IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

The Terminology of Automotive
Product-Structuring Concepts:
A Systematic Mapping Study

Philipp Zellmer, Lennart Holsten, Jacob Kriiger, and Thomas Leich

Abstract—The automotive industry is undergoing a significant
transformation, with vehicles evolving into complex, intercon-
nected cyber-physical systems. This transformation is caused
by new customer demands, legal standards, and technological
innovations, which lead to an increasing amount of electronic
control units, software, and features. To address the consequent
software-related challenges, automotive manufacturers are adopt-
ing methodologies like software product-line engineering, elec-
trics/electronics platforms, and product generation engineering.
However, each of these methodologies relies on an own vocabu-
lary, necessitating a unification of the divergent understandings
and interpretations of key terms and definitions. In this article, we
investigate and discuss a terminological framework that provides
a common ground for specifying a unified product-structuring
concept. For this purpose, we conducted a systematic mapping
study to develop a framework of existing terms and definitions
used to describe product-structuring concepts in software, elec-
trics/electronics, as well as mechanical engineering. We discuss
the differences and commonalities of the terminologies to help
practitioners in integrating and applying product-structuring
concepts as well as to guide future research.

Index Terms—automotive, electrics/electronics, product
line, life-cycle management, cyber-physical system, product-
structuring concept

I. INTRODUCTION

O remain competitive, automotive manufacturers must
continuously evolve their product portfolios by integrat-

ing new features into their vehicles. In the past, vehicles and
innovative features were centered around hardware compo-
nents. However, technological advances, changing customer
demands, and legal standards necessitate the integration of a
rising number of software features into the existing hardware
platforms. In fact, most innovative features in modern vehicles
are rooted in software rather than hardware, due to prevalent
trends like autonomous driving, driver assistance systems,
electrification, and vehicle connectivity [6], [[11]], [81]. Logi-
cally, vehicles are also becoming more and more digitized, and
have essentially transitioned towards software-intensive cyber-
physical systems that require effective interactions between
hardware and software to deliver innovative features [37], [70].
The increasing number of software features poses
challenges for automotive manufacturers, particularly when it

P. Zellmer and L. Holsten are with Volkswagen AG, Wolfsburg &
Harz University, Wernigerode, Germany (philipp.zellmer2 @volkswagen.de |
lennart.holsten @volkswagen.de).

J. Kriiger is with Eindhoven University of Technology, Eindhoven, The
Netherlands (j.kruger@tue.nl).

T. Leich is with Harz University, Wernigerode, Germany (tleich@hs-harz.
de).

comes to engineering and managing their vehicle platforms.
In the past, manufacturers developed hardware platforms
that were build around mechanical components, thereby
engineering a unified architecture for diverse vehicles to
benefit from reuse and standardization [34]. Moving towards
more software-intensive platforms and engineering processes
was necessary, but also challenging—particularly when
the old hardware platforms should still be reused while
integrating heavily software-focused features like over-the-air
(OTA) updates or self-driving capabilities.

Due to the growing complexity of vehicle platforms, it
becomes progressively more challenging to effectively man-
age the variability of all hardware and software artifacts
along with their intricate interconnections. For this reason,
automotive manufacturers are facing disproportionately in-
creasing expenses and efforts. To tackle such problems, the
manufacturers adopt product-structuring concepts and methods
that consider vehicles as software-intensive cyber-physical
systems. In particular, automotive manufacturers have started
to use variant-management concepts stemming from software
product-line engineering [17], [65], [85]] to incorporate the
software perspective into their established hardware-platform
strategies [23]], [[106].

However, adding a software perspective on top of a static
hardware platform does not solve the actual problems the
digital transformation of vehicles poses. Instead, a holistic
platform strategy that considers all dimensions of modern
vehicles (hardware, software, electrics/electronics) as well
as their interconnections is needed. Developing such a
holistic platform strategy is a complex and challenging task
that, first of all, requires a unification of the divergent
understandings and interpretations of key terms and
definitions across the involved domains. In this article,
we aim to tackle this first step by triangulating and discussing
such a terminology to contribute a common ground for
developing and implementing unified product-structuring
concepts. To derive this terminology, we have built on our
previous systematic mapping study of product-structuring
concepts [[119], which we have expanded and shifted towards
this novel research goal. Based on our new study, we make
the following, completely novel, contributions in this article:

« We report a mapping study covering 40 publications

through which we collected the varying terms and defi-
nitions used within product-structuring concepts that are

established in three different domains (Section IV).

« We synthesize and discuss the key terms we extracted

philipp.zellmer2@volkswagen.de
lennart.holsten@volkswagen.de
j.kruger@tue.nl
tleich@hs-harz.de
tleich@hs-harz.de

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

from the publications (Section V) and illustrate their
relations in a conceptual model (Section VI).

« We propose a framework that consolidates the key defini-
tions and outlines their relationships for researchers and
practitioners to build upon (Section VI).

Our results can help practitioners identify product-structuring
concepts for their product portfolios, provide a common
terminology to avoid confusions, and display the connections
between different terms. For researchers, our work provides
a basis for developing new integrated product-structuring
concepts, which further guide the design of new support
techniques based on a unified understanding. Overall, we hope
that our contributions lay the foundation for new software
and systems engineering research that can be directly applied
by and benefit practitioners.

II. BACKGROUND AND RELATED WORK

Next, we introduce the background of our work. Specif-
ically, we discuss current trends in the automotive industry

(Section II-Al) and product-structuring concepts (Section II-B)).

A. Automotive Systems Engineering

Automotive Innovation. The automotive industry faces in-
creasing demands regarding functional safety and security,
onboard communication, comfort, as well as environmental
sustainability; leading to a continuously growing amount of
vehicle features [1]], [15], [114]]. In parallel, software has
evolved into the primary driver for innovative features within
the automotive domain, solidifying its role as a key factor for
competitive advantages [[6], [[11]]. As a result, there has been
a swift and almost exponential annual increase of software
integrated into a vehicle [19], [81]. By now, a substantial
share (approximately 80 % to 90 %) of innovations within the
automotive industry stems from electronic advancements that
predominantly rely on software [81]. This trend is further
reflected by a notable increase in the lines of code in a vehicle,
particularly premium ones, which exceed 100 million lines of
codes [[19]. With the considerable potential of software in facil-
itating innovation and cost-effective prototyping, vehicles will
continue to become more complex as the number of features
as well as associated electronic control units (ECUs), sensors,
and actuators keeps growing [5[, [6[, [O], [14], [114]. Con-
sequently, automotive manufacturers are facing increasing de-
velopment costs as well as new variability-induced challenges
in managing their extensive product portfolios—which include
reusable software, ECUs, and hardware that yield numerous
customizeable vehicles across various vehicle generations [18]].

Platform Engineering. Pursuing effective product-portfolio
development and management, automotive manufacturers have
implemented platform strategies as an instrument for variabil-
ity management [, [99]. The core idea of automotive plat-
forms is built around a simple premise: Rather than developing
and evolving each vehicle model individually, essential vehicle
components are consolidated into a (hardware) platform. Such
a platform is developed once and then deployed across multi-
ple vehicle models, fostering reuse and enhancing overarching

synergies [21]], [45], [75], [92], [101]], [112]. Despite the ad-
vancing digitization of vehicles, mechanical components con-
tinue to dominate automotive platforms, which is why automo-
tive manufacturers have recently increased their efforts to inte-
grate concepts from software engineering into their established
frameworks [35]. In fact, software product lines utilize a com-
parable strategy and have been inspired by automotive hard-
ware platforms. A software product line integrates reusable
software artifacts as well as their variation points into a unified
platform to streamline software management [17], [65]], [85].
Systematically utilizing the resulting software platform can
significantly contribute to reducing time-to-market, decreasing
costs, and improving software quality by facilitating the reuse
as well as standardization of software artifacts [62], [|63]], [98]],
[110]. Despite such recognized advantages of a software plat-
form, automotive manufacturers struggle to implement such
a platform consistently across their entire product portfolio,
primarily due to the persisting reliance on hardware platforms.
Moreover, the intricate interconnections and distributions of
different hardware, software, and electrics/electronics compo-
nents across various manufacturers as well as suppliers em-
phasize the demand for integrated engineering methodologies
that acknowledge vehicles as cyber-physical systems [48]].

Cyber-Physical Systems. The concept of cyber-physical
systems outlines complex systems with closely interconnected
physical and software components that interact based on
their operational context and environment. Specifically, the
primary objective is to monitor and control physical devices
within the system through digital communication [60],
[68]], [109], [115]. Across an expanding range of industries,
cyber-physical systems are emerging as a catalyst for
innovation, showcasing the potential to evolve beyond today’s
information systems [68]], [84], [95]. Cyber-physical systems
are already employed across diverse domains, including
high-confidence medical devices, production systems, and
critical infrastructure control [68]], [89]].

The automotive industry directs notable resources towards
advancing the intelligence of both, its vehicles and its pro-
duction systems—emphasizing the increased integration of
connectivity, electronics, and software components [60], [87].
Consequently, modern vehicles are evolving into complex
distributed cyber-physical systems that are characterized by
more than a hundred heterogeneous processors, interconnected
subsystems with diverse sensors and actuators, multiple ra-
dio interfaces, as well as connections to other vehicles, the
infrastructure, or back-end systems [60], [87]. This allows
to integrate highly innovative features, including intelligent
mobility assistants, smart home applications, and x-by-wire
systems that can utilize data from the vehicles, their underlying
infrastructure, or back-end systems [51], [67]], [87].

Automotive Life Cycle Management. Within the frame-
work of product life cycle management, a comprehensive and
centralized system is established to govern a product from
its initiation to its disposal or retirement [40], [42[], [105].
Depending on the industry, the duration and content of product
life cycles can vary greatly, with factors like product innova-
tion and consumer behavior playing pivotal roles [90], [121]].

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Product
Management

Domain
Requirements
Engineering

Domain
Testing

Domain
Design

Domain
Implementation

I

I

! Appli "

: { pp, ication Application
Requirements n

! L Design

| Engineering

I

w t

I

Fig. 1: Software product-line engineering based on Pohl et
al. [85] and adapted from Kriiger [62].

I

I

I

Application !
Testing :

I

I

I

Application
Implementation

Strategic efforts across industries to achieve multi-market
saturation and competitive edges involve expanding product
portfolios through the introduction of numerous derivatives
and variants. This trend leads to an increased incorporation
of electrical, electronic, and software components to facilitate
effective communication between systems [54]]. The resulting
cyber-physical systems are characterized by increased com-
plexity, requiring extended management throughout their life
cycles [22]], [|54].

In response to the growing reliance on software in the au-
tomotive industry, the capability to update vehicles with novel
features or to fix identified issues becomes more and more
important to fulfill customer needs and requirements [49],
[71], [83], [[121]. The high number of devices underscores
the limitations of traditional update processes through service
centers, as they tend to be time-consuming, inefficient, and
troublesome [20], [38], [54]. Addressing this challenge, the
automotive industry is heavily investing in OTA software
updates to enable remote modifications of vehicle features
or bug fixes, thereby enhancing the efficiency and scalability
of these updates [20], [38]], [54]. Today, OTA updates
are instrumental for the automotive industry for achieving
customer benefits through software updates throughout a
vehicle’s life cycle. In this article, we refer to this new
life cycle management within the automotive industry as
“software life cycle management,” which describes life cycle
management via OTA software updates [[118]].

