeley DB has been used extensively in research [Apel
et al., 2013b; Kästner et al., 2007; Liebig et al., 2010; Rosenmüller et al., 2009; Tešanović
et al., 2004], since it represents a relevant case for practice.

Uvr2web In one case, we re-engineered cloned variants of a web-based heating control software (for
the UVR1611 Data Logger Pro) that have been developed by a student for two different
organizations and multiple private users, with each variant including individual features. The
cloned variants comprise various technologies (e.g., Arduino, MySQL, Apache server, PHP,
Java, C++, C#) depending on the customized features they include. Uvr2web is successfully
running in practice, with more than 20 private users contacting the student developer
regarding the publicly available software. Moreover, the variants of one organization have
been downloaded over 300 times with 30 customers using the online database. While we
make most of the artifacts for Uvr2web publicly available,
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9 we cannot share all details and
artifacts, since some are critical for the organizations, and thus are confidential.

Cases

Case 1 In Case 1 [Krüger et al., 2017a], we have been concerned with locating features in a set
of cloned variants. The case itself was performed by one student developer who obtained
the necessary background during a series of lectures on platform engineering. As we
show in Table 3.6, we picked the five Android Apo-Games for this case, mainly because
we had a reference study on refactoring automatically located features (using code-clone
detection [Bellon et al., 2007; Roy et al., 2009]) that used the same variants [Fenske et al.,
2017a]. The student developer also used a code-clone detection tool (i.e., Clone Detective,
which is part of the ConQAT framework [Deissenboeck et al., 2008; Juergens et al., 2009])
to identify feature candidates, but inspected and extended those candidates manually (cf.
Section 3.1.3). Initially, we located features and constructed a feature model for a single
variant. We incrementally extended our analysis by mapping the results to the remaining
variants. During the case, we documented our experiences, particularly regarding the efforts,
as well as data on the features to compare our results to the reference study.

Case 2 In Case 2 [Krüger et al., 2018d], we re-engineered Berkeley DB from purely annotative vari-
ability towards composition, establishing platform engineering based on automated tooling
and feature modeling (using FeatureIDE [Meinicke et al., 2017]) in the process. The re-engi-
neering itself was performed by two experienced industrial developers who had the necessary
background knowledge on platform engineering and Berkeley DB. As starting point, we
relied on previous work of other researchers that performed similar re-engineerings [Benduhn
et al., 2016; Kästner et al., 2007]. During the case, we documented our activities and pro-
cesses in order to understand how features can be re-engineered. Moreover, we documented
the efforts in terms of which activities we had to repeat and the problems we faced.
8https://www.oracle.com/database/technologies/related/berkeleydb.html
9https://github.com/ekuiter/uvr2web
https://github.com/ekuiter/uvr2web-spl/tree/master/spl/artifacts

https://www.oracle.com/database/technologies/related/berkeleydb.html
https://github.com/ekuiter/uvr2web
https://github.com/ekuiter/uvr2web-spl/tree/master/spl/artifacts
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Case 3In Case 3 [Kuiter et al., 2018b], we analyzed the re-engineering of the Uvr2web variants that
was performed by the original (student) developer. The developer implemented the variants
for personal use at first, but later for two organizations. During a series of lectures on plat-
form engineering, they decided that re-engineering the variants into a platform would be ben-
eficial to fulfill new feature requests and solve existing problems, for instance, regarding bug
fixing. Since the available tooling for platform engineering was not designed for integrating
various technologies, the developer first implemented new tooling to model features and de-
rive variants from the platform, using multiple variability mechanisms, such as the C prepro-
cessor, a build system, and plug-ins. Together with the developer, we reiterated through the
re-engineering process and version history to elicit the activities performed and experiences.

Cases 4 & 5From the start, we designed Cases 4 [Åkesson et al., 2019] and 5 [Debbiche et al., 2019]
to be comparable [Krüger and Berger, 2020a], utilizing the experiences we obtained from
the previous cases to focus particularly on understanding the economics of re-engineering
cloned variants into a platform. To this end, we worked with two teams, each with two
student developers, who collaborated on the design of the methodology, but performed
their cases individually. They first conducted separate literature surveys to obtain the
background knowledge they required to perform their cases and derive a logging framework
to document their activities and efforts. Then, we synthesized the proposed methodologies
and frameworks based on our previous experiences and insights regarding cost models (cf.
Section 3.1.1) to define what to document, aiming to obtain comparable data. Besides
documenting in the version-control systems based on commits, we derived the logging
template we display in Table 3.7, comprising three sections:

Information describes an activity’s meta-data, namely its type, a short name, an identifier,
the original variant the activity was employed on (if applicable), the start date, the
end date, as well as a short description in natural language.

Data references the commits relating to an activity and provides applicable metrics, namely
the amount of person-hours (ph) spent as well as the lines of code and files changed.

Artifacts contains information regarding the artifacts relating to an activity, namely the
input, output, and tools used (e.g., source code, feature model, diff tool).

Activity Description documents summaries regarding three further properties of an
activity: its complexity, importance, and dependencies to other activities.

Using the methodology and logging framework we established, both teams performed their
case and logged their activities. As subject systems, each team used five variants of the Apo-
Games with similar sizes. Each team worked independently, with one re-engineering the
Android Apo-Games into an annotation-based platform using Antenna,10 while the other re-
engineered Java variants towards composition using feature-oriented programming [Prehofer,
1997] and the composer FeatureHouse [Apel et al., 2009, 2013b]. The teams could use any tool
they wanted, with FeatureIDE being the primary tool. During the whole case study, we had
weekly meetings to discuss the progress and challenges, allowing us to react and adapt the
methodology. After both teams finished their case, they analyzed their results individually
without considering the other team’s data. Only after this analysis, we synthesized the
findings of both teams, focusing on the economics of re-engineering they documented. All
of our (partly evaluated) data and artifacts are available in open-access repositories.

©Association for
ComputingMa-
chinery, Inc. 2021
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10http://antenna.sourceforge.net
11https://bitbucket.org/easelab/aporeengineering

http://antenna.sourceforge.net
https://bitbucket.org/easelab/aporeengineering
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Table 3.7: Concrete instance of our logging template for re-engineering Cases 4 and 5.

information
activity type: preparatory analysis
activity: removing unused code
activity id: A10
variant ids: V2, V3, V4, V5
start date: 2019-03-11
end date: 2019-03-12
description: Identifying code that is not used in the variants. We removed unused code to

facilitate analyzing the variants.

data
total hours: 12
commits: 7

35351f7035e22907d30828cd82a475d6fd012d75
1397a2c35632c474e361da003d7c8027f3d659e7
...

loc added: 0
loc removed: 11,670
loc modified: 0
files added: 0
files removed: 78
files modified: 133

artifacts
input: source code
output: refactored source code
tools: Eclipse, UCDetector, IntelliJ

activity description
complexity: The activity is of relatively low complexity, thanks to the available tools.
importance: This activity is very important because failure to detect unused code means the

developer will spend time transforming source code that is never used.
dependencies: n/a

3.3.2 RO-E7: Re-Engineering Activities

Re-engineer-
ing activities

In this section, we report which activities the developers performed in each case and derive
activity types to provide a uniform classification. We show a summary of all activities
performed and their mapping to activity types as well as our cases in Table 3.8.

Results

Activity types We elicited a diverse set of activities from the developers of each case, with various levels of
granularity and varying terminologies. For instance, some of the developers simply referred
to domain engineering, while others more specifically referred to feature or variability
modeling. To allow us to compare between all five cases, we derived nine common activity
types (ATs) by abstracting the activities and building on previous research:

AT1 Platform engineering training summarizes all activities related to getting familiar
with the methods and tools (potentially extending them with own implementations)
of platform engineering.

AT2 Domain analysis summarizes all activities related to understanding the domain of
the subject systems, for instance, by running and playing the Apo-Games.

AT3 Preparatory analysis summarizes all activities related to improving the quality of
a legacy system (e.g., removing unused code) or obtaining data (e.g., identifying code
clones) to support the actual re-engineering.
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Table 3.8: Mapping of the activities performed in each case.

activity activity types
case

1 2 3 4 5

research on platform engineering AT1  #    
research/extend tools AT1      
run legacy system AT2; AT4      
translate comments to English AT3 # # # #  
pairwise compare variants AT3; AT4; AT6  # #   
remove unused code AT3 # # # #  
reverse engineer class diagrams AT2; AT5 # # #   
review source code AT2; AT4; AT6      
create feature model AT7      
re-engineer source code to features AT8; AT9 #     
test re-engineered platform AT9 #     

AT4 Feature identification summarizes all activities related to identifying which features
exist within a system.

AT5 Architecture identification summarizes all activities related to understanding the
architecture of a legacy system, and defining a new one for the platform.

AT6 Feature location summarizes all activities related to locating the source code imple-
menting an identified feature (at class, method, statement, or sub-statement level).

AT7 Feature modeling summarizes all activities related to modeling the commonalities
and variability of the platform (i.e., mandatory and optional features).

AT8 Transformation summarizes all activities related to the actual transformation of
the source code and implementation of the platform.

AT9 Quality assurance summarizes all activities related to validating the re-engineered
platform (e.g., deriving variants) and typical quality assurance (e.g., unit testing).

Using these activity types, we can classify the activities the developers performed.

Intertwined
activities

Of all activities we elicited from our cases, we identified 11 that we could clearly distinguish.
However, we can see in Table 3.8 that these activities are heavily intertwined, with several
activities mapping to multiple activity types and vice versa. For example, familiarizing
with the subject systems by running them (e.g., playing the Apo-Games, testing a Berkeley
DB benchmark) contributes to domain analysis (AT2) and feature identification (AT4).
We remark that the extent to which an activity was performed varied between cases. For
instance, in Cases 4 and 5, the developers used a pairwise comparison of variants only as
a preparatory analysis to facilitate their later activities (AT3). However, in Case 1, the
developer used the pairwise comparison explicitly to identify actual features (AT4) and
incrementally refine as well as map feature locations to other variants (AT6).

ActivitiesWe can briefly summarize each elicited activity as follows:

Research on platform engineering: During this activity, the (student) developers fa-
miliarized with the concepts of platform engineering (e.g., through lectures, literature
surveys), ensuring that they had the necessary knowledge to preform their case.

Research/extend tools: For this activity, the developers had to identify (e.g., Fea-
tureIDE), extend (e.g., FeatureC [Krüger et al., 2018d]), or even implement (e.g., for
Case 3) tools that they wanted or needed to use.
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Run legacy system: In this activity, the developers executed their subject systems with
the goal of understanding their behavior and identifying potential features— repre-
senting a top-down analysis [Xue, 2011; Xue et al., 2012].

Translate comments to English: Since the Apo-Games comprise German comments,
one team of developers decided to translate these to English, aiming to gain a better
understanding based on the original developer’s documentation.

Pairwise compare variants: This activity involves diffing the source code of cloned
variants and mapping located features to other variants based on code-clone detection.

Remove unused code: One developer team found that their set of the Apo-Games
comprised a high ratio of common code, but also that a lot of this code was not
actually used, which is why they removed it before the actual transformation.

Reverse engineer class diagrams: During this activity, the developers automatically
extracted class diagrams of the variants to understand their architecture and guide
the design of the platform.

Review source code: In this activity, the developers analyzed the source code of their
subject systems to identify features, locate the corresponding source code, and
document the results to enable the actual transformation— representing a bottom-up
analysis [Xue, 2011; Xue et al., 2012].

Create feature model: To document the features identified and specify their dependen-
cies in the resulting platform, all developers constructed feature models.

Re-engineer source code to features: This activity refers to the actual transformation
of the legacy source code towards the platform, which we found to differ significantly
for our cases, due to the variability mechanisms we considered.

Test re-engineered platform In all of our cases in which we re-engineered a platform,
this activity was heavily intertwined with the actual re-engineering, since most
developers immediately tested the platform after integrating a feature.

For most of these activities, we experienced pitfalls that we discuss in Section 3.3.4.

Discussion

Elicited ac-
tivities and
their types

Even though we considered different subject systems, tools, programming languages, and
variability mechanisms, all developers performed similar activities. This indicates that our re-
sults represent useful abstractions of more fine-grained activities and can be used to guide the
re-engineering of systems into a platform. For instance, one developer team pointed out that
a more detailed analysis of the activities employed (e.g., individual refactorings) could im-
prove our understanding of that activity’s properties and economics. Still, particularly the de-
velopers in Cases 4 and 5 highlighted that our abstraction into activity types was necessary to
compare their findings. For this reason, we argue that we define a comprehensible set of activ-
ities and activity types to support developers in understanding how to re-engineer a platform.

Process im-
plications

Most research on platform (re-)engineering relies on waterfall-like process models established
decades ago [Krüger et al., 2020d]. For instance, they often strictly separate domain and
application engineering [Apel et al., 2013a; Clements and Northrop, 2001; Pohl et al., 2005]
or detection, analysis, and transformation phase [Assunção and Vergilio, 2014; Assunção
et al., 2017]. In our cases, we elicited similar activities, but experienced that our developers
constantly switched between these, for instance, because they identified new features (AT4)
or located new code belonging to a feature (AT6) while reviewing the source code during
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their domain analysis (AT2). As a consequence, an iterative (re-)engineering process with
constant updates seems more reasonable in practice.

RO-E7: Re-Engineering Activities
Regarding the activities the developers performed in our cases, we found that:

• We could define abstract activity types to represent and classify more fine-grained
re-engineering activities.

• The different activity types are intertwined during the actual re-engineering.

• Established, waterfall-like process models seem unreasonable for practice.

3.3.3 RO-E8: Economics of Re-Engineering

Re-engineering
efforts

Next, we investigate the efforts the developers spent and recorded during Cases 4 and 5,
individually and through a cross-case analysis. We summarize these efforts in terms of
person-hours and as ratio in Table 3.9. Since it is challenging to precisely track these efforts,
we checked the estimates against the corresponding version-control histories. We integrated
the efforts for transforming (AT8) and quality assuring (AT9) for these cases, since both
teams continuously added new features to their platforms and tested them in parallel. As a
result, it is not possible to clearly separate these efforts (e.g., in Case 5 the team specified
only transformation efforts and stated that this included 50% quality assurance).

Results

Efforts Case 4We can see in Table 3.9 that the developer team of Case 4 recorded a total of 496 ph. They
performed extensive platform engineering training (18.15%) as well as domain analysis
(16.53%). A main cost factor impacting the domain analysis was the need to understand
Android. For this reason, the existing tools for platform engineering were insufficient
(similar to Case 3), and the team had to invest substantial effort into integrating different
tools (e.g., FeatureIDE and IntelliJ IDEA). Nonetheless, the team invested most efforts
into the actual transformation and quality assurance (48.39%).

Efforts Case 5For Case 5, we can see that the team spent more than half of its total of 371.5 ph on
transforming and quality assuring the re-engineered platform (55.72%). Considering the
remaining activities, most effort went into preparatory analyses (e.g., removing unused
code, translating comments to German) and feature location (aligning to our analysis in
Section 3.1.3). All other activities required considerably less effort.

Cross-case
comparison

Comparing the efforts of both cases, we can see that the developer team in Case 4 required
almost 125 ph more than the team in Case 5. Particularly, they invested more time at
the beginning of their case, namely during the platform-engineering training and domain
analysis. As mentioned, the particular reason for this was the need to integrate different
tools to be able to re-engineer an Android-based platform. However, the team in Case 5 did
not fully track their platform engineering training, since they already started a literature
survey before the study design.

Transformat-
ion efforts

Interestingly, the efforts for transforming and quality assuring is similar in both cases
(207 ph to 240 ph or 55.72% to 48.39%, respectively), even though both teams employed
different variability mechanisms for their re-engineered platform (i.e., annotations versus
composition). Unfortunately, the team in Case 5 could transform only three of the intended
five variants (asterisked in Table 3.6), due to time constraints. The main problem the
team experienced was the complexity of using a composition-based variability mechanism.
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Table 3.9: Efforts documented for Cases 4 and 5 in terms of person-hours (ph) spent.

id activity type Case 4 Case 5
ph % ph %

AT1 platform engineering training 90.00 18.15 16.00 4.31
AT2 domain analysis 82.00 16.53 18.00 4.85
AT3 preparatory analysis 40.00 8.06 49.25 13.26
AT4 feature identification 22.00 4.44 22.25 5.99
AT5 architecture identification 5.00 1.00 2.00 0.54
AT6 feature location 7.00 1.41 50.00 13.46
AT7 feature modeling 10.00 2.00 7.00 1.88
AT8 transformation 180.00 36.29 103.50 27.86
AT9 quality assurance 60.00 12.10 103.50 27.86

total 496.00 371.50

Compared to annotations, composable modules require larger refactorings, merges, and
adaptations of the source code to enable a configurable platform. A re-appearing challenge
for the team was to localize bugs after integrating a new feature, which became more complex
since previously connected code was now separated. In addition, the team highlighted
that composition-based variability mechanisms are less established in practice, resulting in
problems to find practical resources and guides for such a re-engineering project.

Feature loca-
tion efforts

In addition to the mentioned platform engineering training and domain analysis, feature
location is among the activities with larger differences. While the team in Case 5 spent 50 ph
(13.46%) on this activity, the team in Case 4 spent only 7 ph (1.41%). We thought this
may be the result of different analysis strategies, but during our discussions it became clear
that the issue is again connected to the variability mechanisms used. For feature-oriented
programming (Case 5), the team first required to fully identify and locate all features of
the cloned variants to be able to transform them into meaningful modules. In contrast, the
preprocessor (Case 4) allowed the other team to add variability ad hoc by step-wise extending
feature locations with additional annotations whenever necessary. This insight is interesting,
since it indicates that the efforts for feature location depend on the variability mechanism—
even though some of this effort may be hidden within the actual transformation.

Other activ-
ity efforts

For all remaining activities, we can see that the person-hours spent and their ratios are
comparable between both cases. This is not surprising, since most of these activities are
rather independent of project specifics, and thus similar for both cases. For instance, both
teams relied on similar strategies to identify features (AT4) and architectures (AT5). So, we
can summarize that the main differences between the two cases are caused by preparatory
analysis (AT3) and feature location (AT6). These activities also contribute to most efforts
after the actual transformation and quality assurance.

Discussion

Unexpected
cost factors

In all of our cases (not only Cases 4 and 5), the developers experienced that certain project
properties can cause unexpectedly high efforts. Concretely, in Case 4, the missing tool sup-
port for Android-based platforms drastically increased the costs. In Case 5, the developers
relied heavily on code comments, and experienced that removing unused code facilitated
other activities. For both cases, the developers experienced that missing knowledge about
platform engineering and their subject systems challenged their re-engineering projects.
These findings align to our other three cases (e.g., in Cases 2 and 3 new or extended tools
were required), and highlight that various project properties can have unexpected impact
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on the costs of re-engineering. This challenges the research community to better understand
these cost factors and improve tool support to facilitate important activities.

Cost factor
tools

As a more concrete example, consider the activities for which the developers could rely on
established tools: architecture identification (AT5) and feature modeling (AT7). In Cases 4
and 5, both teams used plug-ins of the Eclipse framework to automatically reverse engineer
class diagrams, reducing the required effort considerably. For feature modeling, they could
rely on FeatureIDE’s comprehensive feature-model editor, and the actual modeling was
straightforward if the necessary information was collected. Unfortunately, existing tools
poorly support most other activities, leading to considerably increased efforts. A particularly
expensive activity was the manual feature location that required extensive knowledge and
could only be supported through pairwise comparison (AT3) using code-clone detection tools.

Variability
mechanisms

While the efforts in Cases 4 and 5 are comparable, our experiences support the argument that
re-engineering a platform using an annotation-based variability mechanism is more suitable
in practice. Comparing the experiences of both teams, the ability to add annotations ad
hoc seems to be a major benefit, meaning also that the developers required less knowledge
before the transformation. In more detail, feature-oriented programming is complex,
developers need to learn it, and it seems too expensive for transforming small, scattered
features, as in the Apo-Games. A preprocessor is a simpler variability mechanism, and its
annotations do not require the developers to refactor small, scattered features into modules.
However, the developer team in Case 4 also highlighted a common problem with annotation-
based variability: the code becomes less readable and poorly structured, suggesting that
introducing composition to some extent would be helpful to improve the quality of the
platform. So, while it seems more reasonable to initiate a re-engineering project using an
annotation-based variability mechanism, the developers should also consider to decompose
features of the platform— if their granularity allows for this.

RO-E8: Re-Engineering Economics
For the economics of re-engineering cloned variants into a platform, our data shows:

• Various project properties (e.g., missing tool support) heavily impacted the costs.

• Developers may (or even cannot) be aware of all of those properties (e.g., reliability
of comments, code quality, available tools, knowledge) and their trade offs.

• While some automation (e.g., for architecture identification) worked well, better
tools for other activities are still needed.

• Re-engineering cloned variants into a composition-based platform was more chal-
lenging and costly than the re-engineering into an annotation-based one.

• Using annotations required less effort during feature location.

• Among all other activities, preparations (e.g., platform engineering training,
domain analysis, preparatory analysis) and the transformation (including quality
assurance) were the most costly ones.

• The costs for most other activities were similar for both cases.

3.3.4 RO-E9: Lessons Learned

Lessons
learned

During our five cases, we collected various related lessons learned that provide additional ev-
idence for our previous findings and motivate our other research objectives. In the following,
we briefly discuss these lessons (first benefits, then challenges), reporting practical insights
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Table 3.10: Mapping of the lessons we learned through each case.

ty
p
e

lesson learned
case

1 2 3 4 5

be
ne
fit
s

delivering novel variants # #  #  
improving code quality #  # #  
managing variability #     
reduced codebase # #    
removing unused code # # # #  

ch
al
le
ng

es

available tools      
deciding about features  #    
intertwined activities #     
unexpected efforts # # #   
variability mechanisms #  #   

on pitfalls and opportunities of re-engineering variant-rich systems that an organization
should take into account to analyze the corresponding economics. For researchers, these
lessons define open research opportunities. In Table 3.10, we display a mapping of each case
to the lessons we learned through it. We remark that we focused on eliciting challenges,
particularly since benefits could mainly be identified through the use of a platform in
practice—which we could not evaluate or simulate except for Case 3.

Benefits

Delivering
novel variants

In two of our cases, we experienced that introducing variability by re-engineering features
into a platform immediately allowed us to configure new, reasonable variants. For Case 3, this
allowed the developer to deliver new variants to customers without reworking another cloned
variant. In Case 5, we could configure 56 games, instead of only the three the developers re-
engineered fully into the platform, significantly increasing the variant portfolio. We remark
that we successfully configured, derived, and executed all 56 games, but not all of these
configurations were fully functional (e.g., due to features not interacting correctly with each
other). Still, we could configure and run the previously cloned variants from the platform.

Improving
code quality

Re-engineering a variant-rich system is also an opportunity to improve the quality of assets
(e.g., source code, documentation)—which we previously found to be a major success and
cost factor for platform engineering. For instance, we introduced feature modules into
Berkeley DB, refactored complex code structures (e.g., undisciplined annotations [Fenske
et al., 2020; Liebig et al., 2011; Medeiros et al., 2015; Schulze et al., 2013]), and refined the
existing feature model we built upon. However, improving assets also leads to additional
costs. So, an organization may use the opportunity to improve the quality of its variant-
rich system, but has to analyze the trade offs in terms of investments and benefits.

Managing
variability

For all cases in which we re-engineered a variant-rich system, we experienced that platform
engineering improved our ability to understand and manage the existing variability. As
a consequence, it did become easier to update, add, and fix features, especially since we
did not have to implement each feature multiple times for individual variants. Moreover,
a feature model provides a better starting point to identify which features are relevant
for a new customer. While re-engineering, we were also able to reduce the variability by
removing unnecessary features, thus decreasing the complexity of the platform.

Reduced
codebase

A major benefit we experienced while re-engineering cloned variants is the smaller codebase
we had to maintain afterwards— a direct consequence of most other benefits (e.g., reducing
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Table 3.11: Statistics on the cloned variants (legacy loc) and re-engineered platforms.

case legacy loc
platform

implemented features loc loc ratio

3 11,985 52 10,584 88.31%
4 20,950 42 10,278 49.06%
5 19,966 23 13,932 69.78%

variability, removing unused code). We display statistics on the number of features we
implemented and the reduction of the codebase (loc ratio) for our three corresponding re-
engineering cases in Table 3.11. As we can see, each re-engineered platform was smaller
than the legacy systems, which is not surprising since we merged redundant code. These
size ratios of the resulting platforms are reasonable: We achieved the smallest reduction
(Case 3: 11.69%) for the web-based clones that use various technologies, and thus could not
be fully merged. For the other two cases, annotations achieved a far higher reduction (Case
4: 50.94%), since these allowed for more merges with few annotations to add variability.
In contrast, feature-oriented programming (Case 5: 30.22%) required more glue code to
handle feature interactions and fine-grained features, as well as for enabling composition
(i.e., defining refinement methods)— partly equalizing for removing unused code.

Removing
unused code

We already described the activity of removing unused code. In Case 5, the developers
performed an automatic dead-code analysis using the Eclipse plug-in UCDetector.12 This
alone reduced the codebase of the cloned Apo-Games by almost 40% (11,670 out of
30,380 LOC). We found that the dead code seemed to represent a reoccurring theme we
also identified before: developers cloning a variant without removing unused features,
for instance, those representing enemy entities. Again, an organization may use the re-
engineering of a variant-rich system to address such unused code that may otherwise cause
unwanted feature interactions, requires maintenance, and may confuse developers.

Challenges

Available toolsWe already highlighted the challenges of finding and using tools that support platform
(re-)engineering through all activities and technologies. Even though numerous tools for
platform engineering exist [Horcas et al., 2019] few are actually available or in a practically
usable state. As a consequence, we relied mainly on the open-source tool FeatureIDE
as a general development environment for platform engineering, which is similar to the
industrial tools pure::variants [Beuche, 2012] and Gears [Krueger, 2007]. However, none of
the available and functional tools provided sufficient support for the re-engineering process.
Moreover, existing tools are often limited to certain variability mechanisms or programming
languages, and complex to extend. This challenged several of our cases in which we had
to combine different or even implement our own tools, for instance, when we required
support for annotation-based and composition-based variability in parallel (Case 2), multi-
technology projects (Case 3), or Android (Case 4).

Deciding about
features

For all four cases in which we analyzed or re-engineered cloned variants, we found it
challenging to decide which features exist, what code belongs to them, and whether they
should be part of the platform. For instance, for the Apo-Games (Case 4), the same features
vary heavily between the individual variants, since these implement completely different
types of games and concepts. This diversity made it hard to re-engineer reasonable features,
but this arguably depends on the variants’ similarity and developers’ knowledge. Similarly,
12https://marketplace.eclipse.org/content/unnecessary-code-detector

https://marketplace.eclipse.org/content/unnecessary-code-detector
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we experienced that top-down and bottom-up analyses are complementary, and should be
combined to decide about features. Interestingly, in neither case did tool support (e.g.,
code-clone detectors) help particularly well, they usually only provided initial seeds. In
Case 1, we focused on this feature identification and location problem in particular: For the
reference study [Fenske et al., 2017a], features were simply refactored based on code clones.
Not surprising, considering the concept-assignment problem [Biggerstaff et al., 1993], our
manual analysis revealed several differences that are otherwise masked by the code clones,
such as a higher number of common features, a better separation of feature code, and more
meaningful features in general. Identifying and locating features are well known problems
for platform engineering, and our experiences suggest that the involved developers have to
agree on a specific notion of features [Berger et al., 2015; Classen et al., 2008], use manual
analysis, and build upon their knowledge of the variants. For Case 3, we could rely on the
knowledge of the original developer, which did not solve, but considerably facilitated the
problem of deciding about features.

Intertwined
activities

During our re-engineering cases, the developers constantly iterated through intertwined
activities, which contrasts established process models for (re-)engineering platforms that
focus on waterfall-like processes (cf. Section 2.3.2). The iterations facilitated various
activities, and were partly unavoidable, since developers may always locate new feature
code during the actual transformation. This experience led to two major insights: First,
as aforementioned, an updated, iterative process model for (re-)engineering variant-rich
systems is required to better understand the corresponding practices and processes. Second,
the interconnection between re-engineering activities made it hard to precisely document
and assess the corresponding costs.

Unexpected
efforts

We already mentioned that we faced different project properties that led to unexpected
efforts. Besides these cost factors, we also experienced that features that appear to
behave highly similar (e.g., menus of the Apo-Games), can differ heavily in their actual
implementation. Arguably, this was the result of the original developers gaining more
knowledge and re-implementing such features, without updating the variants from which the
code was cloned. Consequently, the variants diverge during their co-evolution [Schultheiß
et al., 2020; Strüber et al., 2019]. For this reason, we re-designed several features and
implemented them from scratch instead of re-engineering them, which reduced redundancies
and the codebase, but caused higher efforts.

Variability
mechanisms

Finally, we want to summarize our experiences regarding variability mechanisms that
we already sketched before. Regarding annotations, a regularly mentioned con is the
obfuscation of source code [Apel et al., 2013a; Fenske et al., 2020; Medeiros et al., 2015;
Schulze et al., 2013; Siegmund et al., 2012]. We experienced exactly the same problem,
which we could tackle to some extent by refactoring the annotations into more disciplined
forms. For composition, we also faced the known problem of comprehending related code
that is separated into different modules [Krüger, 2018b; Krüger et al., 2019b; Siegmund
et al., 2012]. This challenges the re-engineering, maintenance, and extension of the platform.
Another problem for composition (i.e., feature-oriented programming) was the need for a
basically complete configurator tool and its related artifacts (i.e., feature model). Without
this, it is not possible to test the platform, but since features may be identified, located, or
changed later on, this constantly required considerable rework. Moreover, re-engineering
fine-grained features (e.g., in an individual case of a switch) towards composition, is
challenging to impossible without major refactoring. In summary, we can only re-iterate
our experience that annotations seem to be the more suitable and less expensive variability
mechanism for a re-engineering project.
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RO-E9: Lessons Learned
From all of our cases, we elicited:

• Confirming experiences regarding different benefits of platform engineering, namely
an increased variant portfolio, improved code quality, facilitated variability man-
agement, a smaller codebase, and the removal of dead code.

• Experiences regarding known, but also novel, challenges with respect to missing
tool support, deciding about features, intertwined activities, unexpected efforts,
and variability mechanisms.

3.3.5 Threats to Validity

Threats to
validity

Our individual case studies and multi-case study design have partly opposing pros and cons
regarding threats to validity [Bass et al., 2018; Leonard-Barton, 1990]. In the following, we
briefly summarize the most important internal and external threats.

Internal Validity

Verification
with original
developers

The main threat to the internal validity of most of our cases (except Case 3) is that we
could not verify our results with the original developer. While we have been careful while
analyzing our subject systems and data, we cannot ensure that other researchers and
particularly the original developers would obtain identical results. We mitigated this threat
by several means. First, we always tested that the platforms we re-engineered could be
executed, ensuring their correct behavior. Second, for Case 3 the original developer actually
performed the re-engineering and we achieved similar results, improving the confidence in
our findings. Finally, we used the multi-case design particularly to mitigate this threat,
and used a reference study to improve our confidence in Case 1.

Data collectionAnother threat to the internal validity is the granularity of the data we elicited. Moreover,
most activities we identified are intertwined, which challenges precise cost measurements and
their assignment to specific activities or cost factors. As we discussed in Section 3.1.1, this
threatens our results and other researchers may find a different set of data more important
to elicit. However, we built our selection of data on our previous insights and on discussions
among the participating developers to mitigate this threat and elicit reasonable data. In
addition, we defined a logging template that others may use or refine to verify our data.

External Validity

Subject sys-
tems

While a multi-case study design improves the confidence that our results are transferable,
we still face threats to the external validity. Most prominently, we had no access to
suitable benchmarking datasets of other researchers, and thus relied on cloned variants
we contributed to the research community as well as one preprocessor-based variant-rich
system. As a result, our findings may not be fully transferable to other real-world variant-
rich systems, which may be larger, more complex, or have a higher degree of variance.
Considering the missing datasets, we argue that the ones we contributed are highly valuable,
particularly since they they stem from practice. With respect to the Apo-Games, we
remark that open-source games exhibit similar development patterns and properties as
other software [Businge et al., 2018]. Since our results revealed important problems that will
only be more challenging for larger systems, we argue that our multi-case study provides
valuable insights for practitioners and researchers despite this potential threat.

Tool selectionIn each of our cases, we relied on a number of different tools, usually depending on the
performing developers’ preferences. While we often relied on tools that are established for
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platform engineering (e.g., FeatureIDE), we also had to develop our own tools to manage
technologies not supported by established ones. Moreover, we experimented with various
tools designed to support the re-engineering of variant-rich systems. Unfortunately, the in-
volved developers usually considered these tools less helpful, if they could execute them at all.
So, we may have relied on tooling that is neither established in practice nor reflects the most
recent advancements in research. While this threatens the external validity, we argue that
we relied on existing tools as far as possible and only extended these if absolutely necessary;
essentially resembling how an actual organization could conduct a re-engineering project.

3.4 Summary

Chapter
summary

In this chapter, we investigated the economics of software reuse. For this purpose, we first
discussed how an organization can estimate the economics of (re-)engineering a variant-
rich system, building upon cost models for software product-line engineering to elicit
cost factors and discuss economic consequences. Building upon these insights, we then
reported an extensive empirical study with concrete data on the economics of devolving
variants with either reuse strategy. Finally, we reported a multi-case study to shed light in
the economics and challenges of re-engineering variant-rich systems into a systematically
managed platform.

Summarizing
contributions

Overall, the contributions in this chapter provide guidance for practitioners to decide for,
plan, and reason about (re-)engineering a variant-rich system. Since these are typically highly
complex, large, and long-living systems, any decision related to a variant-rich system has long-
term impact on an organization’s structure and practices. We provide reliable experiences
and empirical data that can help an organization to better understand the economics and
impact of its decisions— ideally improving the confidence in such a strategical decision. For
researchers, we highlight new directions to improve our understanding of (re-)engineering
variant-rich systems and developing corresponding tools. Since these directions are based
on real-world experiences, addressing them could immediately impact and support software-
engineering practice. Abstractly, our results suggest the following core finding:

RO-E: Economics
Implementing some form of platform engineering is the economically most promising
strategy for an organization to develop a variant-rich system.

Connection to
other research

objectives

Several themes appeared repeatedly throughout this chapter. While we cannot investigate
all of them, we focused on a few that seemed to be particularly important for (re-)engineering
variant-rich systems. First, we found that knowledge about a system is constantly mentioned
as a key cost factor, not only in existing cost models and research, but also by our interviewees
and multi-case study developers. Since knowledge seems to be one of the most important
cost factors (e.g., during feature identification and location) and has rarely been investigated,
we continue our research on this property in Chapter 4 (RO-K). Another important cost
factor that is closely related to knowledge, is the used variability mechanism. In Chapter 5,
we investigate to what extent feature traceability based on variability-mechanisms and
similar techniques can facilitate the (re-)engineering of variant-rich systems by directly
encoding feature knowledge into the source code (RO-T). Finally, we elicited various
activities and described their relations to the properties we investigated. We sketched
several processes and argued that a new process model as well as a detailed understanding
of helpful practices are required, which we analyze in Chapter 6 by synthesizing from all of
our findings (RO-P).



4. The Knowledge Problem

This chapter builds on publications at EASE [Krüger et al., 2020e], ESEC/FSE [Krüger,
2019a], ICSE [Krüger et al., 2018e], ICSME [Krüger and Hebig, 2020], SPLC [Krüger
et al., 2017a], VaMoS [Krüger et al., 2018b], Empirical Software Engineering [Nielebock
et al., 2019], and the Journal of Systems and Software [Krüger et al., 2019c].

Chapter struc-
ture

While investigating the economics of software reuse (cf. Chapter 3), we found that developers’
knowledge (e.g., feature locations) is among the most important cost factors regarding the
(re-)engineering of variant-rich systems. Compared to other cost factors with strong impact
(e.g., delta, bugs, quality), the impact of developers’ knowledge is more complex, challenging
to understand, and gained less attention in research [Krüger, 2019a; Parnin and Rugaber,
2012]—which is why we investigate the importance of knowledge in this chapter (RO-K).
First, we study what knowledge developers consider important about their system, and how
well they can recall this knowledge (Section 4.1). Second, we investigate how developers
forget the source code they worked on (Section 4.2), which is particularly important with
respect to re-engineering and feature location [Krüger et al., 2019d,e]. Finally, we report
our experiences and empirical studies regarding how developers can recover knowledge
that is relevant for re-engineering (Section 4.3). The contributions in this chapter allow
researchers and practitioners to better understand developers’ knowledge needs during re-
engineering projects. This is helpful to understand what information to document in what
form, how to identify experts for a system, and from where to recover missing information.
Moreover, our results indicate various open research opportunities regarding developers’
knowledge in general, and in the context of re-engineering projects more specifically.

Conceptual
framework of
knowledge

We display a more detailed overview of our conceptual framework regarding knowledge
in Figure 4.1. A project involves numerous pieces of information that are concerned with
different properties related to the systems (e.g., what features are implemented), processes
(e.g., how to fix bugs), and developers (e.g., who is responsible for what) involved in the
project. To execute their activities, developers must have the necessary information stored
in their memory, thus establishing their knowledge regarding the project. However, a
developer’s memory decays over time (i.e., they forget information) [Krüger et al., 2018e;
Parnin, 2010; Parnin and Rugaber, 2012], which is why documentation of any form may
be used to record and recover required information. Our other research objectives require
knowledge to perform them correctly (also, traces record knowledge), and a better knowledge
base can considerably facilitate them.
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Figure 4.1: Details of the knowledge objective in our conceptual framework (cf. Figure 1.1).

4.1 Information Needs

Knowledge and
re-engineering

While (re-)engineering any software system, developers must understand the involved assets
(e.g., locating features in code) and their properties (e.g., dependencies between features).
Consequently, a developer’s knowledge impacts most activities and cost factors in software
(re-)engineering, such as development efforts, software quality, and bug proneness [Anvik
et al., 2006; Krüger and Berger, 2020b; LaToza and Myers, 2010b; Rus and Lindvall, 2002;
Standish, 1984; Tiarks, 2011; von Mayrhauser and Vans, 1995]. Since the re-engineering of a
variant-rich system involves a number of variants, usually developed by multiple developers
over a longer period of time, it is important to understand which developers are still
knowledgeable regarding which assets and properties. Understanding developers’ remaining
knowledge as well as their information needs, helps organizations to assign tasks, plan
preparatory analyses, and manage their re-engineering projects.

Section con-
tributions

In this section, we analyze developers’ information needs based on a two-fold study [Krüger
and Hebig, 2020]: We used a systematic literature review to identify related work, based on
which we designed an interview survey we conducted with 17 developers. In detail, we are
concerned with the following sub-objectives of RO-K:

RO-K1 Provide an overview of empirical studies related to developers’ information needs.

At first, we reviewed the related work on developers’ information needs. Precisely,
we focused on empirical studies that investigated what information developers
asked for during their tasks, indicating that the corresponding knowledge was
important, but not in their memory anymore. We used the results to obtain a
basic understanding of information needs and scope our interview survey.

RO-K2 Investigate what knowledge developers consider important to remember.

In our survey, we first analyzed what types of knowledge developers consider worth
remembering. This is important to understand for what knowledge an organization
needs to record or recover information to what extent to support (re-)engineering
projects. For example, experts may remember the architecture of variants, which
is why this would be important to record to facilitate the onboarding of novices
and to not lose tacit knowledge.

RO-K3 Analyze the reliability of developers’ memory.

Building upon the previous sub-objective, we investigated to what extent develop-
ers’ memory can be trusted regarding different types of knowledge. Our insights
improve our understanding of how memory decay may affect different pieces of
information, and thus support organizations and researchers in defining policies
for recording and techniques for recovering relevant information. For instance,
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developers may reliably recall the features of a variant, but not their locations—
which is why they could be a reliable information source for constructing a feature
model, while feature location requires more effort.

Our interview guide, the results of our systematic literature review, and the anonymized
responses to our interview survey are available in an evaluated open-access repository.

©Association for
ComputingMa-
chinery, Inc. 2021
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In the following, we describe the design of our systematic literature review and interview
survey in Section 4.1.1 and Section 4.1.2, respectively. We then discuss threats to the
validity of this study in Section 4.1.6. In Section 4.1.3, we present and discuss the results
of our systematic literature review. Finally, we analyze the findings of our interview survey
with respect to our last two sub-objectives in Section 4.1.4 and Section 4.1.5.

4.1.1 Eliciting Data with a Systematic Literature Review

Design adapta-
tions

The goals of our systematic literature review were to (1) summarize empirical findings on
developers’ information needs; (2) ground our interview survey in empirical evidence; and
(3) establish a dataset to which we could compare our results. As a result, we did not require
a full-fledged systematic literature review, since we summarized and classified existing expe-
riences [Kitchenham et al., 2015]. For this reason, we adapted our methodology as follows:

• We employed a snowballing search, starting from a set of relevant publications we
knew. As a consequence, we may have missed publications that an automatic search
could have identified. We decided to employ this adaptation to avoid the problems
of automated searches [Kitchenham et al., 2015; Krüger et al., 2020c; Shakeel et al.,
2018], and argue that we used an appropriate starting set for our snowballing.

• Instead of performing a quality assessment, we trusted the review process (IC2). This is
an established adaptation [Brereton et al., 2007], particularly since we intend to classify
existing findings and use them to scope our own study [Kitchenham et al., 2015].

• Since they are not relevant for our study, we do not report the typical statistics that
are part of a systematic literature review.

Using these established adaptations, we facilitated the conduct of our systematic literature
review, without compromising its results with respect to our goals.

Search Strategy

Snowballing
search

We started our snowballing search [Wohlin, 2014] with a set of five publications (asterisked
in Table 4.1). To be as complete as possible, we employed backwards and forwards snow-
balling to identify further publications, without limiting the number of iterations. So, if we
identified another relevant publication, we employed snowballing on that publication, too.
We used Google Scholar for forwards snowballing (last updated on February 11, 2020).

Selection Criteria

Inclusion crite-
ria

We focused on empirical studies that reported concrete questions developers had during
their tasks, indicating that apparently relevant knowledge was missing. For this purpose,
we defined the following inclusion criteria (IC):

IC1 The publication is written in English.

IC2 The publication has been peer reviewed.
13https://doi.org/10.5281/zenodo.3972404

https://doi.org/10.5281/zenodo.3972404
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IC3 The publication reports an empirical study.

IC4 The publication analyzes development and/or maintenance questions.

IC5 The publication does one or both of the following:

(a) It identifies (ID) concrete questions that developers ask.
(b) It rates the importance (RI) and/or difficulty (RD) of questions.

Using these criteria, we ensured the quality of the included publications (IC1, IC2), and that
they reported empirical findings (IC3). We excluded publications that focus on questions on a
highly specific topic that is not relevant for all (re-)engineering projects and activities, for in-
stance, questions on API usages [Duala-Ekoko and Robillard, 2012], bug reports [Breu et al.,
2009], code reviews [Pascarella et al., 2018], or concurrent programming [Pinto et al., 2015].
Finally, we only included publications with a systematic sample of concrete questions (IC5),
excluding publications that only exemplify questions, such as the one by Letovsky [1987].

Data Extraction and Synthesis

Data ex-
traction

For each publication, we extracted its bibliographic data, all questions reported, and
existing classifications proposed by the authors. Additionally, we extracted the number of
participants, the questions involved, the research method, the scope (i.e., ID, RI, or RD
according to IC5), and additional comments (e.g., regarding availability of data, see Table 4.1)
for each individual study reported in a publication. For analyzing our data, we relied on
open-card sorting [Zimmermann, 2016]. Following this method, we started with identifying
themes based on the classifications defined in the publications, aiming to unify 81 distinct
classes of 420 questions. Then, we used the unified themes to reclassify all 465 questions
(including those not previously classified) based on their texts. Using this reclassification,
we checked the coverage of our unified classes and obtained a better understanding of the
questions’ contexts as well as relations. In the end, we synthesized existing rankings of
questions according to their scope and our reclassification (i.e., architecture, meta, code).
If a ranking in one publication was not normalized, we did so ourselves, for instance, the
question ranked second out of 21 has a normalized ranking of 0.95. We averaged the
normalized rankings of all questions in a theme.

Elicited Data

Elicited data In the end, we included the 14 publications, comprising 17 individual studies, we display
in Table 4.1. We can see that they involve varying numbers of participants, depending on
the research methods and scopes. Nine of the involved studies identified questions, four
rated the importance of questions, and two rated the difficulty of answering questions. Al-
together, the publications include 465 unique questions and 81 classes. Unfortunately, three
publications provide only a subset of all questions investigated, and their corresponding
websites are not available anymore.

4.1.2 Eliciting Data with an Interview Survey

Motivation The questions we identified through our systematic literature review indicate what knowledge
developers require during their tasks, and thus suggest what information is important to
record or recover for a re-engineering project. However, the importance of information also
depends on a developer’s specific task, their expertise, and their existing knowledge about a
system. To better understand what knowledge developers consider important to remember,
we conducted a qualitative interview survey [Wohlin et al., 2012]. For this purpose, we built
upon the results of our systematic literature review and research on forgetting [Averell and
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Table 4.1: Overview of the 14 publications on information needs. We started our snowballing
search based on the asterisked publications.

reference venue #p #q research method scope

Erdem et al. [1998] ASE — 60 newsgroup analysis IQ

Sillito et al. [2006]* FSE 25 44 observational study IQ

Ko et al. [2007] ICSE { 17 21 observational study IQ
42 21 survey RI

Sillito et al. [2008] TSE <no relevant changes to Sillito et al. [2006]>

Fritz and Murphy [2010]* ICSE 11 46 (78)a interview survey IQ

LaToza and Myers [2010a]* PLATEAU 179 94 survey IQ

LaToza and Myers [2010b] ICSE 460 12 survey RD

Tao et al. [2012] FSE
{ 33 8 (24)b survey IQ

180 15 survey RI
180 15 survey RD

Kubelka et al. [2014] PLATEAU 6 7c think-aloud sessions IQ

Novais et al. [2014]* VEM 42 11 survey RI

Smith et al. [2015]* ESEC/FSE 10 78 (559)d think-aloud sessions IQ

Al-Nayeem et al. [2017] ICST 194 37 survey IQ

Sharma et al. [2017] CHASE 27 25 survey RI

Kubelka et al. [2019] ICPC <no relevant changes to Kubelka et al. [2014]>

#p: number of participants – #q: number of questions
IQ: Identify Questions – RI: Rate Importance – RD: Rate Difficulty

a lists 46 questions, website with all 78 questions not available; b lists 8 of 24 questions;
c 7 new questions, others from previous work [Ko et al., 2007; Sillito et al., 2008];

d lists 78 questions, website with all 559 questions not available

Heathcote, 2011; Cohen and Conway, 2007; Kang and Hahn, 2009; Krüger et al., 2018e;
Moran, 2016; Parnin and Rugaber, 2012].

