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Abstract. Modern software-intensive systems are large and complex.
Therefore, well-defined software architectures are required to manage such
systems. However, implementing and maintaining a software architecture
can be challenging in practice. For instance, architecture erosion can
cause the implemented architecture to deviate from the intended one.
Industrial practitioners often lack effective tools to check that an evolving
software system continues to conform to its intended architecture. In this
paper, we share the lessons we learned from adopting, extending, and
applying a state-of-the-art architecture visualization tool for conformance
checking the structure and dependencies between intended architecture
(i.e. subsystems and their relations) and implemented architecture (i.e.
implemented subsytems and their dependencies in the codebase) on
a large industrial software project. Specifically, we collaborated with
Thermo Fisher Scientific and used a graph-based visualization tool on
one of the company’s systems. Using the tool, we can create a hierar-
chical view of layered software architectures including subsystem and
component dependencies. During demonstration sessions, we presented
the visualizations to 14 experts at Thermo Fisher Scientific who are
involved with different subsystems to elicit their feedback. Using our tool,
the experts found it easier to focus on relevant areas of the system and
to detect architecture violations and anomalies. The experts expressed
great enthusiasm for using the tool on their own. Our insights suggest
that software architecture visualization tools can aid software architects
in maintaining the conformance between intended and actual software
architectures. However, applying existing tools faces challenges regarding
scalability, usability, and the integration into company workflows. Our
lessons highlight opportunities for future research and improvements in
(open-source) software architecture tools.
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1 Introduction

Software-intensive systems have become a key enabler of innovative high-tech
systems in all areas of society. The growing size and complexity of software in
such systems make it increasingly difficult to develop and maintain them [8]. To
deal with growing software, defining and implementing a suitable architecture is
key [21]. A software architecture defines the organization of a software system
from various perspectives, including its structure (how the system is decomposed
into subsystems) and behavior (how these subsystems interact) [9]. Consequently,
software architectures are key instruments for managing the complexity of a
software system.

One practical problem of software architectures is their erosion [17,21]. Archi-
tecture erosion is a multifaceted phenomenon that occurs when the implemented
architecture violates the intended one, when the internal structure of a system is
compromised by a faulty design, or when the design of the system becomes in-
creasingly difficult to modify. Architecture erosion can be analyzed from different
perspectives (e.g., quality, structure, evolution), but is most commonly described
in terms of violations [17].

In this perspective, architecture erosion represents the violation of design
principles, architectural constraints, or architectural rules; all of which lead to
poor maintainability of a system [21]. Previous research has proposed different
solutions for detecting architectural violations and applied these solutions to open-
source software [17]. In contrast, little research has been conducted in industrial
settings, which limits the generalizability of the findings [17,25,26]. Furthermore,
Wan et al. [26] performed an interview survey with industry practitioners in
which they found that they are challenged by a lack of feasible tool support for
monitoring architecture conformance and violations.

In this paper, we explore the benefits and challenges of adopting tooling to
support software architecture structural conformance checking in practice and
to provide industrial insights. To this end, we share an experience report with
lessons learned on visualizing and analyzing the architecture conformance of
an industrial software system. More precisely, we focus on a specific aspect of
software architecture conformance, namely the conformance of the structural
aspects of an architecture: The dependencies between architectural subsystems
and components and their implemented structural dependencies in the codebase.
To do so, we extended and tailored the ARViSAN tool that was developed by
Kakkenberg et al. [10]. We used ARViSAN to create interactive views and analyses
of industrial software-intensive systems developed at Thermo Fisher Scientific.
Through our work, we contribute:

1. We report on our ongoing development of the ARViSAN tool to meet the
needs for checking structural architecture conformance.

2. We discuss the challenges, benefits, and insights of applying our extended
ARViISAN at Thermo Fisher Scientific, including feedback from 14 software
engineering professionals.

3. We share an anonymized dataset detailing the structure and dependencies of
an industrial software-intensive system [28].
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4. We publish our extended version of ARViSAN, including its parser [27],
frontend [12] and backend [11] that we developed.

Through these contributions, we aim to foster future research on checking ar-
chitecture conformance in practice. Specifically, researchers and practitioners
can reuse our tooling and use the shared dataset as ground truth representing a
real-world industrial system.

2 Context and Related Work

In this section, we introduce Thermo Fisher Scientific and discuss related work.