B. Product-Structuring Concepts

For the purpose of this study, we define a product-
structuring concept as a methodology designed to
systematically manage an extensive product portfolio
consisting of related, yet customized products. In the
following, we outline common product-structuring concepts
relevant to our study, acknowledging that numerous domain-
specific strategies (e.g., clone-and-own management for
software variants [[62], [65]], [93]], [104]) besides these exist.
These concepts are of particular importance to our work, as
they offer prospects for integration into a complex platform
involving hardware, software, and ECUs.

Software Product-Line Engineering. Product-line engineer-
ing revolves around the premise that a group of similar
products shares a defined set of core assets that can be
explicitly specified and reused among these products, forming

E/E Platform

Phys. Connection,
Sensor, Actuator

@ M ECU

E/E = Electrics/Electronics; ECU = Electric Control Unit; PF = Platform

E/E Platform

Platform

Fig. 2: The electrics/electronics platform concept based on
Holsten et al. [43]].

a customizable platform. Enhanced reuse and standardization
within the product line foster synergies among individual prod-
uct variants. In the context of software engineering, software
product lines have emerged as a pivotal concept for managing
variability in software-intensive systems [17], [SO[, [69], [85].
As we illustrate in software product-line engineering
encompasses two processes: domain engineering and appli-
cation engineering [30], [52], [65], [85]. Domain engineer-
ing involves developing core assets, entailing all software
artifacts and their interconnections being consolidated into a
cohesive software platform. Within a software platform, the
reusable artifacts are accompanied by specifications outlining
the constraints between these artifacts to ensure that a concrete
product variant can be derived [69], [74]], [88]. Application
engineering is the process of configuring and deriving concrete
products from the software platform to meet distinct customer
requirements [69], [106]]. Through a systematic variability-
management framework that emphasizes increased reuse and
standardization, software product lines can substantially re-
duce costs, enhance software quality, and expedite time-to-
market [23]], [26], [62]], [63], [98], [103]], [110].

Electrics/Electronics Platform Engineering. Following the
concept of engineering an integrated platform, electrics/elec-
tronics platforms have been proposed as a method to integrate
a common set of vehicle components into a unified architecture
that is applicable across multiple vehicle models. Diverging
from hardware or software platforms, electrics/electronics plat-
form engineering emphasizes the integration of software and
hardware artifacts within a comprehensive electrics/electronics
architecture. To illustrate how this concept can be applied
in the automotive sector, we present the electrics/electronics
platform alongside its interconnections with the established
hardware platform and hat strategy in [43], 48],
[86]. Rather than delineating between mechanical compo-
nents (hardware platform) and customer-relevant components
(hat), the electrics/electronics platform concept integrates all
electrics/electronics components of the relevant vehicles into
a unified layer. This involves both the entirety of software
artifacts and their physical implementation through embedded
ECUs. Functioning as a comprehensive interface layer, the
electrics/electronics platform establishes a core electrics/elec-
tronics architecture, closely connecting software and hard-
ware artifacts; recognizing the vehicle as an integrated cyber-
physical system. Consequently, inherent advantages linked to
platform engineering, including increased reuse and overall
synergies, can be maximized across the entirety of software-
related vehicle components. Successfully implementing an
electrics/electronics platform builds on several factors, such

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

today
G1,,

G1
=| Product Line 1 @ @
X3
sop sop SOP
G2,
*

CV, AV, PV CV, AV, PV

G2,

Product Line 2 %

*

SOP. . SOP. SOP

CV, AV, PV CV, AV, PV

Product Portfolio

CV: Carry-Over Variation; AV: Attribute Variation; PV: Principle Variation;
SOP: Start of Production; G,: Product Generation n

Fig. 3: The product-generation engineering concept based on
Alberts et al. [3]].

as efficient reuse and standardization as well as the platform’s
adaptability (e.g., to varying sales markets, equipment lines,
or technological developments) [48]], [86].

Product-Generation Engineering. Product-generation engi-
neering builds on the premise that mechatronic products, par-
ticularly in the context of modern vehicles, are rarely initiated
from scratch. Instead, they typically evolve from an existing
product known as the reference product [2]], [3]. An analo-
gous strategy is widely recognized in software engineering,
commonly referred to as clone-and-own development [62],
[65], [93]], [[104]]. The engineering process for a new product
generation involves incorporating existing components and
systems from the reference product, while also developing
and integrating new subsystems. Distinct types of variations
can be defined: carry-over variation, attribute variation, and
principle variation (cf. [Figure 3)). Carry-over variation involves
adopting individual elements from the reference product, with
adjustments to fulfill interface specifications. For instance,
existing technical solutions of the reference product may be
adapted and integrated into a new vehicle generation. Attribute
variation encompasses changing specific vehicle attributes,
such as adaptations to the geometrical shapes of component
or to functional parameters, while maintaining the underlying
technical and functional concept of the reference product.
Principal variations involve engineering activities that add
or remove elements or links within product-generation en-
gineering. This includes new or adjusted vehicle features,
manufacturing process adaptations, and additional software
artifacts with their links [4]]. Considering the various types of
variations, improvements in reuse and standardization across
consecutive vehicle generations can be achieved. In addition,
comprehensive synergies across various vehicle models can be
leveraged by using the reference product as a basis for multiple
products or entire product lines. In recent research, product-
generation engineering has been refined to integrate the grow-
ing significance of software and digitization in vehicles. For
this purpose, product-generation engineering is applied to
vehicle functions by establishing functional roadmaps, which
aim to map functional evolution across the entire product
portfolio and life cycle [3], [24].

Related Work. We are aware of four publications that overlap
with our systematic mapping study on automotive product-
structuring concepts. Nevertheless, none of these publications
presents a systematic mapping that fulfills our research

objectives. Specifically, Marchezan et al. [72] conducted
a systematic literature review on scoping techniques for
product-line engineering. Kenner et al. [53] report a
systematic mapping study covering safety and security
techniques in the context of configurable software systems.
Galster et al. [32] describe a systematic literature review
that focuses on variability handling in software engineering.
While these studies do not specifically cover the automotive
domain or other product-structuring concepts, they collected
relevant publications regarding managing software product-
line engineering. In another work, Knieke et al. [59] report a
systematic literature review on holistic approaches to address
the evolution of automotive software product-line architec-
tures. Analyzing a total of 107 papers, Knieke et al. discuss
automotive software product lines, but do not address papers
related to other product-structuring concepts. While their
investigation aligns with our research, our emphasis extends
beyond software product lines. Within our systematic mapping
study, we aim to provide an overview of existing terms and
definitions used across product-structuring concepts, analyzing
and discussing differences and commonalities to guide further
research about a comprehensive terminological framework.

III. INITIAL SYSTEMATIC MAPPING STUDY

In 2023, we [[118]] conducted an initial systematic mapping
study to gather an overview of existing product-structuring
concepts and methods that consider both hardware and soft-
ware artifacts and are applicable within the automotive do-
main. Our main objective was to provide an overview and
enhance the understanding of existing research, focusing on
different product-structuring concepts and their practical ap-
plication in the automotive domain. More precisely, we:

o Identified, reviewed, and compared 17 publications to
provide an overview of recent automotive product-
structuring concepts.

e Conducted an in-depth analysis and discussion of key
issues and lessons learned regarding the practical usability
of these concepts.

o Defined potential areas for further research to guide the
development of a feasible product-structuring concept
that encompasses software, hardware, and their interde-
pendencies.

As part of our analysis, we identified three product-structuring
concepts that fulfill current automotive requirements: software
product lines, electrics/electronics platforms, and product-
generation engineering. We considered each as promising
to align with current automotive industry trends. However,
for each concept, we also observed several challenges and
issues regarding their practical implementation. First, software
product-line engineering provides possibilities for software-
related automotive variability management, but its practical
application is currently somewhat limited to subsystem level—
due to lacks of real-world documentation of variability and of
tool support. Second, electrics/electronics platforms enable the
required combination of software, hardware, and mechanics
within an integrated concept. However, their practical appli-
cation has not yet been evaluated. Finally, product-generation

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

engineering has proven to efficiently support automotive life-
cycle management, but the concept lacks focus on software
and research is at an early state.

Moreover, a lack of tool support as well as insufficient
knowledge management have been reported as overarching
challenges that hinder the practical implementation of all three
concepts. As a result, decision-makers often miss specific
guidance to find feasible solutions to practical problems.
This is also related to the concepts being mostly presented
at a rather generic level, involving broad recommendations
when applying them. In our initial mapping study, we derived
several lessons from such reported limitations and challenges:
While software product-line papers emphasize the improve-
ment of variability management techniques through concrete
methodologies and consistent processes, product-generation
engineering papers focus on transforming automotive devel-
opment processes towards systematic functional orientation.
Consequently, we deduced that the reported experiences were
rarely translated into concrete practical guidance, leading to
limited decision support activities.

Comparing the investigated product-structuring concepts,
we reasoned that software product-line engineering, hardware
platforms, and electrics/electronics platforms follow the same
basic idea: integrating common assets into an overarching
platform. Referring to this platform, all three concepts aim
to attain synergistic effects through improved reuse and stan-
dardization, facilitating the derivation of individual products
tailored to specific customer requirements (cf. [Figure 4). We
argued that the same terms are defined differently across di-
verse domains and differing terminologies exist to describe the
same concepts. Consequently, we proposed to work towards
an overarching concept that integrates established software-
centric platform concepts with functional roadmaps as used
in product-generation engineering. This overarching concept
aims to address current and future requirements within the
automotive industry, promoting particularly the practical ap-
plicability of the concept. To summarize, we presented the
following key findings:

o Software product-line engineering, hardware platforms,
and electrics/electronics platforms follow the same basic
platform idea.

e The practical application and a lack of tool support
were reported as key challenges across all three of these
product-structuring concepts.

o The lack of practical applicability demands for further
research towards an integrated concept that combines
software orientation and practical feasibility.

Based on these results, we intended to identify existing defi-
nitions and terminologies regarding key terms of automotive
product-structuring concepts and to compare them across the
domains of software engineering, electrics/electronics engi-
neering, and mechanical engineering.