Reasoning for
interview

Our interview survey represents an empirical study of psychological aspects, namely human
cognition. Such an empirical study faces a variety of potential threats due to humans’
individual characteristics [Feldt et al., 2010; Krüger et al., 2018e; Siegmund and Schumann,
2015; Stacy and MacMillan, 1995], which are hard or even impossible to control or isolate.
For instance, developers memory about a system (with which we are concerned) must first
be established before we can investigate it, while we must also try to avoid biases that could
be caused by giving away the purpose of our survey. To tackle such biases, we decided to ask
our interviewees questions about a system they worked on before. Moreover, we decided to
rely on an interview survey to obtain qualitative in-depth insights, limit faulty answers, and
reduce the drop out rate (particularly since each interview took 1 to 2.5 hours) [Wohlin et al.,
2012]. In summary, we decided to conduct an interview survey in which we asked questions
on information needs about an interviewee’s system. So, we report a descriptive empirical
study, intending to understand a phenomenon (importance of knowledge and reliability of
memory), similar to the publications we identified in our systematic literature review.

Interview Guide

General struc-
ture

In Table 4.2, we show an overview of our semi-structured interview guide. We use the
identifiers throughout this section to refer to the questions we discuss. For each question,
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we show one example reference from our systematic literature review that comprised that
or a similar question. In total, we defined 27 questions across five sections. During the
interviews, we briefly introduced each section to the interviewees.

Self-assess-
ment section

In the first section, we asked our interviewees to perform a self-assessment of the knowledge
they still had with respect to their system. To obtain a more detailed understanding,
we asked for individual assessments regarding their overall (OS1), architectural (OS2),
meta (OS3), and code (OS4) knowledge. During our survey, we aimed to see whether our
interviewees’ self-assessments would change after reflecting about their system, which is
why we repeated these questions after each of the next three sections. We remark that the
analysis of self-assessments is a supportive means for another part of this dissertation, but
it is not in its focus and we will only briefly summarize our insight in this regard.

Knowledge
sections

In the next three sections, we adopted questions we identified during our systematic
literature review to ask our interviewees about knowledge related to our unified themes.
Consequently, we asked questions relating to the architecture, meta, and code knowledge
of their systems. Note that we asked C1–6 for three individual files, so each interview
comprised three instances of each of these questions. We designed our interviews to involve
a broader range of knowledge on different levels of detail, for instance, C1–3 focus on more
abstract code knowledge, while C4–6 focus on code details. To improve our confidence in
the responses’ correctness, we involved several questions that we could verify against the
actual system (e.g., A6, M6, C6).

Importance
section

In the last section, we asked our interviewees to think about our sub-objectives. We asked
them what knowledge they consider important to remember by intuition (IK1), by rating
our unified themes (IK2), and by rating each question we asked (IK3). Finally, we asked
them to elaborate on how they reflected about their knowledge (IK4) and for any additional
remark (IK5). After this section, we evaluated the correctness (explained shortly) of their
answers with each interviewee, who were now allowed to look at their system.

Design de-
cisions

Our interview survey focused on developers’ memory, which is why we did not allow our
interviewees to investigate their code during the interview (which would initiate program
comprehension) or analyze any other documentation. This also avoided biases with respect
to questions related to concrete files or methods of the system, which the interviewer selected
before the conduct. Similarly, the order and wording of our questions may be problematic
for studying developers’ memory. We decided for this setup and ordering of questions,
particularly asking about the importance of knowledge at the end (but before evaluating
correctness), to mitigate any confirmation biases. Namely, our interviewees may had
focused on answering those questions correctly they considered important at the beginning
to justify their decision. Finally, we investigated systems developed in a version-control
system, allowing us to measure times, edits, and other pieces of information to evaluate some
questions. However, several questions relate to more tacit and rarely documented knowledge,
which is why we relied on our interviewees’ knowledge as experts to evaluate those.

Conduct

Interview
preparation

At least one interviewer conducted each interview with exactly one interviewee at a time.
We explained to our interviewees that the interview was on program comprehension, without
revealing our actual goals. Before conducting the interview, we asked each interviewee to
allow us to access their version-control system (e.g., in advance via a link or by bringing
their computer) to prepare our guide (e.g., selecting files and methods, analyzing times
and edits). With respect to the selected files and methods, we aimed to involve such
with different properties in terms of, for example, their size, last change, parameters, or
positioning in the files system. After this preparation, we conducted the actual interview.
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Table 4.2: Structure of our interview guide on knowledge needs.

id example source questions & answers (A)

section: overall self-assessment
<asked 4 times: at the beginning and after each of the following three sections>
OS1 — How well do you still know your system?
OS2 — How well do you still know the architecture of your system?
OS3 — How well do you know your code of the system?
OS4 — How well do you know the file <name>?

AOS1–4: rating from 0 to 100%

section: architecture
A1 LaToza and Myers [2010a] Can you draw a simple architecture of your system?

AA1: a drawn model <updated after each other section>
A2 Smith et al. [2015] Is a database functionality implemented in your system?
A3 Sillito et al. [2006] Is a user interface implemented in your system?

AA2–3: ◦ yes: <file> ◦ no
A4 LaToza and Myers [2010b] Can you name a file that acts as the main controller of your system?

AA4: ◦ yes: <file> ◦ yes: <functionality> ◦ no
A5 LaToza and Myers [2010a] On which other functionalities does the file <file> rely?

AA5: open text
A6 LaToza and Myers [2010a] Can you exemplify a file/functionality you implemented using a library?

AA6: ◦ yes: <file> ◦ yes: <functionality> ◦ no

section: meta-knowledge
M1 Novais et al. [2014] When in the project life-cycle has the file <file> last been changed?

AM1: open text
M2 LaToza and Myers [2010a] Can you exemplify a file which has recently been changed and the reason

why (e.g., last 2-3 commits)?
AM2: ◦ yes: <file> <reason> ◦ yes: <file> ◦ no

M3 Fritz and Murphy [2010] Can you point out an old file that has especially rarely/often been changed?
AM3: ◦ yes: <file> ◦ no

M4 Fritz and Murphy [2010] How old is this file in the project life-cycle and how often has it been
changed since the creation?

M5 LaToza and Myers [2010a] Who is the owner of file <file>?
M6 LaToza and Myers [2010a] How big is the file <file>?

AM4–6: open text

section: code comprehension
<for three> files: a) <file>; b) <file>; c) <file>
C1 LaToza and Myers [2010a] What is the intent of the code in the file?

AC1 <per file>: open text
C2 LaToza and Myers [2010a] Is there a code smell in the code of the file?

AC2 <per file>: ◦ yes: <smell> ◦ yes ◦ no
C3 Sillito et al. [2006] Which data (in data object or database) is modified by the file?

AC3 <per file>: open text
<for three> methods: a) <from file a>; b) <from file b>; c) <from file c>
C4 LaToza and Myers [2010a] Which parameters does the following method need?
C5 Kubelka et al. [2014] What type of data is returned by this method?
C6 Sillito et al. [2006] Which errors/exceptions can the method throw?

AC4–6 <per method>: open text

section: importance of knowledge
IK1 — Which part of your system do you consider important?

AIK1: open text
IK2 — Which type of the previously investigated types of knowledge do you

consider important?
AIK2: ◦ architecture ◦ meta ◦ code

IK3 — Which of the previous questions do you consider important or irrelevant
when talking about familiarity?

AIK3 <(per Ai, Mi, Ci)>: ◦ irrelevant ◦ half/half ◦ important
IK4 — What do you consider/reflect about when making a self-assessment of your

familiarity?
IK5 — Do you have additional remarks?

AIK4–5: open text
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Table 4.3: Overview of our interviews on knowledge needs in order of conduct.

# area domain programming languages loc #d

1 academia document parser Java <10k 2
2 academia Model editor Java <10k 3
3 academia security analysis Java <10k 1
4 academia machine learning Python <10k 4
5 academia static code analysis Java <10k 1
6 industry web services JavaScript, PHP 10k–100k 2
7 industry web services PHP >100k 1
8 academia development environment Java >100k 6
9 academia databases C++ >100k 3
10 academia static code analysis Java <10k 1
11 industry android app Java 10k–100k 1
12 industry enterprise resource planning C# >100k 6
13 academia static code analysis Java <10k 1
14 academia web services Ruby <10k 1
15 open-source geometry processing Rust <10k 1
16 industry static code analysis OCAML <10k 2
17 open-source traceability Java <10k 5

#d: number of active developers

Number of
interviews

Instead of stopping at a fixed number of interviews, we relied on saturation as a reasonable
stop criterion for qualitative research [Wohlin et al., 2012]. Namely, we stopped after we
found that the last three interviews we conducted had no significant impact on the average
responses anymore. This led to a total of 17 interviews, which is also a comparable sample
size to similar studies we identified in our systematic literature review (i.e. interview,
observational, and think-aloud studies in Table 4.2). Moreover, the results between our
systematic literature review and interview survey that are concerned with the same questions
are comparable, improving our confidence that the number of interviews is reasonable.

Interviewees

Interviewees Following recommendations of Wohlin et al. [2012], we focused on including interviewees
based on differences rather than similarity, aiming to derive insights from a diverse sample.
For this purpose, we invited recent and former collaborators form various countries (e.g.,
Germany, Sweden, France). All of them had between five and ten years of programming
experiences and have been active programmers of their system. Five of our interviewees were
working full-time in industry and four had worked in industry before. Three interviewees
were female. In Table 4.3, we show an overview of each system, with the area referring to
the domain of the system, not the interviewee. We can see that the systems span a variety
of domains and programming languages. Also, they have been developed for three months
to more than ten years by one to six regular developers. Interestingly, most of the systems
had no dedicated documentation, and thus relied heavily on the developers’ knowledge.
One limitation of our interview survey is that most systems have been relatively small
with respect ot their size and the number of regular developers (even though one system
had over 50 contributors over time). As a consequence, we can generalize our observations
mainly for smaller systems, even though we interviewed a diverse sample of developers.

Correctness Evaluation

Procedure To evaluate the correctness of answers, we re-iterated through all questions with each
interviewee, this time also investigating the system and its version-control data. This
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procedure had two major benefits. First, feasibility: Many of our questions can be answered
solely or at least more easily by our interviewee, who had the respective knowledge and
could access the system. Second, uncertainty: For other questions, we had to evaluate the
correctness of answers compared to the interviewee’s understanding of the system, since we
cannot assume that there is a single correct answer that is valid to every developer of a
system. For instance, the presence of code smells may be up for debate between developers,
depending on what they consider to represent a code smell.

Rating schemeWe evaluated questions A2–6 and M1–6 as correct (1 point), partially correct (0.5 points),
or incorrect (0 points). Identically, we rated the three instances for C1–6 individually and
averaged the points for each question. For instance, if a code smell was correctly described
for one file (1 point) and incorrect for the other two files (0 points each), the interviewee’s
score for C2 was 0.33. Note that we had five cases in which we could not ask or properly
correct each question for all files, due to unsuitable methods (two cases) and lost commit
histories during repository migrations (three cases).

Architectural
model

Rating the correctness of the architectural model (A1) was a special case. Due to the
subjective perspective of what an architectural model should comprise, we allowed our
interviewees to update the model during the interview. In the end, we rated the correctness
of the final model based on three questions:

1. Did the interviewee consider the final model as correct after looking at their system?

2. Was the model system-specific? For example, this was not the case for a generic
model-view-controller architectural model without any further system specifics.

3. Did the interviewee refine or correct the model? We defined refinements as additions
(e.g., of components) made to enrich the model. In contrast, corrections refer to the
interviewee removing (crossing out) or substituting elements of the model.

If the interviewee and interviewer agreed that an architectural model was correct, system-
specific, and received refinements only (but no corrections), we assigned 1 point. For models
that were not system-specific, we assigned 0 points. In a single case, we assigned 0.5 points
for an architecture that was not system-specific, but included annotations that described
specific technologies used within the system. We also assigned 0.5 points if the architectural
model was system-specific, but received corrections.

4.1.3 RO-K1: Studies on Developers’ Information Needs

Information
needs

In the following, we describe and discuss our results of analyzing the publications we show
in Table 4.1. We display the themes and according classifications we extracted from the
publications in Figure 4.2. In Figure 4.3, we summarize the rankings we synthesized from
those presented in the publications.

Results

Themes from
classifications

On the left side of Figure 4.2, we show the seven themes we synthesized from the authors’
classifications, involving 420 questions and 81 classes. During this phase, we decided to
discard the questions of Erdem et al. [1998] during our more detailed analysis, since they
are too general (e.g., “What does it do?”) and can be asked for anything. In contrast, we
found that the themes testing, program comprehension, and other subsume questions that
relate to the remaining three themes.

Reclassifica-
tion

As a consequence, we decided to reclassify each individual question using these three themes
(note that we use the abbreviations throughout this section):
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Figure 4.2: Overview of the knowledge themes we identified from the publications in
Table 4.1. The themes on the left are based on the classifications defined in the publications,
with the numbers indicating the number of associated questions (and classes). The themes
on the right are based on our reclassification.

A Architecture questions focus on the structure of a system, such as (feature) dependen-
cies, APIs, or architectural patterns (e.g., “Who can call this?” [Smith et al., 2015],
“[Which] API has changed?” [Fritz and Murphy, 2010]).

M Meta questions focus on the context of a system, such as ownership, (variant) evolution,
or developer roles (e.g., “How has it changed over time?” [LaToza and Myers, 2010a],
“Who owns a test case?” [Fritz and Murphy, 2010]).

C Code questions focus on the implementation of a system, such as code smells, bugs,
or feature locations (e.g., “What are the arguments to this function?” [Sillito et al.,
2006], “How big is this code?” [LaToza and Myers, 2010a]).

These themes represent a suitable abstraction, but each question may belong to multiple
themes, for instance, involving the evolution (meta) of a class (code). For simplicity, we
reclassified each question to the theme we considered predominant, and derived sub-themes
for a more detailed understanding. We display our final reclassification (including sub-
themes) of all 456 questions— adding the 36 that were not classified by the authors—
on the right side of Figure 4.2. Again, we selected the predominant sub-theme for each
question, for instance, “Who has made changes to [a] defect?” [Fritz and Murphy, 2010]
relates mainly to people, but also to testing and change.

Rankings Finally, we synthesized the rankings of difficulty and importance of questions reported in the
publications (cf. Figure 4.3). For this purpose, we used our three main themes and merged
the relative ranking (i.e., a value between 0 and 1) of each question in these publications.
We found only two examples for the difficulty of answering meta questions, which is why we
cannot judge this ranking confidently. However, for the remaining themes, and particularly
the importance of questions, we identified several ranked questions (numbers below the
box-plots) we could build on.

Discussion

Themes Not surprisingly, most questions for architecture and code relate to a system’s structure,
behavior, the mode-view-controller (mvc) pattern, and testing. Code questions also relate
heavily to the intent that should be implemented in the source code of a system. Meta
questions relate mostly to testing, change, information, and people. Our reclassification is
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Figure 4.3: Synthesized rankings ([0,1]) of architectural (A), meta (M), and code (C)
questions (numbers below each box-plot) based on the publications in Table 4.1.

similar to the one we synthesized from the authors’ classifications (e.g., a similar number of
questions for testing and meta knowledge). We can see that most questions relate to meta
knowledge, while the fewest relate to code knowledge— potentially because a developer
can analyze the code to recover knowledge during program comprehension. In contrast,
architectural and meta knowledge are often not directly accessible or not explicitly recorded,
which could be the reason for more questions in this regard.

Difficulty and
importance

Considering Figure 4.3, we can see that the difficulty and importance of answering questions
seem to be related, which has also been found by Tao et al. [2012]. Also, meta questions are
the largest theme, but they seem less important than questions of the other two themes—
which is not caused by their sheer number. For example, the seven (of 21) meta questions
ranked in the study of Ko et al. [2007] are all among the lowest nine, even though they
appeared as frequently as the questions from the other two themes. These insights indicate
that questions on meta information may appear frequently, but can be recovered more
easily (e.g., from version-control data) or are simply not as important to know.

RO-K1: Studies on Developers’ Information Needs
We reviewed existing studies on developers’ information needs and learned:

• Architecture, meta, and code are general themes for classifying questions.

• The difficulty and importance of the questions in a theme seem to relate.

• How often questions of a theme occur seems unrelated to the theme’s importance.

• Developers ask fewer questions about source code.

• Meta questions seem less important compared to questions of the other themes.

4.1.4 RO-K2: The Importance of Knowledge

Importance of
knowledge

We analyzed what knowledge developers consider important to memorize about their system
based on the answers to questions IK1–3. In Figure 4.4, we summarize our interviewees’
perception of whether it is important to memorize information of a knowledge theme. We
provide the more detailed summary of our interviewees’ perception of the importance of
each individual question, and their correctness in answering these, in Figure 4.5.
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Figure 4.4: Summary of our interviewees’ perceived importance of knowledge themes (IK2;
A: architecture, M: meta; C: code).

Results

Open per-
ception

Since IK1 was an open-text question, we employed open coding [Seaman, 1999; Shull et al.,
2008] to extract 35 codes from the answers. Using this methodology, we aimed to understand
what knowledge our interviewees perceive important without focusing on predefined themes.
We found codes for architecture in seven answers, and six more codes for closely related
themes, namely dependencies, APIs, extension mechanisms, and own extensions— all
capturing the structure and variability (i.e., extensions) of a system. Another regular theme
is connected to understanding a system’s behavior by analyzing its intent (3 codes) during
program comprehension (1 code). Further individual codes were related to bug locations, a
system’s main controller, domain-specific knowledge, and code conventions.

Perception
of themes

Then, we asked each interviewee to rate the importance of remembering knowledge with
respect to our high-level themes (IK2). As we can see in Figure 4.4, most interviewees
considered architectural knowledge as the most important to remember. While only two of
our interviewees considered meta knowledge as important, roughly half of them perceived
code knowledge as important. Interestingly, the overall perception aligns well with the
results of our systematic literature review (cf. Figure 4.3) and the interviewees’ answers to
IK1. In all cases, architecture was the most prominent theme, followed by code and meta.
We remark that we expected meta knowledge to be perceived less important, due to the
smaller systems for which we interviewed developers. However, the alignment to the other
publications improves our confidence that our findings are useful beyond such systems.

Perception
of architec-

ture questions

We can see the same pattern for the low-level ratings of the importance of remembering
knowledge with respect to each individual question (IK3). With the exception of A6
(knowing files that rely on libraries), more than 50% of our interviewees considered all
architectural questions important. Particularly, most interviewees agreed on the importance
of knowing the architectural model (A1) and the main controller of the system (A4). The
other two concepts of the model-view-controller pattern, user interface (A3) and data storage
(A2), were perceived similarly important to know. In most cases when interviewees did not
perceive this knowledge important, their system did not implement these concepts. Slightly
more than half of our interviewees considered it important to know the functionalities and
dependencies a file has (A5).

Perception of
meta questions

Regarding meta knowledge, only knowing recently changed files (M2) and file owners
(M5) was considered important by more than half of our interviewees. Roughly a third
of our interviewees perceived it important to know which older files face rare or frequent
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Figure 4.5: Summary of our interviewees’ perceived importance (IK3) and their correctness
for each question. The blue lines illustrate the mean value for each knowledge theme.

change (M3, M4). Knowing the size of a file (M6) or when it was last changed (M1)
was perceived unimportant by most interviewees. Interestingly, more than two of our
interviewees considered it important to know the answers to questions M2–6, even though
only two considered meta knowledge important. This contradicts our expectations for
smaller systems, and may indicate again that our findings are relevant for larger systems, too.

Perception of
code questions

We can see in Figure 4.5 that code questions represent two groups regarding whether
our interviewees considered them important to recall. On the one hand, over 70% of
our interviewees perceived it important to know the intent of a file (C1), what data is
manipulated in a file (C3), and whether a file comprises code smells (C2). On the other
hand, few of our interviewees perceived it important to know implementation details of
a method (C4–6). However, our question relating to exceptions (C6), and thus software
quality as well as testing, was considered comparably important.

Discussion

Architectural
knowledge

The results of our systematic literature review and interview survey indicate that architec-
tural knowledge is important to remember, but the corresponding questions are perceived
difficult to answer in existing studies. This suggests that developers may aim to memorize
architectural knowledge, which then becomes tacit knowledge and decays over time. Our
findings imply that involving experts of one or more variants arguably facilitates re-engi-
neering a variant-rich system. Moreover, it is important to record architectural knowledge
(e.g., platform architecture model, feature model) to support new developers that are less
knowledgeable. Such measures can reduce the costs of (re-)engineering projects, improve
traceability, and facilitate development practices by tackling particularly the knowledge
needs of developers that have not worked on the cloned variants or platform before.

Meta knowl-
edge

Our results indicate that meta knowledge is the least important theme, but we found
interesting discrepancies between individual questions. While the publications we reviewed
suggest a similar tendency, the perceived importance may be biased by (1) the smaller
number of developers our interviewees’ collaborated with and (2) the direct availability of
meta information in their version-control systems. However, the questions highlighted as
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more important are also highly relevant for re-engineering projects: Knowing the owner of
a file can help to identify experts, while knowing stable or constantly evolving code helps to
scope the platform and limit investments, for instance, by focusing on established features
first or identifying features that should be re-implemented from scratch.

Code
knowledge

Finally, our results indicate that code knowledge ranks between architectural and meta knowl-
edge. Interestingly, our analysis revealed that this may be caused by different abstraction
levels of code knowledge. It seems that developers consider it important to know the intent or
flaws of their code, while they are less interested in code details that may be too detailed and
easily recoverable. In the context of re-engineering projects, this suggests that developers can
be a reliable source to understand the general purpose and potential quality problems of code.
However, developers do not memorize code details, which again highlights the challenge of
feature location and the value of establishing feature traceability to facilitate the recovery
of detailed code knowledge. Moreover, this indicates that developers consider it more
important to memorize the problem space of a variant-rich system than its solution space.

RO-K2: The Importance of Knowledge
We learned that developers consider it most important to memorize abstract knowledge,
namely a system’s architecture and the intent of the code. In contrast, meta and detailed
code knowledge are perceived less important to remember, arguably because they are
encoded in, and easier to recover from, the code or version-control system.

4.1.5 RO-K3: Reliability of Developers’ Memory

Correctness On the right side of Figure 4.5, we display the average correctness of the answers our
interviewees gave to each question. Overall, our interviewees performed quite well for all
questions, resulting in an average correctness of 80%. In the following, we discuss the
correctness for each theme and with respect to the perceived importance of the questions.

Results

Correctness
for themes

We can see in Figure 4.5 that at least 79% of our interviewees answered each architectural
question correctly. Particularly a system’s main control file (A4) and its data storage (A2)
could be named correctly by most interviewees. For meta-knowledge, half of our questions
(M2, M3, M5) were answered correctly considerably more often (80%) than the others.
Interestingly, only two questions could be answered correctly by fewer than half of our
interviewees, and both are related to meta-knowledge (M1, M6). Finally, we can again find
the previously identified pattern with respect to code questions. Questions on a higher
level of abstraction (C1–3), such as a file’s intent, could be answered correctly by most
interviewees. In contrast, our interviewees’ correctness regarding questions about code
details (C4–6) ranges from 55% to 75%.

High- and low-
level code
questions

Seeing the reappearing pattern for code knowledge, we investigated whether it is a meaningful
observation. For this purpose, we display our interviewees’ correctness for both levels
of abstraction and their combination in Figure 4.6, also involving the days since each
interviewees’ last edit to the corresponding file. We remark again that we had to remove five
entries for this analysis (cf. Section 4.1.2), resulting in 46 paired data points. Still, we can
see that our interviewees could correctly answer more abstract (i.e., high-level) questions
more often— independently of the time that passed and the consequent memory decay
since their last edit of the corresponding code. To understand whether our observation
is significant, we used hypothesis testing and the R statistics environment [R Core Team,
2018–2020]. First, we tested whether our data is independent of the time that passed using
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Figure 4.6: Comparison of our interviewees’ correctness regarding code questions, separated
by level of abstraction (high-level: C1–3, low-level: C4–6, combined: C1–6).

Kendall’s τ [Kendall, 1938; Sen, 1968], since it allows to test non-normal distributions (i.e.,
the correctness). We found neither a relevant (-0.136 < τ < 0.005) nor a significant (p
> 0.05) correlation between time and correctness for any group. However, for the low-
level questions, we identified a negative tendency (-0.136). Since this indicates that the
differences mainly depend on the level of abstraction, we tested this hypothesis using the
Wilcoxon signed-rank test [Wilcoxon, 1945] for non-normal distributions of paired data.
Comparing the means of both distributions, the test indicated that the level of abstraction
leads to significant differences in terms of correctness (p < 0.001). Thus, we continue under
the assumption that developers are better at recalling more abstract code knowledge.

Importance
and correctness

We already found that the difficulty and importance of answering a question seem to
relate. Building on this insight, we now analyze whether the importance also relates to our
interviewees’ correctness when recalling an answer. In Figure 4.7, we display the relation
between these two properties in a more intuitive and concise way than in Figure 4.5. We
can see that the perceived importance and the correctness for each question seem to relate.
Particularly, those questions perceived as unimportant were answered less often correctly
(e.g., M1). Also, our interviewees achieved above 75% correctness for all questions that more
than 50% perceived important. Again, we tested this observation (i.e., developers memorize
knowledge on questions they perceive important) using Kendall’s τ . The test showed a
significant, moderately positive correlation (τ = 0.508, p < 0.005) between importance and
correctness with a confidence interval of 0.95. Since we conducted a qualitative study, we
had few data points for this test, which is why the statistical power is low (0.575).

Self-assess-
ments

Finally, we briefly summarize our findings regarding the reliability of our interviewees’ self-
assessments. Interestingly, throughout all interviews only a single interviewee increased their
score (+5%) and eight kept it steady, leading to a decrease on average (-13.75%). Existing
guidelines and studies in empirical software engineering assume that self-assessments can
be used to predict developers’ knowledge and expertise [Feigenspan et al., 2012; Ko et al.,
2015; Siegmund, 2012; Siegmund et al., 2014]. We used Kendall’s τ to test this hypothesis
on our data, which showed no significant correlation, but a small positive tendency (initial
self-assessment τ = 0.176, final self-assessment τ = 0.032). Since, we have a small sample
size (17 data points), we could only show a strong correlation with enough statistical power
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Figure 4.7: Average correctness and perceived importance for each question (data points).

(80%). Still, we found a positive tendency that aligns to the hypothesis raised and evaluated
in previous works, on which we built for other studies in this dissertation.

Discussion

Importance
versus cor-

rectness

Overall, our interviewees performed well when answering questions from their memory.
They performed particularly well for the knowledge they considered important—which
they seem to intend to memorize, but may not record explicitly. Considering re-engineering
projects, these findings have several implications. For example, the involved developers (e.g.,
experts, novices) require individual support to improve their knowledge (e.g., techniques
for architecture recovery). However, aligning to the cost factors we identified before, our
findings suggest to involve experts of the existing variants to guide the planning and
conduct of re-engineering projects. Due to the variations in the perceived importance and
actual correctness for different types of knowledge, an organization must understand which
knowledge is relevant and how to obtain it (e.g., considering meta knowledge).

Abstractions
versus details

We previously found an interesting difference between code details and code abstractions
with respect to their perceived importance. Considering correctness, we identified a negative
tendency between code details and the time that passed since developers’ last edit to the
respective code— indicating that developers are better at remembering code abstractions.
Reflecting also on our previous findings, this insight has direct implications. As a concrete
example, experts could be a reliable information source to support feature identification,
which mainly requires abstract knowledge of the code (i.e., features in the domain space).
However, for the more costly feature location (i.e., assets in the solution space), they arguably
face similar problems as other developers (e.g., novices). Consequently, understanding
whether developers have detailed code knowledge, implementing feature traceability, and
providing additional tools to recover information have immediate impact on the economics
and success of a re-engineering project.

RO-K3: Reliability of Developers’ Memory
Our results suggest that developers can reliably answer questions about their systems
from memory, which means that they can support the planning of a re-engineering
project. Still, since they are better at remembering abstract knowledge and do not seem
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to record the corresponding information, an organization should implement recording
strategies (e.g., feature traces) to guide novices and use reverse-engineering techniques.

4.1.6 Threats to Validity

Threats to
validity

As already mentioned, an empirical study on human memory involves various threats to
validity, since it is impossible to account for all human characteristics. In the following, we
briefly summarize some of the most relevant threats.

Internal Validity

Background
factors

Our interview survey was concerned with human characteristics (i.e., developers’ memory,
knowledge, opinions) that are influenced by numerous background factors we can hardly
control, such as age, motivation, or a subject’s individual memory performance. Similarly,
the questions we used may not be ideal for our interview survey, could be misunderstood,
or were in an inappropriate order. We mitigated such threats by building upon empirical
evidence to select questions, conducting the interviews face-to-face to clarify confusions,
pondering unavoidable biases against each other, and testing our interview guide beforehand.

External Validity

Generalizing
beyond smaller
systems

Our interview survey was qualitative, had a small sample size, and involved mainly smaller
systems. This threatens the external validity of our results. We mitigated such threats by
interviewing a diverse sample of developers, using saturation as stop criterion, and comparing
our findings against existing publications. While our results seem to be transferable to
larger systems, we have to be careful with overgeneralizing them beyond smaller systems.

Context of
information
needs

Another threat to our interview survey is that we considered knowledge in general. However,
a developer’s information needs and the knowledge they consider important may depend,
for instance, on their concrete task (e.g., adding a feature versus fixing a bug) or other
context properties. Consequently, our results may change if we analyze information needs
in different contexts—which we intend to do in future work.

Conclusion Validity

MethodologyWe conducted a systematic literature review to identify questions for constructing our
interview survey. Since we reclassified all questions into themes, other researches may
achieve different results. We mitigated this threat to the conclusion validity by also
analyzing the individual questions, comparing our results to the publications we identified,
and cross-checking our results. In addition, we followed established guidelines for our
research methods [Kitchenham et al., 2015; Wohlin, 2014; Wohlin et al., 2012; Zimmermann,
2016] to ensure that we obtained reliable results. Finally, all of our data is publicly available
to allow other researchers to evaluate and replicate our study.

4.2 Memory Decay

Memory decayIn the previous section, we found that developers can reliably recall different types of
knowledge depending on various factors, and other studies show similar findings in other
settings [Fritz et al., 2007, 2010; Kang and Hahn, 2009]. To understand which developers can
be a reliable information source or can perform a task more efficiently, several techniques
have been proposed to identify experts for a specific part of a system [McDonald and
Ackerman, 2000; Minto and Murphy, 2007; Mockus and Herbsleb, 2002; Oliveira et al.,
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2019; Schuler and Zimmermann, 2008]. While some of these works are concerned with
developers’ knowledge about code, we are not aware of detailed analyses of how memory
decay impacts developers’ code knowledge, and thus the program comprehension required
during feature location. Consequently, understanding developers’ memory decay regarding
source code is critical in re-engineering projects (cf. Chapter 3), for instance, to decide who
has the most expertise to locate and re-engineer a feature.

Section con-
tributions

To tackle this problem, we [Krüger et al., 2018e] investigated whether we can use the
forgetting curve of Ebbinghaus [1885] (explained shortly) in software engineering. We
focus on detailed code knowledge, since we found that it seems to be harder to recall, and
on identifying factors that impact developers’ memory. For this purpose, we define the
following three sub-objectives of RO-K:

RO-K4 Analyze the impact of repetition, ownership, and tracking on developers’ memory.

Numerous factors impact a person’s memory, such as individual characteristics
or properties of the artifact that is remembered. Considering research on learning,
forgetting, and expertise identification in software engineering, we focus on three
factors for software (re-)engineering: (1) how often a developer worked on the
code (repetition); (2) how much of the code a developer implemented themself
(ownership); and (3) how extensively a developer tracks others’ changes to their
code (tracking). Having empirical evidence on the impact of these factors helps or-
ganizations and researchers to understand how expert developers can be identified—
which is often done based on educated guesses instead of empirical evidence.

RO-K5 Understand developers’ memory strength.

To apply Ebbinghaus’ forgetting curve, we have to understand developers’ memory
strength. We use our data and findings regarding the impact of the previous
factors to approximate how well developers can memorize their code. Our findings
help researchers to understand and estimate to what extent developers’ memory
is reliable after a period of time.

RO-K6 Explore the applicability of Ebbinghaus’ forgetting curve in software engineering.

Finally, we explore whether we can apply Ebbinghaus’ forgetting curve to software
engineering. We compare different memory strengths to account for the previous
factors and discuss the results. The findings help researchers measure developers’
memory decay and adapt forgetting curves more precisely to software engineering,
which can guide organizations in better understanding which developers are still
experts for re-engineering a certain piece of code.

All anonymized survey responses are available in an open-access repository.14 Next, we
describe the methodology of our online survey in Section 4.2.1 and the threats to its validity
in Section 4.2.5. In Section 4.2.2, we discuss the impact of the three factors we analyzed
on developers’ memory. Then, we discuss developers’ memory strength (cf. Section 4.2.3)
to finally apply Ebbinghaus’ forgetting curve to our data (cf. Section 4.2.4).

4.2.1 Eliciting Data with an Online Survey

Methodology To address our research objectives, we constructed an online survey. In the following, we first
introduce Ebbinghaus’ forgetting curve before detailing our survey setup and participants.

14https://bitbucket.org/Jacob_Krueger/icse-2018-data

https://bitbucket.org/Jacob_Krueger/icse-2018-data
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Figure 4.8: Examples of forgetting curves for memory strengths (s) of 2 and 5.

Ebbinghaus’ Forgetting Curve

Forgetting
curves

A developer’s memory is not in a consistent state: They can gain or recover knowledge
(e.g., during program comprehension, by reading documentation), but also forget it (i.e.,
memory decay). Consequently, a developer becomes less knowledgeable about their system
over time with respect to the parts they do not work on or those someone else changes.
The process of forgetting is well-investigated in psychology, resulting in different forgetting
models and curves that are intended to approximate how humans forget an artifact [Averell
and Heathcote, 2011; Jaber and Sikström, 2004a,b; Murre and Dros, 2015; Nembhard and
Osothsilp, 2001]. For our study, we rely on the forgetting curve proposed by Ebbinghaus
[1885]. While it is an older forgetting curve, it has been replicated in recent studies,
performs similar to other forgetting curves, and thus is established in psychology [Averell
and Heathcote, 2011; Murre and Dros, 2015].

Ebbinghaus’
forgetting
curve

Ebbinghaus’ forgetting curve describes an exponential decay of a subject’s memory, as we
show in Equation 4.1.

R = e−
t
s (4.1)

We can see that the memory retention rate (R) depends on a subject’s individual memory
strength (s) and the time (t) in days that passed between studying the artifact and the
memory test. In Figure 4.8, we exemplify forgetting curves for two different memory
strengths. We can see that a higher memory strength (s = 5, dashed dark blue line) leads
to a slower retention rate, which means that a subject’s memory lasts longer. For instance,
with that memory strength, a subject loses 46% of its memory regarding the artifact within
three days. The memory strength is individual for every subject and depends on several
factors, such as the artifact or learning effects.

Survey Setup

Survey intro-
duction

In our online survey, we first provided a short introduction of the term familiarity, which
we used to represent the remaining knowledge a developer has, as follows:
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Table 4.4: Projects from which we invited participants to our survey.

project language
developers

invited responded included

aframe JavaScript 43 5 4
angular.js JavaScript 75 8 7
astropy Python 41 13 7
ember.js JavaScript 75 5 3
FeatureIDE Java 10 4 4
ipython Python 33 3 3
odoo Python 135 15 10
react JavaScript 153 4 4
serverless JavaScript 89 12 11
sympy Python 68 9 7

overall 722 78 60

Software familiarity – generally known as a result of study or experience. If familiar,
you know: The purpose of a file, its usage across the project, and its structure or
programming patterns.

As motivated before, this definition focuses on code knowledge, instead of architectural or
meta knowledge. Furthermore, we asked each participant to insert their GitHub username
or mail address to avoid multiple responses from the same participant and to allow us to
identify their changes. Then, each participant had to state one file in their project they
worked with. We asked them not to inspect that file.

Survey
questions

We asked a series of questions, of which the following are relevant for this study:

Q1 How well do you know the content of the file?

We first asked our participants to perform a self-assessment of their remaining
knowledge with respect to the file they specified, which is a reasonable method
considering our previous findings and existing guidelines [Feigenspan et al., 2012; Ko
et al., 2015; Siegmund, 2012; Siegmund et al., 2014]. For this assessment, we defined
a Likert-scale ranging from 1 (i.e., barely knowing the purpose) to 9 (i.e., knowing
purpose, usage, and structure). Note that we assumed no participant would have
complete or no knowledge at all, which is why we excluded 0 and 10 from the scale.

Q2 After how many days do you only remember the structure and purpose of a file, but
have forgotten the details?

Second, we asked each participant to estimate after how many days they would have
a remaining knowledge of 5 on our Likert-scale (i.e., the purpose and use of the file).
We used the answers to this question as a sanity check, particularly for RO-K5.

Q3 How well do you track changes other developers make on your files?

With this question, we aimed to capture the tracking behavior of our participants
(RO-K4). In contrast to the values for repetition and ownership, we could not extract
this data from version-control histories. Again, we used a Likert-scale with a range
from 0 (i.e., do not track at all) to 10 (i.e., follow every change).

Q4 How many lines of code does the file contain?

We used this question to check whether our participants did actually remember the cor-
rect file. Consequently, we excluded responses with high error rates (explained shortly).
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Q5 When was the last date you edited the file?

Finally, we asked our participants to state when they last edited their specified file.
We again excluded responses that indicated that a participant remembered a wrong
file or was not motivated.

The two check questions represent rather strict criteria, considering that we found that devel-
opers performed worse at recalling this particular knowledge (i.e., M1 and M6 in Table 4.2).

Participants

Considered
projects

Since we planned to extract version-control data to confirm our check questions (i.e., Q4,
Q5), we invited 722 developers with public contact data from the ten open-source projects
we display in Table 4.4. Aiming to involve different development strategies and users, we
selected these projects from those trending on GitHub (at the end of 2016) that exhibited
different properties, such as domains, team sizes, and programming languages. Moreover,
we considered research projects, for instance, astropy and FeatureIDE, since they usually
lead to a higher response rate [Dey, 1997]. At the beginning of 2017, we sent a mail with
the survey link to each developer who actively worked on the projects in 2016.

Quality Assurance

Exclusion
criteria

We assessed the quality of all responses by employing the following three exclusion criteria:

EC1 We excluded all response for which the participant specified to have worked on a file,
but did actually not commit to it. So, we excluded four responses for which we could
not extract the data we needed to address our sub-objectives.

EC2 We excluded all responses in which the participant specified a file they lastly worked
on more than one year ago (before 2016), even though we asked them to consider
only that time period. So, we excluded nine responses, since we were not confident
that the participant would have actual memory remaining.

EC3 We excluded every response for which the answers to our two check questions deviated
by more than 100% (75% for the lower bound with respect to the lines of code) from
the actual value. So, we excluded nine questions based on the lines of code (Q4) and
five for the date since the last edit (Q5).

We can see in Table 4.4 that we excluded 18 responses in total, some fulfilling multiple of
our exclusion criteria. In the end, we considered 60 responses as valid, which are a suitable
data basis for our analysis.

Data Extraction and Analysis

Extracted
version-control
data

To address our sub-objectives and perform our quality assurance, we extracted data from
each participant’s GitHub project. First, we extracted how often a participant committed to
their specified file. Note that we considered each day with commits only once, to avoid that a
series of small commits on a single day would skew our results. Second, we computed the ratio
of code ownership by summing up each line last edited by the participant (identified through
git blame) and relating the sum to the total file size. So, we also extracted the size of the
specified file in its most recent form (when we received the survey response) to analyze our
first check question (Q4). Finally, we extracted the number of days since the last time a par-
ticipant committed to their specified file, which we needed for our second check question (Q5).
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Table 4.5: Overview of the results for our significance tests for each factor, showing
Spearman’s ρ, Kendall’s τ , and the corresponding significance values.

factor ρ p-value τ p-value

file size 0.162 0.218 0.11 0.236
repetition 0.671 <0.001 0.546 <0.001
ownership 0.553 <0.001 0.42 <0.001
tracking 0.036 0.788 0.023 0.81

Statistical tests For our analysis, we focused on describing and discussing observations we derived from
our data. We used statistical tests solely as a supportive means to understand whether
our observations are relevant and to determine effect sizes— limiting problems of overly
interpreting statistical significance [Amrhein et al., 2019; Baker, 2016; Wasserstein and
Lazar, 2016; Wasserstein et al., 2019]. To test our hypotheses with respect to what factors
impact developers’ memory, we used Spearman’s ρ and Kendall’s τ , which are both used
to assess monotonic rank correlations between two variables without requiring normal
distribution. Both tests provide an effect size between -1 and 1, indicating a negative or
positive correlation, respectively. We used the R statistics environment [R Core Team,
2018–2020] for all tests (including the corresponding significance tests with a confidence
interval of 0.95). For a complete overview, we summarize the results of all tests in Table 4.5.

4.2.2 RO-K4: Impact of Factors on Developers’ Memory

Survey data In the following, we analyze how the three factors we considered impact developers’ memory.
We display the corresponding data in Table 4.6. For a more concise overview, we group all
responses by the remaining memory the participants stated to have. Note that the number
of participants specifies how often the combination of memory and commits occurred. As
a consequence, the time that passed since the last commit represents the average for the
participants of each combination. We received four to ten responses for each level of memory,
which is not an ideal (i.e., equal) distribution— but still suitable for our analysis.

Results

Memory decay In Figure 4.9, we show how our participants’ remaining memory relates to the days since
their last commit. Every circle represents one participant (cf. Table 4.6), and the sizes
represent the number of commits. Moreover, we display two curves: a solid dark blue one

Table 4.6: Overview of our participants’ self-assessed memory (m), the number of their
commits (#c), and the average time in days since their last commit (∆d). Note that the
number of participants (#p) describes how often the combination of memory and commits
occurred, which is why we averaged the time.

m 1 2 3 4
#c 1 1 2 4 1 2 3 6 1 2 7
#p 4 8 1 1 6 2 1 1 3 1 1
∆d 206.3 146.6 317 86 70.8 169 60 184 52 159 41

m 5 6 7
#c 1 2 9 1 2 4 5 21 1 3 4 8 27
#p 2 1 1 1 1 1 1 1 1 2 1 1 1
∆d 58 114 25 25 23 28 23 44 10 183 43 91 100

m 8 9
#c 1 2 5 6 7 9 11 15 27 3 4 16 35 37 43
#p 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
∆d 9 15 38 96 115 30 299 137 114 41 234 55 43 34 151
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Figure 4.9: Comparing our participants’ stated memory to the days since their last commit
and the number of commits (represented by the size of each circle). The solid dark blue
curve averages all 60 values. The dashed light blue curve shows the average for the 27
responses that involve only a single commit.

that averages all 60 responses, and a dashed light blue one that averages the 27 responses
that involve only one commit. Assuming that all developers have the same memory strength
and that no other factors would impact their memory, the first curve should resemble the
one of Ebbinghaus. As we can see, the curve first decreases as expected, but after around
100 days it suddenly rises— due to several responses with higher memory levels. This
observation could indicate two possibilities. First, Ebbinghaus’ forgetting curve may be
unsuitable for software engineering. Second, other factors besides the time that passed
impact developers’ memory. Since the second curve we show excludes response with multiple
commits (i.e., repetitions) and fits Ebbinghaus’ curve well, we favor the second possibility.

File sizeBefore we investigated the factors we were actually interested in, we performed an additional
sanity check. Namely, we tested whether the file size itself showed any impact on a
participant’s memory. This should not be the case, since we asked for a Likert-scale
assessment representing to what ratio (as defined by Ebbinghaus’ forgetting curve) a
participant could remember a file. Our statistical tests indicated no significant correlations
(p > 0.2) and only very weak effect sizes (ρ = 0.16 and τ = 0.11). These results confirm
our assumption that there is no correlation between file size and the stated memory.

RepetitionWe already observed in Figure 4.9 that repetition seems to impact developers’ memory,
resulting in the rise of the forgetting curve after around 100 days. Moreover, most responses
by participants with more than five commits are above a level of 5, while single-commit
responses are mostly below that level. In Figure 4.10a, we directly compare repetitions to
the participants’ remaining memory. We can see that all responses (sizes of circles) below
the memory level of 5 involve ten or fewer commits. On average (blue curve), our data
shows that a higher number of commits seems to lead to an increased memory level. As
we can see in Table 4.5, our statistical tests support this observation, revealing a highly
significant (p < 0.001) correlation between both factors. Since the tests indicate moderate
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Figure 4.10: Impact of repetition (left) and ownership (right) on our participants’ memory.
The blue curves represent averages, while the size of a circle represents how often that
combination occurred.

to strong positive effect sizes (ρ = 0.67, τ = 0.55), we reject the null hypothesis that
repetition does not impact memory. Instead, we continue in favor of our observation that
repetition in terms of commits to a file positively impacts a developers’ memory.

Ownership Second, we investigated whether a participant’s memory is impacted by how much code
in the specified file they implemented themself. We display the direct comparison of both
factors in Figure 4.10b. As we can see, the average (blue curve) behaves similar as for
repetition, but on a lower memory level. This observation implies that ownership also
positively impacts developers’ memory, which is a reasonable assumption considering that
they implemented that code (which usually requires mental effort, except for copy-pasted
code). The null hypothesis for our statistical tests is that ownership and memory are
not correlated. As for repetition, our results (cf. Table 4.5) indicate a highly significant
correlation (p < 0.001), which is why we reject that hypothesis in favor of our observation.
Both tests reveal moderate positive effect sizes (ρ = 0.55, τ = 0.42).

Tracking Finally, we asked our participants to assess their tracking behavior, indicating whether they
try to analyze and understand changes others implement in their code. Surprisingly, many
of our participants stated a value above 5, and the ratio of responses above and below that
threshold is almost equal. We do not visualize the results, since we observed no indication of
any relation between tracking and memory. Our tests support this null hypothesis, showing
neither a correlation between both factors (p > 0.78) nor any meaningful effect sizes (ρ
= 0.04, τ = 0.02). So, we continue with the assumption that tracking does not impact
developer’s memory. However, this observation may be caused by how we phrased the
question and by what developers consider as tracking.

Discussion

Code memory Overall, our results indicate that repetitions have the strongest impact on a developer’s per-
ceived memory, followed by the ratio of code ownership. This is intuitively reasonable, since
both factors indicate that the developer analyzed the code in more detail— and we improve
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the empirical evidence for this intuition. Interestingly, the number of commits seems to out-
weigh time to some extent, suggesting that the repeated effort that is spent for implementing
and maintaining code refreshes and strengthens a developer’s memory. For re-engineering
projects, our findings suggest that expertise identification systems that build upon these fac-
tors (e.g., by Fritz et al. [2010]) are suitable to find developers that are likely to perform well,
for instance, during feature location. However, aligning to our previous findings, we showed
that developers cannot remember such details forever, and thus recording the corresponding
information (e.g., with feature traces) is key for facilitating any (re-)engineering project.

RO-K4: Impact of Factors on Developers’ Memory
By analyzing our survey data, we found indicators that developers’ memory is:

• Moderately to strongly positively correlated to repetitions.

• Moderately positively correlated to code ownership.