2.1 Thermo Fisher Scientific

Thermo Fisher Scientific is a global supplier of analytical instruments and services
for laboratories, pharmaceuticals, and biotechnology. In 2024, Thermo Fisher
Scientific had an annual revenue of $42.9 billion, and employed around 125,000
people. At Eindhoven, Thermo Fisher Scientific develops its Transmission Electron
Microscopy (TEM) technology for sample analyses at ultra-high resolutions,
reaching sub-Angstrom levels.

TEM microscopes are software-intensive systems composed of various complex
instruments. Such instruments include, for instance, detector, sample-handling,
vacuum, electromagnetic, and electrostatic devices, which work together through
a coordinated software architecture. Each type of device is managed by its own
software subsystem, which captures the specific functionalities of the device.
This architecture creates a complex multi-level and multi-technology software
ecosystem, consisting of several architectural layers. The most basic layer repre-
sents components, each of which can contain one or more software projects that
contribute to an executable or a library. Related components are grouped into
(higher layer) subsystems, each encapsulating the functionalities of a device in
the TEM. Finally, subsystems are clustered into subsystem groups providing a
family of related functionality.

The software architects at Thermo Fisher Scientific have developed archi-
tecture documentation and a reference architecture to ensure the quality of the
software architecture on all levels. Both of these resources define architectural
rules that shall be applied to subsystems and their dependencies. However, due to
the complexity, size, and the speed at which the overall system evolves, architects
lack a straightforward way to obtain an overview of the current architecture.
Often, they have to piece together information from scattered or outdated sources.
Also, it can be challenging to assess and ensure conformance between the refer-
ence architecture and the latest implementation. For instance, as for any larger
system, the question can arise whether the actual architecture must be aligned
to the reference, or vice versa. Lastly, the limited tool support for monitoring
architecture and implementation conformance increases the manual effort re-
quired to gather the necessary information. To address such challenges, we have



4 F. Zamfirov et al.

initiated a research-industry collaboration in which we started to explore how
to apply state-of-the-art solutions for checking structural software-architecture
conformance.

2.2 Related Work

Industrial Studies of Architecture Conformance and Violations. Sas et
al. [25] conducted a study on the evolution of architecture smells at ASML, in
which they extended ARCAN [4] to support the proprietary C/C++ used by the
company. Using the extended ARCAN, Sas et al. detected architecture smells
across releases for nine projects from one of the company’s software systems.
They also interviewed developers and architects to learn about maintenance
issues the interviewees were experiencing with the projects. Their findings show
that architecture smells can spread over time to more artifacts, and that some
of the artifacts may suffer from multiple smells. The interviewees linked the
affected components with frequent changes, the presence of severe bugs, and
general maintenance issues.

Martini et al. [19] studied the impact and refactoring costs of architecture
smells to aid practitioners prioritize architectural technical debt. They used AR-
CAN on multiple industrial systems written in Java to identify three architecture
smells. The authors then conducted a survey with the developers to investigate
how they prioritize architectural technical debt and how they perceive its impact.
Martini et al. report that the practitioners found it useful to automatically detect
architecture smells, even low-priority ones. The study emphasizes the impact and
refactoring costs of code smells, with the hub-like dependency being the easiest
to detect and refactor.

Fontana et al. [3] conducted a study akin to that of Martini et al., utilizing
ARCAN on three systems from a software consulting company. Through surveys,
they gathered developer feedback on architecture smells identified by the tool.
The respondents acknowledged the impact of smells on maintainability, but were
unfamiliar with the definitions of many of the eight smells examined. Similar to
Martini et al., the findings indicate that developers consider hub-like dependencies
as primary candidates for refactoring. Additionally, some of the smells were
deemed relevant only within a layered architecture.

Mo et al. [20] explored architecture maintainability in a study of nine industrial
systems. They considered two metrics and architectural “hotspots” linked to high
maintenance costs. Mo et al., analyzed the systems using their DV8 tool suite
and conducted interviews with practitioners. They report that DV8 was key for
pinpointing hotspots for refactoring, and DV8 was adopted in the respective
company to quantify maintenance costs.

Groot at al. [7] report an interview survey with 17 software developers at
ASML. They focused on unintended software dependencies, which represent vio-
lations of architecture rules, in multi-lingual software systems. They contribute
a catalog of eight unintended dependencies and discuss their overlap with ar-
chitecture smells and other signs of architecture erosion. An important insight
is that resolving unintended dependencies is often delayed, even though they



Lessons from Visualizing Software Architecture Structure Conformance 5

challenge developers’ comprehension, because the system still works, other tasks
are perceived as more important, and due to the costs involved.

