Establishing Key Performance Indicators for Measuring
Software-Development Processes at a Large Organization

Cem Siiriici
Volkswagen Financial Services AG
Braunschweig, Germany
Otto-von-Guericke University
Magdeburg, Germany
Cem.Sueruecue@vwfs.com

Gunter Saake
Otto-von-Guericke University
Magdeburg, Germany
saake@ovgu.de

ABSTRACT

Developing software systems in large organizations requires the
cooperation of various organizational units and stakeholders. As
software-development processes are distributed among such organi-
zational units; and are constantly transformed to fulfill new domain
regulations, address changing customer requirements, or adopt new
software-engineering methods; it is challenging to ensure, measure,
and steer—essentially monitor—the quality of the resulting sys-
tems. One means to facilitate such monitoring throughout whole
software-development processes are key performance indicators,
which provide a consolidated analysis of an organizations’ perfor-
mance. However, it is also challenging to introduce key performance
indicators for the software development of a large organization, as
they must be implemented at and accepted by all relevant organiza-
tional units. In this paper, we report our experiences of introducing
new key performance indicators for software-development pro-
cesses at Volkswagen Financial Services AG, a large organization in
the financial sector. We describe i) our methodology; ii) how we cus-
tomized and use key performance indicators; iii) benefits achieved,
namely improved monitoring and comparability, which help to
define quality-improving actions; iv) and six lessons learned. These
insights are helpful for other practitioners, providing an overview
of a methodology they can adopt to assess the feasibility of key
performance indicators as well as their benefits. Moreover, we hope
to motivate research to investigate methods for introducing and
monitoring key performance indicators to facilitate their adoption.

CCS CONCEPTS

« Social and professional topics — Quality assurance; « Soft-
ware and its engineering — Risk management.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3417057

Bianying Song
Volkswagen Financial Services AG
Braunschweig, Germany
Bianying.Song@vwf{s.com

Jacob Kriiger
University of Toronto
Toronto, Canada
Otto-von-Guericke University
Magdeburg, Germany
jkrueger@ovgu.de

Thomas Leich

Harz Unviersity of Applied Sciences

1331

Wernigerode, Germany
tleich@hs-harz.de

KEYWORDS

Key performance indicators, quality assurance, monitoring

ACM Reference Format:

Cem Siiriicti, Bianying Song, Jacob Kriiger, Gunter Saake, and Thomas Leich.
2020. Establishing Key Performance Indicators for Measuring Software-
Development Processes at a Large Organization. In Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE °20), November 8—13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3368089.3417057

1 INTRODUCTION

Most larger organizations deliver software systems as a part of their
products, or these systems are the products themselves. So, these
organizations have defined software-development processes, which
usually span various organizational units (e.g., departments, sub-
organizations) that collaborate while developing a system. While
such an organizational structure can facilitate certain activities, for
example, eliciting customer requirements is done by specialists in
one department, it can also pose challenges, for instance, to coor-
dinate development activities, share knowledge, or steer business
decisions [13, 17, 18, 21, 23]. In particular, each organizational unit
may use own means to monitor their part of the process, hampering
comparability and traceability of system and process properties
throughout the whole software-development process.

A helpful means to monitor and steer software-development
processes are key performance indicators, a set of values allowing
to analyze and compare an organization’s performance regard-
ing specified objectives [1, 4, 15, 19]. However, introducing key
performance indicators in a large organization with distributed
development activities and a constantly evolving infrastructure
is far from trivial. We are aware of existing guidelines, tools, and
experience reports [1, 3, 4, 6, 13, 15, 20, 21], but we do not know of
a light-weight, well-defined, and practically evaluated methodol-
ogy that provides fast feedback on the impact of introducing key
performance indicators in large, distributed organizations.

In this paper, we report our experiences of introducing key per-
formance indicators at Volkswagen Financial Services AG (VWES),
a large German organization in the finance sector. By sharing our

https://doi.org/10.1145/3368089.3417057
https://doi.org/10.1145/3368089.3417057
https://doi.org/10.1145/3368089.3417057

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

method and lessons learned, we hope to provide helpful insights for
practitioners who plan to adopt key performance indicators them-
selves. During such an adoption, it is important to consider the
organization’s domain, relevant regulations, business needs (Sec-
tion 2), and goals for monitoring (Section 3). To provide insights
into such considerations, we discuss how we established tools, cus-
tomized key performance indicators to our organization’s needs,
convinced managers and developers to use these, balanced trade-
offs (Section 4), and report our results as well as lessons learned (Sec-
tion 5). Our insights also indicate future directions for researchers
to explore, particularly on designing guidelines and techniques to
facilitate the introduction and use of key performance indicators.

2 THE ORGANIZATION

VWES is a large, international organization in the financial sector
with over 16 000 employees. Within VWFS, several sub-organiza-
tions exist to manage its different business areas, including alarge IT
organization—VWFS Digital Solutions GmbH (DS)—to develop and
maintain software systems. This IT organization is further divided
into functional departments, such as process coordination, testing,
software development, IT operations, or application management;
while departments, such as product management and marketing,
are part of other sub-organizations. Due to this structure, different
departments and internal as well as external organizations con-
tribute to the existing software-development processes, which are
coordinated by DS. So, to develop a software system at VWFS, vari-
ous specialists from such units cooperate in agile [14, 22], waterfall,
or mixed-method software-development processes.

As any organization, VWFS and DS constantly face fundamental
organizational and process transformations to cope with changing
regulations in the financial and software domain, to modernize
their systems, and to incorporate new software technologies. For
instance, DS estimates that approximately 80 % of its system land-
scape will be changed accordingly in the next years. Currently,
DS intensifies an agile transformation to change the predominant
conventional co-working departments via cross-functional, multi-
disciplinary teams into a new business cluster focusing on customer-
oriented business processes. To create this business cluster, several
departments cooperate to analyze and transform the strategically
most important and most appropriate software systems together
with their development processes. In parallel, DS uses this trans-
formation to increase the quality of its systems and improve its
processes, introducing new organizational structures, technologies,
and software-engineering methods.

3 MOTIVATION

During the current agile transformation, and while planning future
steps, it became apparent that VWES could heavily benefit from
improving the tracing of quality in its software-development pro-
cesses; in particular to measure (software) quality throughout all
organizational units. Such an extended end-to-end traceability and
measurement of all processes in a system’s life-cycle could facilitate
communication and coordination among all units. For this reason,
we decided to investigate and introduce additional key performance
indicators to measure existing processes in terms of software qual-
ity, efficiency, and stability. The constant need to transform our

1332

Cem Siirticii, Bianying Song, Jacob Kriiger, Gunter Saake, and Thomas Leich

processes and especially the most recent changes further motivated
this idea, as key performance indicators can help to assess the im-
provements specific technologies and methods yield. So, we saw a
win-win situation for VWFS and aimed to establish methods and
key performance indicators as basis for a data-driven steering of
organizational transformations and daily business operations.