To further underpin the necessity for a unified framework,
we provide an example from automotive practice based on
the first two authors’ work experience. As outlined before,
Volkswagen AG has increasingly adapted concepts based in
software engineering in recent years, such as introducing
electrics/electronics platforms. Today, variant management

Same Basic Idea

@ Integrate common assets into an
overarching platform

@ Enable derivation of different specific
products from the platform

Platform

Software Product
Line

Electrics/Electronics

Hardware ’

@ Achieve synergies through reuse and
standardization

Platform

@ Apply concept to different artefacts
(software, hardware, electrics/electronics)

@ Conceptual Commonality
® Conceptual Difference

Product
Generation
Engineering

Integrated
Approach

Fig. 4: The overview of conceptional connections between the
concepts we identified in our initial mapping study [[I 18]

within the company has to include activities dedicated to
minimizing electrics/electronics platform variance. However,
in applying such activities, we have observed that, for instance,
the term “electrics/electronics platform variant” is defined and
understood differently across various departments and areas.
Establishing a common understanding, which is essential for
a consistent complexity-reduction strategy, has emerged as
a significant challenge for the company. Without such an
understanding, decision-making processes may get delayed
and transparency concerning the impact of variant decisions
is limited. Consequently, variant management may suffer
from operational inefficiencies, causing maintenance efforts
to increase during the vehicle life-cycle [44], [[120]. This real-
world case exemplifies that the lack of a unified terminological
framework can pose risks concerning consistent decision-
making processes, time-to-market, and managing complexity.

IV. METHODOLOGY

Building on our initial mapping study on product-structuring
concepts for automotive platforms [118], we aimed to inves-
tigate commonalities and differences of key terms and defi-
nitions stemming from domain-specific perspectives. For this
purpose, we conducted a systematic mapping study following
the guidelines for software-engineering research proposed by
Kitchenham and her colleagues [56]]—-[58]. Next, we explain

our research procedure, which we illustrate in

A. Research Questions

The increasing digitization and networking of vehicles has
given rise to novel challenges, which are driven by increas-
ing complexity, demands for technical innovations, software-
based vehicle maintenance, and increasing concerns regard-
ing cyber security. As a result, automotive companies are
rapidly adopting methods from software engineering, care-
fully considering the specific challenges and requirements
of the automotive industry. In this article, we aim to asses
commonalities and differences of key terms that are required
for product-structuring concepts, namely software product-line
engineering, electrics/electronics platform engineering, and
product-generation engineering. To achieve this objective, we
formulated the following research questions (RQs):

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

!

Formulate Research Questions

T
----------- Search Strategy

Starting Point: Initial Study] Aut ted S n
utomated Searc
[IEEE | |Scopus| [ACM |

Appllcatlon nl] [Input from

Selection Initial Study

[Initial Search String] Criteria

+ +

&
[
[

Limit of min.
Citations +

]

Data Extraction

Specification

¥
Synthesis

[Applied Search String]

|
| ii———

)
—
)
)

Fig. 5: Overview of our research methodology.

RQ; What are the key terminologies required for automotive
product-structuring concepts?

We aimed to achieve a cross-domain overview of ex-
isting definitions regarding the most important concepts
within automotive product-structuring concepts. Such an
overview helps practitioners in seamlessly transferring
theoretical concepts into practice. To answer this ques-
tion, we extracted key definitions from high-impact lit-
erature to capture the current state of research regarding
existing definitions in different domains.

What terminological differences and commonalities exist
between domains?

Our objective was to assess the hypothesis that identical
terms are defined differently across individual domains
and that different terms exist to represent the same
concepts. To tackle this question, we map the relations
between the terminologies we found and structure them
within a conceptual model.

What practical challenges and implications can be de-
rived from the results?

Based on the cross-domain terminological comparison
and our mapping, we discuss potential issues that auto-
motive practitioners can encounter when implementing
product-structuring concepts in practice. We further pro-
pose a comprehensive terminological framework and dis-
cuss how this could assist in mitigating these challenges.

RQ>

RQ;

Tackling these research questions contributes an overview
of terms and definitions in the area of automotive product-
structuring concepts for practitioners. This overview can fur-
ther guide researchers in scoping new directions to solve real-
world problems.

B. Search Strategy

Our search strategy built upon the results from our initial
systematic mapping study and follows the same process.
According to Kitchenham and Charters [58], selecting search
terms and defining search resources is key for a systematic and
reliable search. Based on our research questions and using the
three key questions: “What?”, “How?”, and “What for?”, we
defined key terms forming the basis of our search string.

6

TABLE I: Overview of synonyms and related terms.

“What?”
Domain

“How?”
Terms

“What for?”
Concepts

automobile; car; vehicle;
system; cyber physical;
engineering; software

complex; variants; variety;
variability; variable; life cycle;
update; feature; release;
function; baseline

e/e architecture; product line;
product generation;
e/e platform; electrics/electronics

Subsequently, we supplemented our terms with synonyms
and related words, which we present in Each of the
three key questions represents an individual string, combining
the terms in with OR operators. Furthermore, we added
wildcards to account for stemming (“*”) and for small changes
in writing (“?”). By connecting the resulting strings with an
AND operator, we built the following search string:

(("automo*" OR ‘"car" OR "vehicle*" OR "cy-
ber*physical" OR "engineering" OR "software" OR
"system") AND ("complex*" OR "varia*" OR "varie*"
OR "life cycle" OR "update" OR "release" OR "feature"
OR "baseline" OR "function") AND ("e/e?archite*"
OR ‘'"product line" OR "product generation" OR
"e/e?platform" OR "electri*/electronic*"))

We applied this search string to the full-text of papers listed
in relevant databases to conduct test runs. Assuming that
highly cited papers containing relevant terms and definitions
could extend far into the past, we decided not to limit our
search to a specific period. Not surprisingly, we found that
the search string returned too many results, which is why we
applied further criteria to reduce the search results. To assess
the most relevant papers within the scientific community,
we defined a limit of at least 150 citations (minimum) for
a paper to consider it in our analysis, which we included in
our selection criteria.

We deployed our final search string to the following digital
libraries from computer science and engineering:

IEEE Xplore, which covers papers from electrical engineer-
ing, computer science, and electronics published by IEEE.

Scopus, which is a large database of peer-reviewed papers
from various publishers with venues being included based
on a quality assessment.

ACM Digital Library, which is a collection of full-text ar-
ticles published by ACM and bibliographic records by
other publishers covering computer science and informa-
tion technology.

To apply our search strategy to the above databases, we
modified our search string in terms of special characters
and research area (e.g., limiting it to computer science and
engineering on Scopus). Afterwards, we extended and im-
proved the completeness of our search by inspecting our initial
mapping study [[118] again for relevant paper and performing
backwards snowballing [64]], [[117]. Specifically, we analyzed
the references listed in each selected primary study to identify
further relevant papers that we may have missed during the
automatic search.

C. Selection Criteria

To identify relevant papers to address our research ques-
tions, we defined the following inclusion criteria (ICs) for a

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Search String in
Data Sources

(N =2398)

Evaluation of Title,
Abstract, Keywords
(N =58)

Snowballing

(N =170)

Application of
Selection Criteria

(N =24)

H

Validation and

Snowballing

)
Initial Mapping Study

N=17)
————

(N=33+7)

Fig. 6: Stages of our search process and the number of papers we selected.

paper to fulfill:

IC; The paper is concerned with product-structuring concepts
in the automotive industry.

IC, The paper has a minimum of 150 citations as a sign of
being established within its domain.

ICs; The paper has been published in a peer-reviewed journal,
conference, or workshop.

IC4 The paper has more than three pages to ensure it is an
actual contribution and not just an abstract or summary.

Moreover, we defined the following exclusion criteria (ECs):

EC; The paper is published in another language than En-
glish or German (we considered German, due to our
proficiency and awareness of highly relevant work being
published in it).

The paper is published only as a bachelor’s thesis, mas-
ter’s thesis, or technical report.

The paper is published with incomplete or missing infor-
mation about the publisher or publication type (i.e., we
excluded gray literature).

EC,

ECs

Applying these selection criteria, we aimed to ensure that
the selected papers fitted our research questions and were of
appropriate quality.

D. Data Extraction

We extracted standard bibliographic data for each paper we
identified, specifically, the source, author(s), title, publisher,
publication year, and number of pages. To address our research
questions, we extracted the following additional information:

¢ The domain from which it stems.

o A summary of the findings presented.
o A list of the research objectives.

o All terms and their definitions used.

We carefully studied the full text of each selected paper to
extract this information. In [Section V| and [Section VI we
report and discuss our results, respectively.

E. Conduct

In we display the conduct of our literature search,
including the number of papers we ended up with after each
step. We conducted the automated search between November
21, 2023, and November 29, 2023, recovering the number of
results for each data source as we list in Overall,
we retrieved 2,398 papers and subsequently screened titles,
abstracts, and keywords of all papers to identify those relevant
to our research questions based on our selection criteria.

TABLE II: Overview of the studies we identified from each
data source.

Data Source Results Selected

SW EE M OD
IEEE Xplore 1,329 4 4 1 1
ACM Digital Library 457 3 1 1 0
Scopus 612 3 0 2 1
Snowballing - 6 3 6 4
Sum 2,398 16 8 10 6

SW: Software Engineering;
E/E: Electrics/Electronics Engineering;
ME: Mechanical Engineering
OD: Other Domain

To improve the validity of our search, two authors cross-
checked all publications. They resolved any disagreements by
discussing the papers with respect to our research questions.
After this step, we kept 58 papers and performed backwards
snowballing. Please note that we included books within our
snowballing process in case these were referenced, and thus
may contain important primary data. Then, by analyzing each
paper in detail, we ended up with a set of 24 papers. From
our initial mapping study [[118]], which covered 17 papers, we
added seven that were also relevant to our study and fulfilled
the selection criteria. The last step included another cross-
validation, data extraction, and iterative snowballing on all
papers we included so far. Finally, we obtained 40 relevant
papers. We provide an overview of their sources in [Table II

F. Analysis

To analyze the extracted data, we built on our knowledge of
the related work, the studies we identified, and our experiences
from practice [43]], [118], [119]. The practical experiences
stem from the automotive industry in which the first two
authors are working for several years. Both have been in-
volved in various projects in one of the largest international
automotive companies, Volkswagen AG. The first author is
member of a project-management team, focusing on vari-
ant management, platform engineering, and software-portfolio
management. The second author is situated in the life-cycle
management department, which emphasizes software-change
management and digital life-cycle management. As a conse-
quence, they collaborate with various experts in these domains
and discuss innovative concepts with these. Overall, the first
two authors possess an in-depth understanding of contempo-
rary concepts related to platform engineering and (digital)
life-cycle management in practice. For the analysis of the

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

extracted data, the authors applied their expertise to structure
and classify it, using, for instance, card-sorting-like methods to
unify terms and definitions. Additionally, all authors engaged
in subsequent discussions to analyze and assess the data as
well as findings.

V. RESULTS (RQ;] & [RQ2)

In this section, we present the main results of our mapping
study, addressing and We selected a total of 40
papers, which we analyzed according to the criteria we defined
for the data extraction. Specifically, we extracted all terms and
definitions, using three levels to classify: Primary definition
available (@), Secondary definition available (©), and No
definition available (O).