• Not correlated to tracking behavior.

4.2.3 RO-K5: Developers’ Memory Strength

Comput-
ing memory
strength

To better understand how developers forget the code they worked on, we computed their
memory strength (s). For this purpose, we transposed Ebbinghaus’ forgetting curve (cf.
Equation 4.1) into Equation 4.2:

s = − t

ln(R)
(4.2)

This equation allows us to estimate how fast a developer’s memory fades based on the time
(t) we extracted from the version-control data and their stated memory (R). We decided to
compute three distributions of memory strengths:

1. We used the memory levels stated by all 60 participants (all), which includes the
biasing factors we identified. For this reason, we assumed that the median memory
strength in this distribution should be higher than it actually is.

2. We used the memory levels stated by the 27 participants that committed once to
their file (#c = 1 ). Since this removed the strongest bias we identified (repetition),
we assumed that the median memory strength in this distribution should be lower
and closer to the real one.

3. We used the responses to our second question, in which the participants should assess
after how much time they forgot half of their knowledge (R = 0.5 ). Since this question
is challenging to answer, we assumed that the median memory strength could be way
off— but be a useful sanity check.

Overall, we assumed that the second distribution would represent the most reliable estima-
tion of our participants’ median memory strength.

Results

Distributions
of memory
strengths

In Figure 4.11a, we display the three distributions as violin plots. We also show the medians
(dots) as well as the number of data points (below each violin plot) in each distribution.
Note that we used the median in our analysis to better cope with the few large outliers
in our data. As we can see, the distributions behave similar to what we assumed. We
computed the highest median memory strength (90), and also the largest derivation, when
considering the raw responses of all participants. When we considered only single commit
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Figure 4.11: Memory strengths (left) and their alignment to the responses (right).

responses, the median was considerably lower (65) and the range of derivation smaller.
Interestingly, the median was even lower (43) when we computed memory strengths based
on our second question, even though the overall derivation was higher. We remark that our
participants’ approximations indicated that they forget half of the knowledge about their
file after 40 days on average and 30 days in the median.

Discussion

Develop-
ers’ mem-

ory strength

Interpreting our results is quite complex and abstract, since the memory strength is a highly
individual factor and is hard to translate directly into practice. However, our results again
highlight that different factors impact developers’ memory, and we have multiple candidates
for employing Ebbinghaus’ forgetting curve in software engineering. We argue that the
median memory strength of 65 we found in the second distribution is potentially most
reasonable. It is based on a smaller sample (resulting in less deviation), but in contrast to
the first distribution it is not skewed by repetitions. Moreover, while the median of the
third distribution could be a better approximation (covering all participants), we argue that
this was a challenging estimate— highlighted by large outliers. However, the average days
our participants stated for this estimate is 40, which is close to what the memory strength
of 65 would suggest (45 days until half the knowledge is forgotten). So, we argue that 65 is
a good estimation for developers’ average memory strength. While we need replications,
this finding has direct implications for a re-engineering project: If particularly old variants
shall be re-engineered, it is more challenging to involve experts. As a result, it may be
more suitable to initiate an incremental re-engineering project that starts with integrating
and extending more recent variants. To this end, our findings can help to define thresholds
for expertise-identification systems that support organization during their decisions.

RO-K5: Developers’ Memory Strength
We approximated a median memory strength of 65 with respect to our participants,
indicating that they forget half of their knowledge about code within 45 days.
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4.2.4 RO-K6: The Forgetting Curve in Software Engineering

Computing
memory decay

Finally, we analyzed to what extent we can employ Ebbinghaus’ forgetting curve to software
engineering. Our previous findings provide supportive evidence that different factors used
in expertise-identification systems are reasonable to find experts that are more efficient
while re-engineering a variant-rich system. Still, the techniques we are aware of do not
involve systematic analyses of developers’ memory decay, which could be incorporated by
adapting forgetting curves based on empirical findings.

Results

Subjective
and computed
memory

We used the memory strengths we identified to compute our participants’ remaining memory
based on Ebbinghaus’ forgetting curve. In Figure 4.11b, we compare the stated memory to
the computed one for each memory strength. Ideally, one of the resulting plots would align
to the black diagonal, which would mean that both values are identical for each participant.
As we can see, none of the plots does, which is not surprising, since the forgetting curve
does not account for other factors than time. For this reason, all plots start to drop at a
subjective memory level of roughly 6, for which we found that repetition can outweigh time.
However, particularly for a memory strength of 65, our computed plot is close to the diagonal
below the memory level of 6. This underpins that this memory strength seems to be a
reasonable approximation for software developers, as long as other factors do not intervene.

Discussion

Measuring
forgetting

Overall, the results of our study indicate that the forgetting curve of Ebbinghaus can be
useful in software (re-)engineering. However, it does not consider some factors, for instance,
repetitions and code ownership, that are highly important in the context of developing
variants. For this reason, Ebbinghaus’ forgetting curve seems to perform well if develop-
ers (or anyone else) would not modify their code later on. To better understand which
developers are actual experts of a variant, we must adapt the forgetting curve to consider
additional factors. Still, our results show how important it is for an organization to record
information, and support its developers in recovering detailed code knowledge—which is
forgotten rather fast, and is also expensive to recover. Our findings are rather fundamental
and ask for further research to incorporate them into expertise-identification systems that
support organizations plan their re-engineering projects; among other activities.

RO-K6: Ebbinghaus’ The Forgetting Curve in Software Engineering
Ebbinghaus’ forgetting curve is not ideal to measure how developers forget the details
of their code, which is impacted by additional factors that are not incorporated.

4.2.5 Threats To Validity

Threats to
validity

Due to the intersection of software engineering and psychology, there are several threats
to the validity of our study that are hard to overcome. In this section, we detail the most
challenging ones we are aware of.

Construct Validity

Terminology
of the survey

The phrasing and terminology of our survey questions may have confused participants. This
could be particularly problematic, since non-native English speakers may have participated
in our survey. We mitigated this threat by using our control questions to exclude responses
that indicated misunderstandings (e.g., a participant stating a file they did not commit to
in the specified time period).
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Internal Validity

Additional
factors

The internal validity of our study is threatened by potentially unknown factors. For instance,
we did not consider the following factors that may be relevant:

• Performing code reviews and testing a system, while not actually committing changes,
arguably impacts a developer’s memory.

• Different development processes and strategies (e.g., agile methods) could impact how
and what code developers remember.

• The degree of reuse within one or across multiple variants could impact developers’
memory, since the same code occurs multiple times.

• According to our findings and the existing literature, the features, effort spent, and
importance of information impact how well developers memorize details of their system.

While this threatens our results, we intentionally limited our analysis to a prominent
forgetting curve and a few factors that have been shown to be relevant in existing research.

Forget-
ting curves

We considered only Ebbinghaus’ forgetting curve. However, other forgetting curves may
be more suitable to understand how developers memorize their system, and involve other
relevant factors. We relied on Ebbinghaus’ forgetting curve, because it is simplistic and
has been replicated in several studies [Averell and Heathcote, 2011; Murre and Dros, 2015].
Since other forgetting curves perform similar, we argue that this is a minor threat to the
internal validity of our study. Still, the previous studies have not been performed in the
area of software engineering, and thus the findings may not be comparable.

External Validity

Background
factors

A developer’s background, such as their age, education, gender, motivation, or simply their
individual memory strength, may impact their performance [Hars and Ou, 2002; Hertel
et al., 2003; Stănciulescu et al., 2015]. However, psychological and medical research suggests
that the memory performance remains stable until middle age [Nilsson, 2003] and that
gender mainly impacts episodic memory [Herlitz et al., 1997], which is not relevant for our
study. Regarding education and motivation, we assume that these factors are comparably
homogeneous for our participants. Unfortunately, we could not control for these factors,
and thus they remain a threat to the external validity of our study.

Conclusion Validity

Responses A main threat to our study is that we relied on developers’ self-assessments. Similarly, we
have a rather small number of responses, which could lead to statistical errors during our
analysis. As we described previously, self-assessments seem to be reliable, and we used
check questions to improve our confidence in the reliability of the responses, and thus our
statistical analysis. We used two different tests, Spearman’s ρ and Kendall’s τ to perform
our hypotheses tests. The former is less strict, allowing us to easier identify potential
correlations, while the latter is more strict, improving our confidence that a correlation
occurred not only by chance [Fredricks and Nelsen, 2007; Hauke and Kossowski, 2011].
Neither requires a normal distribution or a linear correlation.

Replication Despite the threats we described, any researcher can replicate our study using our questions,
and can compare their findings to our results. Still, depending on the participants and the
analyzed factors, the results may vary. This is the case for most empirical studies, and we
require replication studies to confirm and extend our findings.
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4.3 Information Sources

Studying infor-
mation sources

In the previous sections, we established that there can be severe knowledge problems when an
organization starts a re-engineering project, causing additional costs (cf. Chapter 3). Within
this section, we explore what information sources can help to recover relevant information,
even though explicit documentation may not exist. For this purpose, we [Krüger et al.,
2018b, 2019c] conducted a multi-case study in which we identified as well as located
features and their facets in two open-source systems (i.e., Marlin and Bitcoin-wallet). We
aimed to understand how to recover feature locations (enriched by other feature facets),
since it is one of the most challenging and costly activities in a re-engineering project (cf.
Section 3.1.3). Marlin and Bitcoin-wallet exhibit various properties of variant-rich systems,
for instance, different reuse strategies and variability mechanisms (i.e., C preprocessor,
runtime parameters). In addition, both systems are hosted on GitHub, which provides
several additional information sources we can explore, for example, issues and pull requests.

Section contri-
butions

With our study, we aimed to tackle the following three sub-objectives of RO-K:

RO-K7 Explore what information sources support feature location to what extent.

First, we systematically explored what information sources are available for the
two systems, and used them to recover feature locations. We focused particularly
on differences between optional and mandatory features: Optional features can
often be traced based on the variability mechanism used, but mandatory features
have the most potential for reuse and are harder to locate— particularly in cloned
variants without any feature traces. The information sources we identified can
guide organizations in their re-engineering projects, and researchers in improving
feature-location techniques with additional inputs.

RO-K8 Understand search strategies for recovering feature locations.

We manually analyzed the communities developing Marlin and Bitcoin-wallet as
well as the systems themselves. Despite the different information sources, we found
that we relied on similar search strategies to locate features, which we consolidated
into patterns. The patterns can help researchers to improve feature-location
techniques and guide practitioners in recovering the features of their systems.

RO-K9 Identify what information sources support specifying feature facets to what extent.

Finally, we systematically investigated the information sources we identified to
recover feature facets. To this end, we read the information recorded in a source
and connected it to features and their facets. Our findings help researchers to
better understand the properties of variant-rich systems, and support practitioners
in understanding from what sources they can recover what information.

All of our results are available in an open-access repository, including feature fact sheets,
feature models, and annotated source code.15 Next, we describe our methodology in
Section 4.3.1 and the corresponding threats to validity in Section 4.3.5. In Section 4.3.2,
Section 4.3.3, and Section 4.3.4, we report and discuss our findings with respect to each of
our sub-objectives, respectively.

4.3.1 Eliciting Data with a Multi-Case Study

Multi-case
study design

We employed a multi-case study design [Bass et al., 2018; Leonard-Barton, 1990; Runeson
et al., 2012] to address our sub-objectives, relying on two different cases. In the following,
15https://bitbucket.org/rhebig/jss2018/

https://bitbucket.org/rhebig/jss2018/
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we first provide a brief overview of feature facets before describing the details of our study
design. Note that we separately performed a qualitative analysis of information sources in 25
development communities of Unix-like operating systems [Krüger et al., 2020e] and an exper-
iment on the usefulness of source-code comments [Nielebock et al., 2019]. So, in both studies,
we investigated information sources and recovery. We use the corresponding insights of both
studies to expand our discussions, but do not report their methodologies or results in detail.

Feature Facets

By interviewing industrial practitioners,Feature facets Berger et al. [2015] derived a list of feature facets
that are relevant for describing, managing, and evolving a feature. We analyzed the following
nine feature facets in our study:

Architectural responsibility describes a feature’s connection to the system architecture,
for example, it could be part of the application logic or the user interface.

Binding mode describes whether a feature can be re-bound (dynamic binding at the start
of the variant or during runtime) or not (static binding before the variant is deployed).

Binding time describes at what point in time a feature is bound to a variant, for instance,
at compile-time, load-time, or runtime (cf. Section 2.3.4).

Definition and approval describes how a feature has been defined and approved, for
instance, by using workshops or analyzing related variant-rich systems.

Evolution describes how a feature changed over time, for instance, in terms of revisions
from scoping it to rolling it out.

Nature describes whether a feature is a unit of functionality (mandatory) or a unit of
variability (optional).

Quality and performance describes any non-functional properties of a feature, allowing
developers to test these and check requirements.

Rationale describes the reasons for which a feature has been developed, such as customer
requests or market analyses.

Responsbilitiy describes the developers who manage a feature.

We focused on these nine feature facets, because they capture the development and evolution
processes of a variant-rich system—which are directly related to our research objectives.

Subject Systems

Marlin As our first subject system, we selected the 3D-printer firmware Marlin.16 Marlin is
a common subject for researching variant-rich systems [Abal et al., 2018; Stănciulescu
et al., 2015; Zhou et al., 2018], since it is a successful open-source system that exhibits
three different representations of variability. First, the Marlin platform builds on the C
preprocessor to implement variation points and makefiles to include or exclude whole files.
Second, Marlin has been forked more than 14,000 times by various users that extend and
adapt the codebase to their needs. Third, not all features in Marlin are annotated: some rely
on runtime parameters to implement dynamic variability. For our study, we considered the
mainline of Marlin (i.e., Release Candidate 8 ) from November 2011 until December 2016.

16https://marlinfw.org

https://marlinfw.org
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domain analysis

ecosystem analysis

manual feature location

feature facets analysis

data axtraction and documentation

identified
19 features in Marlin
47 features in Bitcoin-wallet

identified and located
44 features in Marlin
72 features in Bitcoin-wallet

analyzed
36 features in Marlin
62 features in Bitcoin-wallet

Figure 4.12: Overview of our methodology for recovering feature locations and facets.

Bitcoin-walletAs our second subject system, we selected the Android app Bitcoin-wallet,17 which uses
runtime parameters to implement variability in its platform. Even though runtime parame-
ters usually allow users to dynamically customize the app while it is running, we found
that Bitcoin-wallet uses constants (the developers refer to compile-time flags) to control
some features at compile-time— representing static variability. Moreover, Bitcoin-wallet
has been forked more than 1,600 times. We used version 6.3 (committed on October 1,
2018) and the complete version history back to March 2011 for our study.

Study Design

Methodology
overview

We employed the same methodology to analyze each subject system with minor adaptations
to account for their different domains: embedded printer firmware and an Android app.
In Figure 4.12, we display an overview of our methodology. We also show the number of
features we analyzed in each relevant step.

Domain analy-
sis

At first, we analyzed the domains of our two subject systems to identify an initial set of
features. A distinct pair of researchers performed the domain analysis for each system. For
Marlin, we actually constructed two 3D-printers, a Delta and a Cartesian printer, that use
different mechanical parts to move their nozzle. Furthermore, we read manuals, installed the
Marlin firmware, and tested configurations—helping us to identify mandatory and optional
features. After our domain analysis, we constructed a first feature model with 13 mandatory
and six optional features. Regarding Bitcoin-wallet, we installed the app on various devices
and emulators to test it. Similar to playing the Apo-Games in our re-engineering cases
(cf. Section 3.3), we explored the app’s behavior by changing configuration options and
observing its user interface. In the end, we agreed on a set of 30 mandatory and 17 optional
features, which we organized in a feature model with nine additional abstract features.

Ecosystem
analysis

Second, we analyzed how each subject system evolved, including the respective development
process and community. The goal of this analysis was to identify additional information
sources for feature locations and facets. For Marlin, we identified 18 core developers that
lead the development. Moreover, we analyzed release logs, issues, discussions, pull requests,
and commits to understand the extensive feature-development process. For Bitcoin-wallet,
17https://play.google.com/store/apps/details?id=de.schildbach.wallet

https://play.google.com/store/apps/details?id=de.schildbach.wallet
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we identified a single core developer, with other developers opening issues, implementing
small contributions, and providing feedback. In contrast to Marlin, we could not identify
an established development process that incorporates the whole community.

Feature an-
notations

After improving our understanding of the two subject systems, we analyzed the codebase to
annotate feature locations. If the features were not already marked by preprocessor directives
(i.e., optional features in Marlin), we added embedded feature annotations [Abukwaik et al.,
2018; Ji et al., 2015; Krüger et al., 2019b] for which we had tooling to collect metrics [Andam
et al., 2017; Entekhabi et al., 2019]. Namely, we used the following annotations:

//&begin[<feature name>] and //&end[<feature name>] define that the code encap-
sulated by them belongs to the feature specified by its name.

//&line[<feature name>] defines that one line of code belongs to the specified feature.

By putting these annotations in comments, we avoided interference with the code or the
C preprocessor. After this step, we refined our feature models to include newly identified
features and their dependencies.

Manual fea-
ture location

Due to our previous experiences (cf. Chapter 3) and missing support for the newly identified
information sources, we performed our feature location manually instead of relying on
existing tools. For Marlin, we relied especially on the release log, which links features to
pull requests and commits (representing implicit feature traces), as well as our domain
knowledge of constructing the printers. We then performed a manual code review, starting
from Marlin’s main file by reading comments, G-Code documentation, and the code itself.
In the end, we identified 44 features, of which we ignored one that had only some empty
methods defined, but no actual implementation. For Bitcoin-wallet, we relied mainly on the
Wiki and change log. Unfortunately, these information sources had no links to the source
code. Consequently, we performed an extensive code review, starting from the configuration
file. In the end, we identified and located 72 feature.

Feature facets
analysis

After identifying and locating the features, we investigated their facets by iterating through
all available information sources and identifying connected assets based on keywords. For
Marlin, we considered 36 features, excluding eight that are (1) repetitions (e.g., unit
transformations), (2) interactions and glue code (e.g., movement specifics for different
hardware), or (3) small code portions included in other features (e.g., coordinates or radius
to measure movements). Besides the sources we used for feature location, we identified
additional ones, such as the contributor list and pull-request reviews— leading to a total
of ten information sources for recovering feature facets. For Bitcoin-wallet, we used the
same methodology for 62 features, excluding ten features that represent interchangeable
options (e.g., how Bitcoins are displayed on the user interface). While we could use the
same information sources as for Marlin, they had less connection to each other.

Data extrac-
tion and doc-
umentation

We designed feature fact sheets to record the following information (if available):

• A name for the feature.

• The feature’s name in preprocessor directives and our annotations.

• A description of the feature’s intent.

• The information sources used to identify and locate the feature.

• The search strategies applied for feature location.

• The version in which the feature was released.
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• The feature’s characteristics (i.e., lines of code, scattering degree, tangling degree).

• The pull request and the sources linked within it.

• The identified feature facets.

• The values of each facet.

• The information source used to recover each facet.

All of our feature fact sheets and all other data we collected are part of our repository.

ExampleTo provide a better intuition about our analysis methodology, we exemplify it for the Marlin
feature Homing. This feature puts the extruder of a printer in a stop position while nothing
is printed. We first identified this feature while constructing and testing the printers, and
located its source code based on G-Codes (which control the mechanical parts), comments,
and keywords (i.e., home) in the source code. Our analysis showed that the feature is
mandatory. Moreover, the rationale for Homing is derived from the technical environment.
Through the G-Code documentation, we found that the feature is part of the application
logic in terms of its architectural responsibility. From the commit messages, we identified
that the feature is an essential requirement for any 3D-printer, indicating that the definition
and approval stems from a market analysis. With respect to the binding time and mode,
we recovered from the source code and commits that Homing is bound at implementation
time, but also comprises dynamic variability to react to the reason why homing is needed
(e.g., using a different position for cleaning). Finally, the commit changes indicated that
the features is managed by platform developers and has been rolled out in release 1.1.2.

Development
culture and
processes

Note that our analysis allowed us to obtain a detailed understanding of how features and
variants in Marlin and Bitcoin-wallet are developed. Most interestingly, the open-source
community of Marlin employs a development process that is highly similar to the one we
elicited for Axis (cf. Section 3.2.3)— incorporating clone&own and platform engineering.
In contrast, Bitcoin-wallet is driven by a single developer, and thus has fewer contributors
that participate in any form of a systematic process. These insights improve our confidence
that both subject systems can help us obtain complementary results. However, we omit the
results of this part of our study, since we incorporate them into our research on processes
and practices in Chapter 6.

4.3.2 RO-K7: Information Sources for Feature Location

Information
sources

At first, we elicited information sources that could help us locate features. Next, we describe
those sources that proved to be most helpful. In Figure 4.13, we display the number of
features in Marlin we could locate through each of these information sources.

Results

Feature loca-
tion in Marlin

For Marlin, we identified and located 43 features (31 optional, 12 mandatory). The
most helpful information sources have been the release log (connecting features to pull
requests, commits, and code), #ifdef annotations, G-Codes, our domain knowledge, and
the actual code review. Code reviews, #ifdef annotations (for optional features), and
domain knowledge are well-known information sources. Similarly to other studies on manual
feature location (cf. Section 3.1.3), we found that keywords in the source code can be highly
helpful. However, in some cases, we required additional domain knowledge to improve our
searches, indicating that syntax-based feature location requires a deeper understanding of
the domain to be effective. G-Codes are a domain-specific information source and control
the hardware of 3D-printers. Their close connection to the hardware made it easier to
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Figure 4.13: Overview of the information sources we used to locate features in Marlin.

understand the behavior of features involving G-Codes, and indicated also mandatory ones.
Nonetheless, most interesting for modern software engineering and other systems is the
release log and its connected information, which is automatically recorded to some extent.

Feature loca-
tion in Bit-
coin-wallet

Locating features in Bitcoin-wallet was more challenging, since the project and source code
comprised fewer information sources. Namely, we could rely only on our domain knowledge
and a code review, since we found no links between the code and the release log. We
started our code review by identifying keywords in the file Constants, which defines the
aforementioned compile-time flags. As for Marlin, we used a syntax-based keyword search to
locate features. In the end, we identified and located 72 features (60 mandatory, 12 optional).

Other infor-
mation sources

We identified several additional information sources connected to the software-hosting
platform (e.g., issue trackers, Wiki pages, discussion forums) and the domain (e.g., app-
store descriptions). Unfortunately, we experienced that these information sources have
rarely been useful to locate features. In particular, they provided few to no links to the
source code, and thus revealed no new feature locations. Still, these information sources
helped to identify (or confirm) features, and recover feature facets.

Discussion

Information
sources for fea-

ture location

Marlin’s developers have adopted the notion of features being optional, which is a widely
established notion in platform engineering. This made it easier to locate optional features
through the release log (comprising almost only optional features) and #ifdef annotations.
To identify and locate mandatory features, we had to rely heavily on our domain knowledge
and code review. As for our re-engineering cases (cf. Section 3.3), we found that comments
in the code were helpful. Even more promising seem domain-specific information sources
(e.g., G-Codes), but they require domain knowledge to identify and utilize them. This
indicates that feature location (techniques) can be improved by involving different types
of documentation as information sources. In summary, we identified five complementary
information sources that proved helpful to identify and locate features:

• Domain knowledge (e.g., constructing printers)

• Release log (e.g., pull requests, commits)

• Code review (e.g., comments, dependencies)

• Variability mechanisms (e.g., #ifdef annotations)
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• Domain-specific sources (e.g., G-Codes)

Unfortunately, Bitcoin-wallet does not have such an extensive set of information sources for
feature location. In particular, missing links between the release log and code, the dynamic
variability, and a missing notion of features made it harder for us to locate features.

Quality of
recovered infor-
mation

Regarding the usefulness of source-code comments, our own experiment [Nielebock et al.,
2019] with 277 developers and related studies (e.g., by Fluri et al. [2007]) indicate an
important problem, particularly when considering experienced developers. We found that
experienced developers mistrust comments, arguing that these are often poorly maintained
and do not reflect the actual source code—which easily becomes a self-fulfilling prophecy.
Such findings highlight one important aspect any organization has to consider, and that
requires domain knowledge to tackle: Ensuring the quality of the information that is
recorded and recovered; especially if it can co-evolve from the code or the actual intentions.
Since software-hosting platforms automatically store data on the evolution of a variant-rich
system, they can be a helpful means to tackle such quality problems to some extent.

RO-K7: Information Sources for Feature Location
We found that various information sources exist in the context of modern software-
engineering practices that can help an organization to recover knowledge for a re-
engineering project, and researchers in designing new feature-location techniques.

4.3.3 RO-K8: Search Patterns for Feature Location

Search pat-
terns

We can abstract our search strategies for feature locations into two patterns: we either
analyzed the release log or the source code. In this section, we describe both patterns and
discuss how to employ them.

Results

Search through
release log

Using Marlin’s release log for feature location had various advantages. Namely, it lists
optional features and links them to other artifacts, such as commits. Our main effort was to
browse through such artifacts and use them to locate features in the code. Even though this
reduced the need for reviewing and comprehending the source code, we faced new problems:

• The release log, pull requests, and commits involve natural language, which may
result in ambiguities or language barriers.

• The release log covered only the latest releases, which is why we could locate older
features only through the source code.

• The release log contained mostly optional features (only one feature was mandatory),
making this search strategy hardly useful for mandatory features.

These problems are mainly decision dependent (e.g., to only list optional features), and
thus can be solved to some extent by employing a different policy. Still, the release log with
its linked artifacts was a well-documented, excellent information source for identifying and
locating features. Each feature in the release log was linked to six pull requests at most,
which tremendously reduced the effort considering that Marlin had 4,000 pull requests.
Overall, we inspected 38 pull requests, 100 linked commits, and used the code diffs to locate
24 optional and one mandatory feature.

Search through
source code

To tackle the problems of the release log for Marlin, and the fact that no links existed for
Bitcoin-wallet, we used systematic code reviews. For Marlin, we needed around 25 hours in
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total. We started from the file Marlin_Main.cpp and found that most of Marlin’s mandatory
features are, at least partly, located in that file. Using our domain knowledge, we located
features and continued with the remaining files, leading to six optional and 12 mandatory
features. Note that this involved also new features we did not know before. While reviewing
files, we relied heavily on #ifdef annotations and G-Codes as prominent seeds for feature
locations. After exploiting these two information sources, we systematically reviewed the
remaining source code, using keywords, comments, method calls, and dependencies to locate
further feature code. For Bitcoin-wallet, we had fewer information sources, and thus relied
heavily on the keywords defined in Constants.java and Configuration.java to locate
features. We analyzed our initial feature locations by inspecting variables and the locations
these were used in, which required approximately 20 hours of effort. Note that we focused
only on the Java code of Bitcoin-wallet. We did not locate source code for six features:

• The feature BlockExplorer had three options, namely Blockchain, Blockcypher,
and Blocktrail. We found that these options are controlled by a single parameter
that is provided by the user interface, which is in XML.

• The feature Localization changes the language of Bitcoin-wallet and is defined in a
different configuration file, which is automatically processed by Android.

• The features Cloud Storage, Email, and Webpage file download— representing
different methods for trading Bitcoins—were apparently not explicitly implemented,
but the by-product of other methods.

We experienced that the different design decisions, platforms, and variability mechanisms
can facilitate, or hamper, feature location. Importantly, this search strategy is similar
to those identified in prior studies (cf. Section 3.1.3), and resembles a combination of
information-retrieval as well as exploration-based search patterns [Wang et al., 2011, 2013].

Discussion

Adapt-
ing search
strategies

Our results indicate that search strategies must be adapted to the different information
sources. While this can require some effort, we experienced that additional sources facilitated
feature location overall. We also experienced that domain knowledge (e.g., to understand
information sources) and code review (e.g., to actually locate features based on commit diffs)
are always required. Finally, our results clearly show the importance of establishing traceabil-
ity in a variant-rich system: The release log of Marlin essentially comprised traces to other
artifacts, which facilitated feature location. Still, if both systems also traced features explic-
itly, we could have saved 45 hours of manual code review to recover feature locations. This
clearly shows the benefits of feature traceability for (re-)engineering variant-rich systems.

RO-K8: Search Patterns for Feature Location
We identified two different search patterns in the context of software-hosting platforms:
using the release log and using code review. While the former relies heavily on established
traces, the latter is always required to some extent.

4.3.4 RO-K9: Information Sources for Feature Facets

Recov-
ered facets

Finally, we report and discuss our results of recovering feature facets. In Table 4.7 we display
the feature facets and their values we recovered for Marlin and Bitcoin-wallet. We show an
excerpt of which feature facets we recovered from which information source in Figure 4.14.
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Table 4.7: Overview of the number of features for which we recovered specific facets.

feature facet value
#features

Marlin Bitcoin-wallet

architectural responsibility
application logic 28 39
infrastructure level task 0 3
user interface 14 19

binding mode dynamic 3 18
static 34 43

binding time

compile time 35 2
configuration time 0 2
design time 0 39
implementation 7 0
link time 3 0
runtime 0 18

definition and approval
competitors 5 0
customer requests 25 16
market analysis 19 9

evolution rolled out 35 61

nature
configuration/calibration parameter 0 20
unit of functionality 12 34
unit of variability 31 7

quality and performance

accessibility/visibility 0 1
accuracy (or precision) 0 2
availability 0 1
clone avoidance 2 0
code optimization 7 0
cost 0 2
performance 0 1
privacy 0 1
recoverability 1 0
reliability 4 1
resource consumption 5 0
response time 2 4
safety 3 0
security 0 9
size 0 1
usability 1 0

rationale

aspects of the technical environment 12 3
business reasons – customer requests 18 15
business reasons – market demand 0 6
social aspects – usage context 7 27
social aspects – user needs 0 9

responsibility application developer 7 0
platform developer 30 60

Results

Values and
sources

We can see in Table 4.7 that most facets of both systems comprise multiple values. For
instance, the rationale for features in Marlin originates from the users’ context, customer
requirements, and the technical environment (i.e., hardware). The sole exception is the
facet evolution, because we analyzed only the main branches in which all features are rolled
out. Furthermore, we can see that we used far more sources to obtain the values for feature
facets (cf. Figure 4.14) compared to feature locations (cf. Figure 4.13). This is reasonable,
since the values of feature facets are far more diverse and often include information that is



102 4. The Knowledge Problem

information source
10 20 30 40 50Bitcoin-wallet Marlin

fa
ce

t
ar

ch
ite

ct
ur

al
re

sp
on

sib
ilit

y
bi

nd
in

g
m

od
e

bi
nd

in
g

tim
e

de
fin

iti
on

 a
nd

ap
pr

ov
al

ev
ol

ut
io

n

qu
ali

ty
 a

nd
pe

rfo
rm

an
ce

ra
tio

na
lere
sp

on
sib

ilit
y

co
m

m
it 

au
th

or

co
m

m
it 

au
th

or
's 

Gi
tH

ub
 p

ag
e

do
m

ain
 d

oc
um

en
ta

tio
n

do
m

ain
 k

no
wl

ed
ge

co
m

m
it 

m
es

sa
ge

g-
co

de
 d

oc
um

en
ta

tio
n

Gi
tH

ub
's 

co
nt

rib
ut

or
 li

st

iss
ue

 tr
ac

ke
r

pu
ll 

re
qu

es
t

pu
ll 

re
qu

es
t r

ev
iew

re
lea

se
 lo

g

so
ur

ce
 c

od
e 

ch
an

ge
s f

ro
m

 c
om

m
it

Figure 4.14: Excerpt of the feature facets identified and the information sources used for
Marlin and Bitcoin-wallet.

not visible in the source code. Moreover, we can see similarities and differences between the
information sources we used for each system. For instance, we used commit messages to
recover several facets (e.g., rationale, definition and approval) and source code changes from
commits as main source for binding time and binding mode. Other information sources
are aligned to specific facets, for example, GitHub’s contributor list or the commit author
helped only to recover the facet responsibility and the pull requests (Marlin) or the release
log (Bitcoin-wallet) helped only with the facet evolution. This is caused by the different
development cultures (e.g., linked release log) between both systems, which is why domain
documentation (e.g., Wiki pages, readme files) was a richer information source for Bitcoin-
wallet. So, information sources for feature facets can vary strongly between systems.

Individual
feature facets

In the following, we summarize our core findings for each feature facet:

Architectural Responsibility: For Marlin, we found only two values: application logic
or user interface. This seems reasonable, since 3D-printers comprise no other ar-
chitectural components, such as a database. Interestingly, Bitcoin-wallet exhibits
similar results, with only three features belonging to an additional component, the
infrastructure. We found no information source that was particularly useful to recover
this facet. Consequently, we relied on commit messages, domain documentation, G-
Code documentation, issue trackers, pull requests, and sometimes the source code.

Binding Mode and Binding Time: Marlin relies on the C preprocessor, and thus static
binding at implementation time (mandatory features) or build time (optional features).
Interestingly, we found some features that relied on dynamic variability that could be
changed at link time. In contrast, Bitcoin-wallet is highly different, with most features
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being bound either at design time or dynamically at runtime. We relied mainly on
the code itself to recover these two feature facets, since we had to understand how
variability mechanisms were implemented (e.g., compile-time flags). For this reason,
pull requests, domain documentation, domain knowledge, and commit messages served
as supportive means, but were rather limited in their usefulness.

Definition and Approval: For both systems, we found that features mainly originate
from customer requests or market analyses (e.g., use cases, hardware) and, in the case
of Marlin, are refined during community discussions. We recovered this facet mainly
from commit messages and issue trackers (as well as the linked pull requests in Marlin).
For some features, we had to dig into additional information sources, namely the
commit author’s GitHub pages, domain documentation, and G-Code documentation.

Evolution: As we already exemplified, all features we recovered had the value rolled out,
and we relied on the release log and pull requests to recover this information. Still, we
think it is interesting that we could not recover this information from any other source,
except for domain documentation that resembled the release log for Bitcoin-wallet. We
remark again that this is arguably caused by our focus on the systems’ main branches.

Nature: We extensively discussed the information sources for this facet in Section 4.3.2,
which is why we do not display it in Figure 4.14. For Marlin, we found that most
features were units of variability, while few provided mandatory functionality needed
to use 3D-printers. Interestingly, for Bitcoin-wallet, we found the opposite: far more
features were units of functionality and few could actually be disabled. However, in
contrast to Marlin, Bitcoin-wallet also comprised several configuration parameters
that allow users to customize a feature’s behavior at runtime.

Quality and Performance: Marlin employs a rather strict quality assurance with testing
branches and code reviews. Moreover, we can see in Table 4.7 that the community val-
ues several non-functional properties, such as code optimization, reliability, and safety.
In contrast, Bitcoin-wallet has a stronger focus on security, which is reasonable due to
its financial domain. Not surprisingly, we could capture non-functional properties only
for a subset of all features, utilizing commit messages, domain documentation, issue
trackers, pull request reviews, and source code changes. Also, we found that such
requirements are rarely made explicit, but often discussed in pull-request reviews.

Rationale: We can see that, for both systems, customer requests are of major interest.
However, due their different domains, the second-most features in Marlin are con-
cerned with the technical environment (e.g., hardware), whereas in Bitcoin-wallet
the usage context (e.g., reacting to emergency situations) is far more important. We
found no centralized information source from which we could recover this facet for
either system, such as a requirements database. As a result, we relied on commit
messages, domain documentation, G-Code documentation, issue trackers, and pull
requests— but none of the information sources stands out.

Responsibility: We distinguished between two roles a developer could have: either a
platform developer who works on core features or an application developer who
works on their own feature [Ghanam et al., 2012; Holmström Olsson et al., 2012].
Unfortunately, GitHub’s contributor list was not particularly helpful, since it only
shows involvement—but does not define roles. For this reason, we relied especially on
the commit author as information source, and considered also contributors’ GitHub
pages, issue trackers, as well as pull requests.
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In summary, we could recover values for several, but not all, features and their facets from
various information sources.

Discussion

Dynamic
and static
variability

We want to highlight two feature facets that show why it is important to recover knowledge
about a system before a re-engineering project, and why to use different information sources
for confirmation. Namely, for binding mode and binding time, we found that both systems
use a specific variability mechanism that should clearly define these two facets (i.e., C
preprocessor for Marlin, runtime parameters for Bitcoin-wallet). However, both systems
also implement other variability. For instance, Marlin uses runtime parameters to react to
specific use cases while a 3D-printer is running. Similarly, in Bitcoin-wallet the developers
use compile-time flags to make runtime parameters constants. So, both systems combine
static and dynamic variability, which we did only recover based on our detailed analysis
of multiple information sources. Arguably, such hidden and mixed combination of static
and dynamic variability exists in other systems, too— and represents an important piece of
information to define a platform architecture during a re-engineering project.

Use of infor-
mation sources

We found that several information sources can be helpful to recover feature facets. Unfortu-
nately, many of those information sources exist only in modern software-hosting platforms,
and their usefulness heavily depends on how a community uses them. In this direction,
we [Krüger et al., 2020e] analyzed the community websites of 25 Unix-like distributions to
understand what information they provide on their development processes. Aligning to our
findings in this section, we found that the communities used different strategies to record
information. Unfortunately, even those communities that recorded information usually
did this in an abstract manner that did not help to understand their actual processes, or
scattered the information across various websites. Consequently, if proper documentation is
missing, an organization must rely on other information sources to understand the variants
it wants to re-engineer. Our results can guide an organization to investigate the right
information sources, and help researchers develop new tools.

RO-K9: Information Sources for Feature Facets
We experienced that several information sources are helpful to recover feature facets to
a varying extent. Particularly, tracing and recording information on modern software-
hosting platforms seems promising to facilitate documenting and recovering knowledge.

4.3.5 Threats to Validity

Threats
to validity

Next, we discuss the threats to the validity of our multi-case study. Note that these threats
are mainly related to the fact that we performed an extensive, manual exploration—which
we employed due to the limited reliability of existing tools, for instance, for feature location
(cf. Section 3.3.4) [Ji et al., 2015; Razzaq et al., 2018; Wilde et al., 2003].

Internal Validity

Analysts The most relevant internal threat is that we recovered features and their facets ourselves,
which may lead to different results compared to the original developers. We mitigated this
threat by involving two different analysts in each case who became domain experts, for
instance, by constructing 3D-printers. Moreover, we analyzed the domains, systems, and
communities by reading the available documentation (e.g., for G-Codes) and analyzing
meta-data (e.g., in the version-control systems). Finally, we cross-checked the results of
each team among the analysts.
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External Validity

Subject sys-
tems

The external validity of our study is threatened by the two subject systems we considered,
which may differ from other systems. While analyzing more subject systems would help
tackle this threat, this is not feasible for a manual, exploratory analysis. To mitigate this
threat nonetheless, we considered particularly Marlin as a substantial system, with research
indicating that such embedded open-source C/C++ systems exhibit similar properties as
industrial ones [Hunsen et al., 2016]. Similarly, Bitcoin-wallet should be representative,
since Android apps also share common characteristics [Businge et al., 2018].

GitHubAnother threat is the software-hosting platform on which both subject systems are developed:
GitHub. Other platforms may use different techniques and tools, for instance, as their
version-control system, for integrating cloned variants or for recording information. However,
GitHub is one of the largest of such platforms and widely used by open-source, academic,
and industrial developers alike. Also, while the type and structure of the available data
and information source may vary, their underlying concepts and ideas are usually similar.
As a consequence, we argue that our results remain useful for other systems.

Conclusion Validity

Evolution of
systems

Other researchers who replicate our study may obtain varying results. In particular, our
subject systems continue to evolve, resulting in changed, new, or removed features as well
as changes in their facets. Moreover, since features are a highly abstract concept, others
may not agree on the same features, and thus their facets. Aiming to mitigate this threat,
we provide a detailed overview of our methodology, and include all of our data with the
annotated codebases in our repository to allow for comparisons.

4.4 Summary

Chapter sum-
mary

In this chapter, we analyzed the knowledge needs of software developers and how they can
recover this knowledge. While our findings are applicable to many software-engineering
activities, they are particularly interesting when conducting a re-engineering project of
a variant-rich system; considering that such projects usually involve several long-living
variants. To this end, we first analyzed what knowledge developers consider important and
can recall from their memory. Since we found that particularly code details are problematic,
we then provided an understanding of how developers forget their source code. Building
on these insights, we studied how an organization can recover relevant knowledge for re-
engineering a variant-rich system.

Summarizing
contributions

Our contributions in this chapter are more fundamental, helping researchers understand
how developers’ memory works and what they perceive important. The results are helpful
to design new tools for measuring expertise, locating features, and recovering feature facets—
and our results in Chapter 3 showed that such tools could considerably reduce the costs of re-
engineering a variant-rich system. For practitioners, we provided insights into what informa-
tion is important to record, for instance, for saving tacit knowledge and making it available to
novices. Moreover, we showed which information sources developers and organizations can ex-
ploit to recover their knowledge of a variant-rich system, particularly to facilitate its re-engi-
neering towards a platform. Abstractly, our results suggest the following core finding:

RO-K: Knowledge
Recording detailed feature knowledge and tracing features to the code is important for
(re-)engineering a variant-rich system to avoid expensive knowledge recovery.



106 4. The Knowledge Problem

Connection to
other research

objectives

Our findings in this chapter align to our results on the economics of variant-rich systems in
Chapter 3 (RO-E). Namely, several of the lessons we learned from our five re-engineering
cases reappeared, and our experiences confirmed that knowledge has the indicated major
impact on economics. Second, since memory decays and we showed the costs of recovering
missing knowledge, this underpins the importance of establishing (feature) traceability,
which we study in Chapter 5 (RO-T). In particular, we found that Marlin’s release log,
which traces to various assets, was a tremendous help— but since feature traces were
mostly missing, we still spent 45 hours on manual code reviews alone. Finally, developers’
knowledge is also concerned with development processes and practices, for instance, in
the form of meta-knowledge about processes or considering that developers forget while
a project progresses. Moreover, we recovered development processes and practices that we
incorporate and discuss in Chapter 6 (RO-P).
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This chapter builds on publications at ESEC/FSE [Krüger et al., 2019b] FOSD [Krüger et al.,
2016b], ICSE [Krüger, 2017; Mukelabai et al., 2018a], ICSME [Fenske et al., 2020], SAC
[Krüger, 2018b; Krüger et al., 2018c], SANER [Krüger et al., 2021], SPLC [Ludwig et al.,
2019], VaMoS [Krieter et al., 2018a; Ludwig et al., 2020], Empirical Software Engineering
[Nielebock et al., 2019], and Software: Practice and Experience [Krüger et al., 2018d].

Chapter struc-
ture

While studying the economics (cf. Chapter 3) of re-engineering variant-rich systems and
the cost factor knowledge (cf. Chapter 4), we found that establishing feature traceability
in source code can tremendously help to comprehend, manage, and evolve a variant-rich
system. For instance, our results indicate that feature traces reduce the costs of feature
location, and enable developers to recover the knowledge they require to re-engineer or
maintain a feature faster. In this chapter, we investigate different techniques for tracing
features in source code in more detail (RO-T). First, we provide an overview of the related
work to connect the results of previous studies with our own experiences, which we detailed
in the previous chapters and extend with additional studies (Section 5.1). Second, we report
an experiment in which we compared developers’ performance with respect to virtual and
physical feature traces (Section 5.2). Finally, since our results indicate that virtual traces
seem more reasonable, we analyze the differences of using these only for tracing compared
to using them also for configuring (Section 5.3). The contributions in this chapter help
practitioners to understand the pros and cons of different traceability techniques and their
relations to variability mechanisms, which are two closely related concepts in the context
of variant-rich systems [Apel et al., 2013a; Vale et al., 2017]. As such, our findings can
guide an organization when introducing feature traceability. For researchers, we highlight
research opportunities, such as conducting empirical studies to measure the usefulness of
feature traces for specific activities or advancing tool support to manage, maintain, and
analyze feature traces.

Conceptual
framework of
traceability

We display a more detailed overview of our conceptual framework regarding feature traceabil-
ity in Figure 5.1. The system within a project comprises various assets, most prominently the
source code. Moreover, the source code implements the system’s features at certain locations.
While developing, maintaining, or re-engineering the system, developers change the assets,
for which they have to locate and comprehend the source code that implements the relevant
features. For this purpose, feature traces (e.g., annotations) can be used to make feature
locations explicit in the source code (or other assets), providing explicit information about
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Figure 5.1: Details of the traceability objective in our conceptual framework (cf. Figure 1.1).

the locations. Essentially, feature traceability refers to techniques that provide a mapping be-
tween the problem space (e.g., features defined in the feature model) and solution space (e.g.,
feature locations in the source code) [Apel et al., 2013a] This mapping impacts our other re-
search objectives (e.g., providing knowledge), based on which a suitable feature-traceability
technique should be defined (e.g., depending on its support for envisioned practices).

5.1 Feature Traces
Feature traces Traceability in software engineering covers various dimensions (e.g., variants, evolution)

and artifacts (e.g., requirements, tests, models) [Charalampidou et al., 2021; Cleland-Huang
et al., 2014; Nair et al., 2013; Torkar et al., 2012; Vale et al., 2017]. We focus on feature-
traceability in the source code (including variability mechanisms), since features are the
primary concern of interest for developing and evolving variant-rich systems [Apel et al.,
2013a]. Feature traces help developers identify and locate features (e.g., using automated
tool support [Andam et al., 2017; Entekhabi et al., 2019]), reducing the costs of feature
location and knowledge recovery. An organization may consider different techniques to
establish feature traces [Antoniol et al., 2017], but it is often unclear what technique is
favorable for what purpose and situation [Vale et al., 2017].

Section con-
tributions

In this section, we discuss the properties, pros, and cons of feature-traceability techniques
by synthesizing from multiple studies [Fenske et al., 2020; Krieter et al., 2018a; Krüger,
2018b; Krüger et al., 2016b, 2018c, 2019b; Ludwig et al., 2019; Mukelabai et al., 2018a].
For this purpose, we defined the following three sub-objectives of RO-T:

RO-T1 Compare the dimensions of feature traceability.

There are various techniques to trace features in a variant-rich system, such
as embedded annotations, feature modules, external databases, or variability
mechanisms. We build on the dimensions of variability defined by Apel et al.
[2013a] (cf. Section 2.3.4) to derive similar dimensions for feature traceability (i.e.,
technology, representation, and usage). These dimensions help understand and
compare the pros and cons of individual feature-traceability techniques, and thus
can guide organizations when deciding which to adopt.

RO-T2 Collect existing empirical evidence on the usefulness of different feature traces.

Besides the dimensions, we are particularly concerned with the impact of feature
traces on program comprehension. For this purpose, we collect existing experiments
that investigate the impact of different or “optimized” (e.g., improved discipline
of annotations [Liebig et al., 2011]) feature traces on developers. This overview
helps practitioners and researchers to understand how different feature traces may
impair or benefit developers’ tasks (e.g., feature location).
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Figure 5.2: Example techniques and their alignment to the dimensions of traceability. The
colors highlight the dimension representation: no, virtual, and physical.

RO-T3 Discuss experiences and open challenges related to feature traces.