There have been historically grown means to measure software-
development processes at VWFS, for instance, stability reports of
the IT department, testing reports of the testing department, or
management reports comprising strategic key performance indi-
cators. We found that these means are helpful and provide a good
intuition about the business trends of each department, defining
a reliable basis for managers and specialists of the departments to
derive their decisions. However, the existing means and key perfor-
mance indicators are too department-specific and do not provide
an end-to-end overview of the development processes of interest.
So, we saw potential for improvement concerning six criteria:

C; Transparency. Key performance indicators can help to as-
sess, report on, and depict an organization’s overarching
business needs and their complex relations (e.g., to regula-
tions and customer requirements). The existing means at
VWES were helpful in this regard, but each organizational
unit derived own measurements according to its needs. So,
the existing measurements were sometimes too coarse- or
too fine-grained for an overarching business perspective,
which did limit their usability for making business needs
transparent. We aimed to improve this situation by intro-
ducing a set of new, unified key performance indicators that
focus on describing the organizations’ business needs.
Intelligibility. As the key performance indicators should
support data-driven steering, they must be understood by all
stakeholders involved in steering activities, such as team or
department leads. In particular, all stakeholders must under-
stand what a key performance indicator measures, what its
purpose is, how to interpret it, and how to use it during steer-
ing. This way, they can derive concrete actions to steer daily
business operations and transformations, allowing them to
reason on their decisions based on reliable data.

Coverage. To measure quality, it is necessary to cover each
software-development process as a whole. The historically
grown means of each organizational unit with separately
collected measurements were not ideal, since their activi-
ties are connected and influence each other, independent
of organizational structures and boundaries. For instance,
insufficient or delayed requirements specifications can influ-
ence the development time, the number of defects identified
during testing, the time-to-market, and thus the resulting
quality. By implementing the same key performance indica-
tors among all organizational units, we aimed to cover each
software-development process in its entirety.

Quantification. In order to steer, monitor, and assess the
impact of actions we define, it is essential to select suitable
key performance indicators and to be able to quantify them.
A quantification allows to use concrete numbers to evalu-
ate an implemented decision, and thus reason whether to
keep or discard it. Quantified numbers are easier to com-
pare against each other and support decision making, for

C

)

C

w

Cy

Establishing Key Performance Indicators for Measuring Software-Development ...

instance, providing empirical data to empower cost estima-
tions beyond educated guesses—a regular use case in the
software-engineering domain [2, 5, 8, 9].

Comparability. A particular criterion we aimed to improve
was the comparability between releases of our software sys-
tems. We found that this is a fundamental requirement at
VWFS, as many existing measurements (e.g., the number
of defects or effort spent) were absolute numbers that ham-
pered the reasoning about improvements. So, we aimed to
introduce comparable key performance indicators by relat-
ing different values to each other, providing a better intuition
about improvements (e.g., PDpPD relates defects and effort).
Communication. Introducing new key performance indi-
cators and fulfilling the previous criteria was intended to
facilitate communication among organizational units. In con-
trast to the existing means, a unified set of key performance
indicators that is agreed upon does require less translation
and interpretation of reported data. So, improving on this
criterion helps to reduce the time and effort needed to coor-
dinate between organizational units, avoids confusion that
may occur due to synonymous terms, and establishes a com-
mon ground regarding measured data and its interpretation.
These criteria are heavily related, building on each other and the
same key performance indicators to measure them. For instance,
improving transparency and intelligibility immediately facilitates
communication. So, these criteria should not be considered in iso-
lation, but tackled together. To this end, we performed an analysis
process during which we introduced new key performance indica-
tors and assessed them with all relevant organizational units.

Cs

Cs

4 METHODOLOGY

In this section, we describe our methodology for introducing key
performance indicators at VWFS. Our methodology built on devel-
oping and evolving a prototype to receive fast feedback and limit
the costs of the project before its feasibility could be shown [11, 12].
We depict an overview of our methodology in Figure 1.

4.1 Training Project Leads

The idea to introduce new key performance indicators originated
at the beginning of the current transformation towards more agile
methods and DevOps at VWFS, aiming to provide feedback for
product teams. In an initial effort, we (the first two authors of this
paper) as the project leads investigated key performance indicators
based on an analysis of different resources, such as books [4] and
web blogs. Furthermore, we participated in a three-day DevOps
workshop organized by a large industrial IT company and training
provider. This workshop also included DevOps metrics and key
performance indicators used for measuring software-development
processes. Based on these sources, we obtained the knowledge we
needed to scope and manage this project, which we championed
and got approved as a “special task” by our management.

4.2 Scoping the Prototype

Based on the knowledge we obtained, we selected key performance
indicators that we considered relevant for measuring software-
development processes at VWFS. Additionally, we performed an

1333

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

)
)

ustomize Key Performance Indicators
(Section 4.3)

Train Project Leads
(Section 4.1)

l

Scope the Prototype
(Sectlon 4.2)

Train Stakeholders
(Section 4.5)

()

Extend the Prototype
(Section 4.6)

Develop the Prototype
(Section 4.4)

(
(
¢
(

)

unstructured analysis of scientific literature and tools. In particular,
we relied on the book of Forsgren et al. [4], which defines relevant
key performance indicators that were also part of the workshop,
and which provided a confirmation that we were progressing in
the right direction. We defined a collection of roughly 25 key per-
formance indicators that we considered as relevant to measure
the quality throughout our software-development processes. To
measure the previously defined criteria in more detail, we defined
three of these key performance indicators ourselves and customized
one for VWEFS (see asterisked entries in Table 1). We identified the
remaining 21 key performance indicators from our other sources
(i.e., DevOps workshop, the book, existing tools, and metrics estab-
lished at VWEFS). Before developing our prototype, we presented
all key performance indicators to our upper management. To keep
the initial effort of the project manageable, the upper management
selected the four key performance indicators considered most valu-
able to be implemented in our first prototype (i.e., DoR, MTPal,
PDpPD, and TtM); while, currently, we have implemented all 11
key performance indicators (of the 25) that we show in Table 1.
To test these key performance indicators, we implemented a semi-
automated prototype. With this prototype, we imported data from
various sources (e.g., databases, tool logs) and processed them into
a table. We also identified a state-of-the-art, commercial tool that
could automatically measure 10 of the key performance indicators
we identified to be relevant (but none of the 11 we finally imple-
mented). As the experiences with our prototype were positive, we
decided to continue our development with that tool—which seemed
to be a faster and more feasible option at this point. In the end, this
step resulted in a list of key performance indicators we considered
relevant for VWFS and a decision towards the intended tooling.