We only refer to definitions from secondary sources in
cases in which we had no access to the actual primary
sources. To verify that the terms and definitions are still in
use, we performed a cross-check with recent papers. For
this purpose, we identified contemporary papers that relate
to each term using the extracted definitions [13[], [24], [31]],
(361, 1391, 1591, [72], [80], [91]]. Although most of the papers
included in our study are not the most recent ones due to
the inclusion criterion of a minimum of 150 citations, we
could still ensure that the terms are still in use. We provide
an overview of our resulting mapping in

Architecture. The term architecture is used across all domains
and consistently describes a set of elements that fulfill specific
requirements or implement certain functionalities [10], [25]],
[55], [82]. However, more specific definitions of an architec-
ture are typically used in each domain. Within mechanical
engineering, the term product architecture is commonly used,
with Ulrich [108] establishing a widely adopted definition,
highlighting three key properties: “(1) the arrangement of
functional elements; (2) the mapping from functional elements
to physical components; (3) the specification of the interfaces
among interacting physical components.” The modular product
architecture concept advances on this product architecture,
aiming to enhance flexibility and reusability by emphasizing
modularized components with standardized interfaces to ad-
dress increasing product variety [10]], [47]], [76[, [94], [[108].
Consequently, we found a strong focus on physical compo-
nents, their interconnections, and the resulting implementation
of product functions within architecture definitions relating to
mechanical engineering.

Within software engineering, we found several paper re-
ferring to “software architecture” or the “architecture of a
software system.” Such a software architecture contains—
analogous to product architectures—the software artifacts,
components, and their interactions; displaying the overall
topology and networking within the software system [12],
[79], [82], [100]. So, the architecture addresses properties like
compatibility and capacity at system level [100]. In addition,
Broy et al. [12] utilize the term ‘“hardware architecture” for
automotive systems. Such a hardware architecture contains all
physical devices that are involved in deploying the software
onto a vehicle’s hardware components, for instance, sensors,
actuators, and bus systems.

In summary, the concept architecture is mostly defined
consistently in both mechanical engineering and software
engineering, each having a domain-specific focus in terms
of definitions. However, it is noteworthy that the respective
terminology is strictly utilized within the specific domains. For
instance, we identified no connections to software components
within the context of product architectures.

Platform. The term platform is widely used and defined
across engineering domains, with mechanical engineering
and software engineering referring to different meanings.
We found several mechanical-engineering papers defining the
terms “platform” and “product platform” 28], [33[], [47], [[75],
[77], [92], [[108]]. The mechanical platform follows a core idea:
instead of developing each product individually, manufacturers
define a set of components that are used across a family of
products. Then, the resulting sub-assembly is referred to as
“product platform.” However, besides this general definition,
we found further specifications of a “product platform,” each
emphasizing different priorities: Messac et al. 73] focus on
modular platform structures to facilitate product customization
and enable overarching production processes. Simpson et
al. [[102] extend the perspective on platforms by considering
not only components, but also product parameters and features
as part of a product platform. Muffatto [77] takes this a step
further by introducing an organizational dimension next to the
technical perspective and proposing that the “platform” can
encompass cross-functional teams for implementing overarch-
ing technical platforms. The goal of introducing this definition
is to optimize the existing overlap between technical and orga-
nizational platform aspects. Robertson and Ulrich [92] further
extend the boundaries of the platform terminology beyond the
technical perspective by including processes, knowledge, and
relationships as integral shared assets of product platforms.
Finally, Koufteros et al. [61] do not refer to product families,
but designate a “core product” as the platform. This product
serves as the technical basis for multiple product generations,
resulting in synergies and reuse over the products’ evolution.

Within software engineering and electrics/electronics engi-
neering, we observed a distinction between software and hard-
ware platforms. The terminology of software platforms aligns
with that of product platforms, both being defined as “a collec-
tion of reuseable artifacts” [85] fulfilling specific application
requirements [25]], [55]]. Since the idea of software platforms is
inspired by the mechanical domain, this is not surprising and
the logical difference is a shift from physical artifacts towards
software artifacts. However, the term “software platform”
is constantly used in conjunction with the term “hardware
platform,” which is considered as the technical enabler for
standardizing software artifacts [25]], [55]]. So, the software
platform includes all reusable software artifacts, while the
hardware platform needs to fulfill all architectural constraints
to enable the reuse of software and hardware components. As
a result, software and hardware platform are always closely
connected to each other, with the combination of both being
called a “system platform” [25]], [S5]], [85]. The “electrics/elec-
tronics platform” or “architecture platform™ extends this idea
by emphasizing a combined platform for modern systems that

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

TABLE III: Terms we extracted from each paper.

Architecture

Platform
Variability
Variety
Component
Product Line

Ei g 2 T - B &g 3 . B ER
£ ¢z s ;2 : ;o2 ; fg ¢
=) zZ 2 B &£ =z ©° B £ =z B°© =z ©° =z £
S £ ¢ 8 © E £ & B E g € & E %

Reference A 5 & T ©» D A T »wn D A D =2 D @
Benavides et al. (2010) [7] sw o o O O o o o o O O o o o0 o
Broy et al. (2007) [12] SsW O O e e O O O O O O O O O O
Classen et al. (2013) [16] sw o o o o o O O O O O O O O e
Clements and Northrop (2001) [17] sW o O O O O O O O O O O O e e
Eklund and Gustavsson (2013) [23]] Ssw o0 o o o o o O O O O O O O e
Ferrari and Sangiovanni-Vincentelli (1999) [25] SW e O O O O O @ @ O O o O O O
Galster et al. (2014) [32] swWw o O O O O O O O © O O O e O
Oreizy et al. (1998) [[79] sw o o 0O © 0O O O O O O e O O O
Perry and Wolf (1992) [82] SswW e O O © O O O O O O O o o O
Queiroz and Braga (2014) [88]] sw o0 o o o o O O O O O O O 0O e
Schmid and John (2004) [97] sw o o o o o o O O © O O O © O
Shaw et al. (1995) [100] sw o0 O 0 e O O O O O O O O o O
Thiim et al. (2014) [107] sw o o o o o o o o o o o o o ©
Thiel et al. (2009) [106] sw o o o o o O O O O O O O O e
van Gurp et al. (2001) [111] sw o0 O O O O O O O e O O O O e
Voelter and Groher (2007) [113] sw o o o o o O O O e O O O O O
Browning (2001) [10] EE ¢ © 0O O O O O O O O O O O O
Flores et al. (2012) [29] EE O O O O O O O O O O e O O O
Gleirscher et al. (2014) [33] EE O O O O e O O O O O O e O O
Huang and Kusiak (1998) [46] EE O O O O o O O O O O O ©o© O o
Jaensch et al. (2010) [48] EE O O O O e O O O O O O o O O
Keutzer et al. (2000) [55] EE @€ O O O O O e e O O © O O O
Pohl et al. (2005) 85| EE O O O O e O O e O O O O e e
Sangiovanni-Vincentelli and Martin (2001) [96] E/E O O O O @ O O O O O o O O O
Fahl et al. (2019) [24] ME O O O O O O O O O O O O e O
Fisher et al. (1995) [27] ME O O o O O O o O O O O O o O
Fisher et al. (1999) [28] ME O O O O O e O O O © O O O O
Gershenson and Zhang (2003) [47] ME O © O O e O O O O © O © O O
Messac et al. (2002) [73] ME O O O O o0 © O O O O O O O O
Meyer and Lehnerd (1997) [[75] ME O O O O e e O O O O O O O O
Muffatto (1999) [77] ME O O O O © e O O O O O © O O
Simpson et al. (2001) [[102] ME O O O O O e O O O e O O O o
Ulrich (1995) [108] ME O e O O O e O O O e e e O O
Wilhelm (1997) [116] ME O O o O O O o O O O O [J o O
Henderson and Clark (1990) [41] ob O O O O O O O O O O ®¢ O O O
Koufteros et al. (2002) [61] ob o 0O O O © O O O o o o o o o
Langlois and Robertson (1992) [66] ob o o o o o O O O O O O © O O
Mikkola and Gassmann (2003) [[76]] oOob O © O O O O O O O o © O O O
Robertson and Ulrich (1998) [92]] ob O o 0o O O © O O O O e O O O
Sanchez (1996) [94] ob o © O O O O O O o o O O O o

@: Primary definition available; ©: Secondary definition available; O: No definition available
SW: Software Engineering; E/E: Electrics/Electronics Engineering;
ME: Mechanical Engineering; OD: Other Domain

incorporate software, hardware, mechanics, electrics/electron-
ics, and their interconnections [25]], [48]], [85], [96].

Product Line. The term “product line” is mostly used in
the software-engineering domain, typically referred to as a
“software product line.” In fact, we included no paper from
mechanical engineering that referred to a product line, de-
spite the fundamental definition of product-line engineering
addressing products and their variability in general. Product-
line engineering is focused around exploiting reuse poten-
tial among products within an organization by identifying
commonalities between the products and systematizing their
variabilities (i.e., configurable features) [17], [32]], [85], [97].

The term “product line” typically refers to a product family,
wherein individual products show a high overlap of mandatory
or commodity features [[17]], [85]]. In the context of product-
generation engineering, the definition of a product line may
also apply to a series of successive product generations [24].

“Software product-line engineering” builds upon these
definitions, aiming to develop complex software products
as a “software product line” [16], [17]], [[111]. The term
“software product line” is commonly defined as “a set of
software-intensive systems sharing a common, managed set
of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

common set of core assets in a prescribed way” [7], [17],
[23]], [88]], [106]. Thiim et al. [[107]] take this definition to the
source-code level and characterize a software product line
as a software product family sharing a common code base,
with the individual products differing in the implemented
features. In each case, the focus of software product lines is
on reducing and managing variability by achieving reuse and
synergy potentials, thereby leading to savings in development
and maintenance costs [7], [17]], [85], [111].

Variability. Regarding variability and variant management, we
found different terms, but each of them was typically utilized
in only one distinct domain. Within software engineering, the
term “variability” is often used to describe the ability of de-
velopers to customize (a.k.a., configure) a platform depending
on specific requirements [32], [111]]. The respective variability
management primarily pertains to software product-line engi-
neering and involves defining parameters as well as variation
points within a product line and managing these throughout
the entire life cycle [32f, [97], [L11], [113]. It is worth
noting that variability management focuses on planning and
systematizing software changes to create variants, taking into
account possible reuse and standardization. Thus, variability
is considered essential to enable the adaptability of a software
product line to customer preferences and requirements while
facilitating reuse synergies. However, Galster et al. [32] note
that variability is not exclusive to software product lines, but
impacts all kinds of software systems and their development
processes. As a result, variability represents an inherently
existing challenge for engineering complex software systems.

While software engineering focuses on the term ‘“vari-
ability” to describe variant-management activities and chal-
lenges, mechanical engineering papers mostly refer to the term
“product variety.” The term “product variety” addresses the
diversity of product families that results from the demand
for highly configurable, mass-produced products, also referred
to as mass customization [28]], [47[], [[108]. In this context,
variety also involves distinguishing between the breadth of
the product portfolio and the frequency of product-generation
changes [27], [28]], [108]]. For the automotive industry, the
breadth is typically further divided into subtypes of fundamen-
tal variety (e.g., different platforms, models, body styles) and
peripheral variety (e.g., options, packages, equipment) [27].
In contrast to ‘“variability,” most papers establish a direct
link between “product variety” and the expenses as well as
challenges of excessive product diversity—highlighting the
need for effective variant management [27]], [[102], [108]].