Finally, we connect the dimensions and related work to our results in the previous
chapters. Moreover, we extend our discussion based on findings we obtained
in further studies with developers and by quantitatively analyzing variant-rich
systems. Our results help practitioners understand the perceptions and problems
of feature traces in a (re-)engineering project, and motivate our remaining sub-
objectives in this chapter.

In Section 5.1.1, we describe the different dimensions of feature traces that impact their use
in practice. We continue with an overview of the related work on program comprehension
in the context of feature traceability in Section 5.1.2. Within Section 5.1.3, we summarize
our additional studies and connect them to our previous findings to motivate and scope
our remaining sub-objectives in this chapter.

5.1.1 RO-T1: Dimensions of Feature Traceability

Dimensions of
feature traces

Next, we define three dimensions of feature-traceability techniques (i.e., technology, repre-
sentation, usage) that an organization has to consider when scoping its reuse strategy. For
this purpose, we synthesize our insights from developing tools to support the management
of variant-rich systems [Krieter et al., 2018a; Krüger et al., 2016b; Ludwig et al., 2020;
Mukelabai et al., 2018a]. Moreover, we reflected on existing classifications of variability
mechanisms and traceability techniques [Gacek and Anastasopoules, 2001; Kästner and
Apel, 2008; Svahnberg et al., 2005; Vale et al., 2017], particularly considering the dimensions
defined by Apel et al. [2013a]. In Figure 5.2, we exemplify techniques for feature traceability
classified based on the three dimensions. Note that the different levels of each dimension
serve only as a basic classification and cannot be clearly distinguished for every traceability
technique: some mix or integrate different levels intentionally.

Quality crite-
ria

After introducing the dimensions, we discuss how different feature-traceability techniques
can impact three quality criteria [Apel et al., 2013a] during a (re-)engineering project.
Precisely, we are concerned with quality criteria that relate to our economics (RO-E) and
knowledge (RO-K) objectives: adoption effort, granularity, and program comprehension.
We build upon the dimensions and quality criteria to define the scope of our studies in the
remainder of this chapter.

Dimensions

Dimension:
technology

The technology dimension adopts the homonymous dimension for variability mechanisms
defined by Apel et al. [2013a] as follows:
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Language-based techniques rely on the programming language of the variant-rich system
to implement feature traces. Consequently, all traces are made explicit in the source
code itself, and thus are directly available to the developer. Typical examples are
runtime parameters, embedded annotations in comments (cf. Section 4.3.1), and com-
ponents, which all use only capabilities available in most programming languages. An
extension to the programming language is only necessary, if a corresponding variability
mechanism is used for tracing, such as feature-oriented programming [Prehofer, 1997].

Tool-based techniques require external tools to implement feature traces. On the one hand,
this may involve completely external tools, for example, feature databases. Such tech-
niques are often heavyweight, must be maintained in parallel, and add another level of
abstraction that prevents developers from easily locating features— particularly their
scattered and tangled (i.e., interacting) code. On the other hand, some techniques
rely on tools that are well-integrated into development processes, for instance, the C
preprocessor. Moreover, we reproted in Section 4.3 how modern software-hosting plat-
forms allow developers to establish feature traces by linking pull requests to the issue
tracker and release log, allowing them to recover the code later [Krüger et al., 2019c].

As we can see, even though we can adopt the variability dimension of Apel et al. [2013a],
its levels cover far more techniques that partly exhibit completely different properties.

Dimen-
sion: usage

The usage dimension reflects that feature traces may be implemented based on variability
mechanisms, distinguishing how the traces can be used:

Documenting techniques aim to only trace features and ideally their locations. Prime
examples are feature databases and meta-modeling (e.g., variability models), which
both document the features of a system. However, these examples rely on external
artifacts, and thus do not necessarily trace locations directly in the source code, for
which developers require other techniques, such as embedded annotations. None of
these techniques is used to configure a variant-rich system on its own, even though
some (e.g., variability models, annotations) may be used by techniques that can.

Configuring techniques are based on variability mechanisms, and their primary goal is
to allow developers to configure a variant-rich system. Due to this goal, configuring
techniques implement traces in the source code itself— potentially using additional
means to manage the traced features (e.g., variability models). For the same reason,
most of such techniques (e.g., preprocessors, feature-oriented programming) support
only the tracing of optional features.

While we distinguish between these two levels, we can see that their strict separation is
challenging for some techniques that can be used for either [Vale et al., 2017]. However,
adopting any of such technique has a primary goal that is in either level. For example,
feature models may be used for documenting only, or as a supportive means for feature-
oriented programming— defining how features of a variant-rich system can be configured.

Dimension:
representation

Again, the representation dimension adopts the homonymous dimension defined by Apel et al.
[2013a], essentially referring to separation of concerns [Apel and Kästner, 2009b; Kästner and
Apel, 2013; Parnas, 1972; Tarr et al., 1999]. However, we introduce a new level and change
the naming to reflect on other feature-traceability techniques than variability mechanisms:

No representation means that a technique does not implement explicit feature traces in the
source code. For instance, feature databases document the features of a variant-rich sys-
tem in an external database, and may not trace to the source code or any other assets.
Similarly, while runtime parameters are explicit in the source code, they can be used
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across features and do not mark the start or end of a feature location. Consequently,
such techniques do not immediately benefit a developer when inspecting the source
code. Instead, developers have to manually inspect the traces and link them to features.

Virtual representation means that features are part of the same codebase and traced by
marking their locations. The most widely used techniques for virtual representations
build upon annotations (e.g., embedded annotations, preprocessors) to mark the start
and end of feature locations. One other solution are background colors to visually
highlight the code belonging to a feature [Feigenspan et al., 2011, 2013]. While such
feature traces are immediately available to developers, they add further (potentially
co-evolving) constructs to the code that must also be maintained.

Physical representation means that features are separated from the codebase. Typical
techniques are, for instance, modularization, plug-ins, components, or feature-oriented
programming. Ideally, developers can easily locate all code belonging to a feature in
its respective files, but scattered and tangled feature code challenge such ideal cases.

Several researchers explored how to combine, or migrate between, virtual and physical
representations [Benduhn et al., 2016; Kästner and Apel, 2008; Kästner et al., 2009; Krüger
et al., 2016b, 2018d; Ludwig et al., 2020]. Such combinations allow developers to use the
representation most suitable for a certain feature, but usually require multiple tools that
complicate the development process. To still achieve the benefits of such combinations,
researchers recently started to explore the use of projectional editing for engineering variant-
rich system [Behringer, 2017; Behringer and Fey, 2016; Behringer et al., 2017; Mukelabai
et al., 2018a; Walkingshaw and Ostermann, 2014]. Projectional editing uses an internal
structure that allows developers to flexibly switch between different representations.

Quality Criteria

Adoption ef-
fort

(Re-)engineering a platform requires planning (cf. Chapter 3), independently of the em-
ployed techniques. Considering feature traceability, an organization must assess the costs
of implementing feature traces with a specific technique versus the benefits that technique
promises. To this end, an organization’s core decision is based on its needs in the dimen-
sion usage. Namely, the organization must decide whether it wants to implement feature
traceability for configuring, documenting, or both. For instance, to enable configuring,
an organization has to adopt the corresponding tools and processes. Afterwards, the
organization has to select a technology by also considering the dimension representation.
For example, simple language-based (e.g., runtime parameters, embedded annotations) or
tool-based (e.g., preprocessors) techniques for virtual representations are well-known and
require little additional effort. In contrast, more advanced techniques (e.g., feature-oriented
programming) may be more helpful to structure large features (e.g., physical representation),
but require additional training and adapted processes.

GranularityGranularity defines on what level of detail features can be traced or configured, and repre-
sents the connection between adoption effort and program comprehension. Some techniques
(e.g., preprocessors) allow a fine granularity (e.g., down to single characters), while others
are far more coarse grained (e.g., modularization into components). For an organization,
it is important to understand on what level of granularity its feature traceability shall
be implemented, defining particularly the dimension representation. As a concrete exam-
ple, techniques for virtual representations (e.g., annotations) allow fine-grained traces on
statement level or below (we discuss the problems of fine-grained annotations shortly). In
contrast, techniques for physical representations could be used on statement level (e.g., a
class with a single line of code), but usually comprise larger code fragments to avoid an
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explosion in code size (e.g., method calls) and in the number of files. Either decision again
depends on the usage of traces, and defines also the techniques that can be used; thus
impacting the adoption effort (i.e., adding annotations) and program comprehension (i.e.,
comprehending fine-grained annotations).

Program com-
prehension

We previously identified that program comprehension is a key cost factor while (re-)engineering
variant-rich systems (e.g., during feature location), which can ideally be facilitated by fea-
ture traceability. Since program comprehension is a complex cognitive problem, all three
dimensions are of equal importance. For instance, preprocessors are external tools that
developers need to understand first, and even though they require little adoption effort,
they are often argued to obfuscate the source code with annotations that make it harder
to comprehend how the configured code behaves— a situation referred to as “#ifdef
hell” [Lohmann et al., 2006; Spencer and Collyer, 1992; Tartler et al., 2011]. Similarly,
for feature traces based on physical representations, it can become challenging to com-
prehend interacting feature code that is scattered across different files. Consequently, an
organization must define a strategy to properly use and maintain feature traces in a way
that supports program comprehension (e.g., considering granularity), whether they are
part of the deployment process (i.e., configuring) or not (i.e., documenting). Otherwise,
introducing feature traceability will not pay off.

RO-T1: Dimensions of Feature Traceability
We defined three dimensions of feature traceability (i.e., technology, representation, and
usage) that help an organization select a suitable technique, and discussed how they
impact adoption effort, granularity, and program comprehension.

5.1.2 RO-T2: Empirical Studies on Feature Traces

Related re-
search areas

Features have become a fundamental concept in software engineering, not only for im-
plementing variability in a platform [Apel et al., 2013a; Clements and Northrop, 2001],
but to communicate, document, and structure systems [Berger et al., 2015; Krüger et al.,
2019c]. Consequently, there is an extensive body of research on automated [Dit et al.,
2013; Razzaq et al., 2018; Rubin and Chechik, 2013b] and manual feature location [Krüger
et al., 2019a; Wang et al., 2013], as well as on techniques related to feature traceabil-
ity [Charalampidou et al., 2021; Vale et al., 2017] from different research areas. For instance,
requirements traceability is a closely related research area concerned with recovering traces
between requirements and the source code [Nair et al., 2013; Torkar et al., 2012]. Empirical
studies indicate that such traces facilitate developers’ tasks by linking to relevant code
locations [Egyed et al., 2010; Jaber et al., 2013; Mäder and Egyed, 2014; Rempel and Mäder,
2017]. Unfortunately, most of these techniques are based on heavyweight external tools
(e.g., databases), have no direct representation in the source code, and are concerned with
another abstraction than features. Since our research is focused on feature traceability in
the source code, we do not include such techniques from related areas.

Focus of
this section

In the following, we [Fenske et al., 2020; Krüger et al., 2019b] provide an overview of existing
empirical studies that investigated the impact of different feature-traceability techniques.
For this purpose, we first define and briefly summarize different types of existing studies.
Afterwards, we focus on experiments with human subjects, which aim to understand how
feature traces impact developers—and thus are the ones relevant for our research objectives.
We provide and overview of such experiments and their properties in Table 5.1, comparing
them also to our own experiments that we report in this chapter.
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Scope of Existing Studies

Study typesEarly research related to feature traceability and variability mechanisms was based on a
theoretical point of view and educated assumptions, for instance, to guide the decomposition
of assets into modules [Parnas, 1972; Tarr et al., 1999], discuss the pros and cons of the
C preprocessor [Favre, 1996, 1997; Spencer and Collyer, 1992], or argue on the benefits of
reusing features [Frakes and Terry, 1996; Standish, 1984]. Consequently, such early works
rarely involve empirical evidence (and anecdotal evidence at best). In contrast, in this disser-
tation, we are primarily concerned with establishing such evidence for the re-engineering of
variant-rich systems. We can distinguish between four types of studies that aim to improve
our understanding of feature traceability and collect confirmatory or refuting evidence (note
that we exemplify studies for the C preprocessor, which is analyzed most extensively):

Descriptive studies reason on the impact of a technique through qualitative data based
on, for instance, developers’ perceptions [Krüger, 2018b; Krüger et al., 2018c; Medeiros
et al., 2015], case studies [Spencer and Collyer, 1992], or qualitative code analyses [Abal
et al., 2018; Ernst et al., 2002; Fenske et al., 2015; Muniz et al., 2018].

Measurement studies quantify how a technique is used based on software metrics, and
use the resulting quantitative data to reason on the technique’s impact [Ernst et al.,
2002; Fenske et al., 2015; Krüger et al., 2018b; Liebig et al., 2010, 2011; Ludwig et al.,
2019; Medeiros et al., 2013; Queiroz et al., 2017].

Correlational studies investigate whether specific software metrics correlate with another
property of interest [Fenske et al., 2017b; Hunsen et al., 2016], for example, fault
proneness [Ferreira et al., 2016].

Experimental studies manipulate one aspect of how a technique is used and analyze
how that manipulation impacts an outcome of interest (cf. Table 5.1).

Not surprisingly, many researchers combine different types of studies to improve the
confidence in their findings.

Properties of
experiments

Since we found that feature traceability can facilitate (re-)engineering projects by supporting
developers, we focus on experimental studies with human subjects that aim to understand
how program comprehension is impacted by feature traces in the source code. In Table 5.1,
we summarize these experiments, including the number of participants (i.e., novices, profes-
sionals), the manipulated dimension or aspect (e.g., representation), and the measurements
used. If the authors of an experiment did not report their own classification, we assigned
student developers on all levels to the novices and industrial, GitHub, or post-doc developers
to the professionals. Moreover, we distinguish between four types of measurements:

• comprehension tasks (C), such as “How many variants of this code are possible?”;

• maintenance tasks (M), such as locating a bug or suggesting how to fix it;

• subjective opinions (S ), such as “How do you rate the code’s readability?”; and

• memory performance (MP ), such as measuring the participants’ memory decay.

During comprehension and maintenance tasks, experimenters can measure the response
time (t), correctness (c), or both (c+t) of their participants.

Related Studies

Focus on rep-
resentation

Based on our knowledge, we identified ten publications that report 14 experiments. We can
see in Table 5.1 that six experiments are concerned with the representation of feature traces.
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Table 5.1: Related experiments on feature traceability with human subjects. At the bottom,
we compare our experiments in this chapter to the related work.

experiment
#participants

manipulated dimension or aspect measurements
nov. prof.

Le et al. [2011] 25 6 representation (color/annotation) Cc, Ct, S

Siegmund et al. [2012] 8 0 representation (composition/annotation) Mc+t

Feigenspan et al. [2013]
{ 43 0 representation (color/annotation) Cc+t, Mc+t, S

20 0 representation (color/annotation) S
14 0 representation (color/annotation) Cc+t, Mc+t, S

Schulze et al. [2013] 19 0 annotation granularity Cc+t, Mc+t

Medeiros et al. [2015] 0 202 annotation granularity S

Melo et al. [2016] 63 6 #features Mc+t

Malaquias et al. [2017]
{ 0 99 annotation granularity S

64 0 annotation granularity Mc+t

Medeiros et al. [2018]
{ 0 246 annotation granularity S

0 ≤28 annotation granularity S

Muniz et al. [2018] 0 110 bugs Mc

Rodrigues Santos et al. [2019] 33 0 representation (composition/annotation) Cc+t

Krüger et al. [2019b] 3 46 representation (no/composition/annotation) Cc+t, S

Fenske et al. [2020] 0 521 annotation granularity/complexity Cc, S

Krüger et al. [2021] 1 18 representation (no/composition/annotation) MP

Cc, Ct: correctness/time for Comprehension tasks; Mc, Mt: correctness/time for Maintenance tasks;
S : Subjective opinion; MP : Memory Performance ; nov.: novices; prof.: professionals

Namely, four controlled experiments [Feigenspan et al., 2013; Le et al., 2011] compare back-
ground colors to textual annotations in the context of the C preprocessor. The participants
in all experiments preferred background colors and could solve their tasks faster. However,
only in one experiment did background colors improve the participants’ correctness [Le
et al., 2011]. In two other experiments [Rodrigues Santos et al., 2019; Siegmund et al., 2012],
the researchers compared virtual (annotations based on the C preprocessor) and physical
(composition based on feature-oriented programming) representations. Interestingly, neither
experiment revealed any differences between the two representations regarding the partici-
pants’ performance. Since all of these experiments are concerned with platform engineering,
they also focus on configuring and consequent technologies. Thus, it remains unclear what
the impact of virtual and physical feature traces compared to no traces is, and whether
using them for documenting instead of configuring may be more helpful for developers.

Focus on
granularity

Six other experiments are concerned solely with the C-preprocessor and the impact of varying
granularity (and consequent complexity) of its annotations [Malaquias et al., 2017; Medeiros
et al., 2015, 2018; Schulze et al., 2013]. Unfortunately, four of these experiments are based on
subjective opinions only. For instance, Medeiros et al. [2015, 2018] used online questionnaires
in which GitHub developers should assess the quality of different code examples, showing
that these favored disciplined annotations. Similarly, Malaquias et al. [2017] and Medeiros
et al. [2018] refactored annotations in open-source projects towards more disciplined forms
and submitted consequent pull requests— of which a majority was accepted. The other two
experiments [Malaquias et al., 2017; Schulze et al., 2013] involve students who performed
maintenance and program-comprehension tasks on disciplined or undisciplined annotations.
Interestingly, only the experiment of Malaquias et al. [2017] showed an improvement with
respect to correctness and time. Unfortunately, all of these experiments focus on feature
traces used for configuring, and provide rather weak evidence regarding the impact of granu-
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larity on adoption effort and program comprehension. More precisely, the evidence is mainly
subjective, based on different samples of participants, and involves varying code examples

Other experi-
ments

Finally, two experiments are not concerned with our dimensions of feature traceability.
Melo et al. [2016] found that a higher degree of variability (i.e., more features) reduced their
participants’ speed and accuracy during bug finding. Closely related, Muniz et al. [2018]
showed that even professional developers have problems to locate bugs in configurable
source code. These experiments are complementary to our research objectives.

RO-T2: Empirical Studies on Feature Traces
Existing experiments are primarily concerned with studying the dimension representa-
tion, but focus only on configuring and rely on subsequent technologies. Another set of
experiments studies the quality criterion granularity explicitly, while several experiments
measure program comprehension (i.e., correctness) and effort (i.e., time).

5.1.3 RO-T3: Experiences and Challenges

Scoping new
experiments

Existing experiments focus mainly on the dimension representation, but usually compare
only virtual and physical representations based on variability mechanisms. We are not aware
of experiments that aim to understand the impact of these representations compared to no
traces, or the differences of using traces for configuring and documenting. In the following,
we build on our experiences of re-engineering variant-rich systems (cf. Section 3.3) and three
additional empirical studies to motivate why we conducted new experiments on those two
dimensions. As additional studies, we (1) analyzed StackOverflow posts to understand how
developers perceive configurable, physical representations [Krüger, 2018b]; (2) conducted
a developer survey to understand how developers perceive physical compared to virtual
representations [Krüger et al., 2018c]; and (3) performed a measurement study to elicit how
configurable, virtual representations may hide information [Ludwig et al., 2019]. Note that
we heavily summarize the setups and results of these studies to provide a concise overview.

StackOverflow Analysis

StackOverflow
analysis

To obtain a first impression of how developers perceive configurable, physical represen-
tations, we analyzed StackOverflow posts. Community-question-answering systems, such
as StackOverflow, connect a large international community that contributes to a specific
knowledge base (i.e., software development), and thus can be a helpful means to elicit the
perceptions of practitioners and unveil practical problems [Barua et al., 2014; Krüger et al.,
2017c]. We searched for all questions that comprised the following string:

“aspect-oriented programming”

We investigated aspect-oriented programming [Kiczales et al., 1997], since it is arguably the
most established variability mechanism for fine-grained physical representations in practice
(e.g., in the Spring Framework) [Rashid et al., 2010]. For our analysis, we included from all
returned questions (1,734) those with an accepted answer (306) that were concerned with the
technique’s pros and cons (197). We manually analyzed the text of each selected post (i.e.,
questions and answers) to understand the subjective perceptions of StackOverflow users.

Developer Survey

Developer
survey design

Second, we conducted a developer survey in which we asked developers to assess the impact of
modularizing (physical representation) C-preprocessor annotations (virtual representation).
For this purpose, we designed an online questionnaire that comprised several code examples,



116 5. Feature Traceability

Table 5.2: Overview of the 19 subject systems we included in our measurement study. The
last two columns show how many features with how many annotations that comprised a
feature expression (i.e., a preprocessor macro) we analyzed.

system version year domain since LOC (C) #features #annotations

Apache 8.1 2017 web server 1995 153,357 86 1,000
CPython 3.7.1rc1 2018 program interpreter 1989 426,942 686 4,295
Emacs 26.1 2018 text editor 1985 330,196 680 2,327
GIMP 2.9.8 2018 image editor 1996 761,314 90 1,996
Git 2.19.0 2018 version control system 2005 206,239 65 821
glibc 2.9 2018 programming library 1987 818,176 409 5,217
ImageMagick 7.0.8-12 2018 programming library 1987 342,797 5 993
libxml2 2.7.2 2018 programming library 1999 169,761 117 2,360
Lighttpd 1.4.50 2018 web server 2003 49,693 173 450
Linux kernel 4.10.4 2017 operating system 1991 14,746,931 11,011 36,082
MySQL 8.0.12 2018 database system 1995 153,157 355 4,901
OpenLDAP 2.4.46 2018 network service 1998 287,066 347 1,377
PHP 7.3.0rc2 2018 Program interpreter 1985 894,426 1,162 5,977
PostgreSQL 10.1 2017 Database system 1995 790,282 387 2,585
Sendmail 8.12.11 2018 E-mail server 1983 85,639 24 1,223
Subversion 1.10.2 2018 Version control system 2000 967,225 39 1,008
Sylpheed 3.6.0 2018 E-mail client 2000 117,980 75 417
Vim 8.1 2018 Text editor 2000 343,228 1,378 2,570
Xfig 3.2.7a 2018 Graphics editor 1985 109,341 29 193

an assessment of the participants’ background, and five short questions. At the beginning,
we asked each participant for what purpose they used the C preprocessor and on what level
of granularity. Then, all participants should assess how modularizing features could impact
their program comprehension, maintenance efforts, and overall processes. We prepared
answering options for most questions based on previous studies, and allowed participants
to submit additional comments to most questions.

Survey par-
ticipants

We recruited developers that were experienced with using the C preprocessor in real-world
projects. For this purpose, we invited developers from Google newsgroups, XING, and a
German software-development mailing list. In the end, we received 35 responses, of which
we excluded one, since the participant stated to have no experiences with C or C++. Most
participants stated to have an academic degree in computer science, they had been program-
ming for approximately 19.8 years, and had used C or C++ for around 13.9 years. Based on
such background information, we argue that our participants were experienced developers
who could make educated assessments on different representations of feature traces.

Measurement Study

Analyzed
systems

Finally, we performed a measurement study to explore how C-preprocessor annotations
may hide features from developers and challenge their program comprehension regarding
configurability. We selected a set of 19 open-source systems from related studies [Liebig et al.,
2010, 2011; Queiroz et al., 2017], excluding those that were not maintained anymore or that
included syntactically malformed test files that we could not parse with our tools [Kuiter
et al., 2018a; Ludwig et al., 2020]. We provide an overview of each system’s properties in
Table 5.2. As we can see, we cover long-living variant-rich systems from various domains
and with varying sizes. However, we analyzed only a subset of all existing preprocessor
annotations, namely those that are used for external features (e.g., those prefixed with
CONFIG_ in the Linux kernel). Internal features may be used only during development (e.g.,
for debugging or logging), which is why we did not consider them. While this may exclude
relevant annotations, we still found numerous cases in which features were hidden.
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Figure 5.3: Survey participants’ assessment of the impact of physical representation on
program comprehension (left) and maintenance effort (reight).

Developers’ Perceptions of Representations

Physical repre-
sentation

While virtual representations of features are widely used in practice for configuring (e.g., the
C preprocessor), they are often argued to obfuscate the source code and complicate program
comprehension [Apel and Kästner, 2009a; Fenske and Schulze, 2015; Medeiros et al., 2015;
Spencer and Collyer, 1992]— even though evidence for those assumptions is scarce [Fenske
et al., 2017b, 2020]. Despite such perceived problems, developers rarely employ physical
representations to trace and configure features. By analyzing StackOverflow, we found that
developers who used aspect-oriented programming experienced:

Pros: The physical representation allows to reuse the same code at various locations (i.e.,
extending multiple methods with the same aspect) without the need for code clones.
For this reason, aspects in particular are perceived as an ideal solution for orthogonal
features (e.g., logging, security) that otherwise do not change any behavior.

Cons: Since features are physically separated from the codebase, several developers argue
that the anti-pattern action-at-a-distance causes problems. More precisely, a virtual
representation allows to see how configurations change the code, while the physical
representation implements features in other (potentially unknown) locations that are
injected at a later binding time (e.g., while compiling). Consequently, developers
cannot directly comprehend how the code may behave in every possible configuration.
Other developers argue that existing tools are not suitable to manage aspects, or favor
to implement physical representations using object-orientation (e.g., modularization
with runtime parameters).

These insights shed light into potential problems of physical representations, and align to
other experiences reported for aspect-oriented programming in practice [Ali et al., 2010;
Colyer and Clement, 2004; Hohenstein and Jäger, 2009; Lesiecki, 2006].

Virtual versus
physical

In our second study, we aimed to understand the differences of both representations in more
detail. To this end, we asked our participants to assess the impact that a physical represen-
tation (as an addition to a virtual one) could have. We summarize their responses regarding
program comprehension and effort in Figure 5.3. Note that the numbers can add up to more
than 100%, since we allowed to select multiple answers. Regarding program comprehension,
we can see that 18 (52.9%) of our participants perceived no value in representing features
physically. One specified reason aligns to the results of our StackOverflow analysis:

“C and C++ already have a clean separation of code at function level, adding new
separation layers just makes the code less manageable.”
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1 #ifdef A
2 // ...
3 #else
4 // ...
5 #endif

(a) #else

1 #ifndef A
2 // ...
3 #else
4 // ...
5 #endif

(b) #ifndef

1 #if !defined(A)
2 // ...
3 #elif !defined(B)
4 // ...
5 #endif

(c) #if !defined

Figure 5.4: Examples for configurable feature annotations that can hide information.

Other developers considered a physical representation a helpful means depending on the code
complexity, number of identifiers defined at other locations, the size of the separated code,
and the cohesion of features. Seeing these responses, it is not surprising that only 11 par-
ticipants thought that their maintenance effort could decrease, for example, by facilitating
bug fixing, resource allocation, and physically separating features. Most of our participants
stated that the effort would increase, mainly due to the issues that could impair program
comprehension. Despite this negative perception, most of our participants saw useful appli-
cation scenarios for physical representations, particularly for analyzing the source code (18).

Insights on
technology

While we were not concerned with the dimension technology in our survey, its close relation
to the other dimensions resulted in a few insights based on our participants’ explanations.
For instance, one participant explained:

“It’s my opinion that comprehensibility of source code is inversely related to the
number of tools required to build it, and to the number of source files which need
to be read to understand a particular functional unit. That said, #ifdef-hell kills
comprehensibility as well. This is a toss-up for me.”

Clearly, this response indicates that a fine-grained physical representation is not useful,
but also that introducing additional technologies to establish feature traceability can be
problematic. Such insights support our argument that an organization should carefully
define its needs with respect to feature traceability at the beginning of a (re-)engineering
project to establish the required technologies.

Virtual Representations and Configuring

Corner cases The C preprocessor adds complexity to the source code, since it defines locations that are
removed for certain feature configurations. During our measurement study, we identified
and explored the use of specific constructs of C-preprocessor annotations that can impair
feature traceability by hiding information from the developer. In the following, we focus
only on such corner cases, for which we show examples in Figure 5.4. Essentially, we can
distinguish between two types of corner cases:

#else annotations hide information because it is unclear what the #else implies in terms
of feature locations. For instance, in Figure 5.4a, it is clear that the first block
(between #ifdef A and #else) traces the location of feature A. However, the meaning
of the second block after the #else is unclear: Does this code belong to another
feature that is not traced explicitly, is it base code that must be replaced if feature A
is executed, or is it glue code required if feature A is not selected? Such information
is hidden and may exist only as tacit domain knowledge of system experts.

Negating annotations, such as #ifndef A in Figure 5.4c or #if !defined(A) in Fig-
ure 5.4b, are the opposite of defining a feature location. They actually refer to the
absence of a feature, and thus the code is somehow related to the feature, but does
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Table 5.3: Comparison of the identified corner cases (CC) to all configurable annotations
we measured in our subject systems.

feature annotations lines of feature code
system all CC % all CC %

Apache 278 37 13.31 4,192 327 7.8
CPython 1,320 296 22.42 22,828 2,803 12.28
Emacs 2,701 690 25.55 82,209 14,781 17.98
GIMP 256 52 20.31 4,161 586 14.08
Git 121 34 28.1 1,649 410 24.86
glibc 1,167 366 31.36 13,787 4,381 31.78
ImageMagick 6 4 66.67 63 33 52.38
libxml2 427 75 17.56 4,119 735 17.84
Lighttpd 473 95 20.08 6,650 1,037 15.59
Linux kernel 49,771 11,987 24.08 1,148,508 132,400 11.53
MySQL 1,237 378 30.56 12,698 3,272 25.77
OpenLDAP 1,008 236 23.41 22,667 2,565 11.32
PHP 3,474 589 16.95 131,262 6,137 4.68
PostgreSQL 1,371 420 30.63 25,222 3,767 14.94
Sendmail 49 17 34.69 623 187 30.02
Subversion 381 209 54.86 2,025 811 40.05
Sylpheed 559 61 10.91 14,665 345 2.35
Vim 10,713 1,232 11.5 306,255 14,513 4.74
Xfig 66 10 15.15 704 234 33.24

not actually implement it. Still, many scientific analyses and tools assume that these
annotations correctly locate a feature, even though the precise meaning is unclear.
For instance, the code could again be base code that must be removed if feature A is
selected, or imply another feature that is not traced explicitly.

While simple corner cases may not seem problematic, their interactions and tacit implications
(e.g., feature dependencies) impair developers’ program comprehension. Note that we focus
on these corner cases to limit the extent of our analysis, but the C preprocessor allows
complex regular expressions in several of its annotations—which impairs feature traceability.

Prevalence of
corner cases

In Table 5.3, we display how many of the feature annotations we inspected are related
to our corner cases, and how much lines of code these impact. For instance, we analyzed
49,771 configurable feature annotations in the Linux kernel, of which 11,987 (24.08%) relate
to our corner cases— impacting 132,400 lines of code. Without going into details, we found
that every system comprises #else annotations, with mean and median values of around
17.5%. Negations are hard to separate, since they can be defined in any C-preprocessor
annotation that allows regular expressions (e.g., as in Figure 5.4c). However, #ifndef
annotations alone occurred frequently (mean of 5.91%). Overall, we can see in Table 5.3
that corner cases are extensively used by developers to configure features. Unfortunately,
these annotations do not allow developers to easily trace and locate features.

Implications for Experiments

Limitations
of previous
experiments

Our studies indicate that feature traceability is mainly impacted by the dimensions rep-
resentation and usage, with technology being a consequent decision. Unfortunately, the
existing experiments we surveyed on these two dimensions have severe limitations, since
they focus on (1) comparing virtual and physical representations to each other, but not to
no feature traces; and (2) configurable feature traces and their granularity, only. Moreover,
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almost all experiments that measure program comprehension or maintenance performance
involve only novice participants—which is a valid simplification for many settings, but can
still threaten the external validity [Falessi et al., 2017; Runeson, 2003]. By reflecting on our
findings and the related work (cf. Section 5.1.2), we derived two open research problems
that we explore in the following:

• Understanding the impact of virtually and physically represented feature traces
compared to no traces at all (Section 5.2).

• Understanding the impact of using annotations for tracing or configuring (Section 5.3).

Furthermore, we focused on involving experienced practitioners to improve the external
validity of our experiments. So, besides extending on previous studies (cf. Section 5.1.2), we
also aimed to collect actual evidence for existing hypotheses and our participants’ opinions
that we described in this section. Such evidence helps organizations select a suitable
traceability technique based on reliable empirical data, not only educated guesses.

RO-T3: Experiences and Challenges
Based on our experiences, related experiments, and developers’ perceptions, most
pros and cons of feature-traceability techniques seem to be related to the dimensions
representation (e.g., action-at-a-distance) and usage (e.g., configuring corner cases).

Threats to Validity

Misunder-
standings

Regarding our first two studies, we analyzed (e.g., StackOverflow posts, answers to open-
ended survey questions) and used (i.e., our survey questions) natural language. This may
result in misunderstandings that threaten the construct validity of our results. We mitigated
such threats by using check questions in our survey and open-card sorting [Zimmermann,
2016] to agree on the interpretation of our data.

Data elic-
itation

Our StackOverflow analysis and developer survey are based on subjective opinions and
experiences, which do not necessarily reflect on actual facts (i.e., experimentally measured
effects may conflict a developer’s opinion). We mitigated this threat by involving experienced
developers and by using our results mainly to define experiments to elicit actual evidence.
Similarly, the internal validity of our measurement study is threatened by our self-developed
analysis tools. However, we tested our tools extensively, and a comparison to established
tools (i.e., TypeChef [Kästner et al., 2011; Kenner et al., 2010] and SuperC [Gazzillo and
Grimm, 2012]) showed that ours perform similar or better [Kuiter et al., 2018a]. Thus,
while not fully avoidable, we argue that we mitigated this threat as far as possible.

General-
izability

The major threat regarding the external validity of our studies is the data collection.
We used StackOverflow to obtain insights from a diverse sample of software developers,
intending to increase the generalizability of our results [Krüger et al., 2017c]. In contrast,
our survey involved only 34 C and C++ developers (22 from Germany), whose experiences
may not be fully transferable to others. However, both studies indicate similar insights
related to physical representations, which increases our confidence in the results. Finally,
we analyzed how the C-preprocessor is used in 19 open-source systems, which may not be
representative of other variant-rich systems. Since the C preprocessor is widely established
in practice and used similarly in open-source and industrial systems [Hunsen et al., 2016],
we argue that this threat is limited.

Reliability The results of our studies depend on the analyzed StackOverflow posts, survey participants,
and subject systems— and other researchers may derive different findings, particularly if
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they vary these samples. However, this is a threat to any empirical study, and we provide
all methodological details in the original publications to allow other researchers to replicate
each study.

©Association for
ComputingMa-
chinery, Inc. 2021

Moreover, we publish our tooling for analyzing annotations with extensive
documentation in an evaluated open-access repository.18

5.2 Virtual and Physical Representations

Experiment on
representation

Based on our previous findings, we now investigate how different representations of feature
traces impact developers’ program comprehension. To this end, we compare virtual and
physical representations to no traces. Arguably, either representation of traces should
benefit program comprehension, since they guide developers by making feature locations
explicit. However, as we showed, existing experiments compare only virtual and physical
representations in the context of configurability [Feigenspan et al., 2013; Le et al., 2011;
Rodrigues Santos et al., 2019; Siegmund et al., 2012]. With our experiment [Krüger et al.,
2019b], we investigated the more fundamental question whether such feature traces are
helpful at all for developers—without adding complexity that arises from configuring a
variant-rich system. Moreover, we [Krüger et al., 2021] studied the impact of different
feature representations on developers’ memory, building on our findings in Chapter 4.

Section contri-
butions

In detail, we address the following three sub-objectives of RO-T in this section:

RO-T4 Study the impact of feature representations on program comprehension.

First, we investigated whether a virtual or physical representation of feature traces
impacts our participants’ program comprehension. To this end, we compared how
effectively (i.e., in terms of correct solutions) and efficiently (i.e., the time needed)
our participants could perform six different tasks. The results provide empirical
evidence that can help organizations understand how different representations of
feature traces can facilitate developers’ tasks.

RO-T5 Investigate developers’ perceptions regarding feature representations.

Similar to other studies, we also elicited our participants’ perceptions regarding
the different representations to understand whether they confirmed the pros and
cons we discussed before. Moreover, we could use the same set of participants
to compare our measured quantitative data to subjective qualitative perceptions.
So, the results can help organizations and researchers provide tooling that is
customized to developers’ needs, perceptions, and analysis strategies.

RO-T6 Analyze the impact of feature representations on developers’ memory.

Finally, we aimed to understand how the different representations of feature
traces impact developers’ memory. Previously (cf. Chapter 4), we found that
developers could apparently recall more abstract concepts (e.g., feature) better
than details, which we aim to detail in this study. As a consequence, we connect
feature traceability back to developers’ knowledge, providing additional insights
that can help researchers and organizations while scoping tools, reverse-engineering
techniques, and strategies for recording knowledge.

We published our tooling and the anonymous results related to our first two sub-objectives
in an evaluated open-access repository.

©Association for
ComputingMa-
chinery, Inc. 2021

19 Our artifacts for the third sub-objective are also
publicly available.20 Next, we present the methodology of our experiment in Section 5.2.1
18https://bitbucket.org/ldwxlnx/splc2019data/src/master/
19https://doi.org/10.5281/zenodo.3264974
20https://doi.org/10.5281/zenodo.4417629

https://bitbucket.org/ldwxlnx/splc2019data/src/master/
https://doi.org/10.5281/zenodo.3264974
https://doi.org/10.5281/zenodo.4417629
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Table 5.4: Survey questions we used to measure programming experience in our experiment
on the representation of feature traces.

id question answers

SQ1 How do you estimate your programming experience? 1 (very inexperienced) – 10 (very experienced)
SQ2 How experienced are you with the Java programming

language?
1 (very inexperienced) – 10 (very experienced)

SQ3 For how many years have you been programming? ◦ <2; ◦ 2-5; ◦ 6-10; ◦ 11+
SQ4 For how many years have you been programming for

larger software projects (e.g., in companies)?
◦ <2; ◦ 2-5; ◦ 6-10; ◦ 11+

SQ5 What is your highest degree of education that is related
to programming?

multiple choice (optional text)

and its consequent threats in Section 5.2.5. In Section 5.2.2, Section 5.2.3, and Section 5.2.4,
we report and discuss the results of each sub-objective individually.

5.2.1 Eliciting Data with an Experiment

Online ex-
periment

To investigate our sub-objectives, we designed an online experiment that involved the repre-
sentation of feature traces as independent variable (i.e., no, virtual, physical). Additionally,
we controlled for our participants’ programming experience, which is why we considered it
as an independent instead of a confounding variable [Siegmund and Schumann, 2015]. For
RO-T4, we measured our participants’ correctness and their time in solving six tasks as
dependent variables. Similarly, for RO-T6, we measured our participants’ correctness in an-
swering questions about the investigated code after a certain period of time. Considering the
results of previous studies, we defined the following null-hypotheses that we aimed to refute:

H0-1 Different representations do not impact our participants’ correctness.

H0-2 Different representations do not impact our participants’ efficiency.

We used hypothesis testing to perform pair-wise comparisons between representations,
resulting in 18 tests for each hypothesis (i.e., three groups and six tasks). To correct for
multiple hypothesis testing, we used the Holm-Bonferroni method [Holm, 1979]. While
we employed different tests, we always relied on their implementation in the R statistics
environment [R Core Team, 2018–2020]. Note that we again used hypothesis testing only to
support our observations, but are not building on them to avoid misinterpretations [Amrhein
et al., 2019; Baker, 2016; Wasserstein and Lazar, 2016; Wasserstein et al., 2019]. In the
following, we describe the details of our experimental setup in more detail.

Subject System

Subject system As subject system, we used a Java platform for content management on mobile devices
that was originally implemented with aspect-oriented programming [Young, 2005] and later
extended with feature annotations (based on the C preprocessor). This platform has been
carefully designed using established coding practices, making it a well-suited subject system
for our experiment [Rodrigues Santos et al., 2019; Sethi et al., 2009; Siegmund et al., 2012].
We selected one file from the platform (MediaControler.java) that implements ten features
for storing and managing media files. To mitigate biases, we deleted all existing comments
in the file. Moreover, we reduced the size to around 400 lines of code by removing library
imports and a small SMS feature, limiting the effort and time required by our participants.

Representa-
tion of traces

Regarding the representation of feature traces, we refactored the file into three versions:

No representation means that we removed all preprocessor annotations to provide purely
object-oriented code without any explicit feature traces.
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Table 5.5: Experience values of our participants and their participation per iteration (I).

representation
experience values participants

min median mean max I1 I2 I3 I4

no 6.20 7.60 7.61 9.20 16 7 3 2
virtual 5.60 7.00 6.96 8.80 18 7 6 4
physical 4.00 7.20 6.88 9.20 15 5 2 2

total 4.00 7.40 7.15 9.20 49 19 11 8

Virtual representation means that we replaced existing preprocessor annotations with em-
bedded annotations (i.e., //&begin[<feature name>], //&end[<feature name>]).

Physical representation means that we modularized all features into individual classes,
also removing existing annotations.

As we can see, we refactored all configurability into pure traceability for each version. So,
none of our participants required any additional knowledge about variability mechanisms,
and we could focus on the impact of different representations on program comprehension.

Participants

Inviting partic-
ipants

To improve the external validity of our experiment, we invited 144 software developers (i.e.,
extended personal networks) from various organizations and countries. After accepting, each
participant had to answer the five questions regarding programming experience we show in
Table 5.4. We selected these questions from existing guidelines [Siegmund et al., 2014], and
derived our answer classifications for SQ3 and SQ4 from a StackOverflow user survey in
which each class accounted for roughly 25% of the participants.21 To align these classes to
the answers of SQ1 and SQ2, we mapped them to the same scale (i.e., 2, 4, 7, 9). For the
educational degree, we considered only whether a participant obtained one (8) or not (3),
since we cannot assess which degrees indicate a “better” developer. In the end, we derived
an experience value by computing the average of all scales. We considered a developer as an
expert if that value was above 5.5— or as a novice, otherwise. Then, we randomly assigned
each participant to one of our three code versions (ensuring equal ratios of novices and
experts) and sent out the first iteration of our actual experiment. After two weeks of receiving
a participant’s answer to any iteration, we sent out the next iteration (explained shortly).

ResponsesNot surprisingly, not all developers we invited participated in our experiment. In Table 5.5,
we display an overview of our participants’ experience values for each representation and
their participation in each iteration. For the first iteration, we received 49 responses, mostly
from Turkey (20), Germany (13), and the United States (7). We can see that the mean and
median values are similar across all groups. Moreover, only three participants working on the
physical representation did not achieve an expert rating in terms of experience. Still, at least
12 experts and 15 participants overall worked on each representation during the first iteration.
So, while we found differences in the distributions of participants, we argue that these are
small. Unfortunately, many participants dropped out during the remaining three iterations
of our experiment. While we still received at least two responses for each representation
in the last iteration, we have to be cautious with deriving results from such small samples.

Tasks & Questions

IterationsOur experiment involved four iterations. In the first, we aimed to address RO-T4 and
RO-T5 by showing our participants code on which they solved tasks and answered questions.
21https://insights.stackoverflow.com/survey/2016#developer-profile-experience

https://insights.stackoverflow.com/survey/2016#developer-profile-experience
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Then, we conducted three more iterations with at least two weeks pause between them. In
these, we aimed to address RO-T6 by asking our participants questions about the code
they worked on, but without showing it.

Tasks For the first iteration of our experiment, we defined six tasks that involve, but are not
solely concerned with, feature location to avoid:

• that participants with virtually and physically represented features could quickly
search for feature names to locate them and solve their tasks, and

• that our participants’ performance would be impacted by learning effects.

So, instead of focusing on the simple task of locating a feature in the presence of feature
traces, we researched the impact of such traces on tasks for which developers require actual
program comprehension. For this purpose, we defined two sections, each with three tasks.
First, we investigated the impact of feature traces on how developers comprehend features
and their interactions. Since feature interactions mean that the behavior of different features
is tangled, they can easily challenge program comprehension and bug fixing [Apel et al.,
2013a]. We defined the following three tasks for this section:

1. From four feature pairs, select the one that involves an interaction in the source code.

2. Select the lines of code in which a specified feature pair interacts.

3. From four statements about a feature interaction, select the correct ones.

Second, we asked our participants to locate three bugs that we inserted into:

4. a feature (does not allow to capture photos);

5. a feature interaction (does increase the counter for videos incorrectly); and

6. the base code (does not allow to delete photos).

Such bugs resemble simple faults (e.g., copy-paste errors) similar to mutations [Jia and
Harman, 2011]. We mitigated learning biases by involving different features into each task.

Survey
questions

At the end of the first iteration, we asked each participant to describe their own perception
regarding the feature traces their code comprised. In Table 5.6, we display an overview of the
six questions we asked. With EQ1, we aimed to check whether our participants faced any mis-
understandings, which could be detailed in EQ6. Moreover, we used the responses to EQ5 to
identify whether participants were interrupted during the experiment. With the other three
questions, we aimed to elicit qualitative data to address RO-T5. Note that we had three
different versions for EQ4, depending on the representation a participant was working one.

Memory
iterations

To investigate developers’ memory (RO-T6), we sent mails in three more iterations, each
two weeks after we received a participant’s response to the previous iteration. In each
iteration, we asked our participants to answer comprehension questions regarding their
code, without showing it. For this purpose, we designed three multiple-choice questions on
(available/correct answers in parentheses):

• the details of one feature and its interactions (4/3);

• the types of bugs in the code (5/2); and

• the causes for these bugs, for instance, feature interactions (4/1).
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Table 5.6: Survey questions on our participants’ perceptions on feature traceability.

id question answers

EQ1 Did you have any problems in answering the survey, e.g., understanding the
questions or concepts?

◦ yes; ◦ no

EQ2 What was your strategy for comprehending the code in order to do the tasks? free text
EQ3 What have been your main problems or challenges during the tasks? free text
EQ4 <no> Do you think that a different code design concerning the features (e.g.,

annotating their begin and end, implement them in separate classes) would
have facilitated your program comprehension?

free text

<virtual> Do you think that the annotations provided for each feature helped
you understand the code?
<physical> Do you think that the separation of features into classes helped
you understand the code?

EQ5 Did you face an interruption (more than 5 minutes) for any of the 6 tasks? checkbox for each task
EQ6 Do you have any comments on the survey? free text

A participant could receive 13 points in each iteration, which we reduced whenever they
(1) selected a wrong answer or (2) did not select a correct answer. We did not ask these
questions in the first iteration of our experiment (but they were related to the tasks) to
avoid that our participants could record the correct answers for the remaining iterations.

Implementation

Tool setupTo support the tasks our participants should perform (i.e., marking lines) in an online
experiment, we had to implement our own tooling. For this purpose, we implemented
a simple client-server architecture that allowed us to display source code in different
representations to the participants, who could mark each line by clicking on it. Moreover,
we implemented a script that periodically checked whether new responses arrived, and
would send out invitations to the last three iterations when enough time passed. We tested
our implementation extensively ourselves and let three colleagues review and test the code
as well as the tasks (a software engineer, a system administrator, and a PhD student). Note
that none of these colleagues participated in our actual experiment.