Figure 1: Overview of our methodology.

4.3 Customizing Key Performance Indicators

In this section, we describe and exemplify the key performance
indicators we defined and adopted. For this purpose, we simulated
data with the R statistics suite [16] that is within realistic boundaries
and resembles real-world characteristics to display examples. We
do not show real data from VWFS or its sub-organizations.

DoR: Delay of Requirements. The quality of a software system
depends on a reliable requirements specification that has to be
finalized at a specific delivery date. Considering especially our
traditional software-development processes, some organizational
units must provide such deliveries for another unit to continue.
Otherwise, the risk of expensive changes and defects increases, as

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Cem Siirticii, Bianying Song, Jacob Kriiger, Gunter Saake, and Thomas Leich

Table 1: Overview of implemented key performance indicators (KPIs). Higher priority refers to (very) high severity incidents.

KPI Name Definition (unit in bold) Goal Criteria

K ATP Automated Test Progress Ratio of passed and failed automated Examine correct functional behavior of C;
test cases. a system.

K CoD Classification of Defects Number of defects classified accord- Increase the transparency of what de- C;
ing to their root cause, for instance, in- fects still exist in the system and assign
frastructure, application, requirements, them to the relevant departments.
or testing.

K CoRRHPI Classification of Release- Percentages of classified and release- Increase the transparency of what in- Cy, Cs

Related High-Priority Inci- related higher priority incidents accord- cidents have been reported and assign
dents ing to their root causes. them to the relevant departments.

* DoR Delay of Requirements Number of days a requirement is be- Identify requirement delays to asses the Cs, Cs
hind its deadline. risk of reduced software quality.

(*) MTPal Manual Test Progress and Ratio of test cases that have been Provide an overview of testing progress Ci, Cz

Interruptions passed, out of the number of target for a new system release that allows to
test cases (i.e., excluding not applicable depict disruptions.
ones), displayable as a progress graph
with disruptions and incidents.
* NoCRaD Number of Change Re- Number of change requests for each Detect modifications after the intended Ci, C3
quests after Deadline requirement after the supposed final de- finalization date to identify potential
livery of that requirement. risks due to overdue changes.
K NoRRHPI Number of Release-Related Number of higher priority inci- Measure the quality of the delivered sys- Cs, Cs
High-Priority Incidents dents within the first six weeks after tem in terms of user feedback regarding
release. higher priority incidents.
K NoRRHPAI Number of Release-Related NoRRHPI caused by the code of a sys- Track incidents caused by the code ofa Cy, Cs
High-Priority Application tem. release and their solutions.
Incidents
* PDpPD Priority Defects per Person Ratio of higher priority defects to the Compare the quality and costs of dif- Cj, Cs
Day development effort of a system release. ferent releases of a system with each
other.

K TtM Time to Market Time in days from creating user sto- Identify differences in delivery speed. ~ C3
ries to delivering a system.

K VoLD Volume of Living Defects Number of all open defects in a sys- Measure the quality of a system release Cy, Cs

tem distinguished by their priority.

in terms of known defects, with higher
priority defects preventing a release.

* designed and (*) customized for VWFS — K: Common key performance indicators

delays or later changes can propagate through the whole software-
development process, impacting the quality negatively.

So, we needed a key performance indicator to measure require-
ments delivery, improving on the coverage (C3) and comparability
(Cs) of our monitoring. To achieve this goal, we defined DoR to de-
termine the progress of requirements (i.e., similar to a critical-path
analysis). DoR counts the number of days a requirement is overdue
and can be used to highlight, among others, those requirements
that have been finalized too late or only after their implementation
began. Furthermore, to support management and signalize risk-
and cost-sensitive problems, we can highlight such requirements
that we consider to require particularly high effort. This effort can
be specified with a threshold; for example, we define more than 70
person days to classify a requirement as costly in Figure 2.

We show a simulated example for DoR in Figure 2, where red bars
highlight requirements that are above the specified effort threshold.

1334

The requirements are ordered according to their delay, meaning that
those requirements that were delivered in or before their delivery
date are represented on the left side. In contrast, all requirements
that are overdue are on the right side, starting with requirement
15. So, this overview allows to identify problems in the delivery
of requirements, and helps to understand the reasons for delays
in critical paths. At VWFS, we use DoR mostly for a retrospective
analysis and for reporting after releasing a system, aiming to learn
from its development to improve our processes. However, by mon-
itoring the situation during development, we could also decide to
assign additional resources for implementing requirements 19 and
23, which are overdue and costly. Moreover, we could decide to
monitor requirement 12 more closely, as it is also costly and would
be approaching its delivery date.

NoCRaD: Number of Change Requests after Deadline. With
NoCRaD, we defined a simple key performance indicator that is

Establishing Key Performance Indicators for Measuring Software-Development ...

254

Delay in Days

-254

30

10 20

Requirement ID
Figure 2: Simplified representation of DoR with simulated
data. Red (darker) bars highlight requirements that are con-
sidered particularly costly.

based on the number of change requests that occur for a require-
ment after it should have been delivered. It can be simply added
as an additional perspective to DoR, enriching Figure 2 with an
overview of reasons for the identified delays. This key performance
indicator helps to improve transparency (C;) and coverage (C3).

MTPal: Manual Test Progress and Interruptions. MTPal is an
adaptation of ATP with which we aim to improve the transparency
(Cq) of our testing process, and facilitate the intelligibility (Cz)
compared to existing means. Adapting ATP, MITPal focuses on
measuring the manual test process, also considering whether all
resources were available to the tester at the right time. For instance,
the IT department delivers a system to the test department, which re-
quires the right infrastructure, hardware resources, and supporting
systems to ensure the right conditions. With this key performance
indicator, we monitor problems and interruptions during testing
that occur due to the interaction of departments or missing avail-
ability of resources. So, we can react and address problems in real
time, and can implement improvements to avoid future problems.
In Figure 3, we display a simplified representation of MTPal
from our reports (e.g., we can enrich this representation with in-
formation about disruptions, and use a different representation for
real-time monitoring). We can see that not all tests may be defined
at the beginning of developing a system, but can be dynamically
added until the specification and test suites of the system are fixed.
A particularly interesting insight MTPal provides is the identifi-
cation of plateaus (e.g., days 16 to 19), at which no progress has
been achieved. Such plateaus can help to monitor the development
progress, for example, to identify disruptions that may occur due to
system unavailability, to assess the impact of requirements changes.
However, the core idea for MTPal is to monitor the development
progress overall, namely whether all relevant tests passed.
PDpPD: Priority Defects per Person Day. The main motivation
for PDpPD is an improved comparability (Cs) between different
releases and systems. In addition, we intended to improve the in-
telligibility (C2) compared to the two absolute numbers this key
performance indicator is based on. For this purpose, we defined
PDpPD to relate the number of higher priority defects (PD) in a
system (S) to its development efforts in person days (E). So, PDpPD