Overall, we identified a distinct conceptual difference
of variant-management terminologies between the domains
of software engineering and mechanical engineering. Soft-
ware engineering is consistently using the term “variability,”
whereas mechanical engineering mostly refers to the term
“product variety.” Nonetheless, the definitions are highly sim-
ilar to identical.

Component. We found papers from every domain that define
the term ‘“component.” Irrespective of the domain, a “com-
ponent” is understood as a distinctly identifiable unit or part
fulfilling a particular functionality [25], [29]], [41], [55[, [79],

[92], [108]. Depending on that functionality, components may
involve hardware, software, or mechanical elements [29], [41]],
[76], [108]. To achieve cross-product synergies, groups of
components are commonly consolidated into modules [66],
[78], [[116]. Modules are characterized by standardized in-
terfaces, allowing for independent development and manu-
facturing as well as for deployment in multiple different
products [46], [47], [78]], [108], [116].

— & Overview of Terminologies

We found domain-specific definitions for the terms “archi-
tecture,” “platform,” and “variability”/“variant manage-
ment.” In contrast, the term “component” is consistently
defined and used across domains. The term “(software)
product line” is predominantly used within software en-
gineering. While this is a clear list of key terms (RQj),
their definitions across domains vary ([RQ3).

VI. DISCUSSION (RQj3)

In this section, we discuss our findings regarding existing
definitions, focusing on the differences and commonalities
across domains. We provide an overview of the terms we ex-
tracted and analyzed in By comparing the definitions,
we derive practical challenges that can occur within cross-
sectional application domains. In the end, we provide a frame-
work in which we aimed to introduce a cohesive definition and
overview of the terms and their relations. Due to our experi-
ences, we use the automotive industry for illustrative examples.

Architecture. The term ‘“architecture” is defined and used
across domains in a similar fashion. However, we also found
that the term is typically connected to some other term that is
applied strictly in one domain. Specifically, mechanical engi-
neering typically refers to the “product architecture” whereas
software engineering refers to “hardware/software architec-
ture.” Consequently, different terms exist for closely related
concepts, which can lead to communication issues in prac-
tice; especially within cross-functional teams and processes.
In fact, we could not identify a cohesive, cross-disciplinary
understanding of architecture in the literature, which would
enhance mutual comprehension in interdisciplinary projects.

Platform. The term “product platform” is widely used in
mechanical engineering, particularly in the automotive indus-
try. In this industry, it denotes a consolidated set of technical
components that are used across multiple products within a
product family. While we have encountered definitions that
extend the platform concept beyond technical components to
processes and relationships, we have not found an explicit
association of product platforms to software. Instead, the term
“software platform” has been established within software
engineering, which follows the same idea as a product
platform, albeit focusing on the reuse of software artifacts.
Given the intricate interactions among hardware, software,
and mechanical components in modern vehicles, a distinction
between software, hardware, and product platforms may lead
to communication issues and may impede synergies. Recog-
nizing this issue, recent papers have explored the development

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Software Engineering Domain/
E/E Engineering Domain

Universal Terminology

Mechanical Engineering Domain

Software Architecture + I 1 [
B 33:"{ Architecture i | Product Architecture ‘
Hardware Architecture } x
impacts
Software Platform }
,
Hardware Platform ‘ :Z?J Platform | [Product Platform
I 1 | I
T Y
’ E/E Platform } impacts
’ Component ‘

Software Product Line

Product Line

sainpal

l defines

\
I

Variability

|

Variant Management

Product Variety ‘4-

'
I definitional conjunction i related terms

Fig. 7: Conceptional model of key terms of automotive product-structuring concepts.

of more integrated concepts, such as ‘“electrics/electronics
platforms” or “architecture platforms.” These emphasize an
overarching electrics/electronics vehicle architecture that
efficiently combines hardware and software artifacts across
different vehicle models. However, we found no reports that
such an integrated concept is already applied in practice.

Product Line. Product-line engineering, and especially soft-
ware product-line engineering, are widely recognized within
software engineering. However, the concept seems to have
low traction on mechanical engineering. Comparing the def-
initions of “product line” and “product platform” reveals a
consistent underlying concept, with domain-specific proper-
ties. The common idea is to standardize a set of compo-
nents or artifacts across a product family, aiming to facilitate
reuse and synergies to achieve a systematic management
of complexity. In essence, product-line engineering aims to
establish a systematically managed and configurable platform,
closely connecting both terms. Within the automotive industry,
synergies and reuse potentials have traditionally been achieved
through mechanically oriented platforms and modularization
strategies. However, the increasing digitization and the result-
ing relevance of software highlight the need for an growing
focus on hardware and software components as key artifacts
to reduce the overall complexity. Such considerations have
already been successfully studied in software engineering
through software product-line engineering, but we have not
identified such integrated concepts within vehicle portfolios.
Based on our findings, we argue that integrating software-
complexity management approaches like software product-
line engineering into existing mechanically-oriented platform
engineering poses a practical and conceptual challenge. Partic-
ularly, it seems that there are missing interconnections between
closely related concepts in the literature.

Variability. As we outlined in [Section V| different termi-
nologies are used for variant management across domains.
In software engineering, the discourse revolves around the

term “variability” and, in turn, “variability management.” In
contrast, mechanical engineering uses the term “product vari-
ety,” especially within the context of conventional automotive
development. Fundamentally, both terminologies share the
same core: Both describe the ability of technical products to
be customized and configured to derive variants that fulfill
a customer’s requirements. Nevertheless, both terminologies
are strictly used within their respective domain; we did no
observe any overlaps. Again, this highlights a tendency of
missing cross-domain knowledge, which may partly be caused
by the different terminologies. So, we argue that further cross-
domain research is needed to build on each domains’ expertise,
avoid costly redevelopment of the same concepts, and support
practitioners with a more integrated understanding.

Component. The term “component” appears to be a prime
example of a cross-domain understanding, as we have en-
countered the term in all examined domains with a consistent
definition. Consequently, we perceive that this term is well-
aligned between researchers from different domains. Still, this
does not imply that the term is ideally defined within each
domain. For instance, the boundaries of a software component
are typically more vague and up for debate among engineers
compared to a mechanical component.

Summary. Our findings indicate that there are no consistently
used cross-domain definitions for key terms used for
automotive product-structuring concepts (cf. [Figure 7). For
instance, software-engineering researchers consistently use
the terms hardware or software architecture and hardware
or software platform. In contrast, mechanical-engineering
researchers refer to product architecture and product platform.
Essentially, each domain is adjusting the definitions of
core concepts to their domain specifics. By itself, such
adjustments are not a problem. However, for engineering
modern systems that incorporate layers from various domains,
these adjustments can cause confusions, miscommunication,
and potentially wrong assumptions. By introducing the

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Automotive Domain
Variability beceereceeeeeceeeeeeeeeeee] Software Hardware Software
y Product Line Platform Platform
P Hardware
Mechanical _ - Architecture
controls Platform functional dependence defines | LT !
mechani(aIT
HW +SW | Electrics/Electronics Electrics/Electronics ‘ Software
Component . R
Platform (HW + SW) Architecture Architecture
Variant controls T ,,,,,,,,,,,,,,,,,,,
Features
Management | T Product
Architecture
controls Electrics/Electronics controls
Platform Line
" Configuration
configure
Management
controls
Proc.iuct Product
Variety
D unified term ,,,:i related term g definitional conjunction

Fig. 8: Our conceptual framework of product-structuring concepts.

concept of electrics/electronics platforms, some researchers
have attempted to unify the terminological understanding.
Yet, its use in research and practice is lacking to date.

Another issue arises from the use of the term product line:
Despite high similarities within the definitions of platform
and product line, we found no overarching terminology that
clearly distinguishes or standardizes these terms. Instead, we
found no paper from mechanical engineering utilizing the term
product line at all. We consider such terminological vagueness
a challenge for automotive practitioners to integrate software-
engineering methods like software product-line engineering
into existing automotive platform strategies.

We observed a similar situation regarding variant manage-
ment: Distinct terms are employed across domains, but at their
core they describe the same concept. Both, the term variabil-
ity from software engineering and the term product variety
from mechanical engineering characterize product diversity
and customized product variants. Nevertheless, we found no
terminological framework that defines the similarities and
relations between these terms.

RQ3: Challenges and Implications

Software engineering and mechanical engineering lack a
defined and standardized cross-domain terminology. This
can confuse researchers and practitioners, motivating fu-
ture research towards an integrated framework.

Conceptual Framework. Building on our findings, we de-
rived the conceptual framework that we illustrate in
Specifically, we structured and defined the key terms related
to automotive product-structuring concepts we summarize in
This framework aims to support practitioners, partic-
ularly from the automotive industry, in successfully adopting
and integrating engineering methods from different domains
to effectively implement an overarching platform approach.
Please note that we focus on the automotive industry, but

the terms and our framework can be transferred across other
industries and domains, too.

Within our framework, the terms “electrics/electronics plat-
form,” “electrics/electronics platform line,” and “product”
are central, each representing a different level within an
automotive product portfolio. First, the ‘“electrics/electronics
platform” describes the entirety of reusable artifacts that
encompasses all hardware and software components, providing
a cross-vehicle basis within a product portfolio. Second, the
“electrics/electronics platform line” refers only to a subset
of the platform sharing identical components. This level is
optional in different contexts, but from our experiences, it can
be very helpful, for instance, to distinguish between different
models. Lastly, the “product” refers to a single vehicle that
is derived from the “electrics/electronics platform” and cus-
tomized to customer requirements.

At the top level, the “electrics/electronics architecture”
defines all connections between the individual hardware and
software components within the “electrics/electronics plat-
form.” Consequently, this architecture represents the con-
nections between, for example, control units, sensors, and
actuators. Moreover, the “electrics/electronics platform” and
the “mechanical platform” are interdependent. Electrics/elec-
tronics components (a combination of hardware and software
components [43]]) can impact the mechanical platform, and
mechanical components can impact the electrics/electronics
platform—which, in turn, is represented as variability. To
manage this variability, “variant management” controls the
electrics/electronics platform, the number of electrics/electron-
ics platform lines, and the scope within the mechanical plat-
form. We distinguish variant management from configuration
management, since it typically aims to achieve an optimal
number of variants within the product portfolio. In contrast,
the “configuration management” is concerned with configuring
and deriving an individual product from the electrics/elec-

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

tronics platform based on the variability and thereby variants
defined in the variant management. Within our framework, we
refer to “mechanical platform” instead of product platform to
emphasize the dependency on mechanical components and to
avoid misunderstandings related to similar terms from the lit-
erature. In our framework, the mechanical platform comprises
only components that are not part of the electrics/electronics
platform, such as brake disks or suspension springs.