Such studies motivate the need for more advanced tooling to facilitate archi-
tecture conformance checking. Unlike such studies, which rely on code parsing to
derive the implemented architecture or interviews, we start from a documented
reference architecture. We use this specification to construct a detailed view
of a system’s intended architecture, providing a baseline against which the im-
plemented architecture can be compared. Then, we extract dependencies from
the implemented system to visualize violations of the reference architecture. So,
besides contributing complementary experiences to the previous work, we also
propose a different way of checking architecture conformance: combining the
perspectives of intended reference and actually implemented architecture.

Tools for Visualizing and Checking Software Architecture. Previous
works have proposed various tools for analyzing and checking implemented soft-
ware architectures. Azadi et al. [1] and Li et al. [17] provide detailed overviews of
such tools, which we summarize. Some tools, such as JArchitect [17], ARCAN [4],
DV8 [20], NDepend [16], and Lattix [16], offer graph-based or matrix-based
visualizations of an implemented architecture. Other tools, for example, Un-
derstand [17], the Renaissance approach [2], and Axivion [17], aim to facilitate
dependency analyses. Some tools have been extended to visualize, particularly the
evolution of architecture smells [5,6]. All these tools provide powerful capabilities,
but they typically derive architectural information by parsing source code. This
limits their applicability to specific languages and technologies, with extensions
requiring to design new parsers. Moreover, we are not aware of any tool that
takes a reference architecture into account. In contrast, our tooling is designed
not to require language-specific code parsing and uses a reference architecture.
So, we complement existing tools, particularly to help architects reflect on the
mapping between reference and implemented architecture.

3 Visualizing the TEM Architecture

Next, we describe the TEM system and explain how we adjusted ARViSAN to
visualize its architecture.

3.1 TEM Components and Dependencies

TEM is a complex embedded software system comprising 31 subsystems (cf.
Figure 1), each of which provides self-contained functionality. Moreover, each
subsystem can be further decomposed into multiple individually built components.
To facilitate the build process, each component must contain a metadata file
specifying its dependencies to other components.

Originally, a simple solution existed to visualize the TEM software architec-
ture. Specifically, a full component dependency graph was constructed during
the system’s build process to collect information about its dependencies. As a
component was built, its dependencies were gathered from the metadata file. A
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Fig. 1. Anonymized dependency graph depicting the expected high-level dependencies
defined in the TEM reference architecture.

script then generated a Graphviz® dependency graph. Due to the complexity and
size of the TEM software, the graph contained over 200 components and more
than 6,000 dependencies, making it very difficult to interpret.

3.2 TEM Reference Architecture

For TEM, Thermo Fisher Scientific architects have defined a reference architec-
ture using the 4+1 architectural view model [13]|. To achieve full architecture
conformance, all the different views would have to be considered. However, in
the context of this work, we focus on the structural aspects of the software
system. Therefore, we consider the logical view, which describes the functionality
that a system provides to end-users. In this logical view, the architects have
specified dependencies on two levels to simplify how dependencies are defined
and maintained:

1. dependencies between subsystems within a subsystem group and
2. dependencies between subsystem groups.

In Figure 1, we display an anonymized graph of the intended dependencies in
the TEM system.

Using the list of components gathered during the build process and the ref-
erence architecture, we created a specification containing all the components

% https://graphviz.org/
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Fig. 2. An anonymized TEM subsystem group (dark green) as displayed in our adapted
ARViSAN. The subsystem group includes seven subsystems (green) with one subsystem
comprising two components, while the others have one component each (light green).

mapped to a subsystem and a subsystem group. As subsystem interfaces are con-
tained in individual components, the specification also contained metadata about
the presence and types of interfaces in a component. We share the anonymized
version of this specification to allow other researchers to work with it.3

3.3 Visualizing the Architecture

To create an overview of the TEM architecture, we adapted ARViSAN [10].
ARViISAN allows users to interactively explore a graph-based visualization of a
target system and its dependencies. We chose to build on ARViSAN because it
provides a hierarchical view in which users can explore the system architecture and
dependencies at different levels of abstraction. So, ARVISAN was already capable
of representing the multiple levels of components, subsystems, and subsystem
groups that are relevant for TEM.