1335

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

1004

Number of Test Cases
3

10 15 20 25
Days of Testing
Figure 3: Simplified representation of MTPal with simulated
data. The blue line represents the target tests, while the
green (darker) line represents passed tests.

for one system is simply the ratio between both values:

PD
PDpPDg = —>
Es

We show an example representation for PDpPD in Figure 4. The
red bars show the number of defects and the blue bars show the
spent effort in person months. Note that this representation is using
an adapted version of PDpPD: To improve the scaling in Figure 4,
we used person months instead of person days. We display PDpPD
as black dots in the middle of both bars of each system. As we can
see, this key performance indicator does allow to easily compare
between different systems and their releases.

We use this representation mainly to analyze three aspects. First,
we can directly compare between different software-engineering
methods, for example, by comparing similar systems (e.g., in terms
of size and staffing) and their PDpPD values. Second, we can ex-
amine whether the transformation of one system (e.g., changing
underlying architectures or methods) had positive or negative im-
pact on its development time or quality. Finally, while a value of
zero would be ideal, indicating no higher priority defects at all,
we consider PDpPD to be a good key performance indicator for
our development capabilities. For example, an established system
should have lower values, indicating that the system has few higher
priority defects. In contrast, systems that required major transfor-
mations or for which the developer fluctuation is not ideal may
have higher or increasing (i.e., between releases) values, indicating
that we need to define actions for that system to improve its quality.

4.4 Developing the Prototype

We collaborated with the company that provides the identified
state-of-the-art tool (as for our internal data, we do not disclose this
information) to develop a proof of concept for VWFS. Developing
this concept required significant effort from both organizations
to implement the required connectivity between the tool and the
existing software-development processes. While the tool was work-
ing as intended, it did not provide the results we aimed to get, for
instance, it would have been far too expensive to integrate our own
key performance indicators and corresponding analysis views. As
a result of this experience, we decided to continue developing our

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA
. Defects

204 Person-months
15+
104

| I

o/ I |

A B C D E F G H |

System

Figure 4: Simplified representation of PDpPD with simu-
lated data, adopted to person-months for improved scaling,.
Blue bars represent the effort in person months for a system,
while the red (darker) bars represent the number of reported
defects. The PDpPD values are the black dots, representing
the ratio between both values.

own prototype. For this purpose, we implemented a feature that
allowed us to semi-automatically derive quarterly reports that were
shared among relevant organizational units. Initially, we reported
the four key performance indicators we defined during scoping
only for our department, while PDpPD was the only mandatory
part of reports for other organizational units.

4.5 Training Stakeholders

In parallel to extending our prototype, we intensified the training
of relevant stakeholders. For this purpose, we performed roughly
three workshops with specialists (e.g., those reporting to the man-
agement) and the management of the relevant organizational units.
During these workshops, all participants used the key performance
indicators measured by the most recent prototype to identify ac-
tions for improving the quality of existing software-development
processes. Later, we conducted weekly meetings in workshop-like
settings, during which all participants derived actions from our re-
ports. So, all relevant stakeholders were introduced to the existing
prototype, trained on using the defined key performance indicators,
and could provide feedback. By now, we use the quarterly reports
to discuss the key performance indicators and receive feedback.

4.6 Extending the Prototype

We received positive feedback on our initial prototype, but all or-
ganizational units agreed that it required extensions. To this end,
we coordinated with our management and specialists form such
units to select additional key performance indicators form our ini-
tial ones. In Table 1, we provide a complete overview of all 11 key
performance indicators we introduced, and the most important
criteria they shall fulfill (cf. Section 3). However, we remark that
all key performance indicators contribute to each criterion we de-
fined, and particular quantification (C4) and communication (Cg)
are improved by all of them, based in their agreed upon definitions
and acceptance by all organizational units. For over six months, we

1336

Cem Siirticii, Bianying Song, Jacob Kriiger, Gunter Saake, and Thomas Leich

are reporting this list of key performance indicators in our quar-
terly reports and extending our prototype based on user feedback.
So, we continuously extend the prototype based on the needs of
specialists at VWFS. This resulted in several changes and additions
not only to the prototype, but also to our software-development
processes. For instance, our management derived a new checklist
with specific thresholds for each key performance indicator that
new development projects have to fulfill.

5 RESULTS

In this section, we reflect on the results of introducing key per-
formance indicators at VWEFS. To this end, we first discuss our
achievements with particular focus on the criteria we defined in
Section 3 to show the value of key performance indicators. Then,
we exemplify five use cases and outcomes that are based on the key
performance indicators. Finally, we describe the lessons we learned,
aiming to provide guidance for other organizations.

5.1 Achievements

By now, we have elicited our key performance indicators for over
two years, and for six months we collect all of these we show in Ta-
ble 1. As more and more organizational units saw the benefits of our
quarterly reports and the comprised key performance indicators,
their acceptance increased—particularly because we used feedback
of specialists to further improve our reporting. Now, measuring key
performance indicators is implemented, understood, and accepted
across all relevant organizational units. The management uses the
key performance indicators to measure releases and systems, to an-
alyze business operations, and to steer transformations of processes,
technologies, as well as methods.

We received positive feedback from our management and special-
ists of involved organizational units (e.g., through workshops, per-
sonal discussions), allowing us to continue the project and achieve
noticeable benefits for VWFS—consideirng the feedback and mea-
sured key performance indicators. For the initially stated criteria,
we can summarize the following achievements, building on our
own experiences, responses from specialists and management, as
well as constant re-evaluations during the quarterly reports:

C;1 Transparency. We limited the complexity and number of
key performance indicators we report to organizational units
and to the management (due to their valuable insights for dif-
ferent stakeholders, the historically grown means are still in
place). Based on this, our quarterly reports focus on summa-
rizing the complexity of release occurrences as clear depic-
tions of the development progress of a system, and other in-
formation that the relevant stakeholders consider important
for steering. For instance, DoR and NoCRaD show whether
requirements are delivered in time or are delayed, and which
changes cause these delays.

Intelligibility. We achieved a common understanding of
our key performance indicators and how to derive actionable
items from them, at least for specialists of the relevant orga-
nizational units and the management. So, we have improved
our ability to monitor and steer our software-development
processes together with all relevant stakeholders. Nonethe-
less, interpreting what actions are needed, or providing a

Cs

Establishing Key Performance Indicators for Measuring Software-Development ...

standardized guide, is far from trivial, if possible at all. Cur-
rently, we only provide a means to guide a data-driven moni-
toring and support the decision making of the relevant stake-
holders and organizational units.

