
Evolutionary Feature Dependencies:
Analyzing Feature Co-Changes in C Systems

Sandro Schulze
Anhalt University of Applied Sciences

Köthen, Germany
sandro.schulze@hs-anhalt.de

Phillipp Engelke
Otto-von-Guericke University

Magdeburg, Germany

Jacob Krüger
Eindhoven University of Technology

Eindhoven, The Netherlands
j.kruger@tue.nl

Abstract—Configurable software systems and software product
lines build on features as first class entities for reasoning about
commonalities and variability among system variants. While it is
desirable to have modular features, this is not always achievable
and research has shown that features interact frequently, which
can come with negative effects like security vulnerabilities or
bugs. Intensive research has been conducted regarding how and
when features interact, focusing primarily on the implementation
level and the variability mechanism therein. However, besides
such structural, explicit feature dependencies represented in the
code, there may also be more subtle, implicit feature dependencies.
In this paper, we build on the idea that the co-evolution of
features (i.e., co-changes between features) can reveal implicit
dependencies, and thus point to poor design decisions that result
in additional maintenance effort. We present a technique for
analyzing feature co-changes based on repository mining and
association rule mining to identify features that commonly change
together and to reveal implicit dependencies. Moreover, we provide
a large-scale multi-case study on five C systems (e.g., Linux
kernel) to evaluate whether and how frequent such evolutionary
dependencies occur. Our results reveal that a) feature co-changes
occur quite frequently (25 to 70 % of commits), b) a considerable
amount of changes are supported by association rules (i.e, do not
occur by chance), and c) several of these co-changes cannot be
explained via explicit feature interactions. Overall, our technique
and study complement existing research on feature dependencies
and interactions by providing means for understanding implicit
dependencies that are represented by feature co-evolution.

Index Terms—software evolution, repository mining, code
analysis, configurable software systems, association rule mining

I. INTRODUCTION

Configurable software systems or actual software product
lines build on a variability mechanism to enable or disable
configuration options and thereby features, to customize a
specific variant of the system [3], [42], [49], [54]. The most
prominent and widely established of such mechanisms is the
C preprocessor [15], [29], [30], [33] that builds on conditional
compilation (e.g., annotating features with #ifdef A -
#endif blocks). Different configurable features may depend
on each other, for instance, one may require the other or they
are tangled in the same conditional compilation annotation (e.g.,
#if A && B). Such dependencies are explicitly documented
directly in the source code, and ideally stored in a variability
model [4], [17], [40] and configuration tool to check whether a
configured system variant is valid (i.e., fulfills all dependencies).
After configuring the system, the C preprocessor removes all

code that is within blocks of disabled features. So, some feature
code that impacts a different feature as well may be removed
accidentally. To ensure that all variants that can be configured
work as intended, many testing techniques have been proposed
to sample and test particularly explicit feature dependencies
(i.e., sampling, combinatorial testing) [5], [51].

In contrast, there are many dependencies between features
that are not (made) explicit, and thus far less obvious (e.g.,
a responsible developer knowing but not documenting a
dependency). For example, two features may be located at
completely different places in a system, yet they use or modify
the same variable [23], [24], [44]. As a consequence, one feature
may impair the behavior of another or the whole configuration
may break, a case referred to as feature interaction problem [18].
Such implicit dependencies are ideally made explicit (e.g., in
the variability model). However, considering a large number
of features (e.g., >18,000 for the Linux kernel) [50], the
cognitive challenge of understanding all feature interactions
(called “#ifdef hell” regarding the C preprocessor) [6], [15],
[26], [29], [35], and that interactions may not be directly
visible [23], [24], [31], [44], it is not surprising that implicit
feature dependencies can cause severe problems for software
engineers. In fact, while we are aware that feature interactions
are a prominent cause for bugs in configurable systems [1], [10],
[34], [37], it is particularly challenging to identify, locate, and
resolve these bugs—even if the causing dependency is explicit.