VII. THREATS TO VALIDITY

We recognize that the validity of our mapping study may
be threatened. First, the level of detail regarding information
we needed varied among the papers. Some contain relevant
definitions and descriptions in great detail, others comprise
no relevant information or miss important pieces. In this
regard, we implemented quality checks based on our selection
criteria to mitigate such issues and leveraged our practical
experiences to contextualize the results. Inherently, all analyses
and interpretations of the data are subject to our interpretation,
which threatens the construct and internal validity because we
may have misunderstood constructs or details were missing.
To reduce subjectivity, we rigorously followed our methodol-
ogy, particularly the search strategy outlined in
with two independent analysts and cross-validations among
all authors. However, we cannot guarantee that we did not
misinterpret some pieces of information.

Regarding the external validity of our study, we first ac-
knowledge that our search strategy does neither encompass
all papers related to the domains we list in nor to all
product-structuring concepts that exist in these. Our selection
of relevant papers is based on predefined data sources, and
thus limited to the available literature in these. This may
have introduced sampling biases that threatens the external
validity of our mapping study. Moreover, we narrowed down
the number of papers to a final selection of 40 from multiple
databases. This reduction may have increased the likelihood
of incorrect classifications, due to the smaller sample size.
To address these threats, we involved multiple researchers in
the literature analysis, performed a thorough exploration of
various databases (i.e., IEEE, Scopus, ACM), and employed
snowballing. Moreover, we documented each stage of our
process to facilitate transparency and reproducibility.

VIII. CONCLUSION

In this article, we presented a systematic mapping study on
existing terminologies used for automotive product-structuring
concepts. We aimed to provide an overview of established
terms, their definitions, their differences, and their relations
within as well as across domains. For this purpose, we
analyzed 40 highly-cited papers, from which we extracted
relevant terms and definitions. Our results indicate that most
key terms used for describing automotive product-structuring
concepts have distinct domain-specific definitions. Notably,
“platform” and “architecture” are each specified differently in
software engineering and mechanical engineering, despite their
conceptually equivalent meaning across these domains. The
term “product line” exhibits significant overlap with the term

“platform,” but is employed exclusively in software engineer-
ing. Regarding variant management, the terms “variability”
and “product variety” describe parallel concepts, yet are used
exclusively within specific domains. To tackle these conceptual
differences, we proposed a first conceptual model that defines
distinct terms and shows how these relate to each other. We
hope that our mapping study and framework offer assistance
for practitioners implementing product-structuring concepts,
and for researchers to facilitate cross-domain research.

We have placed strong emphasis on mechanical engineering,
electrics/electronics engineering, and software engineering as
key domains in automotive development. Future research could
build on this foundation and expand its scope to include other
industries and domains, such as life-cycle assessment, security
by design, or artificial intelligence. This way, our framework
could be refined and expanded in the future. Moreover, we
see the need to evaluate the individual product-structuring
concepts as well as our framework in practice to understand
their potential pros and limitations.

Disclaimer. The results, opinions, and conclusions of this
paper are not necessarily those of Volkswagen AG.

APPENDIX

In [Table TV] and [Table V] we provide an overview of the

studies we included from our initial mapping study [[118] and
from our new literature search, respectively.

REFERENCES

[1] H.-B. Abel, H.-J. Blume, L. Brabetz, M. Broy, S. Fiirst, L. Ganzelmeier,
J. Helbig, G. Heyen, M. Jipp, G. Kasties, P. Knoll, O. Krieger,
R. Lachmayer, K. Lemmer, W. Pfaff, T. Scharnhorst, and G. Schneider,
Elektrik/Elektronik/Software. Springer, 2016.

[2] A. Albers, N. Bursac, and E. Wintergerst, “Product generation develop-
ment - importance and challenges from a design research perspective,”
in International Conference on Theoretical Mechanics and Applied
Mechanics (TMAM). INASE, 2015.

[3] A. Albers, J. Fahl, T. Hirschter, M. Endl, R. Ewert, and S. Rapp,
“Model of pge — product generation engineering by the example of
autonomous driving,” Procedia CIRP, vol. 91, 2020.

[4] A. Albers, S. Rapp, J. Fahl, T. Hirschter, S. Revfi, M. Schulz,
T. Stiirmlinger, and M. Spadinger, “Proposing a generalized description
of variations in different types of systems by the model of pge — product
generation engineering,” International Design Conference (DESIGN),
2020.

[5] J. Axelsson, “A transformation-based model of evolutionary architect-
ing for embedded system product lines,” in International Workshop
on Model Based Architecting and Construction of Embedded Systems
(ACES-MB). CEUR-WS.org, 2010.

[6] S. Baumgart, X. Zhang, J. Froberg, and S. Punnekkat, “Variability
management in product lines of safety critical embedded systems,” in
International Conference on Embedded Systems (ICES). ACM, 2014.

[7] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615-636, 2010.

[8] D. Bilic, E. Brosse, A. Sadovykh, D. Truscan, H. Bruneliere, and
U. Ryssel, “An integrated model-based tool chain for managing
variability in complex system design,” in International Conference
on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE, 2019.

[9] C. Brink, E. Kamsties, M. Peters, and S. Sachweh, “On hardware

variability and the relation to software variability,” in Euromicro Con-

ference on Software Engineering and Advanced Applications (SEAA).

IEEE, 2014.

T. R. Browning, “Applying the design structure matrix to system

decomposition and integration problems: a review and new directions,”

IEEE Transactions on Engineering Management, vol. 48, pp. 292-306,

2001.

[10]

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

TABLE IV: Studies from our initial mapping study [[118] that we included in this work.

ID Authors Year Venue Title Source

01 Eklund and Gustavsson [23] 2013 SCP Architecting Automotive Product Lines: Industrial Practice ACM

02 Fahl et al. [24] 2019 ISSE Functional Concepts in the model of PGE — Product Generation Engineering by the IEEE

Example of Automotive Product Development

03 Flores et al. [29] 2012 SPLC Mega-Scale Product Line Engineering at General Motors ACM

04 Gleirscher et al. [33] 2014 IWSPM A Model-Based Approach to Innovation Management of Automotive Control Systems IEEE

05 Jaensch et al. [48] 2010 GI Transfer von Prozessen des Software-Produktlinien Engineering in die SB

Elektrik/Elektronik-Architekturentwicklung von Fahrzeugen
06 Queiroz and Braga [|88] 2014 SEKE A Critical Embedded System Product Line Model-based Approach Scopus
07 Thiel et al. [106] 2009 SAE Software Product Lines in Automotive Systems Engineering Scopus
ACM: ACM Digital Library; IEEE: IEEE Xplore; SB: Snowballing
TABLE V: Studies from our new literature search that we included in this work.

ID Authors Year Venue Title Source

01 Benavides et al. [7] 2010 ISJ Automated Analysis of Feature Models 20 Years Later Scopus

02 Browning [10] 2001 TEM Applying the Design Structure Matrix to System Decomposition and Integration IEEE

Problems

03 Broy et al. [12] 2007 PROC Engineering Automotive Software SB

04 Classen et al. [|16] 2013 TSE A Classification and Survey of Analysis Strategies for Software Product Lines ACM

05 Clements and Northrop [17] 2002 BC Software Product Lines SB

06 Ferrari and Sangiovanni-Vincentelli [25] 1999 ICCD System Design: Traditional Concepts and New Paradigms SB

07 Fisher et al. [27] 1995 BC Strategies for Product Variety: Lessons from the Auto Industry SB

08 Fisher et al. [28] 1999 MANS Component Sharing in the Management of Product Variety ACM

09 Galster et al. [32] 2014 TSE Variability in Software Systems— A Systematic Literature Review IEEE

10 J. K. Gershenson and Zhang [47] 2003 JED Product modularity: definitions and benefits Scopus

11 Henderson and Clark [41] 1990 ASQ Architectural Innovation: The Reconfiguration of Existing Product Technologies and the ~ SB

Failure of Established Firms

12 Huang and Kusiak [46] 1998 SMC Modularity in Design of Products and Systems SB

13 Keutzer et al. [55] 2000 TCAD System-Level Design: Orthogonalization of Concerns and Platform-Based Design IEEE

14 Koufteros et al. [61] 2002 JOM Integrated product development practices and competitive capabilities Scopus

15 Langlois and Robertson [66) 1992 RP Networks and innovation in a modular system SB

16 Messac et al. [73] 2002 JMD Introduction of a Product Family Penalty Function Using Physical Programming Scopus

17 Meyer and Lehnerd [75] 1997 BC The Power of Product Platforms SB

18 Mikkola and Gassmann [76] 2003 TEM Managing Modularity of Product Architectures: Toward an Integrated Theory IEEE

19 Muffatto [77] 1999 1JPE Introducing a platform strategy in product development SB

20 Oreizy et al. [[79] 1998 ICSE Architecture-Based Runtime Software Evolution IEEE

21 Perry and Wolf [82] 1992 SEN Foundations for the Study of Software Architecture SB

22 Pohl et al. [85] 2005 BC Software Product Line Engineering SB

23 Robertson and Ulrich [92] 1998 SMR Planning for Product Platforms SB

24 Sanchez [94] 1996 EMJ Strategic Product Creation: Managing New Interactions of Technology, Markets, and ~ SB

Organizations

25 Sangiovanni-Vincentelli and Martin [96] 2001 D&T Platform-Based Design and Software Design Methodology for Embedded Systems IEEE

26 Schmid and John [97] 2004 SCP A customizable approach to full lifecycle variability management SB

27 Shaw et al. [|100] 1995 TSE Abstractions for Software Architecture and Tools to Support Them IEEE

28 Simpson et al. [102] 2001 RED Product platform design: method and application SB

29 Thiim et al. [107] 2014 CSUR A Classification and Survey of Analysis Strategies for Software Product Lines ACM

30 Ulrich [108] 1995 RP The role of product architecture in the manufacturing firm SB

31 van Gurp et al. [111] 2001 ICSA On the Notion of Variability in Software Product Lines SB

32 Voelter and Groher [113] 2007 SPLC Product Line Implementation using Aspect-Oriented and Model-Driven Software De- IEEE

velopment

33 Wilhelm [116] 1997 BC Platform and modular concept at Volkswagen - their effect on the assembly process SB

ACM: ACM Digital Library; IEEE: IEEE Xplore; SB: Snowballing, BC: Book Chapter

[11] M. Broy, “Challenges in automotive software engineering,” in Interna- 1069-1089, 2013.
tional Conference on Software Engineering (ICSE). ACM, 2006. [17] P. C. Clements and L. M. Northrop, Software Product Lines: Practices

[12] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering and Patterns. Addison-Wesley, 2001.
automotive software,” IEEE, vol. 95, no. 2, pp. 356-373, 2007. [18] B. Cool, C. Knieke, A. Rausch, M. Schindler, A. Strasser, M. Vogel,

[13] A. Bucaioni and P. Pelliccione, “Technical architectures for automotive O. Brox, and S. Jauns-Seyfried, “From product architectures to a
systems,” in International Conference on Software Architecture (ICSA). managed automotive software product line architecture,” in Symposium
IEEE, 2020, pp. 46-57. on Applied Computing (SAC). ACM, 2016.