Coverage. Combining DoR, NoCRaD, TtM, PDpPD, and
NoRRHPI allows for a coherent analysis across all organiza-
tional boundaries to achieve an end-to-end monitoring of
software-development processes in their entirety. This im-
proved our capabilities to identify potentials for improving
our process and system quality. In particular, we can under-
stand in which phases we face bottlenecks and obstacles that
decrease the quality, guiding us in defining concrete actions
for improvements and transformations.

Quantification. Each of the key performance indicators we
introduced is quantified, providing concrete numbers to spec-
ify a system’s quality throughout our software-development
processes. Moreover, we measure process as well as system
properties. So, we extended our reporting capabilities and
the understandably of values as well as actions across all
relevant specialists and the management.

Comparability. Regularly measuring our software-devel-
opment processes with the same key performance indicators
allows us to compare systems, releases, as well as different
software-engineering methods and techniques. We see this
as a major benefit, helping us to assess the impact of trans-
formations, and thus steer the organization based on reliable
data. For instance, by considering PDpPD, we can compare
releases and systems even though they have different sizes
and can derive insights on their quality.

Communication. As stated in Section 3, we hoped that
introducing unified and agreed-upon key performance indi-
cators would establish a basis for, and thus facilitate, internal
communication. Considering the regular feedback and dis-
cussions, we see that this is clearly the case. We found that
the unified communication is a major achievement, avoiding
confusions and providing a terminology that is accepted,
used, and considered valuable throughout all relevant orga-
nizational units.

Overall, we see major achievements regarding each of our defined
criteria, which were only possible due to the support and involve-
ment of all relevant organizational units and our management. We
remark that we experienced no major disruptions due to introduc-
ing the new key performance indicators, as a separate team collects
and reports these based on independent data analyses.

Cs

Cq

Cs

Cs

5.2 Example Use Cases and Outcomes

In the following, we describe five concrete examples of how we use
our key performance indicators to define actionable items at VWFS.
We can see that these examples are strongly connected, so items
tackling one obstacle also tackle other obstacles. This highlights
the importance of considering key performance indicators not in
isolation, but together to achieve a better overview understanding
of software-development processes.

Example 1: Improved Release Quality. We established multiple
work groups based on analyzing key performance indicators. As
a concrete example, we introduced a work group involving the

1337

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

first author of this paper as well as specialists and managers of
the testing, development, and business-related departments with
the goal of increasing the quality of our system releases. In this
work group, we defined several actionable items and used the key
performance indicators in a retrospective analysis to monitor these
items and evaluate their impact. We experienced, and could actually
measure, a consistent improvement in the release quality during the
last year. A particular reason for this experience is the facilitated
communication between departments that is regularly mentioned
as a positive aspect by the involved stakeholders.

Example 2: Defined and Quantifiable Checklists. As aforemen-
tioned, our management introduced a checklist with requirements
new development projects within our business area shall fulfill.
These requirements are based on our key performance indicators,
most of which are listed with a certain threshold that has to be
fulfilled. Our management derived these thresholds for each key
performance indicator by considering historical data and measure-
ments of systems over multiple releases. So, we can define require-
ments for a system and measure them in more detail compared
to before. As we experienced this as a major benefit to ensure
and improve system quality, this checklist was further extended
into a guideline for software-development projects in our business
area—with increasing interest from other organizational units.

Example 3: Reduced Delay of Requirements. We experienced
that particularly delays in delivering requirements specifications
could increase costs, wherefore we introduced DoR and NoCRaD.
This helped us to define two actionable items for reducing delays,
as we could now easier convince relevant stakeholder of the ob-
stacles and could reason how these items would help. First, it is
now easier to identify and quantify delays as well as their impact
on our software-development processes. To improve, we raised all
relevant stakeholders’ awareness of delays and their causes, and
introduced new methods to facilitate the planning and steering of
releases. For instance, our quarterly reports and the corresponding
meetings served both purposes, allowing us to talk to the relevant
stakeholders and come to mutual agreements on how to improve.
Second, we intend to analyze the key performance indicators (e.g.,
Figure 2) to evaluate the impact of transformations we employed.
As a particular example, specialists in relevant organizational units
suggest that the newly introduced cross-functional teams com-
posed of experts of the business, IT, and testing departments had
less delays during requirements specification. It seems that such
teams collaborate more closely, earlier, and with less coordination
delays than was the case in our traditional software-development
processes (i.e., the ideas of introducing agile methods in our case).
Moreover, they seem to change requirements less often after the
delivery, to provide complete specifications earlier, and to design
systems as well as test cases that are better aligned with the require-
ments from the start. For future releases, we aim to analyze whether
additional key performance indicators reflect these assumptions.
Still, while such quantifiable measurements would be even more
convincing, the general impression of our specialists increases our
confidence that our agile transformation is beneficial for VWFS.
Example 4: Improved Testing Process. By using ATP, CoD, and
MTPal, we increased our understanding and the transparency of
defect causes. Based on the results, we implemented an additional

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

monitoring view for our testing processes. So, all relevant stake-
holders can now immediately recognize delays in the daily testing
routines (e.g., obstacles in the infrastructure during testing), which
resulted in the following improvements:

e We found that some tests were not ready when testing of-
ficially began. Usually, this problem was caused by either
delayed technological deliveries (e.g., software or system
availability), which we resolved by defining a buffer that trig-
gers the delivery at an earlier point in time than before; or
because some test cases were not finalized. We hypothesized
that this was caused by late changes or late submissions
of important requirements that were important to imple-
ment. By analyzing DoR, we could confirm this hypothesis
with reliable data, monitoring not a single requirement, but
providing a holistic overview of delayed and punctual re-
quirements (we used the actions in Example 3 to tackle this
issue, too). As this example shows, combining different key
performance indicators is highly valuable.

We identified that some tests could not be finished in the
defined period, which we solved by planning our testing pro-
cesses differently. Now, we have regular (daily or multiple
times a week) agreements between development, incident
management, testing, and business-related departments re-
garding the reasons for interruptions and sustainable solu-
tions to address these. The agreements are helpful, as, for
example, it is a huge difference in terms of a solution whether
testing was actually in time, but an incident in the infrastruc-
ture disrupted the processes, or avoidable testing plateaus
occurred (cf. Section 4.3). While we could also identify and
solve this obstacle without our key performance indicators,
they made the reasons for delays more transparent.