With our research in this paper, we aim to identify implicit
feature dependencies to reveal possible design flaws, and to
support developers with information on possible co-changes
that must be considered during a system’s development and
evolution. To move into this direction, we build on an
intuitive assumption: even implicit feature dependencies must
be somehow represented in the developers’ code changes.
Specifically, even if no dependency is made explicit between
two features in the source code, the developers may always
change the two together in one commit or a change to one
feature is typically followed by a change to a second one. Our
idea is to exploit such change information using association rule
mining and a recommender system to extract implicit feature
dependencies. To evaluate our technique, we employed it on
five open-source C systems: OpenVPN, libxml2, OpenLDAP,
postgres, and the Linux kernel. Our results show that our
technique can help reveal implicit feature dependencies in

such systems. Seeing the extent to which we could identify
such implicit dependencies and that not all of them can be
directly mapped to explicit dependencies, we argue that we
have to pay more attention to analyzing implicit dependencies
in configurable source code in the future.

In more detail, we contribute the following in this paper:
• We propose a technique for eliciting and analyzing implicit

feature dependencies based on feature co-changes.
• We report a multi-case study in which we applied our

technique on five open-source C systems of varying sizes.
• We publish our technique and analysis data in a persistent

open-access repository1 for others to use it.
Overall, we contribute a technique that complements existing
research, and can help analyze hidden properties of features in
configurable systems. So, we contribute a foundation for future
research as well as a technique for practitioners to identify
feature co-changes and implicit feature dependencies they may
want to resolve or make explicit.

II. ASSOCIATION RULE MINING

The concept of association rule mining has been introduced
by Agrawal et al. [2] with the goal of inferring relations, called
association rules, between entities in a dataset. Originally,
association rules are identified from a set of transactions, with
each transaction encompassing a subset of all entities. As an
example, we refer to the famous case of analyzing data about
shopping carts: Given that multiple transactions (carts) include
bread and butter (entitities), the corresponding association rule
is bread → butter, indicating that “if you buy bread, it is
likely that you also buy butter.”

Association rule mining has been successfully applied for
mining evolutionary coupling from (co-)change data in software
repositories [16], [45], [53], [55]. In this context of evolutionary
coupling, there are a few terms that differ from the original
concept of association rule mining. First, the entities are the files
(or, depending on the granularity, classes, methods, features,
etc.) of the system. Second, the collection of transactions is
the history H of the system with each transaction T ∈ H
being a committed change to the system. Thus, a transaction
encompasses a number of files that have been changed or added
together, and thus creates a logical dependency [12].

Moreover, in the context of evolutionary coupling, an
association rule is an implication A → B with A and B being
disjoint. A is referred to as the antecedent and B is referred
to as the consequent. Consequently, the association rule above
implies that “if files in A change, it is also likely that files
in B are subject to change”. To reason about and validate
the obtained association rules, several measures have been
proposed, which we briefly introduce in the following.

1) Frequency: The frequency of a rule A → B specifies
the number of transactions in H for which items in both, A
and B, change. More formally, the frequency ϕ is defined as

ϕ(A → B)
def
= |T ∈ H : A ∪B ⊆ T | (1)

1https://doi.org/10.5281/zenodo.8279433

Since the number of transactions can differ, and thus influences
the frequency, this measure is usually normalized.

2) Support: The support of a rule A → B is the frequency
of a rule divided by the number of transactions in the history.
More formally, the support σ is defined as

σ(A → B)
def
=

ϕ(A → B)

|H|
(2)

Obviously, a rule with higher support is more likely to hold
true. In contrast, rules with low support indicate events that
occur rarely. Usually, a minimum threshold for the support is
defined to filter out uninteresting association rules. Please note
that due to the many changes typically employed to a software
system which touch completely different pieces of code, the
support for association rules on commits is usually much lower
compared to the well-established use case of cart analysis.

3) Confidence: The confidence of a rule is a measure that
describes the reliability of the inference made by that rule. It
is defined as the frequency of the rule divided by the number
of transactions that contain the antecedent. More formally, we
can define the confidence as

κ(A → B)
def
=

ϕ(A → B)

|T ∈ H : A ⊆ T |
(3)

As we can see, the confidence measures the ratio of transactions
in which A and B are present to the number of transactions in
which A is present. In other words, the higher the confidence
for a rule A → B, the more likely it is that if A changes B
also changes.