[14] H. Bucher, K. Neubauer, and J. Becker, “Automated assessment of e/e- [19] Y. Dajsuren and M. v. den Brand, “Automotive software engineering:
architecture variants using an integrated model- and simulation-based Past, present, and future,” in Automotive Systems and Software Engi-
approach,” in World Congress Experience (WCX). SAE International, neering. Springer, 2019.

2019. [20] M. J. B. de Sousa, L. F. G. Gonzalez, E. M. Ferdinando, and J. F. Borin,

[15] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. Stihle, “Over-the-air firmware update for iot devices on the wild,” Internet of
and A. Knoll, “The software car: Building ict architectures for future Things, vol. 19, 2022.
electric vehicles,” in International Electric Vehicle Conference (IEVC). [21] O. L. de Weck, E. S. Suh, and D. Chang, “Product family and
IEEE, 2012. platform portfolio optimization,” in International Design Engineering

[16] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and Technical Conferences and Computers and Information in Engineering
J.-F. Raskin, “Featured transition systems: Foundations for verifying Conference (DETC). ASME, 2003.
variability-intensive systems and their application to 1t model check- [22] M. Eigner, W. Koch, and C. Muggeo, Modellbasierter Entwick-

ing,” IEEE Transactions on Software Engineering, vol. 39, no. 8, pp.

lungsprozess cybertronischer Systeme: Der PLM-unterstiitzte Referen-

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

zentwicklungsprozess fiir Produkte und Produktionssysteme.
2017.

U. Eklund and H. Gustavsson, “Architecting automotive product lines:
Industrial practice,” Science of Computer Programming, vol. 78, no. 12,
2013.

J. Fahl, T. Hirschter, J. Kamp, M. Endl, and A. Albers, “Functional
concepts in the model of pge — product generation engineering by
the example of automotive product development,” in International
Symposium on Systems Engineering (ISSE). 1EEE, 2019.

A. Ferrari and A. Sangiovanni-Vincentelli, “System design: tradi-
tional concepts and new paradigms,” in International Conference
on Computer Design: VLSI in Computers and Processors (Cat.
No.99CB37040). 1EEE, 1999, pp. 2-12.

S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, A. Egyed, and R. Ram-
ler, “Bridging the gap between software variability and system variant
management: Experiences from an industrial machinery product line,”
in Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). 1EEE, 2015.

M. Fisher, A. Jain, and J. P. Macduffie, “Strategies for Product Variety:
Lessons from the Auto Industry,” in Redesigning the Firm. Oxford
University Press, 1995.

M. L. Fisher, K. Ramdas, and K. T. Ulrich, “Component sharing in
the management of product variety: a study of automotive braking
systems,” Management Science, vol. 45, pp. 297-315, 1999.

R. Flores, C. Krueger, and P. Clements, “Mega-scale product line
engineering at general motors,” in International Software Product Line
Conference (SPLC). ACM, 2012.

A. Frank and E. Brenner, “Model-based variability management for
complex embedded networks,” in International Multi-Conference on
Computing in the Global Information Technology (ICCGI). IEEE,
2010.

C. Frank, L. Holsten, T. Sahin, and T. Vietor, “How to manage
vehicle platform variants? a method to assess platform variance through
competitive analysis,” Procedia CIRP, vol. 109, 2022.

M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,
“Variability in software systems—a systematic literature review,” IEEE
Transactions on Software Engineering, vol. 40, no. 3, pp. 282-306,
2014.

M. Gleirscher, A. Vogelsang, and S. Fuhrmann, “A model-based
approach to innovation management of automotive control systems,” in
International Workshop on Software Product Management (IWSPM).
IEEE, 2014.

S. Graf, M. GlaB, J. Teich, and C. Lauer, “Design space exploration
for automotive e/e architecture component platforms,” in Euromicro
Conference on Digital System Design (DSD). 1EEE, 2014.

S. Graf, S. Reinhart, M. GlaB, J. Teich, and D. Platte, “Robust
design of e/e architecture component platforms,” in Design Automation
Conference (DAC). 1EEE, 2015.

H. Guissouma, C. P. Hohl, F. Lesniak, M. Schindewolf, J. Becker, and
E. Sax, “Lifecycle management of automotive safety-critical over the
air updates: A systems approach,” IEEE Access, pp. 57696-57717,
2022.

H. Gustavsson and J. Axelsson, “Evaluating flexibility in embedded
automotive product lines using real options,” in International Software
Product Line Conference (SPLC). IEEE, 2008.

S. Halder, A. Ghosal, and M. Conti, “Secure over-the-air software
updates in connected vehicles: A survey,” Computer Networks, vol.
178, 2020.

K. Hayashi and M. Aoyama, “A multiple product line development
method based on variability structure analysis,” in International Sys-
tems and Software Product Line Conference (SPLC). ACM, 2018.
M. Hayat and H. Winkler, “Exploring the basic features and challenges
of traditional product lifecycle management systems,” in International
Conference on Industrial Engineering and Engineering Management
(IEEM). IEEE, 2022.

R. M. Henderson and K. B. Clark, “Architectural innovation: The
reconfiguration of existing product technologies and the failure of
established firms,” Administrative Science Quarterly, vol. 35, no. 1,
pp. 9-30, 1990.

H. Hick, K. Kiipper, and H. Sorger, Systems Engineering for Automo-
tive Powertrain Development. Springer, 2021.

L. Holsten, C. Frank, J. Kriiger, and T. Leich, “Electrics/electronics
platforms in the automotive industry: Challenges and directions for
variant-rich systems engineering,” in International Working Conference
on Variability Modelling of Software-Intensive Systems. ACM, 2023.
L. Holsten, J. Kriiger, and T. Leich, “Insights into transitioning towards
electrics/electronics platform management in the automotive industry,”

Springer,

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

in International Conference on the Foundations of Software Engineer-
ing, ser. FSE 2024. ACM, 2024, p. 161-172.

K. Holttd-Otto, “Modular product platform design,” Ph.D. dissertation,
Helsinki University of Technology, 2005.

C.-C. Huang and A. Kusiak, “Modularity in design of products and
systems,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 28, no. 1, pp. 66-77, 1998.

G. J. P. J. K. Gershenson and Y. Zhang, “Product modularity: Defini-
tions and benefits,” Journal of Engineering Design, vol. 14, no. 3, pp.
295-313, 2003.

M. Jaensch, B. Hedenetz, M. Conrath, and K. D. Miiller-Glaser,
“Transfer von prozessen des software-produktlinien engineering in
die elektrik/elektronik- architekturentwicklung von fahrzeugen,” in
INFORMATIK. GI, 2010.

C. Jiacheng, Z. Haibo, Z. Ning, Y. Peng, G. Lin, and S. X. Sherman,
“Software defined internet of vehicles: Architecture, challenges and
solutions,” Journal of Communications and Information Networks,
vol. 1, no. 1, 2016.

E.-Y. Kang, D. Mu, L. Huang, and Q. Lan, “Verification and validation
of a cyber-physical system in the automotive domain,” in International
Conference on Software Quality, Reliability and Security Companion
(ORS-C). IEEE, 2017.

S. Karnouskos, “Cyber-physical systems in the smartgrid,” in Interna-
tional Conference on Industrial Informatics (INDIN). 1EEE, 2011.
S. Kato and N. Yamaguchi, “Variation management for software
product lines with cumulative coverage of feature interactions,” in
International Software Product Line Conference (SPLC). IEEE, 2011.
A. Kenner, R. May, J. Kriiger, G. Saake, and T. Leich, “Safety, security,
and configurable software systems: A systematic mapping study,” in
International Systems and Software Product Line Conference (SPLC).
ACM, 2021.

K. Kerliu, A. Ross, G. Tao, Z. Yun, Z. Shi, S. Han, and S. Zhou,
“Secure over-the-air firmware updates for sensor networks,” in Inter-
national Conference on Mobile Ad Hoc and Sensor Systems Workshops
(MASSW). IEEE, 2019.

K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: orthogonalization of concerns and platform-
based design,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 19, no. 12, pp. 1523-1543, 2000.
B. Kitchenham, “Evidence-based software engineering and systematic
literature reviews,” in International Conference on Product Focused
Software Process Improvement (PROFES). Springer, 2006.

B. A. Kitchenham, D. Budgen, and O. Pearl Brereton, “Using mapping
studies as the basis for further research — a participant-observer case
study,” Information and Software Technology, vol. 53, 2011.

B. A. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” Keele University and
Durham University, Tech. Rep. EBSE 2007-001, 2007.

C. Knieke, A. Rausch, M. Schindler, A. Strasser, and M. Vogel,
“Managed evolution of automotive software product line architectures:
A systematic literature study,” Electronics, vol. 11, 2022.

C. F. J. Konig, G. Meisl, N. Balcu, B. Vosseler, H. Hormann, J. Holl,
and V. FiBler, “Engineering of cyber-physical systems in the automo-
tive context: Case study of a range prediction assistant,” in International
Symposium on Leveraging Applications of Formal Methods (ISoLA).
Springer, 2018.

X. A. Koufteros, M. A. Vonderembse, and W. J. Doll, “Integrated prod-
uct development practices and competitive capabilities: the effects of
uncertainty, equivocality, and platform strategy,” Journal of Operations
Management, vol. 20, no. 4, pp. 331-355, 2002.

J. Kriiger, “Understanding the Re-Engineering of Variant-Rich Sys-
tems: An Empirical Work on Economics, Knowledge, Traceability, and
Practices,” Ph.D. dissertation, Otto-von-Guericke University Magde-
burg, 2021.

J. Kriiger and T. Berger, “An Empirical Analysis of the Costs of
Clone- and Platform-Oriented Software Reuse,” in Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 2020.

J. Kriiger, C. Lausberger, I. von Nostitz-Wallwitz, G. Saake, and
T. Leich, “Search. Review. Repeat? An Empirical Study of Threats to
Replicating SLR Searches,” Empirical Software Engineering, vol. 25,
no. 1, 2020.

J. Kriiger, W. Mahmood, and T. Berger, “Promote-pl: A round-trip
engineering process model for adopting and evolving product lines,” in
International Systems and Software Product Line Conference (SPLC).
ACM, 2020.

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

R. N. Langlois and P. L. Robertson, “Networks and innovation in a
modular system: Lessons from the microcomputer and stereo compo-
nent industries,” Research Policy, vol. 21, no. 4, pp. 297-313, 1992.
P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer,
C. Kleijn, T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, and
A. Sadovykh, “Integrated tool chain for model-based design of cyber-
physical systems: The into-cps project,” in International Workshop on
Modelling, Analysis, and Control of Complex CPS (CPS Data). 1EEE,
2016.

E. A. Lee, “Cyber physical systems: Design challenges,” in Inter-
national Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC). IEEE, 2008.

M. Li, L. Guan, C. Dickerson, and A. Grigg, “Model-based systems
product line engineering with physical design variability for aircraft
systems,” in System of Systems Engineering Conference (SoSE). 1EEE,
2016.

K. Lind and R. Heldal, “Automotive system development using ref-
erence architectures,” in IEEE Software Engineering Workshop, 2012,
pp. 42-51.