Our adapted ARViSAN uses a simple input format: Two .csv files of which
one defines the logical entities, such as subsystems, and the other defines the
implemented dependencies after validation against the reference architecture.
These entities and dependencies are the respective nodes and edges that ARViSAN
shall visualize. Nodes can be flat or hierarchical, and we distinguish three types
of nodes: subsystem groups, subsystems, and components.

Additionally, the input files contain containment relations between the (hier-
archical) nodes. This containment information allows to use a slider in ARViSAN
to simplify or expand the graph to show higher-level nodes (e.g., subsystem
groups) or lower-level nodes (e.g., components). In Figure 2, we exemplify how
the containment of components and subsystems in a subsystem group is ren-
dered in our adapted ARViSAN. The processing of the implemented and the
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reference architecture dependencies is described in our parser repository and can
be replicated using the anonymized data that we share.

3.4 Visualizing Architecture Violations

The reference architecture provided to ARViSAN defines the original baseline
architecture of a system with its intended dependencies. To enable engineers
to identify violations more easily, we integrated a parser into ARViSAN that
compares the dependencies between the two architectures and marks differ-
ences. Using optional interface information from the specification, we identify
dependencies between subsystems in which a component relies directly on the
implementation of another subsystem’s functionality, rather than its interface. In
other words, we check for dependencies that bypass defined interfaces and mark
them as potentially degrading.

We extended ARViSAN to display three types of dependencies through colored
arrows in the user interface (cf. Figure 3):

Black for conforming dependencies.
Red for non-conforming dependencies (i.e., violations).
Orange for potentially degrading dependencies.

Furthermore, we implemented three coloring modes that change the color of
nodes to show component information. Such information includes, for example,
the presence of interfaces, their deployment platforms, and their instability. As
these coloring modes require company data, not all of them are available in the
version of ARViSAN that we share. Finally, we modified ARViSAN to allow
nodes to be enriched with custom information like metrics (e.g., instability [18]).
Such custom information can be inserted into ARViSAN’s input and can be used
to better support different architecture analyses.

Through these visualizations and additional interactivity features, we support
users of ARViSAN in identifying where the reference- and actual architecture
do not conform. For example, a user can focus on an individual node (e.g., a
subsystem) by right-clicking it. This renders only those dependencies that are
relevant to this node. Furthermore, users can lift the visualized depth to a higher
level (e.g., from component to subsystem level) to simplify the view. To illustrate
this, we display a circular dependency between two subsystems caused by an
unintended dependency in Figure 3 and in Figure 4. In Figure 3, we show the
dependencies on the component level, where the circular dependency may be
overlooked due to the number of components and dependencies. Considering
Figure 4, the dependencies are lifted to the subsystem level, and the circular
dependency becomes easier to identify.

4 Evaluation

In this section, we report our evaluation of our tooling.
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Fig. 3. The dependencies within Subsystem Group 4 on the level of components. A
circular dependency exists between Subsystem 25 and Subsystem 26, because of an
unintended dependency (red arrow) from Component 49 to Component 48. The
components colored in orange contain subsystem interfaces.

4.1 Study Design

We conducted a formative assessment of our adapted ARViSAN by employing it at
Thermo Fisher Scientific on the TEM software. The goal of this evaluation was to
identify the benefits of our solution in addressing the needs of the TEM architects
and developers. Specifically, these needs included a clear overview of the TEM
software architecture and support for monitoring the structural conformance
between the reference and implemented architecture. Additionally, we aimed to
collect challenges or unintended consequences of our tooling. For this purpose,
we parsed and visualized the dependencies of the latest release of the system and
conducted five 30-minute demonstrations with groups of company architects. In
Table 1, we present an overview of the participants in these demonstrations (in
order of conduct). Some of the architects were involved in subsystem architectures
(S1, Sa, S4), and some in the overall TEM architecture (S3). Additionally, we
demonstrated our visualizations to two architects responsible for a separate
Thermo Fisher Scientific system to diversify our set of participants (S5).

We started each demonstration by showing the reference architecture diagram
(cf. Figure 1) and the Graphviz graph created with the old tooling available at
Thermo Fisher Scientific. Then, we presented the visualization we created in
ARViSAN and allowed the architects to explore the dependencies most relevant
to them. We asked the participants to report on their perceptions of ARViSAN
and the visualizations we integrated, particularly compared to any tools they
used for the same purpose so far. Each demonstration was led by the first author,
who answered questions and documented the participants’ feedback.
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Fig. 4. The dependencies within Subsystem Group 4 on the level of subsystems.
Because dependencies are lifted to the subsystem level, the circular dependency between
Subsystem25 and Subsystem26 is clearly visible—in contrast to Figure 3.