III. FEATURE CO-CHANGE ANALYSIS

In this section, we present our technique for aggregating
and analyzing data for extracting implicit feature dependencies.
We show our overall, two-staged workflow in Figure 1 and
provide more details on these stages and the individual
steps in the following. Please note that we report on the
actual implementation of our prototype including testing and
consequent optimizations in Section IV. Within this section,
we focus more in the conceptual design of our technique,
which could be adapted for other programming languages and
variability mechanisms than C and its preprocessor.

A. Data Aggregation

In the first stage of our technique (cf. Figure 1), we are
mainly collecting data by analyzing commits of a repository,
filtering out the relevant feature information, and exporting
the remaining data to make it available for the second stage.
Initially, we need to specify a (Git) repository containing the
system we want to analyze. As our analysis is targeted at
the C preprocessor as variability mechanism, the repository
should contain a system written in C. Moreover, our technique
requires a commit hash to specify a starting point for our
analysis. Afterwards, our technique executes the following
three steps for every commit in the repository.

https://doi.org/10.5281/zenodo.8279433

repository intermediate
storage

data aggregation

resultsanalyze
commits

filter changed
features

export data extract static
metrics

extract
dependencies

data analysis

Fig. 1. Workflow of our feature co-change analysis.

1) Analyze Commits: In this step, we access the source code
associated with a commit and analyze that code regarding the
occurrence of features. Specifically, we are interested in iden-
tifying what features exist and what code locations correspond
to what features (i.e., the C preprocessor annotations represent
markers of feature locations). We require this information
to map changes to specific parts of the source (i.e., within
annotations) to the right features (i.e., specified in the respective
annotations). To this end, we employ the tool CPPSTATS2 [15],
[29], [30] that, among others, provides a list of features and
their locations in the source files of a C system. After this
step, we have a list of features together with their locations
(i.e., file name and start/end line) for the analyzed files in the
given commit, which is the input for the next step.

2) Filter Changed Features: The main purpose of this step
is to identify changed lines of feature code. To this end,
we use two pieces of information. First, we take the change
information for each file from the version-control data, which
exposes details about changed and added lines of code for
each file. Second, we use the information we obtained in the
previous step, specifically the list of features and their locations.
We combine both pieces of information by mapping them to
each other, thereby identifying those lines of feature code that
have been changed within a commit. In other words: for each
modified line of code we check whether this line is also part
of a feature or not. If so, we keep this information, otherwise
we discard the change information. As a result of this step,
we obtain a list of features associated with every line of code
of this feature that has been changed between the last and the
current commit.

3) Export Data: As the last step of this stage, we store the
extracted and aggregated data from the previous steps. We do
this in two different ways: Primarily, we store all pieces of
information about the features (i.e., their location and changed
lines of code) in a database that we can later query in the
analysis stage. Additionally, we store this information locally
in a CSV file. We mainly do this to store a backup in case the
database is not accessible for whatever reason, particularly for
testing our workflow and the pipelines we implemented. Then,
we use the stored information within the analysis stage, which
we explain next.

B. Data Analysis

In the second stage of our technique, we make use of the
previously collected data to
(1) characterize the evolution of features via metrics and
(2) analyze this evolution with respect to feature co-changes

to identify implicit feature dependencies.

2https://github.com/clhunsen/cppstats/

For the former, we collect several metrics that allow us to
quantify how much and how often features have changed in a
series of commits. We provide an overview of these metrics
in Table I. Specifically, we are interested in feature-related
(e.g., number of features, how often the features changed) and
commit-related metrics (e.g., commits that change multiple
features, number of commits with feature changes). Based on
these metrics, we gain initial insights regarding the evolution
of each system and can compare different systems with respect
to questions, such as how many of the features have changed
or how many commits do really affect features?

However, our main focus in this stage is on the second
step of analyzing feature co-changes to extract implicit and
evolutionary feature dependencies. To this end, we employ
association rule mining as introduced by Agrawal et al. [2] and
explained in Section II. Since we apply association rule mining
in the context of co-evolving features, we make the following
propositions regarding the terms used for this step. First, the
items we consider are the features we extracted during the data
aggregation stage. Second, the transactions considered within
our technique are feature sets, that is all features that change
together within a certain commit.