A. W. Malik, A. U. Rahman, A. Ahmad, and M. M. D. Santos,
“Over-the-air software-defined vehicle updates using federated fog en-
vironment,” IEEE Transactions on Network and Service Management,
vol. 19, no. 4, 2022.

L. Marchezan, E. Rodrigues, W. K. G. Assun¢@o, M. Bernardino, F. P.
Basso, and J. Carbonell, “Software product line scoping: A systematic
literature review,” Journal of Systems and Software, vol. 186, 2022.
A. Messac, M. Martinez, and T. Simpson, “Introduction of a product
family penalty function using physical programming,” Journal of
Mechanical Design, vol. 124, 2002.

A. Metzger and K. Pohl, “Software product line engineering and
variability management: Achievements and challenges,” in Future of
Software Engineering (FOSE). ACM, 2014.

M. Meyer and A. Lehnerd, “The power of product platforms: Building
value and cost leadership,” Journal of Product Innovation Management,
vol. 14, no. 6, 1997.

J. Mikkola and O. Gassmann, “Managing modularity of product ar-
chitectures,” Engineering Management, IEEE Transactions on, vol. 50,
pp. 204 — 218, 06 2003.

M. Muffatto, “Introducing a platform strategy in product development,”
International Journal of Production Economics, pp. 145-153, 1999.
M. Muffatto and M. Roveda, “Developing product platforms,” Techno-
vation, vol. 20, no. 11, 2000.

P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based
runtime software evolution,” in International Conference on Software
Engineering, ser. ICSE *98. USA: IEEE Computer Society, 1998, p.
177-186.

S. Otten, T. Glock, C. P. Hohl, and E. Sax, “Model-based variant
management in automotive systems engineering,” in International
Symposium on Systems Engineering (ISSE). 1EEE, 2019.

P. Pelliccione, E. Knauss, R. Heldal, M. Agren, P. Mallozzi,
A. Alminger, and D. Borgentun, “A proposal for an automotive
architecture framework for volvo cars,” in Workshop on Automotive
Systems/Software Architectures (WASA). 1EEE, 2016.

D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, p. 40-52,
1992.

T. Placho, C. Schmittner, A. Bonitz, and O. Wana, “Management
of automotive software updates,” Microprocessors and Microsystems,
vol. 78, 2020.

D. P. Plakhotnikov and E. E. Kotova, “Design and analysis of cyber-
physical systems,” in Conference of Russian Young Researchers in
Electrical and Electronic Engineering (EIConRus). 1EEE, 2021.

K. Pohl, G. Bockle, and F. Van Der Linden, Software Product Line
Engineering. Springer, 2005.

A. Poth, “Product line requirements engineering in the context of
process aspects in organizations with various domains,” Software
Process: Improvement and Practice, vol. 14, no. 6, 2009.

B. Poudel and A. Munir, “Design and evaluation of a reconfigurable
ecu architecture for secure and dependable automotive cps,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 1,
2021.

P. Queiroz and R. T. Braga, “A critical embedded system product line
model-based approach,” in International Conference on Software En-
gineering and Knowledge Engineering (SEKE). Knowledge Systems
Institute Graduate School, 2014.

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

ference on Software Maintenance and Evolution (ICSME).

R. Rabiser and A. Zoitl, “Towards mastering variability in software-
intensive cyber-physical production systems,” Procedia Computer Sci-
ence, vol. 180, 2021.

U. Raubold, Lebenszyklusmanagement in der Automobilindustrie.
Springer, 2011.

S. Raue, “Systemorientierung in der modellbasierten modularen e/e-
architekturentwicklung,” Ph.D. dissertation, Eberhard Karl University
Tiibingen, 2019.

D. Robertson and K. Ulrich, “Planning for product platforms,” Sloan
Management Review, vol. 39, no. 4, 1998.

J. Rubin, K. Czarnecki, and M. Chechik, “Managing Cloned Variants:
A Framework and Experience,” in International Software Product Line
Conference (SPLC). ACM, 2013.

R. Sanchez, “Strategic product creation: Managing new interactions
of technology, markets, and organizations,” European Management
Journal, vol. 14, no. 2, pp. 121-138, 1996.

R. G. Sanfelice, “Analysis and design of cyber-physical systems: A
hybrid control systems approach,” in Cyber-Physical Systems: From
Theory to Practice. CRC Press, 2015.

A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and
software design methodology for embedded systems,” IEEE Design &
Test of Computers, vol. 18, no. 6, pp. 23-33, 2001.

K. Schmid and I. John, “A customizable approach to full lifecycle
variability management,” Science of Computer Programming, vol. 53,
no. 3, pp. 259-284, 2004, software Variability Management.

K. Schmid and M. Verlage, “The Economic Impact of Product Line
Adoption and Evolution,” IEEE Software, vol. 19, no. 4, 2002.

G. Schuh and M. Riesener, Produktkomplexitit managen. Hanser,
2017.

M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik,
“Abstractions for software architecture and tools to support them,”
IEEE Transactions on Software Engineering, vol. 21, no. 4, pp. 314—
335, 1995.

T. W. Simpson, “Product platform design and customization: Status
and promise,” Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, vol. 18, no. 1, 2004.

T. W. Simpson, J. R. A. Maier, and F. Mistree, “Product platform
design: method and application,” Research in Engineering Design,
vol. 13, pp. 2-22, 2001.

L. Sion, D. Van Landuyt, W. Joosen, and G. de Jong, “Systematic
quality trade-off support in the software product-line configuration
process,” in International Software Product Line Conference (SPLC).
ACM, 2016.

S. Stanciulescu, S. Schulze, and A. Wasowski, “Forked and Integrated
Variants in an Open-Source Firmware Project,” in International Con-
IEEE,
2015.

J. Stark, Product Lifecycle Management. Springer, 2020.

S. Thiel, M. A. Babar, G. Botterweck, and L. O’Brien, “Software
product lines in automotive systems engineering,” SAE International
Journal of Passenger Cars - Electronic and Electrical Systems, vol. 1,
no. 1, 2009.

T. Thiim, S. Apel, C. Kistner, I. Schaefer, and G. Saake, “A classifica-
tion and survey of analysis strategies for software product lines,” ACM
Computing Surveys, vol. 47, pp. 1-45, 07 2014.

K. Ulrich, “The role of product architecture in the manufacturing firm,”
Research Policy, vol. 24, no. 3, pp. 419-440, 1995.

S. ur Rehman, A. Iannella, and V. Gruhn, “A security based refer-
ence architecture for cyber-physical systems,” in Applied Informatics.
Springer, 2018.

F. Van der Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: the Best Industrial Practice in Product Line Engineering.
Springer, 2007.

J. van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability
in software product lines,” in Working IEEE/IFIP Conference on
Software Architecture, 2001, pp. 45-54.

T. Vietor and C. Stechert, Produktarten zur Rationalisierung des
Entwicklungs- und Konstruktionsprozesses. Springer, 2013.

M. Voelter and I. Groher, “Product line implementation using aspect-
oriented and model-driven software development,” in International
Systems and Software Product Line Conference (SPLC). USA: IEEE,
2007, p. 233-242.

P. Wallin, S. Johnsson, and J. Axelsson, “Issues related to develop-
ment of e/e product line architectures in heavy vehicles,” in Hawaii
International Conference on System Sciences (HICSS). 1EEE, 2009.

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

[115]

[116]

[117]

[118]

[119]

[120]

[121]

T. R. Wanasinghe, M. Galagedarage Don, R. Arunthavanathan, and
R. G. Gosine, “Industry 4.0 based process data analytics platform,” in
Methods to Assess and Manage Process Safety in Digitalized Process
System. Elsevier, 2022.

B. Wilhelm, “Platform and modular concepts at volkswagen — their
effects on the assembly process.” Springer, 1997, pp. 146-156.

C. Wohlin, “Guidelines for Snowballing in Systematic Literature
Studies and a Replication in Software Engineering,” in International
Conference on Evaluation and Assessment in Software Engineering
(EASE). ACM, 2014.

P. Zellmer, L. Holsten, T. Leich, and J. Kriiger, “Product-structuring
concepts for automotive platforms: A systematic mapping study,” in
International Systems and Software Product Line Conference (SPLC).
ACM, 2023, p. 170-181.

P. Zellmer, L. Holsten, R. May, and T. Leich, “A practitioners per-
spective on addressing cyber security and variability challenges in
modern automotive systems,” in International Working Conference on
Variability Modelling of Software-Intensive Systems, ser. VaMoS ’24.
ACM, 2024, p. 129-133.

P. Zellmer, J. Kriiger, and T. Leich, “Decision making for managing
automotive platforms: An interview survey on the state-of-practice,” in
International Conference on the Foundations of Software Engineering,
ser. FSE 2024. ACM, 2024, p. 318-328.

T. Sahin, T. Huth, J. Axmann, and T. Vietor, “A methodology for
value-oriented strategic release planning to provide continuous product
upgrading,” in International Conference on Industrial Engineering and
Engineering Management (IEEM). 1EEE, 2020.

Philipp Zellmer was born in Magdeburg, Germany in 1994. He received the
M.S. degree in Business Administration and Engineering from the Faculty of
Economics and Business Administration, Chemnitz University of Technology,
Germany in 2020. He participated in an industrial doctoral program at
Volkswagen AG, which is conducted in partnership with the Doctoral Center
for Engineering Sciences and Information Technologies at Harz University
of Applied Sciences. His research primarily focuses on supporting the
practical applicability of concepts and methods, especially in the context of
electrics/electronics platforms, for managing variant rich vehicle portfolios
throughout their life cycle.

Lennart Holsten was born in Hannover, Germany in 1996. He received
the M.S. degree in industrial engineering from the Faculty of Mechanical
Engineering, Technical University Braunschweig, Germany in 2021. He is
currently participating in an industrial doctoral program at Volkswagen AG,
which is conducted in partnership with the Doctoral Center for Engineer-
ing Sciences and Information Technologies at Harz University of Applied
Sciences. His research primarily focuses on optimizing the management of
variant rich vehicle portfolios through the utilization of electrics/electronics
platforms and their application in practical contexts.

Jacob Kriiger is Assistant Professor for software engineering at Eindhoven
University of Technology, The Netherlands. He previously worked at Harz
University of Applied Sciences Wernigerode, Germany, Otto-von-Guericke
University Magdeburg, Germany, and Ruhr-University Bochum, Germany—
and visited Chalmers University of Technology | University of Gothenburg,
Sweden, as well as the University of Toronto, Canada. He specializes in
the development and evolution of (variant-rich) software systems, aiming to
research the interplay of human cognition and software quality in this context.

Thomas Leich received his diploma in Business Information Systems and
his PhD from the University of Magdeburg in 2002 and 2012, respectively.
Since 2013 he is general manager of the METOP GmbH. Since 2014 Thomas
Leich is professor at the chair of Business Information Systems at Harz
University of Applied Sciences. His research interests include understanding
of systems with variability, including work on implementation mechanisms,
tools, empirical evaluations, and refactoring as well as measurement of
program comprehension.