4.2 Results

Next, we present our observations from the demonstrations.

ARViSAN Compared to Other Tools Used. Our participants reported
that they had access to various quality-related tools and dashboards. However,
only a few of them reported using these tools to monitor architecture violations.
Two participants (p2, p12) mentioned using tools for visualizing and verifying
violations. Interestingly, ps relied on custom scripts, which were simplistic and
required significant manual effort. In contrast, p;o had previously used NDe-
pend, which is limited to software written in C# and .NET. They noted that
they appreciated the flexibility and technology independence of our adapted
ARViSAN; even though the required preprocessing of dependency data makes
it less convenient. Lastly, ps used a search engine capable of cross-referencing
source code. They pointed out that this engine lacked comprehensive dependency
information, demanding extensive manual reviews.

Visualizing Violations. During the demonstrations, participants were able
to identify unexpected and unintended dependencies. Specifically, in S, py
and ps noticed two unexpected dependencies to other subsystems. One was an
unnecessary dependency. The cause for the second dependency remained unclear.
In turn, p; indicated that being able to see dependencies is a positive initial step
towards understanding and addressing architecture violations. During S, ps and
p4 quickly identified a circular dependency between two subsystems, which was
distinctly visible. This dependency was already scheduled for refactoring, but the
participants appreciated that our visualization made it immediately recognizable.

Visual Appeal. Several participants across the demonstrations appreciated
the visual aspects of our tooling. For example, pg expressed that “looking at a
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Table 1. Overview of our demo sessions and participants.

Session ID Participant ID Role Assignment
j4i Software Engineer

5 D2 Domain Architect Subsystem4)

s D3 Domain Architect Subsystem25

2 D4 Domain Architect Subsystem26

D5 Software Engineer
D6 Staff Architect
p7 Staff Architect .

S s Senior Staff Architect Entire system
P9 Senior Staff Architect
P1o Senior Staff Architect
D11 Software Engineer

& D12 Domain Architect Subsystem?
P13 Senior Staff Architect

5 D14 Senior Staff Architect Other system

red edge immediately triggers you to start thinking about it and whether you can
improve it.” All participants found the tool intuitive and easy to use, particularly
because it did not require learning complex query languages. Both p; and p4
appreciated the ability to focus on specific nodes and to constrain the visualization
to relevant dependencies. More generally, p3 and ps; emphasized the benefits of a
visualization, with ps stating: “ The biggest added value to have a tool is to point
it out fwhen people avoid following the architecture constraints/, because it is hard
to see, sometimes you find it by accident.”

Scope and Depth. Given the layered architecture of the TEM system, several
participants were interested in the scope and depth that can be visualized. Three
participants (ps, ps, p12) expressed a need for in-depth visualizations, though their
preferences varied: from project-level details within a component to fine-grained
code-level information, such as classes and functions. Additionally, p3 noted that
information on interface-level dependencies would be particularly useful, since
they currently had to verify them manually—which is time-consuming due to
a large number of interfaces. In contrast, ps and pg expressed concerns about
expanding the visualization depth. For instance, ps explained: “ Going to code
level makes the visualization too big, overloads you with too much data. This is a
simple tool that shows where we are, and we can simply say ‘fix these’ [violations],
we can have a different tool on a lower level, because optimizing language-specific
dependencies is a different story.” Participant pg stated they had a preference for
other professional tools when it comes to the code level.

Suggested Use Cases. Participants in all demonstrations expressed en-
thusiasm for gaining access to our tooling and using it on their own. Several
potential use cases emerged during our discussions, especially in Sy, S3, and Sy.
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In S5 and S3, participants were interested in using the tool to analyze depen-
dencies across software releases. Although ARVISAN currently does not support
direct visualizations and comparisons of multiple graphs, such analyses can be
performed manually and can be automated in future work. During S3, one par-
ticipant suggested deploying the tool to development teams, so that it can be
used in planning to improve the visibility and organization of refactoring tasks.
In S4, participants identified an opportunity to use the tool for onboarding new
developers by providing a visual and interactive representation of the system
architecture, which is in line with previous research [14,15].