Given these propositions, we use the apriori algorithm for
association rule mining proposed by Agrawal et al. [2] as
follows. First, we create a list of all feature sets based on
the data we collected from the repository mining and data
aggregation stage. Since a certain feature can change in multiple
places within a single commit, the corresponding feature
set may contain this feature multiple times. To avoid rules
like feature A → feature A, we remove all duplicate
features within the feature sets. Then, we compute the support
for each feature set. Given a certain support threshold (specified
on a concrete instance of the algorithm), this allows to discard
less meaningful or insignificant features sets that are below
that threshold. For the remaining feature sets, we compute
all possible association rules. Subsequently, we calculate the
confidence for each of the generated rules. Again, this allows
to filter out meaningless rules that are below a minimum
confidence threshold. Eventually, we obtain a list of rules that
are above the specified support and confidence, and thus should
represent the implicit feature dependencies we aim to extract.

IV. ANALYZING CO-EVOLUTION IN C SYSTEMS

In this section, we report a multi-case study [52] in which
we employed our technique on five C systems and the C
preprocessor as one concrete variability mechanism. We first
introduce our research questions and the subject systems we
used. Then, we present details on our research prototype, the
conduct of our study, and on the challenges we experienced.

https://github.com/clhunsen/cppstats/

TABLE I
OVERVIEW OF THE METRICS WE EXTRACT IN THE DATA ANALYSIS STAGE.

feature-related metrics commit-related metrics

total number of features total number of commits with feature changes
number of features changed only once number of commits with changes to only one feature (single-feature commits)
number of features changed more than once number of commits with changes in multiple features (multi-feature commits)

A. Research Questions

As we summarize in Section VI, most existing research on
configurable features has focused on analyzing snapshots (i.e.,
one version) of the respective systems. This allows to obtain
more in-depth insights into the general structure of the source
code and how features are implemented, tangled, scattered, and
explicitly depending on each other. However, such studies have
not been concerned with analyzing the version-control data to
identify feature co-evolution and derive implicit dependencies.
To assess to what extent such feature co-evolution occurs
and represents implicit feature dependencies, we defined two
research questions (RQs):
RQ1 How frequently do co-changes between features occur?

Even if features are made explicit via C preprocessor
annotations, this does not mean that two ore more features
are changed together between two versions of the same
system. In fact, if the features were ideal cohesive units,
we could assume that each feature could be changed
in complete isolation. Of course, deviations from this
ideal scenario occur in practice, and we investigated how
frequently such deviations occur. Frequent co-changes of
features may hint at design flaws that practitioners may
want to resolve, particularly if they are not represented
in the source code via preprocessor annotations.

RQ2 To what extent do feature co-changes reveal implicit
feature dependencies?
If feature co-changes occur between versions of a system,
these may imply association rules that our technique
can mine. So, after understanding to what extent co-
changes occur, we next aimed to assess whether these co-
changes were logically linked (i.e., implicit dependencies)
or happened just by chance. Addressing this research
question, we aimed to understand whether feature co-
changes are due to implicit dependencies between the
features. Through an in-depth analysis, we aimed to pro-
vide insights whether we can identify actual dependencies
or not based on the extracted association rules.

By addressing these two research questions, we aim to show
that our technique works as intended and can provide useful
insights on a software system’s structure, feature co-changes,
and (implicit) feature dependencies.

B. Subject Systems

For the prototype implementation of our technique, we use
the tool CPPSTATS to analyze C code. We chose this tool,
because the C preprocessor is the predominant variability mech-
anism in practice, enabling us to perform analyses on highly

diverse software systems. In the end, we picked five C-based
systems (aiming for different properties) that have been studied
in previous works on the C preprocessor [6], [8], [29], [31],
[43]. We display an overview of these five systems in Table II.

As we can see, the systems are from different domains and
differ in size regarding the lines of code as well as the number
of commits. We aimed for differences to reduce potential biases
in our case study, which may otherwise occur if all systems
are from the same domain or of similar sizes. Not surprisingly,
since these are well-established open-source systems, all of
them were still active when we conducted our analysis. While
the systems’ first commits have been committed at different
points in time, we analyzed more than 15 years and 3,000
commits for each system. Please note that the change history
of the Linux kernel before 2005 has not been migrated to Git,
which is why we do not analyze the previous history. Still, most
of the systems involve commits that are from before 2005, the
year Git was released.3 In contrast to the Linux kernel, these
systems migrated their full version history into Git, which is
why we could analyze these.