Finally, we decided to invest more into automated regression
testing for systems for which we expected (and historically
measured) many changes. This allowed us to accelerate our
quality assurance, freeing resources for other activities in
our software-development processes.

Our positive experiences regarding these actions strengthened our
opinion that agile teams, DevOps, and further automation are highly
valuable to facilitate our testing. Moreover, these experiences and
measurements support the reasoning for our current agile transfor-
mation towards these practices.

Example 5: Facilitated Comparison of Releases. Introducing
PDpPD was highly beneficial in our experience, allowing us to
compare and monitor system releases more systematically. For
example, we investigated what factors impact this key performance
indicator at VWFS, which are, among others:

e New, innovative systems, which are not established yet, usu-
ally comprise more defects than those systems that have
been evolved, maintained, and tested for a long time.

Large changes of established systems, of components that
are integrated into systems, or of our platforms can cause
short-term increases in PDpPD.

Similarly, large-scale development projects and transforma-
tions can affect the PDpPD of the involved systems, which
our specialists attributed particularly to delays in the require-
ments specification (cf.Example 3).

1338

Cem Siirticii, Bianying Song, Jacob Kriiger, Gunter Saake, and Thomas Leich

All of these factors can be expected to result in more defects in new
releases. However, being able to quantify these factors and relate
them to other properties (e.g., effort) facilitated this analysis and
allowed us to derive solutions more easily and convincingly.

If we find that one of our systems comprises more defects than
our defined threshold allows (cf. Example 2), the management and
specialists of the relevant organizational units initiate actions to
again fulfill the threshold. These actions include allocating addi-
tional resources to a system, increasing test automation (e.g., Unit
tests), using more integration tests, and adjusting our software-
development processes. For instance, we extended our defect man-
agement to improve its efficiency by integrating the defect manager
into the development team—again employing agile ideas, and thus
reducing idle times. Afterwards, we measure PDpPD for new re-
leases and compare the new measurements against the previous
once to evaluate the effectiveness of such means.

One interesting insight we gained is that some reported defects
were in fact not defects of our systems. The problem was that the
data quality was not optimal at the beginning of this project. We
conducted data cleansing and reviews with specialists, establish-
ing the actionable item to continuously monitor and improve data
quality. Similar to the general system requirements (cf. Example
2), we derived a checklist for our defect management and its co-
ordination between development and testing departments. This
checklist was distributed among, evaluated with, and accepted by
all relevant organizational units, describing the important activities
to improve the identification of defects, their documentation, and
the maintenance of the corresponding data.

5.3 Lessons Learned

While introducing the key performance indicators, we found that
some steps worked well, while others did not yield the expected re-
sults. In the following, we share our experiences, aiming to support
other organizations and indicate opportunities for future research.

Using an off-the-shelf solution has limitations. As we men-
tioned, we initially opted to use a fully automated, state-of-the-art
tool to measure key performance indicators. While this tooling
allowed us to easily collect numerous DevOps key performance in-
dicators, we experienced some limitations regarding our situation:
e The predefined “standard” DevOps key performance indica-
tors gave a good impression and vague tendencies of what
was happening in our business, but they were not precise
enough to detect concrete obstacles and to derive actions for
improving the situation. To increase the value of introducing
key performance indicators, we developed some ourselves.
So, we could align the key performance indicators to our
needs and measure what was most interesting to us.
The effort required to customize and implement key perfor-
mance indicators in a large organization that uses various
tools and software-development processes is very costly.
Obviously, these costs are higher in a large organization
compared to start-ups, where many established key perfor-
mance indicators originated from. As a result, off-the-shelf
solutions may currently not be ideal for large organizations.
The data quality at VWFS was not ideal at the beginning of
this project, limiting the usability of automated, real-time

Establishing Key Performance Indicators for Measuring Software-Development ...

measuring and reporting, which is also the reason our proto-
type is not fully automated. We cleansed our data and con-
ducted expert reviews to improve this situation. However,
using an off-the-shelf solution means that we could not get
immediate feedback or use the measured key performance
indicators reliably, we first would have needed to optimize all
of our data. So, developing our own prototype provided the
benefits that we focused on the most important key perfor-
mance indicators and could see improvements immediately,
which enabled a faster introduction in our opinion.

For these reasons, we decided to continue developing our own,

semi-automated prototype. Considering our current experiences,

we argue that this was the right decision.

Lesson 1
Large organizations must carefully evaluate to what extent off-the-
shelf solutions for key-performance indicators suit their demands
and can be integrated into their existing infrastructure.

Customizing key performance indicators. In retrospective, the
roughly 25 key performance indicators we identified and specified
in the beginning of this project were too many. We experienced
that it is neither productive nor efficient to measure many key
performance indicators simply because they are recommended
or readily available. Instead, we highly recommend to perform a
detailed domain analysis, discuss with relevant stakeholders, and
define precise goals in order to select the key performance indicators
that are actually relevant for an organization. This is a major issue,
as too many irrelevant key performance indicators can bias not
only the results, but may also decrease their overall acceptance.
So, we cannot stress enough the importance of regularly involving
management and specialists to scope key performance indicators
and tooling to their needs.
Lesson 2
Focus on a small, domain-dependent set of important and agreed-
upon key performance indicators to establish and evaluate their

usage in an organization.

Achieving acceptance. Simply introducing key performance in-
dicators is not useful, they must also be accepted, measured, and
understood by all relevant stakeholders. For this purpose, we expe-
rienced that the following means were important:

e To develop and introduce key performance indicators within
anew project requires the commitment, support, and involve-
ment of the organization’s management. This commitment
is essential to motivate other stakeholders in the beginning
and to scope the whole project.

It is necessary to repeatedly communicate key performance
indicators, their meanings, and their interpretations. By con-
stantly talking to relevant organizational units and our man-
agement, we improved their acceptance significantly, but
this still required time.

We recommend to constantly ask for feedback of the manage-
ment and specialists, and incorporate it into the tooling. First,
feedback helps to customize and improve key performance
indicators and the tooling towards the organization’s busi-
ness needs and domain. Second, seeing that their feedback is
taken seriously, improves the acceptance of the stakeholders.

1339

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

e In our case, workshops were particularly helpful to com-
municate key performance indicators and improve the com-
prehension of relevant stakeholders. Especially, involving
skeptical stakeholders is important to receive their feedback.
These workshops greatly helped us to introduce and improve
our prototype, and steadily increased the acceptance among
all stakeholders.

Regular reports that provide an overview of all key perfor-
mance indicators were helpful to increase acceptance. These
reports served as foundation for discussions and documented
our progress and improvements, which we experienced to
be highly valuable for acceptance.