Limitations. Through the demonstrations, we identified limitations of our
visualizations that we will tackle in the future. First, due to the diverse tech-
nologies used across the TEM system, dependencies are defined in different ways.
As a result, some dependencies were missing from our visualizations. While a
unification on how to declare dependencies is underway at Thermo Fisher Scien-
tific, pg suggested that dependencies missing in the visualizations could also help
identify where such unification is needed (i.e., an additional use case). Second,
ps was concerned that when the entire TEM system is rendered in ARViSAN on
the component level, violations can exist or may be introduced without being
noticed (e.g., Figure 3 versus Figure 4). Currently, our solution can be used to
interactively explore and display dependency violations. However, there is no
functionality that prevents developers from introducing violations, which is also
out of the scope of this work.

Tool Adoption. Adopting our tooling at Thermo Fisher Scientific was also
a topic of interest among our participants. Previously, another open-source tool
for architecture analysis was introduced within the company [2]. While the tool
allowed to derive the implemented system architecture and facilitated large-scale
refactoring, it required resource-intensive and time-intensive source code parsing.
A dedicated team was assigned to maintain it, but due to high maintenance
efforts and limited adoption, the tool was eventually discontinued.

Our solution does not depend on source code parsing and is meant to provide
a visual and interactive architecture view. Still, because of their experiences with
the previous tool, some participants were cautious about introducing another
tool for architecture analysis. Currently, our extended version of ARViSAN and
dependency processing scripts have been forked into an internal repository of
Thermo Fisher Scientific, along with the parsed TEM system data as well as
user and developer documentation. This enables developers and architects at
Thermo Fisher Scientific to explore our tool within their workflows and for other
systems.

5 Discussion

In the following, we discuss our results, distinguishing between implications for
researchers, practitioners, and both.
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5.1 Implications for Researchers

Improving Usability and Performance. When applied to large industrial
software systems, dependency visualizations tend to become overly complex
with hundreds of nodes and edges (e.g., the graph produced by Graphviz). We
observed that while such a view contains rich information, participants found it
overwhelming and unusable. Our participants valued the ability to simplify views
by lifting dependencies to a higher level or by focusing on its relevant parts. Such
functionalities and visually distinguishing violations (e.g., with different colors)
made it easier to identify violations. We believe that:

The trade-offs between visual simplicity and depth of information should be fur-
ther investigated to optimize the usability of software architecture visualization
tools and to avoid overwhelming users.

Studying Architecture Evolution. Several participants expressed interest
in analyzing and visualizing subsystem dependencies across system releases.
Recent research has explored this direction regarding the evolution of architecture
smells and violations [5,6,24]. We believe that there is a need to also provide
such evolution-based techniques for other properties of software architectures:

Researchers should investigate and compare existing techniques and solutions
for studying the evolution of software architectures across releases to facilitate
long-term software maintenance.

5.2 Implications for Practitioners

Unifying Dependency Management Across Technologies. Implementing
software that uses different programming languages and technologies can result
in varying methods for declaring dependencies. Such differences hinder collecting
and analyzing dependencies automatically, with some companies implementing
their own techniques for declaring multi-lingual dependencies to mitigate such
problems [7]. Declaring dependencies in a uniform way enables further automation,
so that:
Companies may benefit from standardizing dependency-declaration practices
or from applying tools that aggregate dependencies from multiple sources. This
can facilitate the application of analysis and visualization tools, and can reduce
the need for manual validation.

Using Architecture Visualizations for Onboarding. Several participants
saw value in using our visualizations for planning refactorings and onboarding
new developers. This aligns with our prior work on developers’ preferences for
documentation [14,15] and software architecture explanations [22]. However,
we [22] also observed that architecture visualization tools are rarely used when
onboarding new developers in practice. Therefore, we suggest:
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Organizations should explore embedding architecture visualizations into the
onboarding of new developers and in the planning of development work to
facilitate better architectural decisions.

5.3 Implications for Researchers and Practitioners

Validating Reference Against Implemented Architecture. We used a
reference architecture as a baseline against which the implemented architecture
can be validated. However, we observed that not all the latest developments
of the TEM system were reflected in the reference architecture. For example,
some documented subsystem groups were implemented as subsystems. Moreover,
several implemented subsystems were not covered in the reference architecture.
Therefore, we conclude that:

To improve architecture conformance, both the intended and the implemented
architecture must be validated and revised if necessary. Future research should
investigate how to synchronize the documentation and implementation of
evolving architectures.
Reducing Efforts of Architecture Data Preparation. To construct the refer-
ence architecture, we relied on documentation prepared by the software architects.
Although this documentation provided valuable insights, certain architectural
details, such as the mapping of components to subsystems, were not included. To
fill these gaps, we conducted several meetings with the architects to collect and
validate the missing information. We recognize that in other settings the effort
required to obtain such architectural data may differ significantly. Based on our
experience, we suggest the following recommendation to practitioners:

Assign clear ownership of architectural knowledge and documentation to support
its maintenance and ongoing validation.