C. Prototype

We implemented our technique as a prototype based on
containerization (i.e., Docker containers). In particular, we
modularized the different logical steps of our technique
(cf. Section III) into separate containers (e.g., the commit
analysis and filtering of changed features are implemented in
independent containers). We decided to employ this design to
achieve several benefits. First, separating the individual steps
into containers allows for a simple yet structured and efficient
overall management of the different steps. Second, by using
containers we can more easily parallelize tasks, if needed.
For instance, for the commit analysis, we could start multiple
containers at the same time, with each container analyzing
a certain time range of the commit history. Finally, using
containers greatly improves dependency management, which
helped us deal with the several tools we use. Specifically, this
was helpful for CPPSTATS, which relies on quite old or different
library versions compared to our own code (e.g., requiring
Python 2.7). Besides using containerization, we control the
overall process of our technique via several Python scripts.
Moreover, we use PostgreSQL as database for storing the
results of our data aggregation, and we use an open-source
implementation of the apriori association rule mining algorithm
proposed by Agrawal et al. [2].4 In the next two sections, we

3https://www.linuxjournal.com/content/git-origin-story
4github.com/eMAGTechLabs/go-apriori

https://www.linuxjournal.com/content/git-origin-story
github.com/eMAGTechLabs/go-apriori

TABLE II
OVERVIEW OF OUR SUBJECT SYSTEMS.

system domain # lines of code # commits covered period url

OpenVPN network service 79,216 3,176 26.09.2005–17.03.2022 https://github.com/OpenVPN/openvpn
libxml2 programming library 201,757 5,312 24.07.1999–03.04.2022 https://gitlab.gnome.org/GNOME/libxml2
OpenLDAP network service 291,726 23,985 09.08.1998–11.04.2022 https://git.openldap.org/openldap/openldap/
postgres database system 872,412 53,695 09.07.1996–22.03.2022 https://github.com/postgres/postgres/
Linux kernel operating system 16,143,672 1,090,089 17.04.2005–02.04.2022 https://github.com/torvalds/linux

describe the concrete instrumentation of our prototype as well
as its testing and consequent improvements throughout our
multi-case study in more detail.

D. Conduct

We employed our technique on each subject systems indi-
vidually, following the steps we describe in Section III.

1) Data Aggregation: In the first stage, we extracted for
each commit of each system the features that were changed. To
process the large number of commits, we executed all steps (cf.
Figure 1) automatically. For this purpose, we implemented the
prototype of our technique, which we tested via a command
line interface that we connected to the continuous integration
platform Woodpecker 10. This platform allowed us to run
multiple Docker containers in succession while working on
a shared directory on a local system. After testing that our
technique worked as intended, we implemented a workbalancer
that takes a repository and a list of commits to process as input.
Then, the workbalancer executes our implemented technique
in predefined Docker images. Our implementation of the
workbalancer allowed us to use parallel executions, which
was not possible in the standard Woodpecker.

2) Data Analysis – Static Metrics: For the first analysis step,
we used a Python script to extract static metrics regarding how
often features occur. To this end, we first removed multiple
mentions of the same feature in a commit by using a Python
set (i.e., each feature is only mentioned once even if it was
changed multiple times within a commit). This allowed us to
order commits based on how many different features these
touch, and to distinguish between commits that changed only
one ore multiple features—which we needed to know for the
association rule mining. Finally, we reordered the data so that
each feature points to the commits in which it was changed
(instead of commits pointing to the features). As a result, we
could more easily identify how many changes impact which
features and collect our metrics (cf. Table I).

3) Data Analysis – Dependencies: For the second analysis
step, we integrated the apriori algorithm to extract association
rules for co-changing features. This algorithm requires two
inputs: the minimum support and minimum confidence (cf.
Section II). Both of these parameters are typically specified in
percent. As the minimum confidence, we used 75 % for our
case study, meaning that for a rule A → B to be considered
relevant, 75 % of all commits that change feature A also must
change feature B. We use the value of 75 % as a middle ground
between typically used ones, such as a very conservative value

like 90 % and a very aggressive value like 50 %. With the
specified 75 %, we argue that the mined rules should properly
represent relevant feature co-evolution, which would also be
feasible for a recommender system without annoying developers
with too many irrelevant recommendations.