5.2.2 RO-T4: Impact of Representation on Program Comprehension

Results for
tasks

In Figure 5.5, we display how many participants solved each task correctly— distinguishing
between the three different representations of feature traces (i.e., our independent variable).
Additionally, we show whether a participant indicated problems in comprehending the
experiment (CP) or not (NCP). In Table 5.7, we summarize the corresponding completion
times for each task. Note that we considered only participants who stated no interruptions,
and removed extremely large outliers (i.e., times that were more than twice above the third
quartile for the representation and task). So, we excluded 22 data points, which is the
difference between undistrubed and included participants in Table 5.7. Next, we discuss
these results based on four observations, which we complement with statistical tests.

Observation 1: Comprehension problems had no impact on the results

Comprehen-
sion problems

We can see that the distributions of participants solving a task correctly or incorrectly
with and without comprehension problems are similar. Some tasks even show an identical
distribution regarding comprehension problems, for instance, the virtual representation
of Task 6 led to five correct and four incorrect solutions in either case. Based on this
sanity check, we argue that potential comprehension problems do not threaten our results.
This assumption is reasonable, since all participants had to comprehend the code from
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Figure 5.5: Distribution of correct and incorrect solutions for each representation of feature
traces (v: virtual; p: physical; n: no) and task. We display whether the corresponding
participants indicated comprehension problems or not (CP: Comprehension Problems; NCP:
No Comprehension Problems).

scratch, which they are also doing regularly in practice. Moreover, the qualitative responses
indicated that some of our participants considered it challenging to comprehend the code
itself, not our tasks. Since the code and its included representation of feature traces were
our study subject, this improves our confidence in our assumption.

Testing Ob-
servation 1

To test our assumption, we hypothesized that the differences between participants who
stated comprehension problems and those who did not are not threatening our results.
Consequently, we derived the null-hypothesis that correct and incorrect solutions are equally
distributed, which we tested with Fisher’s exact test [Fisher, 1922]. None of our 18 tests
revealed any significant differences, which is why we could not reject our null-hypothesis.
This allowed us to continue with the assumption that comprehension problems did not
impact our participants’ performance. Consequently, we did not consider comprehension
problems in our remaining discussion.

Observation 2: Feature representations facilitated feature comprehension

Feature com-
prehension

We can see in Figure 5.5 that both representations of feature traces led to more correct
answers compared to no traces. Particularly, without traces only one participant could solve
Task 1 and Task 3 correctly. This finding seems not surprising, since the explicit tracing of
feature locations facilitates the comprehension of features by allowing developers to focus on
the relevant part of the source code. Interestingly, participants who worked on the physical
representation had more problems identifying a feature interaction compared to those
working on the virtual representation (Task 1). In contrast, the physical representation
led to a higher number of correct solutions when explaining how features interact (Task 3).
Potentially, it was easier for our participants to identify feature interactions if the features’
code was close to each other— aligning to our previous findings on action-at-a-distance.
However, this loss of context may facilitate understanding the interaction based on the
data-flow, since method calls indicate whether variables may be modified at a different
location. Also, a physical representation allows developers to more easily identify variables
that are globally accessible, which may be harder in virtual representations that involve
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Table 5.7: Overview of the completion times (in minutes) of our participants.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
v p n v p n v p n v p n v p n v p n

part.
und. 10 10 9 13 12 15 16 14 15 18 13 16 18 13 15 16 10 16
inc. 10 8 9 12 11 13 14 14 13 16 11 15 16 12 14 15 10 14

times
min 2.91 2.23 2.72 0.44 1.14 0.91 0.70 0.67 0.52 0.38 0.66 0.61 1.63 1.47 0.57 0.61 1.30 0.76

mean 13.07 5.51 12.27 1.72 3.26 3.30 2.73 2.26 1.84 1.19 2.40 1.58 3.03 2.90 2.91 3.23 2.59 1.49
med. 11.23 4.03 9.75 1.06 2.63 2.09 2.04 2.11 1.68 1.07 1.79 1.21 2.66 2.54 2.28 3.20 2.50 1.23
max 25.02 12.73 22.92 4.90 8.48 11.96 7.29 4.70 3.90 2.33 6.37 4.09 6.84 5.95 7.55 8.82 5.05 3.48
sd 8.34 3.59 7.54 1.43 2.34 3.14 1.78 1.30 0.89 0.52 2.01 1.00 1.45 1.37 2.01 2.16 1.19 0.75

v: virtual representation – p: physical representation – n: no representation
part.: participants – und.: undisturbed – inc.: included – med.:median – sd: standard deviation

potentially irrelevant context. These findings align well with the related work and our own
studies that we discussed in Section 5.1— thus providing supportive empirical evidence.

Observation 3: Physical representation hampered bug localization

Bug localiza-
tion

For the last three tasks, we can see that participants who worked on the physical repre-
sentation consistently identified fewer bugs correctly. Surprisingly, they even performed
worse for a faulty set label that was part of a single feature (Task 4). We expected them to
perform better for this task, but the incorrect solutions revealed that most participants
selected the wrong lines within the right feature. The qualitative responses indicate that this
situation may be caused by the fact that the physical units (i.e., classes) represented features
instead of logical objects in the sense of object-oriented programming. Arguably, this issue
relates to the loss of context (i.e., action-at-a-distance) we discussed for Observation 2.
Interestingly, the virtual representation seems to have no considerable impact compared
to no traces. However, this may be caused by the simple bugs we used, for which virtual
feature representations may not have been useful.

Testing Obser-
vations 2 & 3

We tested Observations 2 and 3 on all tasks simultaneously to account for learning effects.
To this end, we again used Fisher’s exact test, aiming to refute H0-1. Three of our 18 test
results were significant, and thus refute our null-hypothesis. Namely, we found significant
differences between virtual and no feature representations for Tasks 1 (p < 0.001, corrected
p = 0.0028) and 2 (p < 0.001, corrected p = 0.0029). These results improve our confidence
in our second observation for virtual representations, but not for physical ones. Moreover,
the results revealed significant differences between physical and no presentations for Task 4
(p < 0.001, corrected p = 0.0031), supporting Observation 3.

Observation 4: Feature representations did not impact efficiency

Analysis timeThe time our participants took to analyze their code did not differ heavily between the
representations. We can see that Task 1 required far more time compared to all other
tasks, which is not surprising considering that our participants had to comprehend the code
first. Afterwards, they could rely on the knowledge they obtained by inspecting the code,
speeding up all other tasks. During the other tasks, all participants took between 1.19
and 3.2 minutes on average with similar minimum and maximum times. As a consequence,
the different feature representations seem to have neither a positive nor negative impact
on the time developers spend to perform a task. To test for H0-2, we compared the time
distributions for each representation using the Kruskal-Wallis test [Kruskal and Wallis,
1952]. None of the tests indicated a significant correlation (p > 0.3). So, we cannot reject
H0-2, and thus argue that our observation is reasonable.
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Table 5.8: Overview of our participants’ qualitative comments on feature representations.

response
# mentioned

virtual physical none

participants 18 15 16

analysis strategy

get big picture of the code 7 6 12
look for keywords 4 2 8
use search function 0 1 3
follow annotations 8 n/a n/a
follow class names n/a 7 n/a

challenges

code quality 9 6 6
code length 7 0 1
missing IDE 4 4 3
feature location 2 0 3
missing knowledge 1 3 1

code design

positive 14 9 n/a
unsure 2 2 n/a
negative 2 3 n/a
virtual representation n/a 0 4
physical representation 1 n/a 5
explicit representation n/a n/a 3

RO-T4: Impact of Representation on Program Comprehension
Our findings provide empirical evidence that virtual representations of feature traces can
facilitate developers’ program comprehension, while physical representations can hamper
bug localization. Moreover, we found no significant impact of feature representations on
developers’ analysis time.

5.2.3 RO-T5: Developers’ Perceptions of Feature Representations

Qualitative
responses

We summarize our participants’ qualitative responses regarding the different feature repre-
sentations in Table 5.8. Some numbers do not sum up to the total number of participants,
since we allowed them to elaborate and provide multiple insights in their comments. To
summarize these comments and understand our participants’ opinions on analysis strategies,
challenges, and code design, we employed open-card sorting [Zimmermann, 2016].

Analysis Strategies

Analyzing
the code

25 of our participants started their analysis with a general code exploration, aiming to
comprehend the overall code structure and behavior. However, the details of this analysis
varied between participants. Some only skimmed over the code, while others inspected
specific code constructs in more detail, for instance, methods and labels. Not surprisingly,
15 of our participants relied on the explicit representations of features traces, if these existed
in their code example. Moreover, several participants focused on keywords (14) and used
the search functionality of their browser (4), particularly those working on code without
any feature representation. These responses align with the general search patterns reported
in previous and our own studies (cf. Section 4.3.3) [Krüger et al., 2019a; Wang et al., 2013].



5.2. Virtual and Physical Representations 129

Challenges

Mentioned
challenges

Regarding the challenges they faced, 21 of our participants mentioned quality issues of the
code. However, most of these concerns were connected to our design decisions for the exper-
iment, such as the code length (8), missing comments, and unsuitable identifier names. We
removed comments to avoid biases and tried to reduce the code size, but the examples had to
be large enough for feature representations to be useful. Similarly, we aimed to avoid the use
of IDEs (11) to avoid biases. Aligning to our previous findings in Chapter 4, five of our partic-
ipants stated that their missing knowledge challenged their ability to comprehend the code.
Still, for this first iteration of our experiment, we intended that every participant had the
same level of expertise on the examples. Surprisingly, two participants working on the virtual
representation of feature traces had problems in locating features. One of them stated that:

“[T]he biggest challenge for me was that all of the features are in a single place,
just written one after another.”

This response aligns to the regularly discussed problem of feature annotations cluttering
the source code we highlighted in Section 5.1.

Code Design

Virtual repre-
sentation

Most participants who had examples with explicit representations of feature traces stated
a positive perception towards these. Namely, 14 of the 18 participants working with the
virtual representation (i.e., feature annotations) reported that these helped them. Some
even indicated that the traces were elementary for locating and comprehending features:

“Yes, they did. In fact, without the annotations (provided that they are correct), it
would have been significantly more difficult to understand which part of the code
does what.”

A few participants also criticized this particular representation, arguing that comments
imply poor code quality:

“[N]o, adding comments in the code is a bad sign, it screams that code is not self
explanatory enough.”

Arguably, such responses are connected to clean-code principles [Martin, 2008] and the
problem of maintaining and trusting code comments we discussed before [Fluri et al., 2007;
Nielebock et al., 2019]. However, considering our quantitative data, we see the mostly
positive perception as an indicator that virtual representations, and particularly feature
annotations, are a suitable means to support developers.

Physical repre-
sentation

Similarly, nine of our 15 participants who worked on the physical representation reported a
positive perception. Mainly, the participants stated that the modularization allowed them
to locate features faster:

“It helps [to] logical[ly] aid to decide where to start.”

However, the negative responses also indicate that it was harder for our participants to
identify which feature was relevant for a task, due to their missing knowledge:

“Yes, I understood the intent [...] with this sorting, naming and separation. It was
still unfamiliar and took more time than it would have with familiar code.”

One participant may have summarized the consequent pros and cons best:

“On the one hand, it made the classes small and locating possibly relevant code
easy. On the other hand, interactions were more difficult to spot because I had to
switch between different classes.”
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These perceptions align to our previous insights and existing empirical studies, for instance,
that action-at-a-distance can be problematic in physical representations. Seeing also our
quantitative data, it seems that such representations of feature traces are useful, but must
be carefully evaluated to avoid confusion.

No repre-
sentation

Finally, we asked the participants whose code examples involved no explicit feature rep-
resentation to reason about adding such traces. As we can see, 11 of our 16 participants
considered any form of feature representation helpful:

“Features could have been implemented in a more organized way. [W]e clearly need
more than one class here.”

In more detail, four of our participants favored a physical representation (i.e., more classes),
while five favored a virtual one (i.e., feature annotations):

“More comments and better restructuring of the code should be more helpful.”

These perceptions underpin our previous findings, and suggest that implementing an explicit
feature presentation in a variant-rich system facilitates developers’ tasks.

RO-T5: Developers’ Perceptions of Feature Representations
Explicit feature representations extend code analyses, are positively perceived, and seem
unproblematic to use. Overall, virtual representations (i.e., feature annotations) are
arguably the most helpful in practice, since they are easy to introduce and led to an
improvement of our participants’ performance.

5.2.4 RO-T6: Feature Representations and Developers’ Memory

Memory per-
formance

Finally, we discuss our findings regarding the impact of feature representations on developers’
memory. As mentioned, only 18 participants participated in the second iteration, with only
eight participating in all iterations. We display their correctness in answering our questions
in Figure 5.6. Data points connected through a line represent the responses of the same
participant in the corresponding iterations.

No impact Since we have only a small number of participants in this part of our experiment, we cannot
reliably perform statistical tests. However, we do not observe any significant differences
between the different representations, essentially indicating null results regarding their
impact on developers’ memory. In general, all participants performed quite well with
most correctness values between 60% and 80%, independent of the time that passed.
Interestingly, many participants performed better after a slight drop in the second iteration.
After investigating this issue, we found that the increased correctness resulted from our
participants selecting fewer wrong answers. Next, we discuss two hypotheses that need
further experiments to properly refute or confirm them, but that seem reasonable seeing
the results of this experiment and our previous findings in Chapter 4.

Hypothesis 1: Developers are good at remembering features

Remember-
ing features

Developers perform better at remembering specific types of knowledge [Kang and Hahn,
2009], and our previous studies suggest that they can recall high-level abstractions of the
code more reliable than details [Krüger and Hebig, 2020; Krüger et al., 2018e]. The questions
we used for our experiment were concerned with features and bugs, representing more
abstract concepts that developers aim to remember according to our previous studies. We
can observe the same pattern again in this experiment, adding evidence to our hypothesis
that developers can reliably recall what features exist in a variant-rich system. So, the
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Figure 5.6: Correctness of our participants when answering questions from memory, distin-
guished by the feature representation.

notion of feature-oriented software development for variant-rich systems [Apel and Kästner,
2009a; Apel et al., 2011; Passos et al., 2013] seems to be suitable for practice. Moreover, for
re-engineering a platform from cloned variants, this hypothesis indicates that developers’
knowledge is highly valuable to identify features and perform a domain analysis.

Hypothesis 2: Feature representations do not impair developers’ memory

Represen-
tations and
memory

Our results reveal no substantial differences in the correctness of our participants over
time. As we can see, the patterns in each group differ slightly, but most participants
performed similarly for the second and fourth iteration. We cannot confidently explain
the drop during the third iteration without further studies. Closely related to our first
hypothesis, we hypothesize that feature representations may not benefit, but do also not
impair developers’ ability to recall the features of a variant-rich system. As a consequence,
feature representations may not facilitate memorizing abstractions of the code, but they can
still facilitate the actual program comprehension and allow to automatically analyze the code.
In the context of re-engineering a variant-rich system, this mostly relates to the distinction of
feature identification (i.e., developers recalling existing features and potential dependencies)
and feature location (i.e., actually locating the features in the source code). The former
is already important for scoping the platform, while the latter becomes more relevant for
the actual re-engineering and all other activities of platform engineering (cf. Chapter 6).

RO-T6: Feature Representations and Developers’ Memory
Explicit feature representations seem to neither impair nor benefit developers’ memory.
So, they are mostly helpful for recovering knowledge during program comprehension.

5.2.5 Threats to Validity

Threats to
validity

We aimed to understand how developers perform when facing different representations
of feature traces. Since we focused on strengthening the external validity of our exper-
iment [Siegmund et al., 2015], we could not control all confounding factors in program
comprehension (e.g., cognitive biases), and used an online setup, we face additional internal
threats. In the following, we discuss the different threats to validity of our experiment.

Construct Validity

Validity of
responses

Few participants stated that they had problems comprehending our experiment or the
concepts of virtual and physical representations. We used check questions and performed
sanity checks to account for potential misunderstandings. Namely, we compared the
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correctness of participants who stated comprehension problems to those who did not and
found no significant differences (cf. Section 5.2.2). Moreover, regarding the efficiency of
our participants (RO-T4), we removed all responses for which they stated that they were
interrupted. Unfortunately, we faced a few technical issues for which we lost single data
points. Precisely, three participants could not solve the first task, which is why we have only
15 instead of 18 data points for Task 1 for the virtual representation. Also, one participant
who worked on physically represented features did solve only the tasks, but did not answer
the survey questions (cf. Table 5.6). We decided to keep the response, but included it in the
group with comprehension problems for our sanity check. Finally, we removed all unfinished
or incomplete responses. These measures cannot fully overcome potential threats to the
construct validity, but mitigate their impact. Additionally, most participants stated that
their main concerns were related to the actual source code, not the experimental design—
which would not threaten the construct validity.

Internal Validity

Code examples To construct our code examples, we modified one file of an existing open-source platform.
While open-source and industrial platforms exhibit similar properties [Hunsen et al., 2016],
our modifications (e.g., reduced code size, used representations of feature traces, introduced
bugs) changed these properties to some extent. Consequently, our results may be biased.
While we cannot fully overcome these threats (e.g., another physical representation may
have yielded better results), we performed all changes to motivate our participants and
mitigate the impact of other confounding factors (e.g., comments).

External
factors

We implemented our own web-interface to limit our participants’ ability to use different tools
for analyzing the source code. However, we kept identifier names and syntax highlighting
to simulate a development environment, and did not control for tool usage (e.g., searches
of web-browsers). We can also not ensure that all participants performed our experiment
under the same conditions (e.g., noise level, interruptions, stress). Still, this was a conscious
decision, since we aimed to study developers in real-world settings to improve the external
validity. Consequently, various external factors may bias our results, but they reflect practice
in which developers are influenced by a variety of such factors and can use different tools.

Developers’
memory

Regarding the last three iterations of our experiment that are concerned with memory, we
face the same internal threats on participants’ characteristics we discussed for our studies
in Chapter 4. In addition, our participants have been aware that we conducted follow-
up experiments and may have taken notes. Still, some wrote to us that they did not try
to memorize details of the first iteration and could not recall much information, due to
the time that passed, their daily work, and a different set of questions—which we used
particularly to mitigate this threat. A larger threat is the small number of responses we
received, limiting our ability to derive insights. Nonetheless, we obtained interesting results
and combine these with our previous findings to mitigate this threat.

External Validity

Participants’
background

Each software developer has an individual background considering, for instance, their
expertise with certain tasks, programming languages, or development processes. To mitigate
the threat that we could not generalize our results, we invited experienced software developers
from different organizations and countries. Moreover, we controlled for programming
experience. Our data indicates that the participants represent a rather homogeneous group,
allowing us to compare their responses while mitigating such external threats.

Subject system While our subject system has been used as an example in other empirical studies, it has
been developed by researchers. As a result, it may not resemble the properties of real-world
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variant-rich systems, even though it has been developed for that purpose. In a real-world
setting, additional factors (e.g., complexity, size) may impact the pros and cons of feature
traces, limiting the generalizability of our results. Nonetheless, since developers’ cognitive
processes are comparable for the same system (independent variable), our results on feature
traces (dependent variable) are valid.

Conclusion Validity

Interpretation
of results

We focus on describing the observations of our experiment, limiting the use of statistical
tests to avoid their problems [Amrhein et al., 2019; Baker, 2016; Wasserstein and Lazar,
2016; Wasserstein et al., 2019]. To mitigate threats of misinterpreting correlations and
observations, we carefully explain and discuss our results. Moreover, we rely on quantitative
and qualitative data to improve the confidence in our findings. Finally, we provide all of our
artifacts in an open-access repository to allow other researchers to replicate our experiment,
which may result in varying results depending on the concrete setup, participants, and
code examples, among other factors. We argue that these measures mitigate threats to the
conclusion validity of our experiment.

5.3 Traceability and Configurability

Experiment on
configurability

Our findings to this point indicate that virtual representations of feature traces are the
most useful ones for practice, since they have small adoption costs, facilitate feature
comprehension, and do not interfere with developers’ memory. However, annotations
(as the most common virtual representation) are used not only for tracing, but also for
configuring. Other studies indicate that the granularity and complexity of annotations
challenge developers’ program comprehension and impact their perception [Malaquias et al.,
2017; Medeiros et al., 2015, 2018]. Unfortunately, all of these studies involve configurable
annotations (i.e., of the C preprocessor) only, making it hard to understand whether the way
annotations are used impacts program comprehension differently. In our experiment [Fenske
et al., 2020], we analyzed how refactored (i.e., less complex) C-preprocessor annotations
impact developers. Moreover, one of the two tasks we defined was concerned explicitly with
configuring the code examples, allowing us to study challenges of comprehending the code
itself versus configuring the code.

Section contri-
butions

In this section, we investigate the following three sub-objectives to RO-T:

RO-T7 Analyze the impact of annotation complexity on program comprehension.

We started our experiment by investigating whether the complexity of configurable
annotations (i.e., “#ifdef hell” [Lohmann et al., 2006; Spencer and Collyer, 1992;
Tartler et al., 2011]) impacts’ developers program comprehension. For this purpose,
we measured how effectively (i.e., in terms of correct solutions) our participants
performed two tasks on five code examples. The insights on this sub-objective help
us understand how annotations should be implemented to facilitate developers’
program comprehension.

RO-T8 Study developers’ perceptions regarding annotation complexity.

Second, we again elicited our participants’ perceptions regarding the different code
examples and particularly the complexity of the annotations used. So, we collected
qualitative data with the same participants and code examples, which has not
been done by previous experiments (cf. Section 5.1.2). Using our results, we can
understand how the use of annotations impacts developers’ perceptions, helping
organizations to define guidelines and motivate the use of annotations.
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RO-T9 Discuss the differences between measurements and perceptions.

Finally, we discuss differences we found between our qualitative and quantitative
data in more detail. Interestingly, our participants’ performance contrasts their
perception regarding the complexity of the annotations in our examples, also
reflecting on the use of annotations for configuring. Based on our analysis, we
argue that feature annotations are suitable for tracing features, but the additional
complexity of configuring them challenges program comprehension—which helps
organizations in scoping how to implement traceability versus variability.

We published all artifacts related to the design of our experiment as well as the anonymized
results in an evaluated open-access repository.

©Association for
ComputingMa-

chinery, Inc. 2021

22 In the following, we first describe our
experimental design in Section 5.3.1 and potential threats to validity in Section 5.3.5. We
present and discuss the findings for each of our sub-objectives in Section 5.3.2, Section 5.3.3,
and Section 5.3.4, respectively.

5.3.1 Eliciting Data with an Experiment

Online ex-
periment

We designed an online experiment with our code examples (i.e., original or refactored)
representing the independent variable. As in our previous experiment, we controlled for
our participants’ experience, but with a retrospective analysis instead of treating it as an
independent variable [Siegmund and Schumann, 2015]. This time, we measured only our
participants’ ability to correctly solve a task as dependent variable for RO-T7. Moreover,
we elicited our participants’ perceptions on Likert-scales to consider them as a dependent
variable for RO-T8. We remark that we did not use the response times as a dependent
variable (i.e., efficiency), since our objective was only on correctness (seeing that performance
was not impacted before) and our setup for this experiment did not allow to reliably measure
times. Nonetheless, we removed unreasonably fast responses from our analysis, namely
those indicating that a participant only clicked through the experiment. We defined two
null-hypotheses we aimed to refute:

H0-3 Different annotation complexity does not impact our participants’ correctness.

H0-4 Different annotation complexity does not impact our participants’ perceptions.

We used statistical tests to reject or confirm these hypotheses, relying on the R statistics
environment [R Core Team, 2018–2020]. Again, we use hypothesis testing only to improve
the confidence in our observations. Next, we describe the actual setup of our experiment.

Code Examples

Code examples During our experiment, we showed each participant five code examples. For each example,
the participants had to perform two program-comprehension tasks and rate their perception
regarding the use of annotations. We built upon the dataset of Fenske et al. [2015] to select
five functions from two real-world text editors, Vim and Emacs. Aiming to achieve a greater
impact of our refactorings, we picked examples that are considered particularly smelly—
meaning that they should be harder to comprehend according to several metrics. From the
dataset, we picked the code examples: Vim18, Vim15, Vim13, Emacs12, and Emacs11. We
refactored each of the examples (except Vim18) to address our sub-objectives, which we
mark with a corresponding extension in the remainder of this section (e.g., Vim15_R).

Refactorings When refactoring the examples, we aimed to reduce the complexity of the existing anno-
tations (i.e., C-preprocessor directives) to facilitate program comprehension. In parallel,
22https://doi.org/10.5281/zenodo.3972411

https://doi.org/10.5281/zenodo.3972411 


5.3. Traceability and Configurability 135

Figure 5.7: Refactorings to reduce the annotation complexity in Vim15, left the original
and right the refactored version.

we aimed to preserve the underlying code and its behavior. As a result, the original and
refactored code examples had identical functionality, configuration options, and indentation.
If the original developers used comments to clarify the feature of an #else or #endif, we
added identical comments to our refactored examples. We employed three refactorings for
which previous studies indicate that they benefit program comprehension [Malaquias et al.,
2017; Medeiros et al., 2015, 2018]. In Figure 5.7, we exemplify all refactorings on a function
from Vim, with the circled numbers (i.e., ¬, ­, ®) referring to the corresponding refactoring:

R1 Extract alternative function

In Vim15, Emacs12, and Emacs11, we refactored large blocks of annotated code with
alternative implementations (i.e., the #else corner case in Section 5.1.3) into two
functions. The survey of Medeiros et al. [2015] indicates that developers prefer such
alternative function definitions over complex code constructs. For our example (¬),
we refactored one function definition for Unix-like operating systems (lines 1–8 on the
right) and one for all other operating systems (lines 9–39). While the code increased
in size, the functions individually are shorter, more cohesive, and comprise fewer
nested annotations. As a result, it should be easier for developers to comprehend the
source code and how the configurable annotations impact it.

R2 Discipline directives

We refactored one and four cases of undisciplined annotations in Vim15 and Vim13, re-
spectively. For this purpose, we followed the advice of Medeiros et al. [2018] to resolve
the regularly reported aversion of developers for undisciplined annotation [Malaquias
et al., 2017; Medeiros et al., 2015]—which our participants expressed in their com-
ments, too. For our example (­), the original code (on the left) in lines 8–17 is
undisciplined, meaning that it is below statement level (i.e., lines 12 and 15 of the
if statement are annotated). We refactored the code into a variable (line 15 on
the right) that is optionally modified in additional statements (lines 19 and 22).
Consequently, the refactored code should be less complex, since features are now
traced and configured on statement level.
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R3 Unify compile- and runtime-time variability

In Vim15, we identified a combination of compile-time and runtime-time variability,
namely an if statement and an #ifdef annotation that check for the same feature. We
refactored the code to comprise only compile-time variability (i.e., #ifdef). For our
example (®), the original code can be seen on the left in lines 23–25, and the refactored
one on the right in lines 31–34. So, we replaced this mix of feature traces and configura-
bility with a consistent representation, which should facilitate program comprehension.

Considering our participants’ comments and previous findings, these refactorings should
help developers comprehend the code. Note that we employed all refactorings that were
relevant for a code example, which is why we can only judge the overall impact of reducing
the annotation complexity, but not the impact of individual refactorings.

Validation of
refactorings

We employed all refactorings manually and asked colleagues from other organizations to
validate the resulting examples. In the end, we identified a small number of faults that we
corrected before conducting our experiment. Still, some participants claimed to have found
other faults in our examples. When inspecting these claims, we found that only one was
justified: We inadvertently refactored an #if into an #ifdef, thus changing the syntax and
semantic of Emacs11_R compared to its original. However, the problem was not this change,
but that one of our questions still referred to an #if, potentially leading to confusion. Since
the responses to this question were not remarkably different and the difference is small, we
argue that the impact of this fault was marginal and does not threaten our findings.

Experimental Design

Versions and
questions

In the beginning, we decided to develop two versions of our experiment (E1 and E2)
that involved different code examples. We started each version with Vim18 to compare
the participants of each experiment directly to each other, which allowed us to identify
potentially systematic differences between them. Then, we alternated original and refactored
examples (cf. Table 5.9) to elicit the data for addressing our sub-objectives, while also
avoiding learning biases. Overall, our experiment included 14 questions in three parts that
we presented in the same order as in Table 5.9. Note that we presented the experiment in six
sections: one for the background and one for each of the five code examples (showing Q8–11).

Background
questions

In the first part of our experiment (Q1–7), we elicited background information on our partic-
ipants, namely their age, gender, roles, and experiences. We designed these questions based
on existing guidelines for measuring developer experience [Siegmund et al., 2014]. These ques-
tions allowed us to control for confounding factors that may result from our participants’ char-
acteristics (e.g., age, experience) in a retrospective analysis [Siegmund and Schumann, 2015].

Questions on
code examples

In the second and third part of our experiment (Q8–11), each participant had to solve two
program-comprehension tasks and rate their perception of the code. As said, we showed
these questions for each code example individually, resulting in five sections during our
actual experiment. With Q8, we asked our participants to select the one correct statement
about the code out of a set of options. With Q9, we asked our participants to define a
combination of conditions that would result in a specific line being executed— essentially,
they had to configure the code. These two questions allowed us to reason about the impact
of using annotations for traceability versus configuring: We expected that Q9 would be
more challenging to answer, since the participants had to understand how each annotation
impacted the source code. Note that we did not ask for the same line number, but exact
same line of code (thus, we adapted the line number for each example). Afterwards, we
asked our participants to asses the use of annotations in each example and how well they
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Table 5.9: Overview of the questions and answers in our experiment on annotation com-
plexity. We denote the different versions of our experiment with E1 and E2. The questions
were the same for each code example, we adapted only the line numbers.

id questions & answers

background
Q1 How old are you?

◦ 15–19 years . . . ◦ 65+ years (5 year periods)
Q2 Gender

◦ Female ◦ Male ◦ Other ◦ Prefer not to tell
Q3 How many years of programming experience do you have?

Open number
Q4 How many years of experience with C/C++ do you have?

Open number
Q5 Roles in projects

Multiple selection (e.g., Developer) and open text
Q6 Which open-source projects have you worked on so far?

Open text
Q7 How would you rank your programming skills in C/C++?

◦ Beginner ◦ Intermediate ◦ Advanced ◦ Expert

code examples
Q8 Which of the following statements is true? (Task 1)

single selection out of
Vim18 E1 Vim18 E2 5 options
Vim15 E1 Vim15_R E2 5 options
Vim13_R E1 Vim13 E2 5 options
Emacs12 E1 Emacs12_R E2 5 options
Emacs11_R E1 Emacs11 E2 6 options

Q9 When would line <x> be executed? (Task 2)
choosing a combination out of

Vim18 E1 Vim18 E2 9 conditions
Vim15 E1 Vim15_R E2 11 conditions
Vim13_R E1 Vim13 E2 11 conditions
Emacs12 E1 Emacs12_R E2 7 conditions
Emacs11_R E1 Emacs11 E2 9 conditions

for each example
Q10 Do you consider the use of preprocessor annotations in the example appropriate?

◦ Yes ◦ No, because (Open text)
Q11 Please rate the presented code regarding the following questions:
Q11-1 How easy was it to understand this code?
Q11-2 How easy would it be to maintain this code?
Q11-3 How easy would it be to extend this code?
Q11-4 How easy would it be to detect bugs in this code?

for each a Likert scale: ◦ very hard ◦ hard ◦ easy ◦ very easy

could work on the code (i.e., comprehending, maintaining, extending, bug fixing). To
measure these perceptions, we used a simple yes/no assessment (Q10) and four-level Likert
scales (Q11). Finally, we aimed to formulate Q8–11 in a way that did not emphasize our
research objective to avoid any biases towards or against annotations.

Participants

Inviting partic-
ipants

We aimed to improve the external validity of our experiment by increasing its population
size, and thus mitigating coverage as well as sampling biases [Siegmund et al., 2015]. For
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(a) Comprehension Task 1 (Q8): Which of
the following statements is true?

(b) Comprehension Task 2 (Q9): When would
line <x> be executed?

Figure 5.8: Summary of the correctness our participants achieved in both program-compre-
hension tasks. Note that we abbreviate our examples with initial letter (V: Vim, E: Emacs)
to improve the readability of the figure.

this purpose, we invited C developers from various open-source projects on GitHub who
publicly posted their e-mail addresses on their GitHub page— aiming to mitigate ethical
issues of inviting participants this way [Baltes and Diehl, 2016]. To sample projects, we
built on previous studies of Liebig et al. [2010, 2011] and Medeiros et al. [2015], as well as
GitHub’s trending projects in October 2018 (e.g., FFmpeg,23 redis24). Overall, we invited
7,791 developers with 1,117 starting and 521 finishing our experiment (≈7%). The large
population size is above the minimum (385) required to achieve a confidence level of 95%
for hypothesis testing. Moreover, the 521 participants who finished our experiment were
almost evenly split between our two versions (260 to 261).

Participants’
background

While each group of participants comprised varying experiences and roles, their demographics
were highly similar. Namely, most participants were 32 to 42 years old for E1 and 27 to
42 years old for E2 (Q1) with equal median and mean values (37 and 36, respectively).
Most of our participants were male with E1 involving three females, one other, and 16 who
preferred not to state their gender, and E2 involving eight females, five others, and nine who
preferred not to state their gender (Q2). Regarding their general programming experience
(Q3), most participants in E1 sated 11 to 25 years, while most in E2 stated 12 to 25 years
(identical median and mean values of 20 years). We received almost equal responses for the
C/C++ programming experience of both groups (Q4), with most participants stating 8 to
20 years of experience (identical median and mean values of 15 years). Our participants
were mainly developers (E1: 250, E2: 249), and some worked also as team managers (E1:
76, E2: 69), project managers (E1: 57, E2: 57), and in quality assurance (E1: 40, E2: 40).
Note that we allowed multiple answers to Q5, which is why these numbers do not add up to
100%. In Q6, our participants stated that they worked on a variety of open-source projects,
such as the Linux kernel and its distributions, Git, PostgreSQL, or OpenSSL. On average,
the participants’ self-assessments regarding their programming skills (Q7) were “advanced”
(E1: 3.32, E2: 3.29). Due to the high similarity of both groups, we do not need to control
for experience to mitigate threats to the validity of our experiment.

Baseline
results

To further analyze whether we can compare the results of both versions of our experiment,
we used the same baseline example (Vim18) in each. Without going into details (explained
shortly), we display the results for the program-comprehension tasks in Figure 5.8, for the

23https://github.com/FFmpeg/FFmpeg
24https://github.com/antirez/redis

https://github.com/FFmpeg/FFmpeg
https://github.com/antirez/redis


5.3. Traceability and Configurability 139

Table 5.10: Results of statistically testing our observations on annotations.

observation test p-value effect effect size result

5 (Q8: Task 1) Fisher’s exact test 0.18 (negative tendency) — not significant
6 (Q9: Task 2) Fisher’s exact test <0.001 negative OR=0.74 61% vs. 54% correct
7 (Q10: appropriateness) Fisher’s exact Test <0.001 positive OR=1.60 52% vs. 64% positive ratings
8 (Q11: code quality) Wilcox & Cliff’s delta <0.05 (positive tendency) 0.05–0.07 negligible

appropriateness rankings in Figure 5.9, and for the perceptions regarding the difficulty to
work on the code in Figure 5.10. We can see that the participants of both versions performed
almost identical when solving the tasks, and have similar perceptions regarding the use
of annotations. This indicates that our sampling of participants did no bias or imbalance
our results. So, we can compare between both versions to address our sub-objectives.

5.3.2 RO-T7: Annotation Complexity and Program Comprehension

Program-com-
prehension
tasks results

We display the results for our two program-comprehension tasks in Figure 5.8. For each
task, we show how many of our participants submitted a correct or incorrect solution. In
addition, our participants could state that they “don’t know” the solution. We remark
that in Figure 5.8a for Vim15 the five and the one are actually two numbers (i.e., incorrect
and “don’t know,” respectively). Finally, we provide an overview of all statistical tests we
conducted in Table 5.10. As for our previous experiment, we discuss our results based on
four different observations.

Observation 5: Refactoring had only marginal impact for Task 1

Results Task 1We can see in Figure 5.8a that our data shows only marginal differences in the correctness
between the original and refactored code examples for Task 1. Overall, the amounts of
correct, incorrect, and “don’t know” responses are highly similar for each code example.
Moreover, we can see that Vim13 and its refactored counterpart seem particularly hard to
comprehend. For all other examples, the participants of either version performed quite well
with over 80% correctness for each.

Observation 6: Refactoring had a slightly negative impact for Task 2

Results Task 2As we assumed, we can see in Figure 5.8b that Task 2 seemed to be far more challenging
for our participants. The increased difficulty of comprehending how annotations can be
configured, and thus impact the code, is clearly visible. Moreover, we can see that for
almost all code examples (except Vim13), our participants performed slightly worse on the
refactored version. Additionally, if we consider only incorrect solutions, our data shows
that our participants performed better for all original versions.

Testing Obser-
vations 5 & 6

We used Fisher’s exact test [Fisher, 1922] to test H0-3 for both tasks. As we can see in
Table 5.10, the results suggest that Observation 1 may be purely by chance (p = 0.18).
In contrast, the differences we found for Observation 2 are significant (p < 0.001), which
means that we reject H0-3 for Task 2. To quantify the effect size, we computed an odds
ratio (OR) [Bland and Altman, 2000] to compare the correctness between the two different
versions of our code examples. This revealed that the odds for a correct answer decrease
from 595:381 (original examples) to 532:462 (refactored examples), accounting for an OR
of 0.74. Consequently, the chance to obtain a correct answer drops by roughly 7% (from
61% to 54%) for the refactored code examples. Even if we pessimistically consider “don’t
know” answers as incorrect, this tendency remains (p < 0.01, OR = 0.78).
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Figure 5.9: Participants’ subjective rating of the C-preprocessor annotations used (Q10).

RO-T7: Annotation Complexity and Program Comprehension
Our results suggest that refactoring configurable annotations into a less complex form
does not facilitate program comprehension.

5.3.3 RO-T8: Developers’ Perceptions of Annotations

Subjective
ratings results

We summarize our participants’ subjective assessment of the appropriateness of the C-
preprocessor annotations used in our code examples in Figure 5.10. Furthermore., we display
our participants’ ratings of the difficulty to comprehend each example (Q11-1) in Figure 5.10.
We omit the plots for maintaining, extending, and bug fixing the code (Q11-2–11-4), since these
received highly similar responses. Analyzing the data, we can derive two more observations.

Observation 7: Refactored code was considered more appropriate

Appropriate-
ness ratings

We can see in Figure 5.9 that our participants considered the refactored annotations as more
appropriate in most cases. Only Emacs11 is an exception, receiving a higher score compared
to its refactored counterpart. The largest difference (25%) occurred for Vim15 (cf. Fig-
ure 5.7), for which our refactoring increased the rating from 45% to 70%. Finally, we can see
that of all four code examples that received scores below 50%, only Vim13_R is a refactored
one (which was also the most challenging in Q8 and Q9). Our findings support previous
evidence that developers prefer refactored annotations (e.g., less complex, more disciplined).

Observation 8: Refactored code was considered easier to work on

Activity
ratings

When asking our participants how easily they could perform different activities on the code,
we observed a similar pattern. Namely, we can see in Figure 5.10 that most participants
perceived the refactored code examples as easier to comprehend (with the exception of
Emacs11). However, the differences between the original and refactored code examples are
not as large as they have been for Q10. This observation is highly interesting, since it seems
that rating annotations not on their own, but in the context of the code they configure,
impacts developers’ perceptions.

Testing Obser-
vations 7 & 8

To test for H0-4, we used Fisher’s exact test and an odds ratio for Observation 7. For
Observation 8, we used the Mann-Whitney U test [Mann and Whitney, 1947] for the
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Figure 5.10: Participants’ subjective comprehensibility rating for each code example (Q11-1).

significance, and Cliff’s delta [Cliff, 1993] to measure the effect size. As we can see in
Table 5.10, Fisher’s test implies a significant (p < 0.001) difference in the perception of
original and refactored code examples. The ratings rise from 544:489 to 663:379, resulting
in an odds ratio of 1.60 (meaning a 12% rise in appropriateness ratings for refactored code).
Finally, the Mann-Whitney U test also indicates significance (p < 0.05), but the effect size
for all four questions (i.e., Q11-1–4) is negligible with Cliff’s delta ranging from 0.05 to 0.07.

RO-T8: Developers’ Perceptions of Annotations
We find that developers consider refactored (e.g., disciplined) annotations more appro-
priate. However, if they judge the annotations in the context of the surrounding source
code, the differences become negligible.

5.3.4 RO-T9: Differences in the Results

Differences in
data

Combining our previous observations, we derived further insights that help define how an or-
ganization should implement its feature traceability. Namely, we first discuss the differences
in our participants’ performance and perception, which imply an interesting dilemma. Then,
we reason on the impact of refactoring and configuring annotations on feature traceability.

Correctness Versus Preference

Performance
versus percep-
tion

Arguably our most interesting insight are the contradicting findings with respect to cor-
rectness (RO-T7) and perception (RO-T8). Building on previous studies, we expected
that our refactorings would improve the perceived quality, but it is surprising that they
failed to improve our participants’ actual performance—which actually worsened. At first
glance, the worsened program comprehension conflicts previous studies (cf. Section 5.1.2).
However, none of these studies compared performance and perception for the same code
examples with the same participants, and they mainly involved novices. Apparently, our
setup actually helped us to uncover an unknown dilemma.

The dilemmaThe actual dilemma for developers is to decide whether they implement annotations in a
style they prefer (e.g., more disciplined), even though our results suggest that this hampers
their program comprehension. Existing research may have overestimated the importance of
refactoring annotations, due to the focus on developers’ perceptions instead of experimental
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data. Such surprising results have also been found in other contexts, for instance, for code
clones [Kapser and Godfrey, 2008], code smells [Sjøberg et al., 2013], and refactoring in
general [Tufano et al., 2015]. We are the first to uncover such a dilemma in the context of
C-preprocessor annotations. Since annotations, and the C preprocessor in particular, are
established mechanisms to implement traceability and configurability in variant-rich systems,
this dilemma is highly relevant for many organizations and open-source communities.

Annotations Versus Code

Differences in
perceptions

When we reflected in more detail on developers’ perceptions, we found another difference
that may cause and help to reason about the dilemma. Namely, the ratings for original and
refactored code examples showed larger differences for Q10 than for Q11. The former was con-
cerned specifically with the C-preprocessor annotations, while the latter was concerned with
the code quality in general. As a consequence, our participants may have considered other
factors more important in Q11, for example, identifier names, indentation, or code complexity.
More precisely, many participants seem to have ignored the C-preprocessor annotations.

Impact of
refactorings

Investigating our participants’ qualitative remarks, we derived insights on the impact
refactoring the annotations had on the general code. For example, the refactoring extract
alternative function seemed to have benefited Vim15_R, but not Emacs11_R and Emacs12_R.
A reason for this seems to be that the Emacs examples are smaller and less complex, so that
the refactoring actually made the code more complex, as mentioned by some participants:

“[T]he function definitions are duplicated. This can confuse static analysis tools,
but worse, it can confuse humans.”

Emacs11_R

Aligning to previous studies, our participants stated to dislike fine-grained annotations:

“Preprocessor macros should not be used like this, ever, because it makes the code
hilariously and needlessly complicated and very hard to comprehend.”

Vim18
Nonetheless, the impact of disciplining annotations in Vim13 was small, and Vim13_R still
received the second-worst rating. So, the main problem may not have been the discipline,
but the sheer amount of annotations that was equal in both code examples.

Problems of
the source code

Since Vim13 and Vim13_R received heavy criticism, we used open-coding on our participants’
comments (232 and 195, respectively) to understand the reasons in more detail. We could
identify three major themes: comprehensibility, complexity, and code quality. Interest-
ingly, how often each theme appeared differed between both code examples. For Vim13,
comprehensibility was stated in 49% of all comments, while code quality appeared only in
14%. In contrast, for Vim13_R, code quality was mentioned in 53% of all comments, while
comprehensibility occurred only in 34%. So, disciplining annotations apparently resulted
in our participants considering them more appropriate, but they also seemed to consider
the actual code as more problematic. This finding aligns with our previous findings (cf.
Chapter 3) that the code quality of a variant-rich system is key for its success, and indicates
that C-preprocessor annotations may hide the actual problems of the source code.

Tracing Versus Configuring

Use of an-
notations

The previous points indicate that configurable annotations may hamper program comprehen-
sion. In contrast, our previous experiment (cf. Section 5.2.2) showed that annotations used
only for tracing features facilitate program comprehension. We can see a similar pattern when
comparing Task 1 and Task 2: Our participants performed considerably better when we asked
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them about the source code itself (Task 1) compared to asking them about the configurability
of the code (Task 2). This underpins that configurable annotations add a layer of complexity
that potentially impairs program comprehension. In contrast, using annotations only for
tracing does not add this complexity, while still guiding developers when inspecting the
source code. So, there is a fundamental difference between both uses. Considering all of our
findings in this and the previous chapters, we would recommend that an organization should
trace the features of its variant-rich system in the source code using non-configurable anno-
tations. To enable configuring of a platform, the organization has to carefully assess which
variability mechanisms to use and how it interferes with the source code as well as traceability.

RO-T9: Differences in the Results
Reflecting upon the differences in our results, we found that:

• Our participants performed worse on the refactored annotations, even though they
perceived them as more appropriate.

• Improving the perceived quality of annotations seems to shift developers’ attention
to problems of the underlying source code.

• Using annotations for tracing, but not configuring, may help organizations trace
the features in a variant-rich system without challenging program comprehension.

5.3.5 Threats to Validity

Threats to
validity

Similar to our previous experiment, we aimed to strengthen the external validity of this
experiment. Again, we used an online setup, which is why we could again not control for
all confounding factors. Next, we discuss the consequent threats to validity.

Internal Validity

WordingWe aimed to phrase our questions in a way that would not bias our participants. Still, some
questions could have implied a critical perception of C-preprocessor annotations. We aimed
to mitigate such problems by testing our setup with colleagues. Nonetheless, some partici-
pants stated that they found Q9 and Q10 ambiguous, which may also be related to our word-
ing. So, the internal validity of our experiment is threatened by potential misunderstandings.

Employed
refactorings

Code smells and refactoring choices are subjective, meaning that some developers may not
perceive the same problems with the code. To prepare our examples, we built upon existing
studies of experienced developers and the consequent refactoring advice. Moreover, we
involved a large number of participants to tackle the problem that a small sample may distort
our results in a specific direction. Still, there may have been better refactoring choices,
which is why the construction of our examples remains a threat to the internal validity.

Completion
time

We decided to minimize the time a participant required to complete our experiment to
limit the dropout rate (e.g., due to time constraints, motivation, fatigue). However, on
average, our participants completed the experiment in half an hour, which remains a quite
long period that may have discouraged some developers from participating. While a shorter
experiment may have been a better alternative, it would be challenging to impossible to
observe some of our findings. So, while the time required to conduct our experiment remains
a threat, we argue that we made a reasonable decision.

External Validity

ToolingWe aimed to improve the external validity of our experiment by using real-world code
examples and inviting experienced software developers. Finally, our population size was
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large enough to ensure a high power of our statistical tests and allow us to identify reliable
observations. Furthermore, we controlled our participants’ experiences in a retrospective
analysis to validate whether we could compare between both versions of our experiment.
However, since we conducted an online experiment, some participants may have used
additional tools, which threatens the external validity of our results.