We found that it is important to establish key performance in-
dicators early on as an additional means to monitor and steer
software-development processes. For this purpose, we used
our quarterly reports and the corresponding meetings to
define new actionable items and evaluate how these worked
out. This greatly contributed to the acceptance of the key
performance indicators.

Overall, the relevant organizational units and our management at
VWES agreed that key performance indicators are a helpful means
and greatly support the monitoring of software-development pro-
cesses. We account this success especially to our close collaborations
with these stakeholders, which resulted in a fast acceptance.

Lesson 3
Constantly involve relevant stakeholders in the design and use of
key performance indicators, ideally during interactive sessions to
communicate benefits, increase acceptance, and improve tooling.

Considering different target groups for reporting. A particu-
lar challenge while defining and reporting key performance indica-
tors was that we had to address various target groups. For example,
in the software-development processes at VWES, specialists with
software development but also non software-development back-
ground are involved. Moreover, the organizational structure with
various units and hierarchies means that we prepare reports for
developers and managers alike. To address these different scopes
of expertise and working areas, we selected management-oriented,
but also typical development key performance indicators. In partic-
ular, we considered the previously existing means for measuring
in the organizational units to support their information needs. We
found that it is important, but also essential, to report the key
performance indicators and their meaning in an appropriate level
of detail, depending on the relevant stakeholders and their needs.
For this reason, we selected key performance indicators based on
their usability for steering software-development processes and for
explaining the corresponding decisions to other stakeholders.

Lesson 4
Consider key performance indicators that are important to the
different stakeholders involved to achieve benefits for all organi-
zational units that have to measure and use them.

Managing the project. This project was not performed as a VWFS
development project, but as a “special task” that we initiated by
championing key performance indicators and convincing our upper
management to approve the project. As a consequence, we had to
carefully manage and limit the costs of the project, as success was

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

uncertain. So, we performed the light-weight, iterative methodol-
ogy based on prototyping to receive fast feedback and evaluate
intermediate outcomes. In particular, we started with the four most
promising key performance indicators before extending our tool
to involve additional ones. We heavily involved and coordinated
with specialists and our management to optimize and adjust the
prototype to their needs. In our experience, this iterative, step-wise
evolution of our prototype was efficient, constructive, and limited
the costs as well as risks of our project.

Lesson 5
Create light-weight prototypes to gain fast feedback on the usabil-
ity of key performance indicators and to evaluate their value for
the organization’s businesses.

Assessing the trade-off between costs and benefits. A general
discussion we faced during this project is the trade-off between
costs and benefits of using key performance indicators in a large
organization. We relied on a semi-automated prototype that re-
quires considerable manual efforts for each report. In particular,
we have to derive the required data, review the data with special-
ists, cleanse the data, and prepare its depiction. Ideally, we could
have a fully automated tool that delivers the right key performance
indicators on dashboards without delay (i.e., achieving complete
real-time monitoring). However, for this purpose, we need to have
excellent data quality and availability for an automated selection
and analysis. Most expensive would be to achieve the required data
quality, which requires process adjustments, quality gates across all
relevant organizational units, additional personal, and cooperating
external organizations to contribute to our internal analysis. In or-
der to balance costs and benefits, we decided to tackle these issues
on a long-term basis. Currently, they are not a viable option, but
we aim to constantly introduce corresponding changes to automate
our prototype further during future transformations.

Lesson 6
Define and maintain a business case comparing the costs and
benefits of the established key performance indicators to provide
reliable evaluations and not only educated guesses on their value.

6 RELATED WORK

In this section, we exemplify related studies of using key perfor-
mance indicators to measure and steer software-development pro-
cesses. For instance, Kilpi [7] describes how Nokia established a
metrics-based monitoring program. To this end, Nokia introduced
an own method called Nokiaway, which is explained in this paper.
We report a similar, yet different methodology in more detail and
provide concrete experiences as well as lessons learned.

Cheng et al. [3] report a case study with three smaller Dutch
organizations who used key performance indicators in the context
of agile software engineering. The authors report the key perfor-
mance indicators used and what actions were derived to improve
software-development processes. In contrast to this work, we re-
port a methodology for introducing key performance indicators
and experiences from a large organization.

Lawler and Kitchenham [10] describe the measurement model-
ing technology, implemented in a tool to automatically measure
software-development processes. Also, they report experiences of

1340

Cem Siirticii, Bianying Song, Jacob Kriiger, Gunter Saake, and Thomas Leich

introducing and using this technology in a Fortune 500 company.
Still, these insights are rather coarse and we report more detailed
experiences, and used a technology-independent methodology.

Staron et al. [20] introduced and evaluated a quality model to
specify “good” key performance indicators. So, this work is related
to our customization phase, but it does not report how to introduce
key performance indicators in an organization. Further, Staron et al.
[21] report a framework for introducing key performance indica-
tors at another large organization, namely Ericsson. As the authors
report a framework, its usage, and experiences, this work is closely
related to ours. We complement this study with new insights and
experiences, obtained at another organization in a different domain.
Moreover, we again used another methodology that is helpful to as-
sess the usability of key performance indicators before introducing
a full-fledged framework.

7 CONCLUSION

In this paper, we described how we introduced and use key perfor-
mance indicators at a large organization in the financial sector. Our
experiences show the value of key performance indicators, but we
also highlight potential problems and report recommendations for
other organizations. More precisely, we described:

o A light-weight methodology to introduce key performance
indicators, allowing for fast feedback.
A set of four key performance indicators customized to our
needs that may be relevant for other organizations, too.
An overview of the criteria we aimed to improve and the
impact our key performance indicators have had on these,
as well as five concrete examples.
A set of six lessons learned, which can help other organiza-
tions to introduce key performance indicators, related to (1)
selecting the required tooling, (2) customizing key perfor-
mance indicators, (3) increasing acceptance and usability, (4)
involving different stakeholders, (5) evaluating constantly,
and (6) providing a business case.
We hope that these contributions help practitioners in their endeav-
ors and guide researchers to investigate new research directions. At
VWES, the project is considered a success: We enhanced the compa-
rability of releases and processes as well as the comprehensibility
and acceptance of our monitoring, which facilitated the steering
of actions for improving software quality—which is visible in the
improved user feedback.

In future work, we plan to automate and extend our prototype, as
well as to conduct an empirical evaluation. Moreover, we plan to add
new and refine the existing key performance indicators. For exam-
ple, we can enrich DoR with the costs of requirements, but not their
value for a system—which is an equally important information. To
decide on such changes, we intend to understand the costs and sav-
ings of key performance indicators in more detail. Finally, we aim
to define recommendations on actionable items and their impact.