Deviating from the standard, we defined the minimum sup-
port as an absolute number instead of a percentage for our case
study. We decided to adapt this parameter, because association
rule mining has been proposed for transactional data in super-
markets. In contrast, we are concerned with version-control data
and features. While structurally representing the same data (i.e.,
item sets versus feature sets), the frequency of feature sets is
lower compared to the original use case, due to the varying num-
ber of features that are changed in each commit. Specifically,
each data entry in the transactional data of supermarkets typi-
cally used for association rule mining represents a relevant item
set, but not all commits in the version-control system represent a
feature co-change. Even more problematic, a (configurable) fea-
ture constantly changing in each commit would likely indicate a
problem with the system or feature development, but this can oc-
cur regularly in the supermarket item sets for which association
rule mining has been proposed (e.g., butter). So, instead of using
a percentage for the minimum support (which could be too high
depending on how often a feature occurs throughout all com-
mits), we defined this parameter as 15 commits out of all feature
commits (i.e., commits that change features). This means that
to become part of an association rule, the involved feature must
occur in at least 15 feature commits, which is a smaller fraction
compared to all commits. During test runs, we found that this
value is set high enough to filter out random co-changes, while
not simply discarding all co-changes as occurring by chance.

4) Data Interpretation: As described, we built on metrics
and their interpretation to elicit insights regarding feature co-
evolution (RQ1). So, our analysis and interpretation regarding
these results builds on more quantitative data. In contrast, it
does not make sense to perform a pure quantitative interpre-
tation of the association rules (RQ2), for instance, regarding
how many rules our technique identified. For this reason, we
performed an additional manual inspection of all association
rules to provide insights into their properties and what they
reveal about the individual systems.

E. Testing, Challenges, and Improvements

While engineering and testing the prototype of our tech-
nique, we experienced several engineering challenges and
implemented multiple improvements, particularly to increase

https://github.com/OpenVPN/openvpn
https://gitlab.gnome.org/GNOME/libxml2
https://git.openldap.org/openldap/openldap/
https://github.com/postgres/postgres/
https://github.com/torvalds/linux

the performance of the prototype. For instance, the first version
of our prototype already built on Woodpecker to execute our
analysis pipeline, using a Bash script and a list of commits
as input. Unfortunately, we experienced that the execution
time, particularly of CPPSTATS, was rather long. To solve this
problem, we implemented a solution for parellizing the analyses
of our technique. Our idea was to distribute the commits across
the available CPU cores and to execute our script in parallel
to analyze each commit individually. Unfortunately, this did
not work, because Woodpecker assigns the same name to
each container and Docker does not allow to execute multiple
containers with the same name. We aimed to overcome this
problem by implementing our workbalancer, which resolves
naming collisions by adding the analyzed commit’s unique
hash to the Docker container’s name.

After implementing this solution, we recognized that it could
also help us resolve another problem we had with Woodpecker.
Specifically, if a command inside a container fails and the
execution stops, the container is not deleted automatically since
the user would likely want to assess the failure. Unfortunately,
this also meant that our complete pipeline was put to halt,
since again the Docker container’s name was already used, and
thus we could not create a new container in the next (or same)
run without manual intervention. To resolve this problem, the
workbalancer checks whether a container with the same name
already exits before creating a new one. If this is the case, we
delete the old container, but print the logs to the console to
enable us to analyze any further issues that may arise.

We performed tests and manual inspections of the results
to identify and resolve bugs in our prototype. One particular
problem arose from using CPPSTATS: Feature annotations can
involve braces to build complex expressions on feature depen-
dencies. Unfortunately, one of the expressions in OpenLDAP
lacked a closing brace, which caused CPPSTATS to parse the
expression together with the following code. We reported this
issue to the CPPSTATS developers, but as a quick fix for our
study (and since it was only one file), we manually processed
the file regarding the involved feature changes.