Code examples While we used real-world examples, they are both from open-source text editors. Moreover,
we refactored the examples ourselves and they are rather small. Still, research suggests
that open-source and industrial software exhibit similar characteristics regarding the use
of C-preprocessor annotations [Hunsen et al., 2016], and that developers consider the
refactorings we employed reasonable (cf. Section 5.1.2). Additionally, the design decisions
we took to improve the internal validity and obtain enough data points (e.g., duration,
two versions of the experiment, unfamiliar code examples) may threaten the external
validity. Unfortunately, any empirical study involving human subjects involves such trade
offs between internal and external validity [Siegmund et al., 2015].

Background
factors

Our participants’ background factors and characteristics threaten the external validity
of our experiment. However, as we discussed before, many human factors are hard to
impossible to control in program-comprehension research, for instance, participants’ moti-
vation, knowledge, memory strength, or cognitive processes. We mitigated such threats
by controlling for our participants’ experience, involving a large population size, limiting
learning biases (i.e., using different code examples), reducing the workload, and removing
unfinished responses. Also, the detailed responses we received in the open-text questions
suggest that most of our participants were motivated.

Conclusion Validity

Interpreta-
tion of results

As for our previous experiment, we focus on observations that we can derive from our results.
We detail our data before discussing it, aiming to avoid misinterpretation of correlations or
observations [Amrhein et al., 2019; Baker, 2016; Wasserstein and Lazar, 2016; Wasserstein
et al., 2019]. To allow other researchers to validate and replicate our experiment, we
published all artifacts as well as the anonymized quantitative and qualitative data in an
open-access repository. This way, we mitigate threats to the conclusion validity, but other
researchers may derive different findings when replicating our experiment, for instance, due
to the involved participants, code examples, or employed refactorings.

5.4 Summary
Chapter

summary
In this chapter, we investigated how an organization can implement feature traceability
in its variant-rich system. Initially, we discussed how to characterize different techniques
for feature traceability based on three dimensions, and how the levels of these dimensions
could potentially impact developers’ program comprehension. Based on our own and other
researchers’ empirical studies, we defined two experiments. First, we conducted an exper-
iment in which we compared the impact of different feature representations. The results
indicate that virtual representations (e.g., annotations) facilitate program comprehension
and do not impair developers’ memory. Second, we conducted an experiment to compare
the uses of feature annotations, indicating that using feature traces also for configuring
challenges program comprehension— since it adds a layer of complexity.

Summarizing
contributions

Our contributions in this chapter provide a detailed understanding and experimental data
on the pros and cons of feature traceability. For practice, our results are a helpful means
to define a traceability strategy and understand the impact of variability mechanisms. As
a consequence, an organization can facilitate its developers’ tasks and document feature
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locations. Regarding research, our data extended existing studies considerably and can help
to design new techniques for implementing, managing, and querying feature traces. Moreover,
we showed that developers’ perceptions regarding the appropriateness of configurable
annotations (i.e., of the C preprocessor) does not align to their performance— a dilemma
that was not identified in previous studies. Abstractly, our results suggest the following
core finding:

RO-T: Traceability
Implementing feature traceability facilitates developers’ program comprehension and
should ideally be independent of the variability mechanism used in the platform.

Connection to
other research
objectives

The findings we reported in this chapter align well with our previous experiences of re-engi-
neering variant-rich systems and the expenses of feature location we reported in Chapter 3
(RO-E). Precisely, we showed that establishing feature traces in a system can facilitate
feature location and program comprehension, and thus can help to reduce costs. Regarding
developers’ memory, which we discussed in Chapter 4 (RO-K), we could not find an improve-
ment due to feature traces. Still, our results show that feature traceability improves program
comprehension, and thus tackles the knowledge problem by recording important information
directly in the source code. Finally, our results are closely related and guide several practices
and processes, for instance, how to establish feature traceability throughout the different
assets of a variant-rich system. We discuss these practices next in Chapter 6 (RO-P).
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6. Round-Trip Engineering Practices

This chapter builds on publications at ESEC/FSE [Krüger and Berger, 2020b; Nešić et al.,
2019], SPLC [Krüger et al., 2017a, 2020d; Strüber et al., 2019], VaMoS [Krüger and Berger,
2020a], Empirical Software Engineering [Lindohf et al., 2021], and the Journal of Systems
and Software [Krüger et al., 2019c]

Chapter struc-
ture

In this last chapter, we synthesize our previous findings into frameworks for platform-
(re-)engineering practices (RO-P), particularly for the planning and monitoring of a
(re-)engineering project. To this end, we first define an overarching process model that
provides an understanding of current practices and how they are connected (Section 6.1).
Then, we provide concrete principles on the initial phase of (re-)engineering a variant-
rich system: analyzing the domain to construct a feature model (Section 6.2). Lastly, we
report a multi-case study on assessing the maturity of a variant-rich system, which helps an
organization decide to what extent it wants to adopt platform engineering (Section 6.3). Our
contributions in this chapter are processes and recommendations for planning, initiating,
steering, and monitoring the (re-)engineering of a variant-rich system—with a focus on
platform engineering, which we found to be economically beneficial (cf. Chapter 3). These
contributions are particularly valuable for practitioners who can adopt them to plan their
projects. For researchers, we provide a detailed understanding of current practices and
highlight potential for further research.

Conceptual
framework of
practices

We display a more detailed overview of our conceptual framework regarding round-trip-
engineering practices in Figure 6.1. Any variant-rich system has a certain scope (i.e., the
domain in which it operates) and maturity level (i.e., the degree of platform engineering
employed)— with both properties helping an organization to define the current as well
as envisioned state of the system. The variant-rich system relies on the reuse strategy
with its processes and consequent activities (e.g., bug fixing, quality assurance). These
activities are performed by developers who use certain practices depending on the employed
processes (e.g., continuous software engineering [Bosch, 2014; Fitzgerald and Stol, 2014] for
integrating new features into a platform). Which (e.g., forking in GitHub) and how (i.e., for
clone&own or as feature forks [Dubinsky et al., 2013; Krüger and Berger, 2020b; Krüger
et al., 2019c, 2020e; Stănciulescu et al., 2015]) the developers use techniques depends on
the current maturity level. We build upon our previous findings to derive the practices
we discuss in this chapter. Consequently, the practices we describe directly impact the
economics, knowledge, and traceability for (re-)engineering a variant-rich system.
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Figure 6.1: Details of the practices objective in our conceptual framework (cf. Figure 1.1).

6.1 The Promote-pl Process Model

Existing pro-
cess models

Recall that we display the typical structure of software product-line process models in
Figure 2.3 [Apel et al., 2011; Czarnecki, 2005; Kang et al., 2002; Northrop, 2002; Pohl
et al., 2005; van der Linden et al., 2007]. While there exist minor differences between the
individual process models, none of them seems to be in line with recent practices [Berger
et al., 2020]. For instance, Pohl et al. [2005] propose to perform a “[c]ommonality analysis
first,” which focuses on proactively establishing a platform before any variant. However,
industrial experiences [Assunção et al., 2017; Berger et al., 2013a, 2014a; Fogdal et al., 2016;
Krüger, 2019b] indicate that incrementally extending or re-engineering a platform is far
more common. In addition, the resulting platform is often evolved through its variants,
from which customer-requested features are propagated to the platform [Krüger and Berger,
2020b; Strüber et al., 2019]. So, existing process models for platform engineering do not
reflect current practices for adopting and evolving platforms (cf. Section 3.2).

Limitations
of existing

process models

For a better understanding of the (mingled) limitations of existing process models, we
exemplify three that are based on insights from Danfoss [Fogdal et al., 2016; Jepsen and
Beuche, 2009; Jepsen and Nielsen, 2000; Jepsen et al., 2007] and our own experiences [Krüger,
2019b; Krüger and Berger, 2020a,b; Krüger et al., 2019a,c; Kuiter et al., 2018b; Lindohf
et al., 2021; Nešić et al., 2019; Strüber et al., 2019]:

Separated domain and application engineering: In contrast to the strict separation
of domain and application engineering in existing process models, we experienced
that both phases are highly interacting. In the same sense, Fogdal et al. [2016] report
that at Danfoss “[...] there was no strict separation between domain and application
engineering in the product projects [...].” So, a new process model for platform
engineering should connect the two phases more closely.

Evolution of the platform: Existing process models assume that the platform itself
is evolved to derive new variants. However, most organizations and open-source
developers use feature forks to develop new features on a variant that they may
merge at some point in time [Krüger and Berger, 2020b; Krüger et al., 2019c, 2020e;
Stănciulescu et al., 2015]. Fogdal et al. [2016] state that Danfoss employs feature forks
so that “[...] projects could keep their independence by introducing product-specific
artifacts as new features. Later on, when a change was assessed, there would be a
decision on whether the change should be applied to other products and thus should
be integrated into the core assets.” So, a new process model should consider different
evolution patterns for variant-rich systems.

Adoption strategies: Finally, existing process models focus on the proactive adoption
of a platform only. However, most organizations start with clone&own to avoid the
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high investments and risks associated with a new platform [Clements and Krueger,
2002; Krüger, 2016; Krüger et al., 2016a; Schmid and Verlage, 2002], and re-engineer
or incrementally extend the resulting variants into a platform later on. For Danfoss,
Fogdal et al. [2016] report that the re-engineering was required, but took more time
than anticipated, particularly for introducing contemporary platform-engineering
technologies: “Introducing pure::variants and establishing feature models for both
code and parameters, and finally including the requirements, would take another two
years.” So, a new process model should describe the different adoption strategies.

Even though such limitations are well-known, research has not focused on updating the
existing process models [Berger et al., 2020; Rabiser et al., 2018]. Of existing literature
studies on platform engineering [C and Chandrasekaran, 2017], the ones of Laguna and
Crespo [2013], Fenske et al. [2013], and Assunção et al. [2017] are the closest to this goal.
Laguna and Crespo provide an overview of 23 publications on re-engineering a platform,
based on which Fenske et al. derive a taxonomy, but no detailed process model. Assunção
et al. synthesize an abstract process model (i.e., three high-level steps) for re-engineering
a platform based on a systematic literature review (included in Table 6.1). While these
works are complementary to ours, they mostly promote that a contemporary and updated
process model is required—which we contribute.

Section contri-
butions

In the following, we [Krüger et al., 2020d] present promote-pl (PROces MOdel for round-
Trip Engineering of Product Lines), an updated process model for platform engineering
that we derived from existing research and our own experiences in the previous chapters.
More precisely, we address the following three sub-objectives of RO-P:

RO-P1 Collect empirical data on contemporary platform-engineering practices.

Our first sub-objective was to elicit practices (as partial orders of activities)
reported in the recent literature. Such data helped us to construct promote-pl
more systematically and not only based on our own experiences and intuitions,
mitigating external threats to validity. The data we collected provides an overview
for researchers and practitioners into recent platform (re-)engineering practices,
helping them to scope and study such practices.

RO-P2 Construct a process model to order the elicited practices.

Next, we used the partial orders we elicited to construct promote-pl itself. For this
purpose, we matched the partial orders to each other based on our experiences and
refined the model iteratively until we achieved agreement, leading to an abstract
and a detailed version of promote-pl. Promote-pl serves as a contemporary process
model for researchers and practitioners to understand how platforms are adopted
and evolved in practice.

RO-P3 Analyze the relations of promote-pl to contemporary software-engineering practices.

Lastly, we discuss particularly those parts of our empirical data and promote-pl
that relate to contemporary software-engineering practices. Our results show how
modern practices (e.g., continuous software engineering) relate to and impact plat-
form engineering. Our discussion provides insights for researchers and practitioners
into current advancements, and highlights open opportunities for research.

We report our methodology to elicit empirical data in Section 6.1.1 and the corresponding
threats to validity in Section 6.1.5. Then, we study each of our sub-objectives individually
in Section 6.1.2, Section 6.1.3, and Section 6.1.4.
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6.1.1 Eliciting Data with a Systematic Literature Review

Process
modeling

A process model helps describe how something is performed in a real-world process [Curtis
et al., 1992]. In contrast, a development methodology defines an assumed best practice and
a process theory (which is sometimes used synonymous) specifies a universal description of
a process [Ralph, 2019; Sjøberg et al., 2008]. We construct promote-pl from empirical data
and do not claim that it is complete or describes best practices, which is why we construct
a process model according to the distinction of Ralph [2019]. Arguably, completeness (in
terms of all possible process instances) and universal best practices are not achievable,
considering the various technologies an organization may use, for instance, in terms of tools,
variability mechanisms, or testing strategies.

Guidelines
for process
modeling

We are not aware of guidelines that focus specifically on constructing a process model.
Instead, we relied on recommendations for defining process theories [Ralph, 2019; Sjøberg
et al., 2008], which is why we used three information sources (explained shortly):

1. We built upon our own knowledge of the literature to resemble an integrative literature
review [Snyder, 2019], which is a helpful means to critically reflect, synthesize, and re-
conceptualize on a mature research area.

2. We conducted a systematic literature review by manually searching through the
last five instances of relevant publication venues to identify and incorporate further
contemporary practices.

3. We used our own experiences with practitioners to structure our data, match activities,
and construct promote-pl.

We use these information sources to collect empirical evidence for constructing promote-pl,
and thus strengthen its validity. Next, we describe each information source in more detail,
and provide an overview of all selected publications in Table 6.1.

Knowledge-Based Literature Selection

Selection
criteria

We relied on our experiences from previous literature reviews [Krüger, 2016; Krüger and
Berger, 2020b; Krüger et al., 2019a; Nešić et al., 2019] to elicit an initial set of publications
we deemed topical and relevant for our process model. Finally, we included all publications
that fulfill the following inclusion criteria (IC):

IC1 The publication is written in English.

IC2 The publication reports activities of platform engineering, and defines at least one
partial order (i.e., a sequence of execution) between these.

IC3 The publication describes activities of recent (i.e., five years) experiences (e.g., case
studies, interviews) or synthesizes them from such experiences (e.g., literature reviews).

We used an initial selection to scope our methodology and added further publications later on.

Publications
selected from

knowledge

We started with five publications that describe well-known process models for platform
engineering as a baseline for promote-pl (marked BL in Table 6.1). Note that the publication
of Northrop [2002] does not fulfill IC2, because it defines no partial orders. We still included
it, since this process model is well-established in research. In addition, we included 12 other
publications (marked ER in Table 6.1) that partly involve our owns (asterisked in Table 6.1).
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Systematic Literature Selection

Search strategyWe extended our knowledge-based literature selection using a systematic literature re-
view [Kitchenham et al., 2015]. Precisely, we performed a manual search through five
conferences (ASE, ESEC/FSE, ICSE, SPLC, VaMoS) and seven journals (EMSE, IEEE
Software, IST, JSS, SPE, TOSEM, TSE). For each conference, we covered the last five
instances of research and industry tracks, covering 2015 to 2019 (and 2020 for VaMoS).
Considering the journals, we covered 2016 to 2020, including online-first publications. We
conducted this search on April 7th 2020 through DBLP and the journals’ websites for
online-first publications. To elicit valuable platform-engineering practices, we focused on
a recent period and major venues to ensure topicality and quality. We certainly missed
publications, but we argue that our selection provides a reasonable overview and serves the
goal of constructing a process model [Ralph, 2019; Snyder, 2019].

Inclusion crite-
ria

Due to our search strategy and to assess the larger variety of publications, we extended our
previous inclusion criteria as follows:

IC4 The publication is published at the research or industry track of one of the aforemen-
tioned, peer-reviewed venues (i.e., excluding journal first or other publications).

IC5 The publication reports a process that has been used in practice, not only a proposal
(e.g., for new testing strategies).

With these additional inclusion criteria, we aimed to ensure that we elicit real-world data,
and not visions or sketches of how a new research tool may be employed.

Publications
included from
the review

During our manual search, we selected 16 new publications (marked SR in Table 6.1). We
remark that we do not count publications we already included during our knowledge-based
literature selection. In the end, we identified 33 publications as relevant for constructing
promote-pl, covering various venues (not surprisingly, mostly SPLC as the flagship conference
on platform engineering) and platform-engineering processes (e.g., variant-based evolution,
platform re-engineering).

Industrial Collaborations and Studies

Own experi-
ences

Much of the research we present in this dissertation built on collaborations with industrial
partners or on analyzing open-source communities that use platform engineering. For
example, we collaborated with Axis to understand the economics of software reuse in
Section 3.2 [Krüger and Berger, 2020b], and studied processes for re-engineering cloned
variants in Section 3.3 [Krüger, 2017; Krüger and Berger, 2020a] as well for developing
Marlin, Bitcoin-wallet, and Unix-like distributions in Section 4.3 [Krüger et al., 2019c,
2020e]. Also, in the remainder of this chapter, we report on experiences we elicited at
Saab [Lindohf et al., 2021] and with different platform-engineering practitioners [Nešić et al.,
2019]. We used the experiences we gained during these and our ongoing collaborations to
analyze and order the data we elicited from the publications we selected. In particular, we
resolved unclear partial orders during the construction of promote-pl and used our insights
to discuss contemporary software-engineering practices.

Data Extraction

Extracted dataFrom each publication, we extracted standard bibliographic data. To construct promote-pl,
we extracted all platform-engineering activities that are mentioned in their exact phrasing
and partial order (if described). Note that we did not extract “standard” software-engineering
activities, such as requirements elicitation. We also extracted the scope of the publication,
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for instance, variant-based evolution or platform re-engineering. Finally, we documented all
specific software-engineering practices that are mentioned in the publications. We used a
table to document the resulting data, which we summarize in Table 6.1.

Process-Model Construction

Method for
constructing
promote-pl

We employed the following methodology to construct promote-pl:

1. We analyzed the five baseline process models to identify their commonalities and
differences, helping us to obtain a better understanding of the models and to start
with unifying terminologies (leading to Figure 2.3). Still, the most important insight
was the definition of how to identify and document partial orders.

2. We suggested relevant publications and conducted our systematic literature review.

3. We read each publication to decide which fulfilled our inclusion criteria (i.e., based
on the order title, abstract, full text) and extracted the data we needed.

4. We listed all unique activities (over 150), based on which we resolved synonyms,
defined terms, and abstracted activities using an open-card-like sorting method [Zim-
mermann, 2016]. For instance, we unified “product,” “system,” and “variant” to variant
only. We performed this unification step carefully to not overly abstract activities,
resulting in 99 distinct activities (cf. Table 6.1).

5. We matched the partial orders and activities to identify similarities and define par-
titions of promote-pl (e.g., adoption and evolution scenarios).

6. We constructed promote-pl by merging all partial orders based on re-appearing pat-
terns and similar activities. Moreover, we structured all elements according to the
identified partitions and resolved redundancies as far as possible.

7. We verified promote-pl by explaining it to another researcher during an interview in
which we reasoned on our design decisions, alternative representations, and the data
from which we derived each element. In the end, we performed smaller changes to
make promote-pl more comprehensible and fixed a few unclear orders.

Using this methodology, we aimed to strengthen the validity of promote-pl and allow other
researchers to replicate and verify its design.

6.1.2 RO-P1: Contemporary Platform-Engineering Practices

Elicited data We summarize all 33 publications and the activities we elicited from them in Table 6.1.
Considering the scope, we can see that most publications cover the re-engineering of a
platform and the evolution via variants— both topics have become major directions for
platform-engineering research [Assunção et al., 2017; Berger et al., 2019; Krüger et al., 2020a;
Nieke et al., 2019; Rabiser et al., 2018, 2019; Strüber et al., 2019]. In the following, we discuss
our data to provide a detailed understanding of contemporary platform-engineering practices.

Activities

Variations
in activities

Despite unifying the terminologies used in the publications, we kept 99 unique activities.
These are too many activities to incorporate into promote-pl, but we kept them for two
reasons: First, the publications report on a variety of software-engineering methodologies
(e.g., model-driven, agile), domains (e.g., web services, automotive systems), tools (e.g.,
fully automated build systems), variability mechanisms (e.g., runtime parameters, C
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Table 6.1: Overview of the 33 publications on platform-engineering processes we analyzed
and the activities described in these (using our unified terminology).

reference scope activities (≺: partial order – •: separator – &: parallelism – |: alternatives – [. . . ]: sub-activities)

BL Kang et al. [2002] PE scope & budget platform ≺ analyze platform requirements & model variability ≺ design architecture ≺ design
system model ≺ refine architecture ≺ design assets • analyze variant requirements & select features ≺ design
& adapt architecture ≺ adapt assets & build variant

BL Northrop [2002] PE develop assets • engineer variant • manage platform • design architecture • evaluate architecture • analyze
platform requirements • integrate assets • identify assets • test • configure • scope platform • train developers
• budget platform

BL Czarnecki [2005] PE analyze domain ≺ design architecture ≺ implement platform • analyze variant requirements ≺ derive variant

BL Pohl et al. [2005] PE scope platform ≺ analyze domain [analyze commonalities ≺ analyze variability ≺ model variability] ≺ design
architecture ≺ implement platform ≺ test platform • analyze variant requirements ≺ design variant ≺ derive
variant [configure ≺ implement specifics ≺ build variant] ≺ test variant

BL Apel et al. [2013a] PE analyze domain [scope platform ≺ model variability] ≺ implement platform ≺ analyze variant requirements
≺ derive variant

ER Rubin et al. [2015] PR analyze commonality & variability [compare requirements ≺ diff variants ≺ model variability] ≺ design
architecture [extract architecture ≺ evaluate architecture ≺ refine architecture & variability model] ≺ develop
assets • merge variants ≺ refactor ≺ add variation points [diff variants ≺ refactor] ≺ model variability ≺
derive variant • analyze commonality & variability [model variability ≺ compare requirements & tests & diff
variants ≺ refine variability model] ≺ extract platform

ER Fogdal et al. [2016] PR; EV diff variants ≺ analyze variability ≺ model variability ≺ add variation points ≺ adopt tooling ≺ compare
requirements ≺ map artifacts • develop assets [propose asset ≺ analyze asset requirements ≺ design asset ≺
implement asset ≺ test asset] • release platform [plan release ≺ produce release candidate ≺ test platform] •
release variant [scope variant ≺ derive variant ≺ test variant]

ER Assunção et al. [2017] PR analyze commonality & variability [locate features] ≺ model variability ≺ re-engineer artifacts

ER* Krüger et al. [2017a] PR diff variants ≺ locate features ≺ model variability ≺ map artifacts

ER* Kuiter et al. [2018b] PR model variability ≺ adopt tooling • domain analysis • implement platform • analyze variant requirements •
derive variant • configure

ER Martinez et al. [2018] PR train developers ≺ analyze domain ≺ model variability ≺ implement assets [analyze documentation | diff
variants ≺ refactor]

ER* Krüger et al. [2019a] PR analyze variability ≺ locate features ≺ map artifacts

ER* Krüger et al. [2019c] EV propose asset ≺ analyze asset requirements ≺ assign developers ≺ fork platform ≺ implement asset ≺ create
pull request ≺ review asset ≺ merge into test environment ≺ test asset ≺ merge into platform ≺ release
platform

ER* Nešić et al. [2019] PE; PR;
EP; EV

plan variability modeling ≺ train developers ≺ model variability ≺ assure quality [evaluate model • test
model]

ER* Strüber et al. [2019] PR; EV adapt variant ≺ propagate adaptations • analyze domain ≺ analyze variability ≺ locate features • extract
platform • model variability • extract architecture • refactor • test platform • test variant

ER* Krüger and Berger [2020a] PR train developers ≺ analyze domain ≺ prepare variants [remove unused code ≺ translate comments ≺ analyze
commonality ≺ diff variants] ≺ analyze variability ≺ extract architecture ≺ locate features ≺ model variability
≺ extract platform ≺ assure quality

ER* Krüger and Berger [2020b] EV Scope Variant ≺ Design variant ≺ derive variant ≺ adapt variant ≺ assure quality

SR Weber et al. [2015] PR analyze variability [diff variants & identify fork points ≺ classify adaptations ≺ merge bug fixes | [name
assets ≺ merge assets into hierarchy]] ≺ add variation points ≺ model variability ≺ locate features ≺ extract
platform ≺ configure

SR Yue et al. [2015] EV scope variant [analyze variant requirements • design variant • configure] ≺ budget variant ≺ design &
implement variant [analyze variant requirements ≺ design & evaluate variant ≺ implement & adapt variant
≺ — | propagate adaptations] ≺ configure & test variant

SR Capilla and Bosch [2016] EP analyze variant requirements ≺ define build rules ≺ configure & derive variant ≺ test variant

SR Iida et al. [2016] PE; PR scope platform ≺ engineer platform [design system model ≺ design architecture & implement platform ≺
model variability] ≺ derive variant [design variant [design variant model ≺ scope variant ≺ select features] ≺
evaluate design [evaluate design logic ≺ configure] ≺ design variant ≺ implement variant] ≺ test variant

SR Koziolek et al. [2016] PE; PR analyze domain [gather information sources ≺ define reuse criteria ≺ collect information ≺ analyze & model
variability ≺ extract architectures ≺ evaluate results] ≺ budget platform

SR Nagamine et al. [2016] PE engineer platform [analyze platform requirements ≺ design architecture & implement platform ≺ implement
assets] ≺ derive variants • manage platform

SR Cortiñas et al. [2017] PE analyze platform requirements [analyze domain ≺ scope platform ≺ model variability] ≺ design architecture
≺ evaluate architecture & map artifacts ≺ derive variant

SR Gregg et al. [2017] EV fork platform ≺ test platform ≺ merge into platform

SR Hayashi et al. [2017] EV derive variant [scope variant ≺ plan variant [define variant backlog ≺ estimate efforts ≺ plan development] ≺
build variant [create backlog ≺ time-box control]] • manage platform [scope & budget platform]

SR Usman et al. [2017] PE model variability ≺ design system model ≺ derive variant

SR Young et al. [2017] PE design architecture ≺ add variation points ≺ model variability ≺ configure ≺ derive variant

SR Hayashi and Aoyama [2018] EV define variant backlog ≺ implement variant [analyze variant requirements ≺ implement assets ≺ test variant]
≺ add variation points [design variation points ≺ refactor ≺ test platform]

SR Pohl et al. [2018] PE; PR;
EP

analyze platform requirements ≺ analyze commonality & variability ≺ design architecture ≺ implement
platform • analyze variant requirements ≺ scope variant [identify assets & define new assets] ≺ implement
assets ≺ integrate assets ≺ configure ≺ test variant • map artifacts • model variability • unify variability

SR Horcas et al. [2019] PE Analyze Domain [Specify Properties ≺ model variability • analyze variant requirements [configure ≺ opti-
mization]] • derive variant [configure ≺ integrate assets ≺ test variant] • implement platform

SR Marchezan et al. [2019] PR plan development [assign developers ≺ assign roles ≺ analyze documentation] ≺ assemble process [select
techniques ≺ adopt tooling ≺ assign tasks] ≺ extract platform [execute assembled process ≺ document assets
≺ document process]

SR Sayagh et al. [2020] PE; PR;
EB; EV

add variation points ≺ adopt tooling • manage knowledge • resolve configuration failures • assure quality

BL: BaseLine; ER: Expert Review; SR: Systematic Review
EP: Evolution on Platform – EV: Evolution on Variant – PE: Platform Engineering – PR: Platform Re-engineering
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Figure 6.2: Abstract representation of promote-pl.

preprocessor), and development phases (e.g., variant derivation, business analysis). Second,
the level of granularity in which activities are reported varies heavily, for instance, some
publications simply refer to “derive product,” while others detail the individual steps of
this activity (e.g., “build”). Such differences make it impossible to unify all terms and
incorporate all activities, which is why we focused particularly on those activities that
appeared regularly in similar partial orders.

Partial Orders

Partial orders We can see in Table 6.1 that we identified 42 partial orders (not counting alternatives or
sub-orders). Interestingly, no exact order occurs more than once, due to the variations in
activities. However, we can see similarities between orders within the same scope (e.g.,
platform re-engineering), while the orders are rather dissimilar between scopes. This finding
highlights that we need an updated process model to incorporate other scopes and practices
besides the proactive adoption.

Ambiguity
of activities

Besides the variations in activities, a major reason for the high dissimilarity of the partial
orders seems to be ambiguity of what a certain activity encompasses. For example, “analyze
domain,” “analyze commonality/variability,” and “scope platform” are closely related, and
thus combined in many partial orders. Interestingly, the exact ordering of these activities
varies or they are sub-activities of each other. Consequently, there seems to be a lack
of agreement or missing understanding of how specific activities are defined. We tackled
this problem by carefully reading all definitions in the publications and by relying on the
descriptions of Pohl et al. [2005] to reason about activities.

RO-P1: Contemporary Platform-Engineering Practices
By eliciting platform-engineering practices, we found a diverse set of activities and
processes, which do not align well to established process models. In addition, many
activities and terms seem to be ambiguous to researchers and practitioners.

6.1.3 RO-P2: Promote-pl and Adaptations

Abstract
promote-pl

We display the abstract representation of promote-pl in Figure 6.2. The adoption phase
involves all three adoption strategies for platform engineering [Clements and Krueger, 2002;
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Krueger, 2002; Schmid and Verlage, 2002]: proactively based on set of planned variants, re-
engineering existing variants, or incrementally extending one variant (i.e., the “planned or
existing variant” beomces the “derived variant”). In the evolution phase, a derived variant
is evolved by integrating new features (cf. Section 3.2.3). That variant may be evolved on
its own (i.e., clone& own) or is integrated back into the platform by merging the complete
variant or its features (i.e., returning to adoption).

Detailed
promote-pl

In Figure 6.3, we display the detailed representation of promote-pl. We customized UML
activity diagrams [Object Management Group, 2017] to improve the comprehensibility,
resulting in nine diagram elements (displayed in the bottom left in Figure 6.3):

1–3) We indicate the locations of six overarching processes (i.e., adoption, evolution,
management) that relate to the abstract representation of promote-pl (cf. Figure 6.2),
but do not impact the actual model.

4) Start Nodes essentially keep their meaning from standard UML. However, in standard
UML a workflow would be initiated at all start nodes at the same time, whereas we
allow only a single start node to initiate promote-pl.

5–6) Activities and Activity Edges keep the same representations and meanings as in
standard UML.

7) Concurrent Activities are related to fork and join nodes in standard UML. We
simplified our diagram by connecting activities that are (or can be) performed
simultaneously with dashed arrows.

8) Decision Nodes keep their meaning from standard UML, but we allow them to have
only one outgoing activity edge to represent optional workflows.

9) Situational Alternatives simplify the representation of two workflows: First, to display
that one workflow (i.e., from “test platform” to “integrate variants”) is only relevant
while re-engineering variants. Second, to display that the start node “develop variant”
also represents the incremental adoption strategy.

Note that promote-pl does not include end nodes, since ending the evolution via its round-
trip engineering style would imply that the variant-rich system is discontinued.

A Different Decomposition

Change in
decomposition

As we motivated and our data confirms, organizations do not strictly distinguish domain
and application engineering. Instead, different adoption and evolution strategies for a
platform and its variants are more important for organizations. This represents a different
decomposition, resulting in teams that employ domain and application engineering in parallel,
for instance, while evolving a variant of the platform (cf. Section 3.2.3). In promote-pl, we
represent this major change in the primary concern of interest by decomposing adoption and
evolution processes, instead of domain and application engineering. Since this is the main
difference to existing process models, we now describe each of the overarching processes in
promote-pl in more detail.

Management Process

Platform man-
agement

Some baseline process models comprise management activities— sometimes as a separated
phase, but more often integrated into domain engineering. Our data aligns to the process
model of Northrop [2002], indicating that all management activities should run in parallel
to the actual platform engineering. The management process ( ) involves seven mingled
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Figure 6.3: Detailed representation of promote-pl.

activities that are practically important to enable an organization to successfully plan and
employ platform engineering: “budget development,” “adopt tooling,” “define processes,”
“train developers,” “assign developers,” “manage knowledge,” and “monitor product line.”
As identified by Rabiser et al. [2018], such activities have gained little attention in recent
research compared to developing the platform itself. In this dissertation, we provide
important insights that guide particularly these activities and relate them to the actual
development. Namely, we provide economic data (cf. Chapter 3) that is relevant for
management (e.g., budgeting, training) and development activities (e.g., scoping). We
elicited data that is relevant for managing knowledge (cf. Chapter 4) and investigated
different techniques (and consequent tooling) for tracing features (cf. Chapter 5), which
both impact not only management but also development activities (e.g., mapping artifacts,
adding variation points). As we can see, this dissertation focuses on management and earlier
activities of adoption processes, for which we provide further insights in the remaining
sections of this chapter (e.g., scoping, analyzing the domain, monitoring).

Adoption Processes

Proactive
adoption

Not surprisingly, the proactive process (left ) is similar to domain engineering in the
baseline process models. First, an organization performs a domain analysis and defines
the consequent commonalities and variability between variants. Based on the results, the
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organization scopes the actual platform and defines its requirements, which leads to a
variability model. Since the variability model captures the outcome of the commonality and
variability analyses, these activities may be executed in parallel. All activities and their
order up to this point represent “domain requirements engineering” and “domain design” in
Figure 2.3, but as a more flexible process. The following activities focus on designing and
implementing the platform (i.e., “domain implementation” in Figure 2.3). In contrast to the
baseline process models, we make two activities explicit that occurred regularly in our data:
“add variation points” and “map artifacts” (e.g., tracing features to assets)— for which
we also provide further insights in Chapter 5 and the remainder of this chapter. Then,
the organization tests, releases, and quality assures the platform. Overall, the proactive
process resembles the domain-engineering phase explained by Pohl et al. [2005], except for
the separated management process and the described adaptations we incorporated based
on our data.

Re-engineer-
ing-based adop-
tion process

The first major extension to existing process models is the re-engineering process (right ).
We found two main instantiations for this process, which both usually start with diffing
artifacts. First, an organization may perform a full-fledged feature-oriented integration,
essentially leading to the top-down analyses of the proactive process. However, after creating
the variability model, organizations usually re-engineer and adapt the architecture of a
suitable existing variant instead of developing a new one. The re-engineered platform
is refactored to locate, adapt, and trace features that shall be integrated. Second, an
organization can decide to integrate variants without scoping the platform in advance.
Instead, the platform is constructed by integrating variants and refactoring the resulting
code to distinguish features, representing a bottom-up process. To systematically manage
the platform, the organization must create the variability model during the refactoring.
The remaining activities are identical to the proactive process, but (especially for the
second instantiation) the organization may decide to integrate further variants or features
iteratively. We can see several similarities between the proactive and re-engineering process,
but there are important differences, since the existing variants do not require a domain
analysis (i.e., they are already established in the market) and allow to build on existing
artifacts that can be refactored.

Incremental
adoption pro-
cess

The incremental process was not explicitly mentioned in any of the recent publications we
identified. Still, this process is unproblematic, since it represents a special instantiation
of the variant-based evolution. Namely, an organization implements a variant without a
platform, and extends that variant by directly integrating new features (i.e., in contrast
to creating separate clones for new features). So, promote-pl incorporates all established
adoption strategies, and we can see that particularly the re-engineering and incremental
processes mingle domain and application engineering.

Evolution Processes

Customer
requests

The evolution of a platform is usually initiated by customers requesting new features. As
a consequence, our three evolution processes all start with an organization developing
a new variant and the typical application-engineering activities (i.e., “ananlyze variant
requirements,” “scope variant,” “design variant”). After the organization analyzed what
features and consequent assets are needed for the new variant, it can decide how to perform
the actual development and whether to evolve the platform.

Platform-
based evolution
process

Platform-based evolution (left ) is the process implicitly defined in existing process models.
In fact, the evolution in this process represents mainly domain-engineering, not application-
engineering. So, a new feature for the platform is proposed, designed, implemented (also
adding variation points in assets and incorporating it into the variability model), tested, and
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integrated. For this purpose, an organization can rely on feature forks [Krüger and Berger,
2020b; Krüger et al., 2020e], but the core idea is continuous integration and close cooperation
with the platform engineers. After evolving the platform itself, the desired variant can be de-
rived by selecting features, specifying the right configuration, and integrating the consequent
assets. Note that assets can be identified fully automatically (e.g., using configuration man-
agers), but in some cases this is not possible and developers have to manually identify and pull
assets from their sources. Before testing, releasing, and quality assuring the variant, it may
need individual adaptations that will not be integrated into the platform. While this is the
idealized process, we found that most organizations rely on one of the following two processes.

Asset propa-
gation process

When employing variant-based evolution using asset propagation (right ), an organization
configures, derives, and clones the variant from its platform that is closest to the new one.
We [Krüger and Berger, 2020b] experienced that such a clone may involve the platform itself,
for example, if the organization intends to develop highly innovative variants that may stay in-
dependent (cf. Section 3.2). After developing the new variant, the organization may consider
the new feature relevant for other variants in the platform. In such a case, the corresponding
assets must be propagated to the platform, leading to the second part of the platform-based
evolution process. While the feature’s assets must not be designed anew, they still require
adaptations to fit the platform (e.g., considering feature interactions) before they can be
tested and integrated. A key cost factor impacting this process is the co-evolution of the vari-
ant: If the variant stays independent for too long, it becomes more and more challenging to
adapt it to the platform (or other variants) [Krüger and Berger, 2020b; Strüber et al., 2019].
In such cases, it is more likely that an organization employs the third evolution process.

Variant inte-
gration process

Variant-based evolution using variant integration ( ) defines a process for re-integrating
complete variants instead of individual features. This process is often employed when
variants have not been synchronized with their platform for a longer time (e.g., not merged
in version-control systems) [Krüger and Berger, 2020b; Strüber et al., 2019], for example,
because of highly innovative features, clone&own development, or incremental platform
adoption (i.e., incrementally developing and adding a new variant at a time). However, our
data also shows that the re-integration of such variants follows the re-engineering-based
adoption process of diffing and refactoring the co-evolved variants— relying on the concrete
instantiation (i.e., top-down or bottom-up) that is more feasible. We can see that the
two variant-based evolution processes switch domain and application engineering, since an
organization first implements a variant before integrating features into their platform.

Domain and Application Engineering

Domain and
application
engineering

As we described, domain and application engineering in promote-pl are far more mingled
and partly reordered compared to existing process models. As a consequence, the typical
activities of these two phases occur, but the actual processes iterate between domain
and application engineering. Since these changes are based on experiences reported in
recent publications, it seems that the two phases are cross-cutting concerns. They are still
important and helpful to organize platform engineering, but promote-pl is an essential
update to provide an practice-oriented, comprehensive, and contemporary process model.

RO-P2: Promote-pl and Adaptations
While constructing promote-pl, we learned:

• The primary concern of interest in platform engineering changed from domain
and application engineering to adoption and evolution.

• The management process runs in parallel to development processes, but its activi-
ties are less often investigated in research.



6.1. The Promote-pl Process Model 159

• Existing process models required several adaptations to reflect on all adoption
strategies and evolution processes.

• Variant-based evolution using asset or variant integration are the main processes
to evolve a platform.

• Domain and application engineering represent cross-cutting concerns for contem-
porary practices, instead of the primary decomposition.

6.1.4 RO-P3: Contemporary Software-Engineering Practices

Contemporary
practices

While analyzing the publications we display in Table 6.1, we also identified other software-
engineering practices that have been combined with platform engineering. In the following,
we discuss how these practices are related to promote-pl. So, we provide an overview
of contemporary, trending software-engineering practices that are often combined with
platforms to facilitate developers’ activities.

Continuous Software Engineering

Continuous
platform engi-
neering

Continuous software engineering [Bosch, 2014; Fitzgerald and Stol, 2014; Humble and Far-
ley, 2010] aims to improve the integration of different software-engineering phases, leading
to contemporary practices, such as DevOps or continuous integration, deployment, and
testing. The publications we analyzed emphasize that continuous practices are employed for
variability management [Gregg et al., 2017; Pohl et al., 2018], with Berger et al. [2020] also
reporting that their industrial partners demand respective tools and methods. To develop
variant-rich systems continuously, an organization actually requires a configurable platform.
For example, continuous deployment and testing can only be employed if a variant can be au-
tomatically configured, assembled, and tested—otherwise, the organization can only deploy
a single (cloned) variant. Similarly, continuous integration focuses on rapidly re-integrating
changes of different developer teams (e.g., using feature forks), which requires a platform.

Continuous
and promote-pl

In promote-pl, we address continuous software engineering by integrating domain and
application engineering more closely in iterative, round-trip-like processes. So, we resolve
discrepancies that exist between the prevalent re-engineering-based or iterative adoption
processes and continuous software engineering. Moreover, we integrate variant-based
evolution processes, which differ based on the degree of co-evolution between the platform
and its variants (see “release variant” wiht the decision nodes “integrate asset” and “integrate
variant”). Overall, promote-pl emphasizes the close connection of platform engineering and
continuous software engineering— particularly with proactive and incremental adoption as
well as platform evolution and asset integration calling for employing continuous practices
to reduce co-evolution, and thus costs.

Clone Management and Incremental Adoption of Platforms

Clone&own
and promote-pl

Organizations typically rely on clone&own to develop variants [Berger et al., 2013a,
2020; Krüger, 2019b], often based on branching or forking mechanisms of version-control
systems [Dubinsky et al., 2013; Krüger and Berger, 2020b; Stănciulescu et al., 2015; Staples
and Hill, 2004]. To facilitate the co-evolution of variants [Strüber et al., 2019] before
investing into a platform, different frameworks offer clone management to synchronize
variants and keep an overview understanding [Antkiewicz et al., 2014; Montalvillo and Díaz,
2015; Pfofe et al., 2016; Rubin and Chechik, 2013a; Rubin et al., 2012, 2013]. A first step
towards managing clones more systematically is to govern branching and merging practices
by defining explicit rules and models that define when a clone should be created and re-
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integrated [Dubinsky et al., 2013; Staples and Hill, 2004]. Still, the increasing maintenance
overhead of clone& own may require the adoption of a platform at some point. To avoid the
risks of big-bang adoptions that integrate all variants at once (e.g., disrupted development,
costs) [Clements and Krueger, 2002; Hetrick et al., 2006; Krüger et al., 2016a; Schmid
and Verlage, 2002], researchers have proposed incremental adoption strategies to evaluate
the benefits and costs of adopting a platform iteratively [Antkiewicz et al., 2014; Fischer
et al., 2014; Krüger et al., 2017a]. Similarly, a common practice is to directly combine
configurable platforms with clone&own [Berger et al., 2020; Krüger and Berger, 2020b].
Promote-pl incorporates clone& own as well as an incremental adoption process for platform
engineering, and does also allow to combine both within a unified model.

Dynamic Variability and Adaptive Systems

Dynamic vari-
ability and
promote-pl

Late and dynamic binding [Kang et al., 1990; Rosenmüller, 2011] are required to support
adaptive systems, for example, for cloud [Dillon et al., 2010], cyber-physical [Wolf, 2009],
or micrsoervice [Thönes, 2015] systems. These systems must adapt at runtime to react
to resource variations, environmental changes, or the availability of assets. Consequently,
adaptive systems require a platform that uses parametrization to tune specific features.
However, parametrization is not necessarily a variability mechanism to implement a variant-
rich system (i.e., features cannot be enabled or disabled, only tuned), until the adaptive sys-
tem actually requires individual features for specific variants. As a result, adaptive systems
are often adopted incrementally or by variant-based evolution, with several publications
reporting on the consequent platform engineering with dynamic variability [Capilla and
Bosch, 2016; Krüger et al., 2019c; Martinez et al., 2018; Yue et al., 2015]. However, adopting
and evolving such dynamic and adaptive platforms requires improved techniques and meth-
ods [Assunção et al., 2020; Krüger et al., 2017b]. With promote-pl, we account for this rather
incremental adoption strategy, covering that variation points may be iteratively added.

Agile Practices

Agility and
promote-pl

Agile software engineering [Meyer, 2014; Moran, 2015] focuses on small incremental changes,
fast feedback loops, and customer involvement. Moreover, most agile methodologies (e.g.,
SCRUM, XP, FDD) have the notion of features as units of functionality (cf. Section 4.3.1)
and foster automated techniques, which require a configurable platform (as for continuous
software engineering). We identified experiences on agile practices in two publications:
Fogdal et al. [2016] report that platform engineering and agility do not conflict each
other, as long as the developers know that they deliver their assets to a shared platform.
Slightly contradicting this insight, Hayashi et al. [2017] experienced that deriving variants
is not well suited for agile methodologies, because the short development cycles prevent
developers from learning best practices. Nonetheless, agile practices facilitated the evolution
of their platforms. Such experiences suggest that agile practices are important for platform
engineering, which are well supported by promote-pl with its focus on iterative evolution.

Simulation in Testing

Testipng and
promote-pl

Three of the publications we identified [Capilla and Bosch, 2016; Fogdal et al., 2016; Iida
et al., 2016] and experience reports from other organizations [Berger et al., 2020; Lindohf
et al., 2021] mention the use of simulations for testing a platform or its variants. We cover
the relevant activities in promote-pl, but current research in this direction is limited. Namely,
using simulations for testing is different to using sampling techniques to test a set of software
variants, since safety-critical systems (e.g., power plants, cars, planes) require simulations
to also test the interactions between hardware and software. In addition, simulations may
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exhibit other properties (e.g., for data transfers) or additional features (e.g., for monitoring
the simulation), which require simulation-specific assets and variation points [Lindohf et al.,
2021]. Promote-pl involves all relevant activities and can help researchers design supportive
techniques for simulating test environments for platforms.

RO-P3: Contemporary Software-Engineering Practices
We identified five contemporary software-engineering practices that build upon, are
required by, or work well with platform engineering: continuous software engineering,
clone management, adaptive systems, agility, and simulation in testing. Promote-pl
covers all activities required to instantiate these practices for platform engineering,
advancing on existing process models.

6.1.5 Threats to Validity

Threats to
validity

We are not aware of guidelines for constructing a process model. For this reason, we
employed recommendations of similar research methods in a self-defined methodology. So,
our methodology for constructing promote-pl may have introduced threats to its validity.

Construct Validity

Data interpre-
tation

The publications we analyzed involved different terminologies. Moreover, the same activities
have occurred in varying partial orders, which indicates that the constructs and the concepts
they express vary between some publications. Consequently, the partial orders we elicited
may not fully represent the ones intended by the original authors. To mitigate this threat,
we elicited our data from 33 publications, read the description of all activities to avoid
misunderstandings, and reasoned on all decision based on our own knowledge.

Internal Validity

MethodologyOur construction process for promote-pl may have introduced threats. For instance, we may
have disregarded relevant publications, overlooked data, or not derived the most appropriate
process model. We limited such threats by adapting recommendations for constructing
process theory [Ralph, 2019], which suggest that secondary studies (e.g., a systematic
literature review) are a reliable method to limit potential biases introduced by personal
knowledge. Also, we verified promote-pl during an interview to ensure that our model is
reasonable and comprehensible.