ACKNOWLEDGMENTS

Supported by the German Research Foundation (LE 3382/2-3, SA
465/49-3) and VWFS. We would like to thank all our colleagues at
VWES who supported the development and introduction of our key
performance indicators and prototype by providing highly valuable
feedback and suggestions for improvement.

Establishing Key Performance Indicators for Measuring Software-Development ...

REFERENCES

(1]

(2]
(3]

(8]

(]

[10]

(1]

Daniele Barone, Lei Jiang, Daniel Amyot, and John Mylopoulos. 2011. Reasoning
with Key Performance Indicators. In Working Conference on The Practice of Enter-
prise Modeling (PoEM). Springer. https://doi.org/10.1007/978-3-642-24849-8 7
Barry W. Boehm. 1984. Software Engineering Economics. Transactions on Software
Engineering SE-10, 1 (1984). https://doi.org/10.1109/TSE.1984.5010193
Tjan-Hien Cheng, Slinger Jansen, and Marc Remmers. 2009. Controlling and
Monitoring Agile Software Development in Three Dutch Product Software
Companies. In Workshop on Software Development Governance (SDG). IEEE.
https://doi.org/10.1109/SDG.2009.5071334

Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The Science of
Lean Software and DevOps Building and Scaling High Performing Technology
Organizations. IT Revolution.

Magne Jorgensen and Barry W. Boehm. 2009. Software Development Effort
Estimation: Formal Models or Expert Judgment? IEEE Software 26, 2 (2009).
https://doi.org/10.1109/MS.2009.47

Lj Kazi, Biljana Radulovic, and Zoltan Kazi. 2012. Performance Indicators in
Software Project Monitoring: Balanced Scorecard Approach. In International
Symposium on Intelligent Systems and Informatics (SISY). IEEE. https://doi.org/
10.1109/S15Y.2012.6339539

Tapani Kilpi. 2001. Implementing a Software Metrics Program at Nokia. IEEE
Software 18, 6 (2001). https://doi.org/10.1109/52.965808

Jacob Kriiger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants into an Integrated Platform. In International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS). ACM. https:
//doi.org/10.1145/3377024.3377044

Jacob Kriiger and Thorsten Berger. 2020. An Empirical Analysis of the Costs
of Clone- and Platform-Oriented Software Reuse. In Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM. https://doi.org/10.1145/
3368089.3409684

Jim Lawler and Barbara A. Kitchenham. 2003. Measurement Modeling Technology.
IEEE Software 20, 3 (2003). https://doi.org/10.1109/MS.2003.1196324

Horst Lichter, Matthias Schneider-Hufschmidt, and Heinz Zullighoven. 1994.
Prototyping in Industrial Software Projects - Bridging the Gap Between Theory

1341

[19

[20

[21

[22

(23]

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

and Pactice. IEEE Transactions on Software Engineering 20, 11 (1994).
//doi.org/10.1109/32.368126

Pam Mayhew and P. Dearnley. 1987. An Alternative Prototyping Classification.
The Computer Journal 30, 6 (1987). https://doi.org/10.1093/comjnl/30.6.481
Wilhelm Meding. 2017. Sustainable Measurement Programs for Software De-
velopment Companies: What to Measure. In International Workshop on Software
Measurement and International Conference on Software Process and Product Mea-
surement (IWSM/Mensura). ACM. https://doi.org/10.1145/3143434.3143438
Alan Moran. 2015. Managing Agile. Springer. https://doi.org/10.1007/978-3-319-
16262-1

David Parmenter. 2015. Key Performance Indicators: Developing, Implementing,
and Using Winning KPIs. Wiley.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. https://www.R-project.org

Ita Richardson and Christiane G. von Wangenheim. 2007. Why are Small Software
Organizations Different? IEEE Software 24, 1 (2007). https://doi.org/10.1109/MS.
2007.12

Andreas Riege. 2005. Three-Dozen Knowledge-Sharing Barriers Managers Must
Consider. Journal of Knowledge Management 9, 3 (2005). https://doi.org/10.1108/
13673270510602746

Miroslaw Staron and Wilhelm Meding. 2018. Software Development Measurement
Programs. Springer. https://doi.org/10.1007/978-3-319-91836-5

Miroslaw Staron, Wilhelm Meding, Kent Niesel, and Alain Abran. 2016. A
Key Performance Indicator Quality Model and its Industrial Evaluation. In In-
ternational Workshop on Software Measurement and International Conference
on Software Process and Product Measurement (IWSM/Mensura). IEEE. https:
//doi.org/10.1109/IWSM-Mensura.2016.033

Miroslaw Staron, Wilhelm Meding, and Christer Nilsson. 2009. A Framework for
Developing Measurement Systems and its Industrial Evaluation. Information and
Software Technology 51, 4 (2009). https://doi.org/10.1016/j.infsof.2008.10.001
Thomas Stober and Uwe Hansmann. 2010. Agile Software Development. Springer.
https://doi.org/10.1007/978-3-540-70832-2

Frank van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action. Springer.

https:

https://doi.org/10.1007/978-3-642-24849-8_7
https://doi.org/10.1109/TSE.1984.5010193
https://doi.org/10.1109/SDG.2009.5071334
https://doi.org/10.1109/MS.2009.47
https://doi.org/10.1109/SISY.2012.6339539
https://doi.org/10.1109/SISY.2012.6339539
https://doi.org/10.1109/52.965808
https://doi.org/10.1145/3377024.3377044
https://doi.org/10.1145/3377024.3377044
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1109/MS.2003.1196324
https://doi.org/10.1109/32.368126
https://doi.org/10.1109/32.368126
https://doi.org/10.1093/comjnl/30.6.481
https://doi.org/10.1145/3143434.3143438
https://doi.org/10.1007/978-3-319-16262-1
https://doi.org/10.1007/978-3-319-16262-1
https://www.R-project.org
https://doi.org/10.1109/MS.2007.12
https://doi.org/10.1109/MS.2007.12
https://doi.org/10.1108/13673270510602746
https://doi.org/10.1108/13673270510602746
https://doi.org/10.1007/978-3-319-91836-5
https://doi.org/10.1109/IWSM-Mensura.2016.033
https://doi.org/10.1109/IWSM-Mensura.2016.033
https://doi.org/10.1016/j.infsof.2008.10.001
https://doi.org/10.1007/978-3-540-70832-2

	Abstract
	1 Introduction
	2 The Organization
	3 Motivation
	4 Methodology
	4.1 Training Project Leads
	4.2 Scoping the Prototype
	4.3 Customizing Key Performance Indicators
	4.4 Developing the Prototype
	4.5 Training Stakeholders
	4.6 Extending the Prototype

	5 Results
	5.1 Achievements
	5.2 Example Use Cases and Outcomes
	5.3 Lessons Learned

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