For researchers, we argue:

Future research should examine not only the costs and efforts of repairing ar-
chitecture conformance violations, but the efforts of gathering and maintaining
architectural data as well as optimizing such efforts.

Simplifying the Adoption of Tools. Our participants were enthusiastic
about using our tool themselves. However, they raised concerns about the adoption
due to experiences with previous tools. Specifically, some participants were
concerned because a previously adopted open-source tool was discontinued due
to high maintenance efforts that were coupled with limited use. Such concerns
raise the question of what factors drive or hinder the adoption of (open-source)
architecture tools in practice. For researchers, we argue that:

Future research should examine organizational and technical barriers to sus-
tainably adopting and maintaining (open-source) tools in industrial settings.

For practitioners, we suggest that:



Lessons from Visualizing Software Architecture Structure Conformance 15

Companies should assign clear ownership and support mechanisms for tool
adoption. Integrating tools into existing workflows and developer environments,
rather than providing stand-alone solutions, could improve tool adoption.

6 Threats to Validity

We are aware of different threats to the validity of our work and discuss them
according to the classification proposed by Runeson et al. [23] for case studies.

Construct Validity. Construct validity concerns the constructs we aimed to
study. Since we investigated architecture conformance, a possible threat is that
the violations our tool identified were incorrect. To mitigate this threat, we used
a specification derived from the documented Thermo Fisher Scientific reference
architecture to distinguish violations. We created and refined this specification
with architects at Thermo Fisher Scientific.

Internal Validity. Internal validity concerns whether the observations in our
study truly resulted from our proposed solution and not from other factors. One
potential threat to the internal validity arises from the sample of participants
who attended the demonstrations. They were invited by the second author as
the company representative in our project. So, our participants may not fully
represent the broader user population, since they are from one company, and
we may have missed other interested stakeholders. To mitigate this threat, we
invited experts from various roles and supplemented our demonstrations with a
session (S5) involving experts from a different Thermo Fisher Scientific system.

External Validity. Threats to the external validity concern the extent to
which the study findings can be generalized. An inherent threat of industry reports
is that, although our visualization tool is technology-independent, we designed
our tooling with the specifics of Thermo Fisher Scientific in mind and evaluated it
within the company only. However, a layered architecture may not be applicable
or translate to paradigms like microservices. Additionally, using Thermo Fisher
Scientific’s reference architecture and tooling limits the generalizability if other
companies do not have these resources—but using these is also a new idea of
our work. Lastly, Thermo Fisher Scientific’s context seems representative of
(larger) industrial settings, but further studies are needed to validate the broader
applicability of our tool in other organizations. Finally, a potential threat to the
external validity is the lack of feedback on the long-term use of our tool. While
the feedback from the demonstrations illustrates our tool’s capabilities, we have
not evaluated how ARViSAN performs or is perceived over an extended period.
For this reason, the long-term impact and generalizability of our findings must
be further verified in future work.

7 Conclusion

In this paper, we presented our experiences of extending and applying a visualiza-
tion tool to support the needs of software architects by visualizing architectures
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and checking architecture conformance. We collaborated with experienced soft-
ware architects and developers at Thermo Fisher Scientific and jointly evaluated
the benefits and challenges of using our tool on the company’s software sys-
tems. ARViSAN creates a hierarchical view of the software architecture, and
visualizes violations of the intended architecture, such as unexpected and circular
dependencies. The feedback from 14 software experts at Thermo Fisher Scientific
indicated that the visualizations made it easier to focus on relevant system areas
and to effectively detect architecture violations. These experts expressed great
enthusiasm for using the tool in their daily work. Our insights suggest that
existing software architecture visualization tools can aid software architects in
maintaining conformance between the intended and the implemented software
architectures. In the future, we will extend and improve our tooling, including
its evaluation on other paradigms, other systems, and over time.

Data Availability Statement. We publish our anonymized dataset [28] and tooling [11,
12,27] through persistent open-access repositories.
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