External Validity

General appli-
cability

Our goal was not to construct a universal process theory, which is hardly possible. We aimed
to capture contemporary platform-engineering practices and provide a model to describe
and connect those practices. As a result, different properties of platform-engineering
processes may limit the applicability of promote-pl in an organization, for instance, because
of varying technologies (e.g., for feature traceability) or the involved developers (e.g., their
knowledge). We aimed to mitigate such threats by synthesizing data from 33 publications
and considering our own experiences from industrial collaborations. So, we argue that our
abstraction provides a good understanding for any researcher or practitioner, but requires
some adaptations to an organization’s properties.

Conclusion Validity

Data and
promote-pl

Other researchers may construct a different process model depending on the publications
they select, their knowledge, or the construction process they employ. We mitigated such
threats by explaining our methodology in detail, reasoning about our design decisions, and
documenting all publications as well as activities we considered (cf. Table 6.1). Based on
this information, other researchers can verify and replicate promote-pl.
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6.2 Feature-Modeling Principles

Studying fea-
ture-modeling

principles

As we can see in promote-pl (cf. Figure 6.3), a variability model (cf. Section 2.3) represents
a key artifact for adopting a platform. For instance, a variability model helps to document
the domain, scope the platform, manage features, configure variants, or perform automated
analyses of the platform [Benavides and Galindo, 2018; Benavides et al., 2010]. As a conse-
quence, a variability model is also highly relevant for all of our previous research objectives,
since it supports (1) economic decisions by defining which features to (re-)engineer (RO-E);
(2) developers’ knowledge by documenting features and their dependencies (RO-K); and
(3) feature traceability by (ideally) mapping its features to other artifacts (RO-T). Note
that we focus on feature models (and feature diagrams as their visual representation), since
they are the most commonly used form of variability models [Berger et al., 2013a; Czarnecki
et al., 2012; Kang et al., 1990; Schobbens et al., 2006]. Interestingly, despite around three
decades of research, there is little knowledge on how to construct feature models. In fact,
only Lee et al. [2002] provide some experience-based guidelines for feature modeling, which,
however, are almost two decades old. A systematically consolidated set of best practices
for feature modeling (i.e., principles) would help practitioners to construct feature models,
as well as researchers to improve tools and processes.

Section con-
tributions

In this section, we [Nešić et al., 2019] present 34 feature-modeling principles that we
synthesized from a systematic literature review of 31 publications and an interview survey
with ten feature-modeling experts (we display an overview of our methodology in Figure 6.4).
In detail, we tackle three three sub-objectives of RO-P:

RO-P4 Define feature-modeling phases to structure principles.

Based on our data, we derived eight phases for categorizing feature-modeling
principles. We arranged these phases in the most reasonable order of execution
to discuss our actual principles in a structured way. The phases help researchers
and practitioners obtain an overview understanding of the principles and their
execution in practice.

RO-P5 Synthesize evidence-based feature-modeling principles.

The core contribution of this section are the 34 feature-modeling principles. Note
that the principles vary in their level of detail and their scope (i.e., some are
applicable not only to feature modeling), since we report all that were stated in our
data— and thus are apparently important. So, for practitioners and researchers,
these principles define best practices for constructing feature models, highlight
pitfalls, and indicate future research.

RO-P6 Discuss the properties and implications of the elicited principles.

In the end, we discuss the different properties and implications of the feature-
modeling principles. For instance, our sources highlight again that re-engineering
cloned variants seems to be the most common adoption strategy for a platform,
and that different trade-offs between principles exist. Discussing such issues helps
practitioners decide which principles to employ in what context, and researchers
to identify potential for improving processes and techniques.

We provide an open-access repository with our data (e.g., identified publications, relevant
quotes).25 In Section 6.2.1 and Section 6.2.2, we report the details of our systematic
literature review and interview survey, respectively. Then, we describe our methodology to
synthesize principles from both sources in Section 6.2.3. We describe the feature-modeling
25https://bitbucket.org/easelab/featuremodelingprinciples

https://bitbucket.org/easelab/featuremodelingprinciples
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Figure 6.4: Overview of our methodology for eliciting feature-modeling principles.

phases in Section 6.2.4 and the corresponding principles in Section 6.2.5. Finally, we discuss
important properties of the principles in Section 6.2.6 to tackle our last sub-objective.

6.2.1 Eliciting Data with a Systematic Literature Review

Systematic lit-
erature review

We conducted a systematic literature review to elicit feature-modeling principles from exist-
ing publications (cf. Figure 6.4). Note that we employed a more light-weight methodology
regarding two steps: First, we omitted the quality assessment, since it is less relevant for
structuring previous experiences [Kitchenham et al., 2015], and because the publications we
identified followed no common methodology (e.g., experience reports, surveys, case studies).
Second, we did not compute the typical statistics on the selected publications, since we
were interested in the qualitative data in the publications and not their metadata (identical
to our other systematic literature reviews in this dissertation).

Search Strategy

Manual searchWe started our systematic literature review with a manual search of relevant publication
venues through DBLP. Namely, we analyzed the last five instances (in June 2018) of
industry and research tracks of ASE, ESEC/FSE, FOSD, ICSE, ICSME, ICSR, MODELS,
SANER, SPLC, and VaMoS. As we display in Figure 6.4, we analyzed 2,484 publications
in this step. We read titles, abstracts, and the full texts if needed to identify six relevant
publications (asterisked in Table 6.2). From this initial set of publications, we started a
first round of backwards snowballing [Wohlin, 2014] without a defined number of iterations
(i.e., if we identified another relevant publication, we employed backwards snowballing on
that publication, too). Again, we read titles, abstracts, and full texts until we covered all
publications referenced in the ones we deemed relevant. Overall, we covered 654 referenced
publications and identified 20 relevant ones.

Automated
search

To improve the confidence in our sample of publications, we conducted an automated search
using the ACM Guide to Computing Literature and the following search string:

(+Experience Report +(Variability OR Feature) +(Specification OR Model))

We sorted the returned publications by relevance (other criteria are less feasible, e.g., the
publication date or number of citations) and analyzed the first 100 entries. By iterating
though titles, abstracts, and full texts if necessary, we identified four relevant publications
(marked with two asterisks in Table 6.2). During a second round of backwards snowballing
on these publications (covering 105 references), we identified one more publication that was
relevant for our study.
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Selection Criteria

Inclusion
criteria

We employed the following inclusion criteria (IC) to select relevant publications:

IC1 The publication is written in English.

IC2 The publication describes one of the following:

IC2-1 practitioners’ experiences of applying feature modeling;

IC2-2 practices identified by researchers via the analysis of variant-rich systems; or

IC2-3 experiences of tool-vendors and educators while training feature modeling.

IC3 The paper is peer reviewed or a technical report.

We intentionally included technical reports, since they often provide detailed insights into
industrial practices that are highly valuable for our study.

Data Extraction

Data ex-
traction

From each publication, we extracted standard bibliographic data as well as all details on
reported feature-modeling practices. We focused on analyzing experiences and lessons
learned to understand what practices were helpful for an organization for what reason.
This extraction was performed by two researchers, with two other researchers confirming
whether the data was understandable, relevant, and sufficiently detailed.

Elicited Data

Selected pub-
lications

In Table 6.2, we provide an overview of the 31 publications we included into our systematic
literature review. Not surprisingly, most of the publications are industrial case studies
(14) and experience reports (10). Additionally, we included four open-source case studies,
one questionnaire, one interview survey, and one literature review. The publications cover
more than 20 years, have been published at different venues, refer to more than ten unique
notations for feature modeling, and include 14 domains. Our data also aligns to the
finding that re-engineering a variant-rich system is the most common adoption strategy (cf.
Chapter 1), with 18 publications reporting on a re-engineering, one on a proactive, two on
multiple, and one on a teaching context. In the last column, we show how many of our
principles are based upon the practices reported in a publication.

6.2.2 Eliciting Data with an Interview Survey

Interview
survey desing

To complement our systematic literature review, we conducted ten semi-structured inter-
views with practitioners and tool-vendors of nine organizations. We designed and conducted
the interviews independently from our systematic literature review to avoid biases towards
certain practices. While one interview was rather short (i.e., 25 minutes), the others took
around one hour on average. If an interviewee applied feature modeling in their organization,
we started with eliciting the context of the corresponding projects, involving properties,
such as the domain, team structure, and variability mechanism. With tool-vendors, we
aimed to understand the typical context in which their customers operate. Afterwards, we
asked our interviewees what practices they employed for constructing and evolving feature
models, for example, considering responsibilities, use cases, and model properties (e.g.,
size, dependencies). To conclude an interview, we asked what benefits and challenges are
connected to feature modeling, aiming to understand which practices were successful. We
conducted the interviews in person and via phone or Skype, recorded them, and created
transcripts. In Table 6.3, we provide a brief overview of our interviewees and their platforms.
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Table 6.2: Overview of the 31 publications on feature-modeling principles (fmp). One and
two asterisks define the publications that served as starting sets for our first and second
round of snowballing, respectively.

id reference method notation/tool domain context # fmp

P1 Cohen et al. [1992] ICS FODA defense re-engineering 10
P2 Griss et al. [1998] ER/MD FODA, UML telecommunications n/a 6
P3 Kang et al. [1998] ER/MD FODA/FORM multiple n/a 6
P4 Kang et al. [1999] ICS/MD FODA/FORM telecommunications n/a 8
P5 Hein et al. [2000] ICS FODA, UML automotive re-engineering 22
P6 Lee et al. [2000] ICS feature model elevators re-engineering 2
P7 Kang et al. [2002] ER FODA/FORM n/a n/a 4
P8 Lee et al. [2002] ER FODA n/a n/a 13
P9 Kang et al. [2003] ICS/MD FODA/FORM inventory system re-engineering 7
P10 Sinnema et al. [2004] ICS COVAMOF multiple re-engineering 3
P11 Gillan et al. [2007] ER n/a telecommunications re-engineering 2
P12 Hubaux et al. [2008] OSCS OmniGraffle e-government re-engineering 4
P13 Schwanninger et al. [2009] ICS Pure::variants industrial automation re-engineering 8
P14 Berger et al. [2010] OSCS Kconfig/CDL Linux/eCos n/a 4
P15 Dhungana et al. [2010] ICS decision oriented industrial automation re-engineering 5
P16 Hubaux et al. [2010] LR feature diagrams n/a n/a 4
P17 Iwasaki et al. [2010] ER FORM network equipment re-engineering 3
P18** Boutkova [2011] ER Pure::variants automotive re-engineering 6
P19** Hofman et al. [2012] ER FODA UML profile healthcare re-engineering 3
P20 Berger et al. [2013b] OSCS Kconfig/CDL multiple n/a 4
P21 Berger et al. [2013a] Q multiple multiple multiple 5
P22 Manz et al. [2013] ICS feature model automotive re-engineering 4
P23 Berger et al. [2014b] OSCS Kconfig/CDL systems software proactive 4
P24* Berger et al. [2014a] IS multiple multiple multiple 5
P25** Derakhshanmanesh et al. [2014] ER Pure::variants automotive re-engineering 5
P26* Chavarriaga et al. [2015] ICS SPLOT electrical transformers re-engineering 10
P27* Gaeta and Czarnecki [2015] ICS SysML avionics re-engineering 3
P28* Lettner et al. [2015] ICS FeatureIDE industrial automation re-engineering 15
P29* Fogdal et al. [2016] ICS Pure::variants industrial automation re-engineering 5
P30** Nakanishi et al. [2018] ER FODA/FORM n/a teaching SPL 1
P31* Pohl et al. [2018] ICS Pure::variants automotive n/a 5

ER: Experience Report – ICS: Industrial Case Study – IS: Interview Survey – LR: Literature Review – MD: Method Definition
OSCS: Open-Source Case Study – Q: Questionnaire

Interviewees

Interviewees’
experiencees
and platforms

Our interviewees had multiple years of experience regarding feature modeling in practice, ei-
ther from their own organization or as consultants. I1–3 have different roles in organizations
that develop feature-modeling and platform-engineering tools. They have decades of experi-
ence from consulting organizations that employ platform engineering, mostly for embedded
systems. I4 is a software architect for a large car manufacturer (≤99,000 employees, >400,000
cars per year) and is involved in the variability management of their three major platforms.
I5 is also a software architect working on the variability management for a large (≤25,000
employees) component vendor for industrial and end-user applications with an extensive set
of variants that originated from clone& own. I6 works as department lead (acting as architect
and developer) for a small (≤50 employees) consulting organization that provides customized
e-commerce applications, and was involved in developing a platform with 400 to 500 config-
urable variants. I7 is a consultant who has experiences of using feature models with two differ-
ent customers. I8 is a team leader in a migration project for staff and course management. I9
is a solution architect for a large international organization (≤140,000 employees) who works
on a platform with around 15 variants for industrial automation. I10 is a team leader for a
large automotive organization (≤30,000 employees), and is responsible for managing the con-
figurable software for an embedded device that exhibits an exponential number of variants.

Interviewees’ Platforms

Platform prop-
erties

The platforms of our interviewees who employ feature modeling in their organization have
varying properties. I4’s platform comprises a number of hierarchically structured feature
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Table 6.3: Overview of our ten interviews on feature-modeling principles.

id role domain # features # principles

I1 consultant (tool vendor) n/a 14
I2 consultant (tool vendor) n/a 10
I3 consultant (tool vendor) n/a 6
I4 architect automotive ≥1000 6
I5 architect industrial automation ≤1000 6
I6 architect/developer web shops ≤40 5
I7 consultant (various) n/a 4
I8 team leader e-learning ≥1000 11
I9 architect industrial automation ≤100 9
I10 team leader automotive n/a 5

models that comprise hundreds (high levels in the hierarchy) to thousands (lower levels)
of features. Moreover, the platform relies on various variability mechanisms to account
for different suppliers. I5’s platform binds features statically at build time (e.g., using
the C preprocessor) and has a single, moderately sized feature model. I6’s platform uses
a single feature model and allows to configure features by using a self-developed Java
preprocessor. I8’s platform involves runtime binding and one large feature model with
few Boolean features. I9’s platform involves a configurable build system to configure C++
components and one moderately sized feature model. I10’s platform comprises various
feature models to manage components as well as the versions and fine-grained features of
these components. Moreover, the feature models manage configuration parameters for each
feature, and the platform uses a configuration file to self-adapt while booting.

6.2.3 Synthesizing Principles

Practices and
principles

We read all publications and interview transcripts to identify feature-modeling practices,
triangulated these, and synthesized them to principles. For this purpose, a practice refers to
a concretely stated way of how something was or should be done. A principle is a generalized
practice that (1) is concerned with an established feature-modeling concept; (2) is domain in-
dependent; and (3) is relevant in the context of contemporary software-engineering practices.

Synthesis We extracted almost 190 instances of feature-modeling practices, which we documented
in (typically) one to three sentences and with a link to the source. Next, we iteratively
joined redundant practices, while keeping the different modeling contexts in mind (e.g., the
employed modeling process, properties of the model and project). Practices that stemmed
from different contexts were strong candidates for feature-modeling principles, since they
seem to be domain independent and up-to-date. If we identified contradicting practices, we
analyzed their contexts to decide whether they were depending on specific properties. For
example, feature models for systems software regularly include cross-tree constraints, whereas
most interviewees recommended to avoid such constraints. We analyzed this contradiction
in more detail and found that the decision for or against modeling cross-tree constraints
actually depends on the user who configures the feature model. Namely, if the feature model
is intended for end users (e.g., online configurators [Thüm et al., 2018]), modeling cross-tree
constraints ensures that the end users can derive valid configurations. In contrast, modeling
cross-tree constraints may not pay off if domain experts of the organization configure variants,
since they typically have the required knowledge (note that it may still be beneficial, as
we discussed in Chapter 4). We continued with our iterative process until all four involved
researchers reached consensus on the set of feature-modeling phases and principles. Moreover,
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our interviewees as well as additional collaborators from industry reviewed the principles
and considered them valuable, improving our confidence in our results.

6.2.4 RO-P4: Feature-Modeling Phases

Defining
phases

In the beginning, we followed the categorization of Lee et al. [2002] to structure our
principles. However, with an increasing and more diverse set of principles, we adapted this
categorization. Finally, we assigned our principles to eight phases that we put into the
most reasonable order for employing them in practice, but this order does not represent an
actual modeling process. For instance, some principles are alternatives to each other, are
optional, or have variations in themselves depending on the organization’s context.

Phases of fea-
ture modeling

We defined the following eight phases to organize our principles:

Planning and Preparation (PP) involves principles that help an organization prepare
the feature modeling itself, for instance, by defining the purpose of the model and
the process for constructing it.

Training (T) involves principles for educating the involved stakeholders on how to con-
struct a feature model (note that we identified training as an important cost factor in
Chapter 3 and incorporated it as a management activity for promote-pl in Section 6.1).

Information Sources (IS) involves one principle for eliciting the information required
to construct a feature model, which is directly related to Section 4.3.

Model Organization (MO) involves principles on how to design and structure a feature
model, for instance, in terms of depths or decomposition.

Modeling (M) involves principles for constructing the feature model, and thus many are
directly connected to promote-pl (cf. Section 6.1.3).

Dependencies (D) involves principles for handling dependencies between features, for
instance, cross-tree constraints.

Quality Assurance (QA) involves principles for assessing that the constructed feature
model actually covers the intended use case and platform.

Model Maintenance and Evolution (MME) involves principles that help an organi-
zation maintain a feature model, which is strongly related to, and impacted by, several
principles of the previous phases.

Note that we plan to derive an actual feature-modeling process that is also connceted to
promote-pl in our future work.

Phases with
fewer sources

Interestingly, we identified fewer sources for supporting the principles related to planning and
preparation as well as training compared to the other phases. Mainly, the sources supporting
these principles are industrial case studies or our interviews with tool-vendors. A common-
ality is that these sources report experiences on an external expert guiding an organization
while adopting feature modeling or platform engineering. So, while feature modeling is con-
sidered to be a simple and intuitive notation, the training seems to still require efforts. Such
training is also key to define the purpose and scope of the feature model (explained shortly).

RO-P4: Feature-Modeling Phases
While organizing our principles, we identified a set of eight intuitive phases for struc-
turing feature-modeling processes.
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6.2.5 RO-P5: Principles of Feature Modeling

In this section, we detail our 34 feature-modeling principles, organized according to the
phases we identified. A principle captures what should be done during feature modeling,
or how it should be done. We discuss why each principle is relevant and how it is related
to other principles, for which we use acronyms. Furthermore, we display identifiers to the
publications (cf. Table 6.2) and interviews (cf. Table 6.3) from which we synthesized a
principle in parentheses.

Planning and Preparation

PP1:Identifying
stakeholders

Identify relevant stakeholders (P1). The most important stakeholders to start feature
modeling are domain experts who have extensive knowledge (cf. Chapter 4) about the
platform an organization wants to model. Such stakeholders can have diverse roles (e.g.,
architects, project managers, requirements engineers), depending on the organization’s
processes and domain. Identifying such stakeholders is a prerequisite for acquiring domain
knowledge (IS1) and conducting workshops (M1). A second group of stakeholders involves
the modelers who will construct and maintain the feature model. Typically, such modelers
are software and system architects or product managers, whose usual work involves con-
structing abstract system models— and who can then be trained in feature modeling (T1).
Lastly, the users of the feature model are an important group of stakeholders. This group
can involve various roles (e.g., developers, product managers, customers), depending on the
purpose the feature model serves (PP3). Defining the users of the feature model directly
impacts model decomposition (PP4), feature identification (M6), and model views (M9).

PP2:Unifying
vocabulary

In immature or heterogeneous domains, unify the domain terminology (P5, P6, P8, P9,
P18). To improve model comprehension and facilitate the construction process, it helps to
define a unified terminology using descriptive terms (e.g., to name features). For instance,
Lee et al. [2002] recommend to,

“in an immature or emerging domain, standardize domain terminology and build a
domain dictionary. If not done, different perceptions of domain concepts could cause
confusion among participants in modeling activities and lead to time-consuming
discussions.”

Similarly, Boutkova [2011] state that

“the first step during the introduction of the feature-based variability modeling was
the definition [...] [of ] all relevant terms [...] [as a] precondition for the successful
collective work.”

PP3:Defining
purpose

Define the purpose of the feature model (P12, P25, P27, P28, P31). A feature model can
serve mainly two purposes. First, a feature model may support the design and management
of a platform, for example, by providing an explicit representation of the domain or as
input for the platform scoping. Second, a feature model may support the actual platform
development, for example, to coordinate feature teams or as input for configurators. As an
example for combining both purposes, Lettner et al. [2015] report a case study in which
three individual feature models exist and are linked to each other to model the problem (i.e.,
the domain), solution (i.e., the platform), and configuration (i.e., partial configurations)
space. Hubaux et al. [2010] present another example from an open-source system that
relies on a feature model for configuring only. However, Hubaux et al. note that it was
unclear whether the model documented runtime or design-time variability. So, if different
purposes shall be addressed, it seems better to rely on multiple, linked feature models or to
define model views (M9). Defining a distinct purpose for a feature model avoids costs, for
instance, by reducing comprehension problems and discussions.
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PP4: Defining de-
composition
criteria

Define criteria for feature to sub-feature decomposition (P5, P8, P12, I4, I8). It is not
well-defined what the semantics of a feature-model hierarchy (i.e., parent-child relations) are
besides configuration constraints [Czarnecki et al., 2006, 2012]. For example, the hierarchy
may represent part-of relations, feature responsibilities, or a functional decomposition, with
our sources (P8, I4, I8) suggesting that the latter is most common (M6). To construct a
consistent feature model that focuses on a single purpose (PP3), an organization should
clearly define when a feature is split into sub-features. Hein et al. [2000] state that a good
feature hierarchy is indicated by few cross-tree constraints (MO4). Still, as confirmed by
Hubaux et al. [2008], how to construct the actual feature-model hierarchy is usually far
form obvious, and often requires prototyping.

PP5: Planning the
process

Plan feature modeling as an iterative process (P8, P26, P28). Considering our previous
insights on (re-)engineering processes for variant-rich systems (cf. Section 3.3, Section 6.1),
it is not surprising that feature modeling should alternate between modeling and domain
scoping. An iterative process (1) facilitates the safe construction of a feature model by
employing smaller changes; and (2) gradually improves the modelers’ expertise on feature
modeling as well as the domain. For instance, Chavarriaga et al. [2015] report that an
iterative process allows to

“(1) train the domain experts using simpler models, (2) practice with them how
to introduce new features and constraints, and (3) define practices to review and
debug the models continuously.”

PP6: Assigning
modelers

Keep the number of modelers low (P24, P26, P29, I1, I9, I10). Our data indicates
that the number of stakeholders involved in the actual feature modeling should be low,
potentially only a single modeler. In fact, in most cases only a few stakeholders have the
overview domain-knowledge required to create the feature model. For example, I1 explicitly
mentioned that

“it’s usually the individual subsystem leaders or their architects or the lead designers
in their subsystems that can capture the feature models.”

Similarly, I9 stated that only project managers and architects participate in the feature-
modeling process.

Training

T1: Familiarizing
with platform
engineering

Familiarize with the basics of product-line engineering (P17, P29, P31, I1). The
stakeholders who participate in the feature modeling should be educated in basic concepts
of platform engineering (e.g., variability mechanisms, variability modeling, configuring),
and particularly the tools and notations used for modeling. Obtaining an intuition about
the relations between daily programming concepts (e.g., classes, data types), feature types,
and graphical representations in the modeling tools facilitates the construction process. For
example, I1 mentioned that it helps to explain that a Boolean feature corresponds to a single
checkbox (e.g., in a configurator), whereas enum features correspond to multiple checkboxes.

T2: Training on
small system

Select a small (sub-)system to be modeled for training (P8). According to Lee et al.
[2002], the modelers should first work on a smaller example system. Moreover, that system
should exhibit mainly commonality and no fixed deadline for releasing it into production.
Thus, by allowing for arbitrary fast feedback (PP5), such a methodology facilitates training
activities and can lead to a faster acceptance.

T3: Conducting a
pilot

Conduct a pilot project (P17, I1). Ideally, feature-modeling training (after performing T1
and T2) is conducted through a guided pilot project over several days (e.g., I1 recommended
three-day workshops). For re-engineering projects in particular, I1 reported that it is nec-
essary to explain to stakeholders (typically developers) how to abstract differences between
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variants’ implementation into domain concepts (i.e., features). Developers usually refer to
specific implementation details, which can be abstracted by reasoning on the differences
multiple times (M3), leading to more and more abstract descriptions. I1 mentioned this
as a key experience:

“every time they say something you say ‘why’, and now kind of abstract up one
level you go why, and you know, after that 3 or 4 whys they will probably get to
the essential feature.”

Our data suggests that inspecting 20-50 configuration options, as well as identifying and
modeling the corresponding features is a feasible target for a three-day workshop. The
results of the pilot should be verified by configuring the obtained feature model (QA2).

Information Sources

IS1:Eliciting in-
formation

Rely on domain knowledge and existing artifacts to construct the feature model (P1–5,
P15, P18, P22, P26, P28, P29, I1–3, I9, I10). From our data, we identified two information
sources to support feature modeling that are directly connected to our findings in Chapter 4.
First, domain experts (PP1) can provide their knowledge about the domain, existing
variants, and customer demands. Such information is typically elicited and documented
during workshops (M1). Second, existing artifacts (i.e., in re-engineering projects) can
serve as information sources (cf. Section 4.3) to identify features and their dependencies.
Such information is usually elicited by comparing commonalities and differences between
variants (M2, M3). I1 explains that the typical process for identifying and location features
is similar to the ones we performed (cf. Section 3.3):

“we look at source code clones/branches/versions to get the product differences
(e.g., by looking at ifdef variables), and identify and extract features from these
differences manually.”

Model Organization

MO1:Limiting
depth of the

hierarchy

The depth of the feature-model hierarchy should not exceed eight levels (P14, P20,
P24, P30, I1–5, I8, I9). Except for Nakanishi et al. [2018], no experience report mentions the
depth of the feature-model hierarchy explicitly. However, surveys, open-source case studies,
and most of our interviewees agree that the hierarchy usually has a depth between three
and six levels. For instance, I4 reported that

“at most I’ve seen three levels deep”

and I1 stated:

“We usually don’t see them going more than 3 levels deep.”

Similarly, I9 described that their feature-hierarchy

“is more spread than deep I would say; it is just the way this model was evolving.”

Even the Linux kernel reaches a maximum depth of eight levels [Berger et al., 2014b], high-
lighting that modelers avoid deep hierarchies to evade large sub-trees that challenge compre-
hension. One way to solve deep hierarchies it to split feature models into sub-models (MO3),

MO2:Abstract-
ing higher-

level features

Features at higher levels in the hierarchy should be more abstract (P1, P3, P8, P9, P13,
P14, P18, P20, P24, P25, I8). Our data shows that features that are higher in the feature-
model hierarchy are also more visible to customers and represent more abstract domain
concepts. In the middle levels, features typically represent a functional decomposition
until they capture technical details (e.g., hardware, libraries) in the bottom level (PP4).
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Kang et al. [1998] distinguish between (highest to lowest) capability, operating-environment,
domain-technology, and implementation-technique features, whereas Griss et al. [1998] follow
the RSEB model [Griss, 1997], distinguishing architectural and implementation features.

MO3: Splitting large
features

Split large models (P1, P5, P12, P13, P15, P18, P19, P22, P25, P26, P28, P31, I1, I2,
I8) and facilitate consistency with interface models (P5, P19). Many of our sources agree
that large feature models (i.e., thousands of features) should be split into smaller models..
For instance, in compliance with MO2, features that represent user-visible concepts should
be in a different model than those that represent implementation details. Otherwise, the
increasing size of a feature model can become a problem, as Dhungana et al. [2010] report:

“our first brute-force approach was to put all model elements into one single model.
This did not scale [...]. It also became apparent [...] that working with a single
variability model is inadequate to support evolution in the multi-team development.”

Unfortunately, splitting feature models poses problems regarding consistency maintenance.
One interesting recommendation to facilitate maintenance is to extract features that are
related to inter-model dependencies into a separate feature model, a so-called interface
feature model [Hein et al., 2000] or feature dependency diagram [Hofman et al., 2012].
Even if a single feature model is envisioned, it can be helpful to construct smaller ones for
different stakeholders and merge these models later. Moreover, the smaller feature models
can serve as prototypes that are iteratively refined (PP5).

MO4: Avoiding cross-
tree constraints

Avoid complex cross-tree constraints (P11, P19, P23, P24, I2–7). Modelers can use
cross-tree constraints to define dependencies between sub-trees of a feature model. Still,
complex constraints (i.e., arbitrary propositional formulas) challenge the comprehension,
evolution, and maintenance of the feature model— and potentially the comprehensibility of
configuration errors. For such reasons, almost all of our interviewees stated to avoid cross-
tree constraints or rely only on simple ones, such as excludes, requires, and conflicts. If
simplifications are not possible, an organization may capture complex constraints in the
mapping between features and assets using presence conditions [Berger et al., 2014a]. One
interesting practice reported by Hofman et al. [2012] is to highlight or tag features that are
involved in cross-tree constraints to raise stakeholders’ awareness.

MO5: Organizing
feature groups

Maximize cohesion and minimize coupling with feature groups (P3, P4, P14, P26,
P28, I6). Our data implies that feature groups should involve related functionalities, while
abstract features help structure the feature model. As a general principle, a high cohesion
between features in a group and a low coupling to features of other groups (in terms of
cross-tree constraints) imply suitable grouping. In this sense, Kang et al. [1998, 1999] state
that high-level (in the feature hierarchy) alternative-groups imply limited reuse, while high-
level and-groups and low-level or-groups imply high reuse.

Modeling

M1: Conducting
workshops

Use workshops to extract domain knowledge (P8, P15, I1, I3, I9). Five of our sources
report that workshops are the most efficient way to initiate feature modeling. For this
purpose, stakeholders with detailed domain and system knowledge (PP1) model different
variants based on their knowledge. The workshops should then be used to identify features
by discussing which differences between variants exist (M2) for what reasons.

M2: Focusing on
differences first

Focus first on identifying features that distinguish variants (P8, P9, P15, P18, I1, I2).
Six of our sources report that it is harder for most stakeholders to describe commonalities
compared to features that are different between variants. For instance, Dhungana et al.
[2010] explicitly sate:
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“The variability of the system was therefore elicited in two ways: moderated work-
shops with engineers [...] to identify major differences and [...] automated tools to
understand the technical variability at the level of components by parsing existing
configuration files.”

Moreover, Lee et al. [2002] explain:

“Products in the same product line share a high level of commonality. Hence, the
commonality space would be larger to work with than the difference space.”

M3:Using bottom-
up modeling

Apply bottom-up modeling to identify differences between artifacts (P8, P15, P18, I1–3).
In the context of re-engineering projects, various artifacts (IS1) can serve as information
sources and should be analyzed for differences. Three of our interviewees stated that source
code is typically analyzed first, allowing for automation through diff tools (P15, I2). Still, the
identified differences are usually inspected manually, for instance, during workshops (M1).

M4:Using top-
down modeling

Apply top-down modeling to identify differences in the domain (P5, P24, I2). In contrast
to bottom-up modeling, top-down modeling focuses on involving project managers, domain
experts, and system requirements in workshops (M1). I2 explained:

“Top-down is successful with domain experts, more abstract features.”

So, features that are identified during top-down modeling are often common or abstract
features of the variant-rich system (MO5).

M5:Combining
strategies

Use a combination of bottom-up and top-down modeling (P13, P24, I2). Since bottom-
up and top-down modeling may yield different results (M2), our sources highly recommend
to employ combinations of both strategies (cf. Section 3.3, Section 4.3). Such a combination
improves completeness and serves as a control mechanism by eliciting features from a high-
level (top-down) and low-level (bottom-up) perspective. For example, Schwanninger et al.
[2009] report that

“the feature model was built in a top-down and a bottom-up manner. [...] The user
visible features became top level features, while internal features either ended up
in the lower level of the feature model or in separate, more technical sub-domain
feature models.”

M6:Defining
features

A feature typically represents a distinctive, functional abstraction (P5, P8, P9, P21,
I1, I3, I6, I7, I9). Even though some organizations use feature models for non-functional
properties (e.g., performance, security), most sources agree that features represent functional
concepts. Concretely, I3 explained that a CPU type does not represent a feature (i.e., it is
no user-visible functionality), and thus should be defined as a feature attribute instead. So,
features should represent user-visible functionalities of the variant-rich system, typically
abstracting a number of functional requirements.

M7:Using spuri-
ous features

If needed, introduce spurious features (P12). From the open-source case study of
Hubaux et al. [2008], we identified the interesting idea that a

“spurious feature represents a set of features [...] that are actually not offered by
current software assets, which is arguably paradoxical when modeling the provided
software variability.”

As a concrete example, consider an application that falls back to a default language if the
language selected by its user is not supported. A spurious feature could cover all languages
that are not yet provided in the application. So, in contrast to most features, this feature
would cover non-existing functionality.

M8:Defining de-
fault values

Define default feature values (P14, P20, I8). Three of our sources recommend to define
default values for features if a feature model spans a very large configuration space. In such
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cases, configuring a variant is actually a reconfiguration problem. Interestingly, all three
sources relied on tools that also allowed visibility conditions [Berger et al., 2013b], meaning
that the default value can only be modified if that condition is satisfied.

M9: Defining viewsDefine feature-model views (P22, I8). Some parts of a feature model may be irrelevant
for certain stakeholders or tasks. Feature-model views allow to customize what a stakeholder
sees, and thus help unclutter the visual representation. According to Manz et al. [2013],

“not all features and associated artifacts are relevant for an individual engineer
[...] we realized user-specific views by development phase and abstraction specific
feature models within a hierarchical feature model.”

The “abstraction specific feature models” are partial configurations of a model that another
model can refer to. Similarly, I1 reported on profiles, which use the same technique to
expose a set of features in one model to a different model.

M10: Using Boolean
features

Prefer Boolean type features for comprehension (P14, P20, P26, P27, I2, I5–7, I9). Most
of our interviewees agreed that features are primarily of the Boolean type. For instance, I7
stated the

“nice way of organizing configuration switches”

with Boolean features as the primary strength of feature models. As a notable exception, I8
reported mostly on non-Boolean features, which was caused by integrating application-logic
specifications into the feature model. So, some domains, for example, operations systems,
have a higher number of non-Boolean features [Berger et al., 2010, 2013b].

M11: DocumentingDocument the features and the obtained feature model (P1, P12, P25, I8–10). Even
though a feature model represents documentation on its own, several sources stressed that
the model must also be documented. For example, I8 reported:

“we’ve put a lot of effort into extensively documenting all options and immediately
document in the editor.”

Moreover, any new terms relating to the feature model (i.e., features, constraints) should be
unified and documented (PP2, PP5) In contrast, I10 reported that organizations often use
the implementation of variants as documentation, which challenges re-engineering projects.

Dependencies

D1: Considering
experts

If the models are configured by (company) experts, avoid feature-dependency modeling
(P24, I1, I2, I5–8). Most of our interviewees agreed that identifying cross-tree constraints
is expensive and can complicate the maintenance of a feature model. Additionally, our
interviewees agreed that modelers who configure the feature model usually know undeclared
dependencies, for instance, I6 stated:

“There were some cross-tree dependencies [...], but they weren’t in the model (the
one configuring the model needed to know them).”

So, feature models for internal use typically exhibit few, simple cross-tree constraints (MO4),
as confirmed by I1:

“Very few cross-tree constraints [...] typically requires and conflicts.”

Interestingly, I3 estimated that circa 50% of all features would be involved in explicit
dependencies— highlighting the investments (cf. Chapter 3) that would be needed to
document and trace such knowledge (cf. Chapter 4, Chapter 5). In practice, missing
explicit dependencies seem to be replaced by domain-specific semantics, for instance, new
features may be recommended by others. Note that our sources for this principle reflect on
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small- to medium-sized feature models (tens to hundreds of features) or small configuration
spaces (tens of variants).

D2:Consider-
ing users

If the main users of a feature model are end-users, perform feature-dependency modeling
(P10, P14, P28, I4). Depending on the purpose of a feature model (PP3), we found recommen-
dations that oppose the previous principle (D1). Namely, if a feature model is configured
by end-users (e.g., customers) or exhibits thousands of features, our sources recommend
to explicitly model cross-tree constraints. Thus, an organization can ensure that defined
configurations are valid by relying on choice propagation and conflict resolution [Benavides
et al., 2010; Berger et al., 2020; Thüm et al., 2018].

Quality Assurance

QA1:Validating
feature models

Validate the obtained feature model in workshops with domain experts (P8, P26, P28,
I1). As for the construction (M1), several sources recommend to conduct workshops with
domain experts to review the feature model. Lettner et al. [2015] suggest to involve domain
experts with different roles, since

“they can focus on their area of expertise, i.e., product management, architecture,
or product configuration aspects. Our results further show that detailed domain
expertise is required for defining the feature models [...].”

During the workshops, I1 emphasized to discuss

“what are the right names for the features, what are the right ways of structuring
the features, try the process of first creating the new product [configuration] that
never existed before [...].”

Finally, Lee et al. [2002] recommend to involve domain experts who did not participate in
the construction process to validate whether the feature model can be used intuitively.

QA2:Deriving con-
figurations

Use the obtained feature model to derive configurations (P1, P3–5, I1, I8). Expectedly,
a feature model should enable an organization to define configurations for existing variants.
Moreover, our data indicates that deriving configurations for new variants and verifying
whether that variant is meaningful, serves as a good indicator that the feature model reflects
its domain. If it is not possible to derive any novel configurations, re-engineering a platform
may not be a feasible investment (cf. Section 3.3). Finally, I8 revealed that they

“[...] have a workshop with customer[s] where we discuss how things need to be
configured in detail to adhere to their domains.”

QA3:Using regres-
sion testing

Use regression tests to ensure that changes to the feature model preserve previous
configurations (I9, I10). Two of our interviewees stated that they relied on regression testing
to ensure that updates of the feature model would preserve existing configurations. I9
detailed that they define and test (during continuous integration) reference variants from
the model that involve different feature combinations used in their real-world systems. I10
emphasized the need for employing regression testing on feature-model changes, stating
that they do

“testing, a lot of testing.”

Model Maintenance and Evolution

MME1:Using cen-
tralized gov-

ernance

Use centralized feature model governance (P13, P14, P17, P18, P24, P26, P31, I1, I4,
I5). According to several sources, having a specific employee (or team) who governs the
feature model ensures consistent evolution and enables strict access control. Namely, I1
reported that
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“somebody [...] chief architect or whoever [...] becomes the lead product-line engineer,
okay, so they really own the overall feature model.”

Such a specific role seems to be particularly used in closed environments in which an
organization has full control over its feature model, and less in community-driven or open-
source projects. If multiple feature models exist, our sources recommend that each has an
individual maintainer or team.

MME2: Versioning the
feature model

Version the feature model in its entirety (P20, I4, I8, I9). Four of our sources
recommend to version the feature model in its entirety. Versioning each feature individually
would lead to inconsistencies and conflicts that require manual resolution, for example,
because different change operations refactor the same features [Kuiter et al., 2019, 2021]. I8
also stated that some features that become obsolete in a certain version of the model may
be preserved to ensure backwards compatibility, and are usually marked as deprecated.

MME3: Defining new
features

New features should be defined and approved by domain experts (P26, I5, I8, I10).
Before adding a new feature to a feature model, an organization has to specify the feature,
define its testing strategy, and reason on its impact on the existing platform (i.e., addressing
some feature facets we described in Section 4.3). Consequently, relevant domain experts
should approve new features. For instance, I5 described that they

“[...] have to make sure that the work is done properly. Because [...] you can be
stopped by simple technical issues, like we cannot merge back, because the branch
is frozen.”

RO-P5: Principles of Feature-Modeling
Based on our empirical data, we synthesized a set of 34 interrelated feature-modeling
principles. These principles provide an understanding of how to construct feature models;
and help employ our other findings in this dissertation, due to the direct relations.

6.2.6 RO-P9: Properties of Feature-Modeling Principles

Consensus in
data

As we can see in Table 6.2, most of the publications we studied report on re-engineering
experiences. Consequently, most of our feature-modeling principles also directly relates to
platform re-engineering, which we highlighted in the previous section and connected to our
other findings in this dissertation. Moreover, most of our sources agreed on how to elicit
features (PP2, IS1, M2, M3), the semantics of features (M6, M10), and what properties a
feature model should exhibit(MO1–MO4).

Context-depen-
dent principles

Some principles are relevant only in a certain context. For instance, the decision on whether
to explicitly model dependencies (D1, D2) depends directly on who configures the feature
model. Similarly, some principles propose alternative solutions to the same problem. For
example, large feature models can be split up (MO3) or organized by using feature-model
views (M9)—with both principles aiming to achieve a separation of concerns depending on
the involved stakeholder. Note that MO3 is based on 15 sources, while we derived M9 only
from two. However, a reason for this may be the missing tool support for feature-model
views—we are aware of only two tools by Acher et al. [2013] and Hubaux et al. [2011].

Pros and consEmploying any principle has its own pros and cons. For example, defining feature-model
views (M9) facilitates centralized governance (MME1) and does not require interfaces
between different models. Alternatively, multiple models could be used, with each model
likely having a flatter hierarchy (MO1) and less complex cross-tree constraints (MO4). While
this would facilitate maintenance, multiple models do not promote centralized governance.
Even though our data implies different trade-offs between principles, it requires future work
to elicit actual data on the pros and cons of each principle.
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Notations
and domains

Our systematic literature review revealed over ten different feature-modeling notations,
which have been employed in 14 distinct domains. Despite this variety, we noted that few
notations were used regularly, namely:

• FODA/FORM [Kang et al., 1990, 1998], which has been proposed as the first notation
for feature modeling; and

• pure::variants [Beuche, 2012], which is an established tool for feature modeling in
industry and builds upon FODA/FORM.

Similarly, we can see two main domains, automotive and industrial automation. Nonetheless,
none of our feature-modeling principles enforces a specific notation or domain— achieving
our goal of deriving general-purpose principles that are relevant for any domain.

RO-P6: Properties of Feature-Modeling Principles
The properties of our feature-modeling principles indicate that they are useful for
constructing feature models in any notation and domain. However, their pros, cons,
and relations must be studied in future work to reason on their impact on practice.

6.2.7 Threats to Validity

Threats
to validity

In this section, we discuss potential threats to the validity of our feature-modeling principles.
We remark again that our principles are based on those considered important by researchers
and practitioners, and thus have been reported. Since this results in different levels of
granularity, some are generalizable beyond feature modeling or seem rather trivial.

Construct Validity

Misunder-
standings dur-
ing interviews

We started every interview with an introduction during which we aimed to understand the
interviewee’s context. Following recommendations for semi-structured interviews [Hove and
Anda, 2005; Seaman, 1999; Shull et al., 2008], we allowed each interviewee to thoroughly
explain their domain and its terminology. Based on these explanations, we adapted our
questions to avoid misunderstandings and ensure that we could correctly interpret our data.
Still, there may have been misunderstandings that we could not prevent.

Internal Validity

Completeness
of feature-mod-
eling principles

We cannot guarantee that our feature-modeling principles are best practices or cover all
relevant experiences. To mitigate these threats, we conducted a manual search of relevant
publication venues, verified the set of publications with an automated search, and employed
backwards snowballing. Furthermore, we interviewed practitioners from various domains
and with considerable experiences on feature modeling. Using these data sources, we aimed
to ensure that our feature-modeling principles reflect domain-independent practices that
are valuable for constructing a feature model for any variant-rich system— even though
they may not be complete.

External Validity

Transferring
principles to

other domains

We aimed to ensure that our feature-modeling principles can be transferred to other domains,
processes, and organizations. For this purpose, we built upon research publications, technical
reports, and interviews to cover a diverse range of feature-modeling experiences. Still, some
of our principles are only relevant in certain contexts, which we describe explicitly.
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Conclusion Validity

Interpretation
of data

We may have misinterpreted some of our data, which threatens the principles we derived
from that data. However, we elicited qualitative data from publications and interviews with
practitioners in a systematic and replicable process. To mitigate the threat of misinterpreting
data, we analyzed it with four researchers, confirmed principles in different sources, refined
our results until we achieved consensus, and asked external practitioners to assess our
principles. For these reasons, we claim that our principles are reasonable and practically
important, even though we may have misinterpreted individual data points.

6.3 Maturity Assessment for Variant-Rich Systems
Maturity as-
sessments

As we explained especially in Chapter 3, adopting platform engineering is a strategical
decision that requires considerable investments and impacts all processes. However, we
also found that an organization can benefit from incremental steps towards a platform, for
instance, by implementing more systematic clone management [Berger et al., 2020; Krüger
and Berger, 2020b; Pfofe et al., 2016; Rubin and Chechik, 2013a; Rubin et al., 2012, 2013].
So, particularly for re-engineering projects, an organization should first (e.g., based on a
domain analysis and feature modeling) assess the current status (i.e., maturity) of its variant-
rich systems, based on which it can define goals and evaluate their economical impact.
Besides cost models (cf. Section 3.1.1), several researchers have proposed techniques to
scope, plan, decide on, or assess platform engineering [Ahmed and Capretz, 2010a,b; Ahmed
et al., 2007; Bayer et al., 1999; Bosch, 2002; Frakes and Kang, 2005; Frakes and Terry,
1996; Kalender et al., 2013; Koziolek et al., 2016; Niemelä et al., 2004; Rincón et al., 2018,
2019; Schmid et al., 2005; Tüzün et al., 2015]. Of such techniques, the family evaluation
framework [van der Linden, 2005; van der Linden et al., 2004, 2007] represents arguably
the most flexible, light-weight, and well-known framework for assessing the maturity of any
variant-rich system, independently of the underlying processes. Still, we are not aware of
reports on how to operationalize the family evaluation framework for larger platforms and
in the context of modern software-engineering practices.

Section contri-
butions

In the following, we [Lindohf et al., 2021] tackle the missing experiences on using the family
evaluation framework by reporting an action-research-based [Davison et al., 2004; Staron,
2020] multi-case study [Bass et al., 2018; Leonard-Barton, 1990; Runeson et al., 2012] in
which we used the family evaluation framework to assess the maturity of nine platforms at a
large organization. More precisely, we defined the following three sub-objectives of RO-P:

RO-P7 Elicit how the family evaluation framework can be operationalized.

We evaluated the maturity of nine platforms, for which we had to operationalize
the abstract definitions of the family evaluation framework in practice. Concretely,
our core contribution involves descriptions of how to adapt the framework to an
organization’s domain, how to elicit as well as analyze information, and how to
derive actionable items from the assessment. The results of this sub-objective help
practitioners employ the family evaluation framework in their own organization,
and researchers in designing or adapting maturity assessments.

RO-P8 Identify challenges of employing the family evaluation framework.

Building on our results and feedback from our collaborators, we identified chal-
lenges and potential pitfalls that may occur when using the family evaluation
framework. Our results highlight several problems that may affect the assessment,
and are partly connected to our other research objectives. These insights help
organizations prevent problems of using the family evaluation framework and
indicate new research directions.
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RO-P9 Collect the benefits of employing the family evaluation framework.

Finally, we collected a set of major benefits the organization experienced solely
from operationalizing the family evaluation framework (i.e., without actually
implementing changes). These experiences highlight that the family evaluation
framework (and the contributions in this dissertation) can have immediate value
for an organization. So, our insights help other organizations to decide whether
to employ the family evaluation framework and adopt platform engineering.

The artifacts of our study are almost completely available (i.e., all interview questions
without those violating confidentiality) in our open-access article [Lindohf et al., 2021].
In Section 6.3.1, we present the methodology we employed to operationalize the family
evaluation framework. Then, we summarize potential threats to the validity of our study
in Section 6.3.5, before we address our sub-objectives in Section 6.3.2, Section 6.3.3, and
Section 6.3.4, respectively.

6.3.1 Eliciting Data with a Multi-Case Study

Methodology In the following, we first introduce the family evaluation framework and our subject
organization, before we report our actual study design.

The Family Evaluation Framework

Family evalua-
tion framework

As far as we know, the family evaluation framework represents the most general and
comprehensive assessment framework for platform engineering, which can be used for
planning and monitoring the (re-)engineering of variant-rich systems. The family evaluation
framework has been developed in the context of large EU ITEA projects in collaboration
with industrial partners [Pohl et al., 2005; van der Linden et al., 2004], and aims at assessing
the maturity of platform engineering at an organization—but it is actually applicable to any
variant-rich system. To structure the assessment, the family evaluation framework builds
on the BAPO concerns (cf. Section 2.3): business, architecture, process, and organization.

Framework
structure

We display an overview of the family evaluation framework in Figure 6.5. As we can see, the
dimensions of the family evaluation framework span the BAPO concerns, and are further
separated into three to four aspects. Each aspect is assessed based on five levels that reflect
the maturity of a variant-rich system with respect to that aspect. The family evaluation
framework lists requirements for achieving each level in each aspect. Note that the levels
are not directly connected, which means that a platform may achieve different levels in
each dimension. Nonetheless, there is an indirect connections, since achieving a higher level
in one dimension may require progress in another (i.e., the BAPO principle).

Resulting
assessments

The outcome of an assessment with the family evaluation framework is a profile that specifies
the level a platform achieved in each dimension. As an example, consider the architecture
dimension, which involves three aspects: the degree of asset reuse, the platform’s reference
architecture, and the extend of variability management. For each level, the family evaluation
framework specifies the following requirements:

1. Independent development: Each variant is developed from scratch as an individual
system, without reusing any existing artifacts.

2. Standardized infrastructure: The architecture incorporates third-party software and
the consequent variability.

3. Software platform: Common features are implemented as a configurable platform,
allowing to combine their assets— but without configuration support.
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Figure 6.5: The family evaluation framework based on van der Linden et al. [2007].

4. Variant products: A full reference architecture for the platform specifies variability,
defines configurations, and systematically manages asset reuse.

5. Configuring: The platform allows to configure and derive variants automatically, with
minimized divergence between domain and application engineering.

Even though these levels help to assess the maturity of a platform, they are limited.
First, the distinctions between levels are vague, which challenges a precise mapping during
an assessment (e.g., clone&own does not fit precisely into any level of the architecture
dimension). Second, the family evaluation framework does not specify how to elicit the
information required for assessing a level. Finally, and most importantly, an organization
may not desire to achieve a higher level in the family evaluation framework if its current
practices work well, which is why the resulting profile must be carefully interpreted

The Subject Organization

Saab Aeronau-
tics Simulation
Center

For our cases, we considered platforms of the Saab Aeronautics Simulation Center (hereafter:
Simulation Center). The Simulation Center is an in-house software developer for various
types of aircraft simulators, such as prototype, system, or training simulators. These
simulators are primarily delivered to the parent organization, Saab AB, which has around
16,000 employees (the Simulation Center has around 300). In fact, only four platforms are
intended for external customers, while another fifteen are delivered to internal “customers”
only. Half of the internal platforms comprise software only, while all other platforms involve
various types of artifacts, such as electronics, mechanics, and software.

Platform en-
gineering at
the Simulation
Center

The Simulation Center has worked on adopting platform engineering for several years.
In fact, the Simulation Center adopted basic platform-engineering principles as early as
2010 [Andersson, 2012] for a platform with 1.4 million lines of code in 275 modules of various
programming languages (e.g., Ada, C, C++, Fortran 77)—which is one of the early cases of
industry adopting systematic platform engineering. After this case, the Simulation Center
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(cf. Figure 6.7)

scope study design
 - 19 candidate platforms
 - 3 interviews each required (57)
 - adapt framework questions
 - define interview guide

perform preliminary case study
 - 4 platforms
 - 1 interview each (4)

conduct multi-case study
 - 9 platforms
 - 3 interviews each (27)

adapt study design
 - refine framework questions
 - customize interview guide

Figure 6.6: Overview of our methodology for using the family evaluation framework.

found that platform engineering based on the practices defined in the software product-line
community considerably facilitated its software development. As a consequence, all systems
should be re-engineered into platforms if the investments could be justified (cf. Chapter 3).
Among others, the Simulation Center aimed to:

• Establish a common terminology between stakeholders to refer to domain concepts.

• Unify its processes for platform engineering.

• Create fully reusable components.

• Achieve faster time-to-market, while reducing development costs.

• Improve the software quality and ideally fix each bug only once.

Considering these goals, the Simulation Center used the family evaluation framework to
assess whether it was heading in the right direction, to define concrete actions for improving,
and to codify a method to systematically assess the maturity of its platforms.

Drivers of
variability

The platforms of the Simulation Center inherit the high degree of variability of the actual
aircraft software, and incorporate additional simulation-specific features. Consequently,
these platforms exhibit more features, and thus variability, than the actual aircrafts.
Moreover, the Simulation Center faces additional requirements, for instance, due to export
control licenses, strict need-to-know policies, or secrecy issues. The requirements resulting
from such restrictions lead to features that are unrelated to the aforementioned drivers or
customers. Instead, it may simply be necessary that the Simulation Center develops the
same feature twice: once with classified code, and once with open code.

Study Design

Preliminary
case study

We summarize the overall design of our study in Figure 6.6. In the beginning, we performed
a preliminary case study with three students, who conducted four interviews on four
different platforms to understand the questions of the family evaluation framework and the
domain of the Simulation Center. The assessments we delivered on the platforms during
a presentation were considered valuable by the respective stakeholders and managers. In
addition, we found that the questions defined in the family evaluation framework needed
adaptations to fit the domain and tackle actual problems in practice. We also experienced
that it was helpful to involve different stakeholders in the interviews, since they can provide
complementary insights on a platform. Finally, we agreed that adapting the questions and
conducting a larger study was necessary to tackle our sub-objectives and derive actionable
items for the Simulation Center.
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Multi-case
study

Building on our insights, we designed a multi-case study that was based on action research.
So, we combined multiple cases to elicit data from different sources, which allowed us
to generalize our results— improving the internal and external validity [Siegmund et al.,
2015]. To this end, we used the family evaluation framework to assess nine platforms, each
exhibiting different properties and stakeholders. We elicited qualitative data by conducting
interviews with three stakeholders of each platform (i.e., a manager, an engineer, a technical
lead). For this purpose, we designed a structured interview guide, which a principle engineer
at the Simulation Center used to conduct the interviews. All interviews were transcribed
into a table, from which we synthesized our results.

Interview
guide

We adapted the questions in our interview guide to handle the varying properties of our
subject platforms (e.g., pure software compared to software and hardware). For example, we
added questions that were specific about each platform, and removed questions if they were
irrelevant for a certain stakeholder role (e.g., our guide involved some questions only for
managers). Consequently, we adapted our methodology based on the problems and demands
at the Simulation Center, as proposed for action research. We argue that our adaptations are
more feasible to understand how the family evaluation framework can be applied in practice,
instead of strictly following the questions defined almost two decades ago. To track our adap-
tations, we documented for each question the corresponding aspect in the family evaluation
framework, relevant stakeholders, and whether it was organization- or platform-specific.

Subject Platforms

Subject plat-
forms

We show an overview of our nine subject platforms (out of 19 at the Simulation Center) in
Table 6.4. As we can see, the platforms (several with over 1 million lines of code) involved
various application domains (e.g., components, simulators) and team sizes. Moreover, we
can specify different types of platforms:

• AS, TacS, OS, and VS comprise only software.

• CS and IO involve software and hardware components.

• DS and TS include software, hardware, and variants integrated from other platforms,
essentially representing multi-product lines [Holl et al., 2012].

• DP is composed of assets and variants for documentation.

Interestingly, the platforms’ origins vary greatly: Some emerged over decades through
system evolution, while newer ones are more clearly defined. Still, the outer boundaries
of each platform are clear. Related to our previous findings (cf. Section 6.1), the degree of
separation between domain and application engineering varies drastically among different
platforms. While the customer-specific features of evolved variants are clear, the newer
platforms have not been scoped systematically. Additionally, features are usually defined
in manifest-like files, while the way how features are defined is different between platforms.
Aligning to our previous findings (cf. Section 6.2), feature dependencies are never formally
defined, but documented in natural-language documentation or kept in developers’ memory.
Since the platforms rely on manifest files (each involving 30 to 300 assets), features are
basically components— but the high-level notion of features is often not established.

InterviewsAfter our preliminary study, we conducted another 27 interviews over a period of 11 months.
Approximately, we invested 100 hours in preparations, 150 hours in conducting the interviews
(interviewer and interviewees), 180 hours in reporting, and 250 hours in the training of all
participants. Initially, we considered to assess all 19 platforms, for which we estimated that
57 interviews would be required. However, there are several legacy platforms among these
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Table 6.4: Overview of our subject platforms for using the family evaluation framework.

id domain team size

DS development simulators 80
AS aircraft simulation 60
TS training simulators 30
CS computer systems 20
IO in/out systems 20
TacS tactical simulation 20
DP documentation and publications 10
OS operating station 10
VS visualization 5

19 (e.g., legacy versions of those in Table 6.4) that the Simulation Center plans to merge
into the current versions. For other platforms, the Simulation Center could not justify the
investments, since these will soon reach their end-of-service. While such platforms will not be
assessed, the results for the other platforms still helped working with those. For instance, the
additional knowledge obtained through our training is used in the whole Simulation Center.

Roles and Responsibilities

Involved
stakeholders

Several stakeholders of the Simulation Center were involved in our study:

Interviewer: The interviewer led the assessments with the family evaluation framework.
Consequently, the interviewer conducted the interviews, wrote internal reports, man-
aged the platform training, and communicated with the platform managers.

Interviewee, manager: Platform managers are responsible for multiple platforms, which
is why we may have interviewed some of them multiple times. These managers guide
the long-term development, implement processes, and coordinate between projects.
Each manager invested around 2.5 hours into each interview, and 1 more hour into
preparing as well as prioritizing other interviews.

Interviewee, technical lead: Technical leads guide the technical development of a plat-
form within a specific scope, typically a number of projects. So, these leads are experts
regarding the platform architectures and the processes employed. Each technical lead
invested around 2.5 hours into their interview.

Interviewee, engineer: Engineers—primarily software engineers—develop the platform,
which is why they have knowledge regarding the daily work, implementation specifics,
and intended designs. Each engineer invested around 2.5 hours into their interview.

Project management: While not directly involved in the assessments, the project man-
agement received the actionable items that originated from it. By prioritizing these
items, the project management defined a road-map for every platform.

Platfrom management: The platform management involves all platform managers of the
Simulation Center. They are responsible for the strategical planning of the platform
initiative and initiated the assessments. Thus, besides their interviews, the platform
managers invested also into platform training (four-hour workshop) as well as internal
decisions and coordination.

In the remainder of this section, we refer to exactly these roles, especially regarding the
interviewer and interviewees.
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Figure 6.7: Overview of our assessment methodology.

6.3.2 RO-P7: Adapting and Using the Family Evaluation Framework

Assessment
method

From our overall methodology (cf. Figure 6.6), we extracted the key steps for using
the family evaluation framework. We illustrate these steps in Figure 6.7, ranging from
preparations to the definition of action items. In the following, we describe the individual
steps of this methodology to provide a detailed understanding of how the family evaluation
framework can be used in practice.

Defining the Scope of each Platform

Scoping plat-
forms

For some of the platforms we assessed, it was unclear what their actual scope was. To
resolve this issue, the manager of each platform filled in a template, in which we asked for
(1) the name of the platform; (2) a first definition of the platform’s scope; (3) the purpose
of the platform (e.g., faster time-to-market); (4) a list of customers; (5) a list of existing
variants; (6) a list of features or a feature model; (7) a description of the organization
around the platform (e.g., platform teams); (8) an abstract description of the platform
architecture (e.g., variability mechanism); and (9) a description of the processes for
developing the platform. Based on the first entries, we obtained an overview understanding
of each platform. The last three entries align explicitly to the BAPO concerns, except for
the business concern (which we incorporated into customers and processes).

Agreeing on
the scopes

Each manager presented the completed template to all other platform managers to receive
feedback and disseminate the results. For this purpose, we used a workshop that was
moderated by the interviewer and allocated 15 minutes for each presentation. All feedback
after the actual presentation was documented by the presenter and led to updates in the
templates. Through this workshop, we identified that some platforms were well-established,
while the managers discussed about others. Most commonly, they did not agree on the
scope of a platform, for instance:

• Some platforms seemed to represent two individual platforms with shared assets. The
final choice on this issue was usually based on organizational or business concerns.

• Some platforms covered other platforms, implying that the scope was too broad. This
issue occurred mainly for platforms that integrated variants of an external platform
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into their own variants. While the developers should only integrate that external
variant, they often felt responsible for that one and added it to their platform.

The information we elicited with the templates and during the workshop improved the
general understanding and agreement on the scope of each platform, and guided us during
the adaptation of our interview questions.

Preparing the Interviews

Eliciting ad-
ditional in-
formation

The interviewer elicited additional information on each platform to further prepare the
interviews. By reading, for instance, system descriptions, requirements, process definitions,
or informal guides, the interviewer collected the knowledge needed to guide interviewees
and prevent misunderstandings. For example, the concepts of domain and application
engineering were well-known, but some interviewees did not know these terms. Using their
additional knowledge, the interviewer could map the terminology at the Simulation Center
to the research terminology.

Defining
questions

Afterwards, we compiled a set of 67 questions for our interviews (47 for managers, 42 for
technical leads, 38 for engineers). So, while we used the same questions across the platforms,
we adapted them according to our interviewees’ roles and their respective knowledge. To
define our questions, we translated the examples by van der Linden et al. [2007] into the
terminology of the Simulation Center (e.g., a “software asset” became a “configuration item”).
Adapting the questions according to the organization’s terminology is an investment, but
we believe it pays off for two reasons:

1. The interviewer must improve their knowledge on the family evaluation framework
and platform, since adapting a question means translating the abstract concepts into
organization-specific instances. Missing such knowledge or using a generic template
would impair the assessment, and potentially yield useless results.

2. The interviewees get questions in a familiar language and terminology, which allows
them to focus solely on answering the questions.

For the Simulation Center, this investment was distributed among all platforms and over
time, since the assessments shall be repeated in the future. Despite such benefits, adapting
the questions has also drawbacks: The interviewer must acquire the required knowledge
and is the only one who can properly synthesize the results, which may bias the findings.

Conducting the Interviews

Intervie-
wees’ roles

For each platform, we picked three interviewees: the closest platform manager, the highest
technical lead, and a domain engineer. By involving experts with different roles, we aimed
to complement our data on each dimension of the family evaluation framework. Actually,
we experienced that the differences between interviewees’ answers to the same question
can be highly valuable. For instance, some managers pointed to specified processes, which
the other two interviewees were unaware of. So, involving interviewees with different roles
helped us identify the problem that a process may be defined, but is not communicated.

Prioritizing
interviews

While we considered to perform all 57 interviews required to cover the 19 platforms of the
Simulation Center, we decided that the investments would be too high. Even though we
skipped platforms that will be merged, we still had to prioritize the remaining platforms.
Since we had not previous maturity assessments, we considered mainly (1) the number of
existing and planned variants (i.e., few variants do not require a platform); (2) the level
of development (i.e., platforms with little evolution yield smaller benefits); and (3) the
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number of stakeholders working on the platform (i.e., more stakeholders are affected by
changes). For instance, platforms with three existing variants, no planned variants, few
stakeholders, and only bug-fixing activities received a low priority.

Interview
conduct

We started each interview with a 30-minutes introduction into the basic concepts of
platform engineering as well as the BAPO concerns and their levels in the family evaluation
framework. To elicit reliable information, we explained that the levels do not represent
grades, and that higher levels may not be suitable for a specific platform. Additionally, it
helped that we adapted the questions, since they were not directly connected to the family
evaluation framework anymore—which avoided that interviewees would worry about the
actual assessment. We initiated discussions with the interviewees by asking our role-specific
questions based on 11 categories, which helped structure the interviews and improved the
comprehensibility (see the appendix of our open-access article [Lindohf et al., 2021] for the
detailed mapping). Each interview required 1.5 to 2.5 hours.

ReportsWe decided early on to write an extensive results report for each platform. The motivation
for these reports was that the actions we derived from the assessment would likely initiate
long-term processes. However, the Simulation Center cannot guarantee that the same
employees will be available during the whole life-span of a platform. Initially, we planned
to record and transcribe the interviews, but some interviewees felt uncomfortable with
recordings. For this reason, the interviewer took notes that were visible to the interviewee
and could be commented on. In the end, our notes comprised the interviewee’s final answer
to every question, additional comments, and further insights on the assessment. These
notes served as input for our analysis and reports.

Analyzing the Interviews

Assessing
levels

We relied on our notes, the interviewer’s memory, and the additional documents we inspected
to assess the maturity level of a all nine platforms in each BAPO dimension. Again, we
found that it helped to involve different stakeholders. While a single answer was rarely
precise enough to assess the levels, synthesizing from all answers as well as the discussions
usually yielded a clear picture. If we had problems understanding an answer, we contacted
the interviewee and asked for clarifications. Note that we did not try to achieve consensus
between interviewees with conflicting answers— finding discrepancies was typically key to
assess a platform’s maturity.

Example of
analysis

As an example, consider the question: How is the connection between a variant and its
assets managed? Do you ever write the names of the variant on the assets itself? This
question is vital in the context of systematic platform engineering: If assets are directly
mapped to a specific variant, the platform does actually not enable systematic asset reuse.
For one platform, we received the following answers:

“The environment where the asset is allowed to be installed in is written on the
asset itself, this in turn makes a weak connection to the available variants (as a
variant can only exist in one environment usually). Very few assets are in other
ways connected to a specific variant.”

manager

“We never write on the asset where it is to be used. However, a single product
variant is often the driver for the development of an asset or feature.”

engineer

“The strategy is to never write on the asset where it will be used. But there are
exceptions.”

technical lead
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We can see that these answers indicate no clear consensus. While all interviewees agreed
that writing variant names on assets is a bad practice, it seems unclear to what degree this
was done in this platform.

Example as-
sessment

This question was concerned with the architecture dimension. Based on all 14 questions in
that dimension, we assessed the platform in the above example to be on level 2, “standardized
infrastructure” (we display this example assessment in Figure 6.8), because:

• The platform involved techniques fore reusing assets, mostly based on late binding
(e.g., parsing a configuration file at runtime). While there was no general reuse
strategy, the employed ad hoc reuse worked well in practice.

• We identified three distinct architectures for this platform, posing the question whether
its scope was too broad.

• Variability was managed within each asset, which is why they were more strongly
related to application engineering and not the platform.

To achieve level 3, we suggested to start with the following actions:

• Define the architecture in more detail and understand why some stakeholders think
three individual architectures exist.

• Investigate whether the interconnection of assets can be standardized.

• Investigate whether the variability management can be standardized, since it is
scattered across source code, build processes, and configuration files, among others.

• Analyze whether the notion of features can be established instead of writing variant
names on assets.

We can see that it may be problematic to align the answers of different stakeholders and
assign them to a specific level.

Synthesizing Results and Reporting

Writing
reports

Based on our interview results, we wrote reports for all platforms. We structured the
reports according to the BAPO concerns, starting each of the resulting sections with a short
summary of the interview answers. Then, we described the assessment according to the
family evaluation framework and proposed actionable items for advancing to the next level.
We evaluated these reports during a meeting with all interviewees. Instead of directly editing
the reports, we documented the feedback in an additional document. The idea was to keep
the reports as they were, since they described the interviewer’s perception of each platform.
We identified no major errors in the reports, and most comments were supplementary
information. Interestingly, some evaluations led to discussions between our interviewees,
which highlights different views on a platform’s properties. We concluded each report with
a diagram that indicated the level a platform achieved in each domain (cf. Figure 6.8)

Interviews
after report

After publishing the reports internally in the Simulation Center, we received feedback from
the readers. All of them agreed with our reports, and sometimes added further remarks and
information on a platform. Moreover, we conducted two more interviews with stakeholders
who requested to meet and anwer our questions. Based on their answers, we wrote an adden-
dum to the original reports, which we sent only to the managers of the Simulation Center.
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Figure 6.8: Example assessment of one platform based on the family evaluation framework.

Breaking Down Suggested Actions

Defined ac-
tions

The reports themselves cannot change anything in the Simulation Center. To establish the
suggested actions, the Simulation Center conducted a series of workshops and meetings to:

• Break down the suggested actions into Scrum or Kanban stories,

• find budget to finance the suggested actions,

• prioritize all actions, and

• define which levels in the family evaluation framework each platform should achieve.

Obviously, there are trade offs between these goals. For instance, the levels a platform
should achieve can immediately rule out some actions that aim for an even higher level or
cannot be financed. Finally, the workshops led to a set of actions that will be performed on
each platform to achieve the specified levels in the family evaluation framework.

Repeating

RepeatThe Simulation Center intends to establish the family evaluation framework as an integral
part of its regular work. Achieving this integration requires that these assessments are
repeated regularly, which means that they are adopted for monitoring. The Simulation
Center declared that one year would be a suitable interval until the next round of assessments.
These following rounds will allow to perform a retrospective analysis on the assessment we
described as well as on the reports, the derived actions, and the whole methodology.

Expected Versus Obtained Results

Expectations
and reality

During informal meetings with the technical management, we compared the expectations
of using the family evaluation framework to the actual results, which revealed:
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• For most platforms, there was a clear and mostly correct perception on the maturity
in the architecture dimension. The possibilities and limitations in this dimensions are
well-understood within the Simulation Center.

• For most platforms, there were overestimates regarding the maturity in the process
dimension. We found that the amount of tacit knowledge compared to defined and
documented processes was higher than anticipated.

• For one platform, we assessed the levels of all dimension with a 1 or 2. As a result,
the management of that platform questioned the family evaluation framework, since
they always finished their projects in time However, after explaining and reasoning
on the results, the assessment was accepted with the mindset that corners may have
been cut or that technical debt was acquired.

• For one platform, the corresponding managers had a clear impression of their abilities,
which proved to be quite similar to the assessment, which indicated high levels in most
dimensions. The management of the platform was not surprised, but the remaining
Simulation Center had considerably lower expectations for that platform before the
assessment. In this case, the results of the family evaluation framework provided
justification for previous investments into developing the platform.

We can see that stakeholders may have different perceptions regarding the maturity and
goals of a platform. The family evaluation framework can help to reveal mismatches between
stakeholders’ perceptions and the current state or goal. Additionally, assessing the maturity
of a platform is a means to justify investments into that platform.

RO-P7: Adapting and Using the Family Evaluation Framework
By using the family evaluation framework for real-world platforms, we learned:

• To adapt and operationalize the family evaluation framework, it helps to

– specify the scope of all relevant platforms before the assessment.

– consider the organization’s domain and needs while adapting questions.

– derive a unified terminology and explain relevant concepts to stakeholders.

– involve different stakeholder roles in the assessment.

• To elicit information, it helps to

– conduct semi-structured interviews that involve different stakeholders.

– select questions based on an interviewee’s role and expertise.

– document all answers and display them to the corresponding interviewee.

• To analyze information, it helps to

– synthesize level assessments based on all available interviews.

– identify particularly discrepancies between answers.

– assess and update results with relevant stakeholders.

• To derive actions from the assessment, it helps to

– involve stakeholders and derive smaller stories.

– prioritize the actions based on goals and responsibilities.

– deliver feedback on how implemented actions perform.
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6.3.3 RO-P8: Challenges of the Family Evaluation Framework

ChallengesWhile using the family evaluation framework at the Simulation Center, we faced several
challenges, of which we discuss six in this section. Note that these challenges are related
to each other (following the BAPO principle) and quite explicitly to some of our other
research objectives. For instance, justifying investments can benefit the handling of change
requests, and is directly related to our economics objective (cf. Chapter 3). Still, these two
challenges stem from different dimensions, namely business and process, respectively.

Separating Domain and Application Engineering

Domain and
application
engineering

Our interviewees had problems to describe the benefits of platform engineering for the
Simulation Center. Moreover, they were unaware of activities outside of their own projects.
As a consequence, particularly long-running projects tended to perform more and more
domain engineering, which should actually be outside of an individual project. This
underpins our findings in Section 3.2.3 and Section 6.1 that developers seem to care less
about domain and application engineering than for adopting a platform and evolving
variants. Besides the fact that proper domain engineering is still required to establish a
successful platform, the missing distinction of both phases challenges the application of the
family evaluation framework. Namely, if the interviewees do not understand the differences
between domain and application engineering, any assessment is likely doomed to fail, since
it will not reveal any helpful insights.

Focusing on the Assessment

FocusingSometimes, our interviewees wanted to discuss problems that were unrelated to the maturity
assessment, and in a few cases it was problematic to refocus the interview. Such situations
occurred because it was not obvious what information was unrelated to the family evaluation
framework until we dug deeper into the discussion. If we found that a topic was not relevant
to our assessment, we propagated it to the right forums. Despite such situations, it was
more often useful to not interrupt an interviewee to keep them motivated. The main
challenge was to allocate enough time for every interview, plan the recording, and balance
to what degree to guide the interview.

Aligning Software-Engineering Practices

Agile practicesThe Simulation Center uses agile methods, for example, Kanban and Scrum, which were
often considered to oppose platform engineering. More precisely, platform engineering and
the family evaluation framework suggest a more formal methodology in the form of domain
and application engineering. Agile methods usually assume a high degree of volatility in
requirements, whereas platform engineering prefers fixed, but configurable, requirements.
So, a challenge for using the family evaluation framework in practice is how to integrate
platform engineering with modern software-engineering practices, and to communicate that
this can be achieved. Notably, we constructed promote-pl to solve such problems, and
discussed its integration with different practices— including agility (cf. Section 6.1).

Identifying Issues Outside the Platform

Task forcesA specific issue we identified at the Simulation Center is the misuse of the platform, that
is its modification based on a variant without considering dependencies to other variants.
Particularly, this issue occurs in the context of task forces, which have the sole purpose
of solving a certain problem as fast as possible, typically driven by an urgent deadline.
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Consequently, task forces often disregard the boundaries of projects, processes, teams, or
the platform and its dependencies. While they are helpful to quickly resolve a problem, task
forces easily introduce unintended dependencies into the platform. With respect to the family
evaluation framework, we found it challenging to identify this established practice, despite
the considerably impact on the platform. Precisely, since task forces act independently of
other organizational structures, few of our interviewees did know about them.

Justifying Investments

Justifications Conducting the assessment itself and implementing changes based on the results causes
costs (cf. Chapter 3). Such changes are hard to justify, particularly if everything seems
to work or if the platform involves few variants. Often, everything works well because
tacit knowledge is incorporated into the stakeholders’ minds, without documenting it (cf.
Chapter 4). While such a mindset helps to critically reflect the assessment results, it can
also prevent important change. Ideally, we can provide a reasonable justification for the
investments to convince stakeholders that the proposed changes are valuable.

Managing Change Requests

Change
requests

Change requests represent the actionable items defined in our reports. Unfortunately, change
requests can be challenging to manage if they do not align to customer requests or provide
no immediate value. Change requests are mostly project-based, which prioritize, plan,
finance, and implement only those requests relevant to them. In contrast, most changes that
are proposed based on the assessment are related to domain engineering, which is usually
out of the scope of a project. Without organizational changes, each project may accept
or decline a request, depending on the available budget (cf. Chapter 3). Consequently, it
is challenging for any organization to manage change requests that stem from the family
evaluation framework without adapting its structure first (e.g., introducing a platform team,
allocating separate platform budget). Moreover, for the family evaluation framework, it
is key to identify the stakeholders to whom change requests must be propagated.

RO-P8: Challenges of the Family Evaluation Framework
By applying the family evaluation framework, we learned that it is challenging

• to separate domain and application engineering, since these may be tangled.

• to keep interviewees’ focus on the assessment instead of other problems.

• to integrate platform engineering with other software-engineering practices.

• to find problems that are caused by factors outside of the platform.

• to justify that applying the assessment and proposed actions is beneficial.

• to manage change requests if the responsible stakeholder is unknown.

6.3.4 RO-P9: Benefits of the Family Evaluation Framework

Benefits The platforms we analyzed have been evolved for more than ten years, resulting in con-
sequent histories and legacy artifacts. The previous challenges are mainly intended to close
differences between legacy and modern platform engineering, and to coordinate the neces-
sary changes. However, using the family evaluation framework as a standardized assessment
yielded immense benefits for the Simulation Center, too. Actually, the management of
the Simulation Center agreed that the benefits outweighed the challenges. Moreover, all
stakeholders support the improved focus on domain engineering and the long-term planning
that comes with it. Based on this agreement, the Simulation Center decided to repeat the
assessments, essentially using them for monitoring the platforms.
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Disseminating Knowledge

KnowledgeOne of our first experiences while using the family evaluation framework was the improved
dissemination of knowledge on platform engineering (cf. Chapter 4). In fact, assessing
different BAPO dimensions raised our interviewees’ awareness for issues besides the archi-
tecture. Previously, the Simulation Center was not able to advance its platform engineering.
By introducing a factory metaphor, we were able to help our interviewees understand that a
platform requires standardized interfaces, tooling, well-defined roles, clear processes, and a
business model. Arguably, the dissemination of knowledge is a major benefits that improves
expertise, eases communication, and establishes a common knowledge base.

Connecting Stakeholders

Common un-
derstanding

The reports that combined the perspectives of managers, technical leads, and engineers
established a common understanding between stakeholders. Before the assessment, most of
them communicated only to resolve issues or in specific forums. While applying the family
evaluation framework, every interviewee could mention problems, ranging from small techni-
cal issues to concerns about the strategical orientation of the platform. The reports defined a
common ground for discussions that was not available before, which is immensely beneficial.

Identifying Shortcomings

Assessment
framework

The main purpose of the family evaluation framework is to assess the maturity of a platform
and identify potential for improvements. We experienced that interviews were a suitable
method to elicit information and to identify shortcomings in the platform engineering.
In our opinion, the main benefit of using the family evaluation framework is the well-
defined structure along four dimensions. This defined setting helped us to identify, manage,
and document shortcomings that the Simulation Center did not know about or that were
somewhat vague (e.g., considering who would be responsible).

Defining Road-Maps for Platforms

Platform road-
maps

Our reports about the interviews provided first road-maps for guiding the domain engineering
of each platform. Before, several of the platforms had no defined domain-engineering
activities. Such activities were still executed, but usually in a single process that integrated
domain and application engineering. The assessment highlighted that separating the road-
map for domain engineering, the feature model (cf. Section 6.2), the finance model, and the
organizational units would be beneficial for the Simulation Center. Additionally, separating
the domain engineering led to more long-term thinking about technological advances and
the inclusion of state-of-the-art methodologies and tools.

Setting Goals for the Platforms

Defined goalsUsing the levels in the family evaluation framework provided a novel way for defining goals
for a platform. Historically, the Simulation Center used somewhat standardized goals, such
as costs, technological levels, or time plans—which could hardly be compared between
different platforms. The family evaluation framework defined a common ground for defining
and discussing goals for and between platforms. This also benefited the communication
between stakeholders, who now could more easily refer to the goals of their platforms.
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Lowering Maintenance and Development Costs

Economic
impact

In alignment with our previous findings in Chapter 3, we experienced that higher levels of
maturity reduced development and maintenance costs— particularly for platforms with
more variability, and thus a larger number of variants. The Simulation Center established
its first platform in 2010, and data shows that development and maintenance costs went
down by at least 50%. At the same time, new variants can be priced more precisely. Using
the family evaluation framework helped to raise the awareness for these benefits, and can
lead to even more savings by improving the platform engineering further.

RO-P9: Benefits of the Family Evaluation Framework
Employing the family evaluation framework had the benefits of

• disseminating platform-engineering knowledge among stakeholders.

• connecting stakeholders by establishing the unified reports as knowledge base.

• identifying shortcomings based on a structured assessment.

• defining road-maps for platforms with missing domain-engineering activities.

• specifying comparable goals for platforms.

• planning systematically how to lower development and maintenance costs.

6.3.5 Threats to Validity

Threats
to validity

In the following, we discuss potential threats to the validity of our study. As we can see,
most of these threats relate to the fact that we studied only a single organization.

Construct Validity

Knowledge
on platform
engineering

As aforementioned, some stakeholders we interviewed were not familiar with the concepts
of platform engineering. We mitigated this threat by unifying the domain terms of the
Simulation Center and mapping them to the family evaluation framework. Additionally, we
explained all necessary concepts during the interviews to establish a comparable knowledge
base and common understanding among our interviewees. To verify that our data was
reliable and to collect additional feedback, we allowed all involved stakeholders to review
the reports and conducted several workshops. These means improve our confidence in our
data and its synthesis, but we cannot fully avoid this threat.

Internal Validity

Subject
selection

We aimed to limit potential threats originating from the selected platforms, involved stake-
holders, and adaptions of the family evaluation framework. As a first means, we conducted
a cross-case analysis to synthesize results from all nine cases. In addition, we invited stake-
holders with different roles to obtain complementary data, and ensured that all of them
were experts regarding their respective platform. While we could not mitigate potential
bias of adapting our questions, we argue that these are actually part of our contributions.

External Validity

Single or-
ganization

We aimed to improve the external validity by conducting nine cases. Still, all cases are
based on a single organization, which means that our results may not be transferable
to other organizations. Since we provide the first report on how to perform a maturity
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assessment with the family evaluation framework on large-scale real-world platforms, we
argue that our study is nonetheless valuable.

Subject organi-
zation

Some properties of the Simulation Center threaten the external validity of our study. For
instance, the Simulation Center faces requirements that are not representative of other
domains, which we cannot resolve by any means. We aimed to mitigate such threats by
considering a set of platforms that should exhibit comparable properties to those in other
domains. The main differences to other organizations may be the business dimension. Since
the Simulation Center mainly delivers to internal customers of its parent organization, our
interview data on this dimension may not be representative. However, this should not
change how the family evaluation framework can be used, which was our primary goal.

Conclusion Validity

ConfidentialityWe designed our methodology within a team of four researchers and used action research
to adapt it to new findings. However, for confidentially reasons, we could neither study nor
publish all of our data, for instance, regarding the tools, customers, guidelines, or processes
of the Simulation Center. This prevents exact replications of our study and means that
we must be careful while interpreting our findings. Such problems threaten any study in
industrial settings and cannot be fully resolved. We still published as much of our data
as possible and argue that other researchers or organizations can understand as well as
replicate our study.

6.4 Summary
Chapter sum-
mary

In this chapter, we integrated our findings into processes and recommendations that support
particularly the planning and monitoring of (re-)engineering projects. At first, we proposed
a novel process model for platform engineering that involves contemporary processes and
provides a better integration of modern software-engineering practices. Afterwards, we
presented feature-modeling principles, which are relevant for all other planning activities,
too. We concluded with a multi-case study that details how a variant-rich system can be
assessed in practice, which supports decision making, monitoring, and the definition of goals.

Summarizing
contributions

The contributions in this chapter help especially practitioners: They can build on promote-
pl to organize their projects. Furthermore, they can use our feature-modeling principles
as well as experiences on maturity assessments as practices within promote-pl. Also, we
highlighted how our results are connected to contemporary software-engineering practices,
which helps integrate these. Regarding research, we collected a large body-of-knowledge
from empirical data that helps address several research gaps, and highlights directions
for future research. For instance, many contemporary software-engineering practices are
still not well-supported in existing tools for platform engineering. Since our data shows
that integrating such practices with platform engineering is needed, new techniques in
this direction can immediately benefit practice. Moreover, our results clearly show that
new monitoring tools (e.g., for automated maturity assessments) can help organizations
achieve immense benefits from their variant-rich systems. Abstractly, our results suggest
the following core finding:

RO-P: Practices
Our processes and recommendations for planning, initiating, steering, and monitoring
a variant-rich system can help organizations to utilize the system’s full benefits.

Connection to
other research
objectives

As already mentioned, this chapter builds upon and combines findings we reported in
previous chapters. Namely, the development process we elicited in Chapter 3 is part of
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promote-pl, and the economic data in that chapter is important to reason on decisions
while planning and monitoring a variant-rich system (RO-E). Similarly, the knowledge and
documentation issues that we discussed in Chapter 4 are highly relevant in this chapter, for
instance, considering recommendations to rely on experts’ knowledge (RO-K). Finally, the
feature traceability we discussed in Chapter 5 has been mentioned less often explicitly, but
has been highlighted as essential in our sources for promote-pl (i.e., “map artifact”) and is
ideally combined with a feature model (RO-T).



7. Conclusion

Concluding
remarks

In the following, we briefly summarize the chapters of this dissertation. Moreover, we point
out the most important contributions regarding each of our research objectives. Finally, we
define directions for future research that build on our contributions.

7.1 Summary

Chapter 3In Chapter 3, we studied the economics of software reuse. At first, we analyzed existing
cost models for software product-line engineering and discussed how these relate to the re-
engineering of variant-rich systems. Our insights highlighted that we require systematically
elicited data on software reuse to understand the pros and cons of different reuse strategies
as well as the relevant cost factors. Then, we explored two research directions to tackle
this problem: On the one hand, we elicited empirical data on the costs of developing new
variants via clone&own and platform engineering— building on the literature and our
collaboration with a large organization. Our data helped confirm and refute established
hypotheses on software reuse, providing actual evidence that can support an organization’s
decision-making beyond educated guesses. On the other hand, we conducted a multi-case
study with five cases to understand the challenges and economics of re-engineering cloned
variants into a platform. By recording experiences and costs, we provided details on the
conduct of re-engineering projects and their economical impact.

Chapter 4In Chapter 4, we studied developers’ knowledge needs, which we found to be among the
cost factors with most impact on the economics of (re-)engineering variant-rich systems.
Initially, we investigated what types of knowledge developers intend to memorize and
consider important. Based on a systematic literature review and an interview survey, we
showed that developers are quite good at recalling domain abstractions (e.g., features),
while it seems that they do not intend to memorize implementation details (e.g., assets).
We continued with a survey on developers’ memory regarding their code, which revealed
that we can somewhat adopt existing forgetting curves from psychology to understand and
measure how developers forget. Seeing the need for recovering knowledge, we conducted a
multi-case study on two variant-rich systems in which we recovered various feature facets
(i.e., knowledge about a feature’s properties) that are relevant to evolve (e.g., re-engineering)
an variant-rich system. Our results show what information sources can help recover what
feature facets, guiding developers during their re-engineering projects and the design of
specialized reverse-engineering techniques.
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Chapter 5 In Chapter 5, we studied feature traceability as a technique that can help mitigate the
knowledge problem, and thus reduce costs by preventing expensive recovery activities. In
the beginning, we built on related work and a set of different studies to define dimensions
of feature traceability and discuss how these impact developers’ knowledge— and thus the
economics of re-engineering a variant-rich system. Since the empirical evidence regarding
these dimensions has been unconvincing, we conducted two experiments. First, we compared
different representations of feature traces to each other (i.e., none, virtual, physical), which
indicated that a virtual representation (i.e., feature annotations) seems to be the most
helpful and least intrusive technique. Second, we studied how the use of feature traces (i.e.,
documenting versus configuring) can impact developers’ program comprehension. Besides
revealing an interesting dilemma regarding the discipline of configurable directives, our
results also suggest that the configurability adds a layer of complexity to feature traces
that should ideally be avoided.

Chapter 6 In Chapter 6, we synthesized our previous findings into processes and recommendations.
Namely, we derived a novel process model, promote-pl, which provides an updated per-
spective on platform engineering and its relations to modern software-engineering practices.
In particular, promote-pl incorporates re-engineering processes and activities to a great
extent, since these are far more commonly applied when adopting or evolving a platform.
Then, we synthesized 34 feature-modeling principles that help an organization construct
a feature model and plan its platform-engineering. Not surprisingly, we also found that
these principles are largely related to the re-engineering of variants. Finally, we reported
a multi-case study on our experiences of using the family evaluation framework to assess
the maturity of nine variant-rich system. Our findings suggest that periodical maturity
assessments help not only to define goals, but can have immediate benefits on their own.

7.2 Contributions

RO-E: eco-
nomics

Our key contribution regarding RO-E is our systematically elicited empirical data on the
economics of (re-)engineering variant-rich systems. We used our data to confirm as well
as refute established hypotheses on software reuse, which helps organizations to reason
about their reuse strategy and opens new directions for research. Moreover, we contributed
concrete insights into how to re-engineer cloned variants into a platform, highlighting pitfalls
as well as benefits. Considering all of our results, we found that any organization should
strive towards systematizing its software reuse, for example, by incrementally adopting a
platform. Overall, our data contributes to addressing the long-standing problem of providing
decision support for the (re-)engineering of variant-rich systems based on empirical data.

RO-K:
knowledge

Our key contribution regarding RO-K is the improved understanding of how developers
forget. In particular, our data suggests that developers are good at memorizing domain
concepts like features, but require support for mapping these to the concrete assets— and
consequent information must be recorded. To help organizations during the re-engineering
of a variant-rich system, we further contributed insights into what information sources can
be exploited to recover knowledge on features. Such information is fundamental to plan
and initiate a re-engineering project. So, we contributed to a better understanding of how
to elicit the knowledge that is required to re-engineer a variant-rich system.

RO-T:
traceability

Our key contribution regarding RO-T is the insight that feature traceability should ideally
be separated from variability. Thus, feature locations can be easily identified in the source
code without the need for developers to understand how the traces change the behavior
of a variant. To this end, our data suggests to rely on light-weight feature annotations
that seem to facilitate developers’ program comprehension. In summary, we contribute
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empirical evidence that feature traceability is a helpful means for (re-)engineering a variant-
rich system and provide concrete recommendations on how to implement it.

RO-P: prac-
tices

Our key contribution regarding RO-P is promote-pl, which synthesizes our findings into a
contemporary process model. Consequently, it can guide organizations by defining processes
and activities for the (re-)engineering of variant-rich systems. We further defined concrete
recommendations in the form of feature-modeling principles and a process for employing
maturity assessments. These three contributions form a framework to help organizations
plan, initiate, steer, and monitor the (re-)engineering of a variant-rich system. So, we
contributed to the problem that established software product-line process models do not
reflect contemporary software-engineering practices and miss concrete recommendations for
adopting a variant-rich system.

The big pictureIn this dissertation, we aimed at understanding the re-engineering of variant-rich systems
based on empirical studies. Such an understanding is essential to decide on, plan, initi-
ate, steer, and monitor re-engineering projects. We argue that we achieved this goal, by
contributing, in a nutshell:

1. economical data that helps estimate costs and justify decisions;

2. insights into how to elicit and record information;

3. recommendations on how to decide on and implement feature traceability; and

4. processes and recommendations for planning a platform and defining its goals

to the existing body-of-knowledge on re-engineering variant-rich systems. However, not
surprisingly, many of our insights exceed this scope.

7.3 Future Work

Design of de-
cision-support
systems

As we have shown, numerous cost models have been proposed to support the planning of a
variant-rich system. However, it is largely unclear to what extent which model reflects prop-
erly on the real world and can actually guide organizations. We improved on this situation by
contributing empirical data on the economics of variant-rich systems. Still, we cannot (yet)
design a cost model based on our data, which may also not be that helpful. Instead, we argue
that our insights can serve as a foundation for more light-weight and scope-specific decision-
support systems before advancing to full-fledged cost models. Precisely, we envision systems
that reason on certain sub-problems of (re-)engineering a variant-rich system that can be
explored in greater detail, such as deciding whether it is economically beneficial to integrate
a feature of a cloned variant into a platform. Collecting the required data and designing
such (more focused) systems seems more feasible and helpful to support organizations.

Developers’
memory

Our research on developers’ knowledge needs is obviously not complete. There are numerous
paths that should be explored to provide better tools to developers that help record, manage,
and recover information. For instance, it would be helpful to improve our understanding
of developers’ memory further to derive a forgetting model for software engineering and un-
derstand how knowledge needs arise. Based on such insights, new tools for eliciting relevant
information from different source could be designed. Moreover, we could establish recom-
mendations for recording information and onboarding newcomers based on empirical data.

Management
framework for
feature traces

We found that feature traces help developers by making feature locations explicit in the
source code. Still, the problem of maintaining these annotations remains, and they should
ideally be also traced to other artifacts, such as a feature model. Unfortunately, developers
mainly trust the actual source code of a system, but not additional constructs that may co-
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evolve. As a result, our data also shows that many developers have an aversion of using such
constructs like feature annotations. Thus, we argue that we have to design frameworks that
help manage feature traces, for instance, by providing (semi-)automation for intruding and
maintaining (e.g., assuring consistency) them. For this purpose, it seems most promising to
first design such frameworks for annotations that are part of a programming language (e.g.,
Java annotations) or a widely used tool (e.g., JUnit annotations, C preprocessor directives)
to promote their benefits and convince developers.

Employing rec-
ommendations

in practice

We constructed our processes and recommendations from recent publications and our
collaborations with industry. Consequently, they should represent contemporary practices
of engineering variant-rich systems. An important direction to refine, extend, and combine
these contributions is to employ them in practice. Precisely, instantiating them in different
organizations can help to unveil potential shortcomings that may be caused by varying
properties of different domains or organizations. Moreover, such an operationalization can
provide experiences that guide other organizations, suggest best practices for individual
steps, and provide insights into the costs as well as benefits of our recommendations—
similar to our findings on the family evaluation framework.

Replica-
tion studies

The research in this dissertation is based on empirical studies. While we aimed to improve
the validity of our findings by synthesizing from various sources, there remain several threats.
For instance, our experiments represent single data points that require further confirmation
and our multi-case studies are limited to smaller systems or a single organization. To
improve the confidence in our results, explore them in more detail, and consider different
contexts, replication studies are required. Consequently, conducting replications is an
important future research direction.

New technolo-
gies and tools

A severe problem we faced while conducting our research are the limited capabilities of
existing tools for re-engineering variant-rich systems. For instance, during our multi-case
study on re-engineering, we had to adapt existing or even implement own tools. While
some adaptations may be highly domain dependent, and thus not relevant for many variant-
rich systems, we argue that others demand for further research. Concretely, we had no
suitable support for the actual re-engineering of cloned variants, which is a severe problem
seeing that this is the most common adoption strategy. Arguably, clone-management or
synchronization frameworks can be adopted for this purpose, but require novel techniques
and adaptations. Furthermore, Android and web-services represent domains with large
numbers of variant-rich systems of any maturity. Usually, variant-rich systems in such
domains build on a combination of technologies and programming languages, which is not
well-supported by existing tools. So, a direction for future work is to explore how techniques
and tools for variant-rich systems can be designed to support multiple technologies (and
potentially platforms) simultaneously
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