Even though the previous means improved the performance
of our technique and we checked its behavior through testing,
we still noticed that the execution time of CPPSTATS itself was
sometimes very long. For some larger commits of OpenVPN,
CPPSTATS alone required two minutes, which made it infeasible
to execute the analysis for several thousands of commits.
To reduce the time needed by CPPSTATS, we first limited
its analysis to C files only, since these include the relevant
feature annotations we are concerned with. This also reduced
the number of files we had to copy to create the right
folder structure for CPPSTATS. Moreover, we implemented our
technique to work directly in the working memory (tmpfs13)
instead of on the local filesystem.

V. RESULTS & DISCUSSION

In this section, we first report, discuss, and summarize the
results for each of our two research questions individually to

derive consequent answers. Afterwards, we discuss potential
threats to the validity of our work.

A. RQ1: Feature Co-Changes

In Table III, we provide a statistical overview regarding the
feature changes in each of our subject systems. Specifically,
we compare for each system the number and ratios of feature
commits out of all commits we analyzed, how many of these
commits change a single or multiple features, and how many
distinct features we found that changed once or multiple times.

1) Results: We can see considerable differences between
the subject systems regarding all properties. For instance,
OpenVPN has the highest share of feature commits with
roughly 52.9 %, while the Linux kernel has the lowest share
with roughly 10.6 %. This is in contrast to the Linux Kernel
involving the most distinct features (18,140) by a large margin
(postgres has 1,340). In fact, we can see that while the
number of commits (and lines of code, cf. Table II) increases
across the systems, the ratio of commits changing features
actually decreases—even though the number of distinct features
increases. This observation aligns with previous research, which
has shown that larger C systems are often more configurable
(i.e., involve more features), but that the ratio of source code
related to the features (and thus changes to these features’
code) decreases [15], [29], [31].

Furthermore, we can see that the ratio of commits that
change multiple features at once decreases for higher numbers
of feature commits and distinct features. Multiple features
being changed in one commit can happen for various reasons.
The fundamental reasons are

1) that different features may be implemented in separate
files changed within one commit;

2) that separate features are changed within the same file of
one commit; or

3) that the features explicitly depend on each other with
respect to the changed source code.

For instance, the latter case can be caused by nested features
(the code of one feature is encapsulated by another feature) or
by complex feature expressions that combine multiple features
through logical operators. While this reason connects to explicit
feature dependencies, it is not directly visible that the features
co-changed during a system’s evolution—which still requires
an analysis of the relevant source code and commits, and thus
still represents implicit feature dependencies. The former two
reasons do represent implicit feature dependencies, because the
features are changed together but there is no explicit connection
between them in the source code at all.

Lastly, we can see that quite a lot of the features we identified
have been changed only once, which can have various reasons.
For example, these features could be very stable, rarely used,
renamed, or have been removed at some point (e.g., making
the feature code mandatory without touching the actual feature
code). Still, investigating features that have changed only once
is out of the scope of our paper, but constitutes interesting future
work. More importantly, we can see in Table II and Table III
that the systems represent a proper sample for our study, since

TABLE III
RESULTS OF OUR FEATURE CO-CHANGE ANALYSIS FOR EACH SUBJECT SYSTEM.

feature commits distinct features

system # commits # % # sing. feat. # mult. feat. % mult. feat. total ch. once ch. mult.

OpenVPN 3,176 1,681 52.9 530 1,151 68.5 425 107 318
libxml2 5,312 2,632 49.5 1,411 1,221 46.4 509 158 351
OpenLDAP 23,985 7,762 32.4 5,020 2,742 35.3 1,300 426 874
postgres 53,695 6,399 11.9 4,026 2,373 37.1 1,340 311 1,029
Linux kernel 1,090,089 115,558 10.6 84,566 30,992 26.8 18,140 7,395 10,745

sing./mult. feat.: commit involves changes to a single or multiple distinct features
ch. once/mult.: the feature has been changed once or multiple times in commits

they have diverse properties and involve extensive co-evolution
of features—indicated by the numbers of commits changing
multiple features and features changing multiple times.

2) Discussion: We can see that the ratio between co-change
commits and all feature commits varies across the different
subject systems, but does not drop below 25 %. This implies
that co-changes of configurable features are likely to occur in
other software systems that use the C preprocessor as well.
The amount of co-changes may vary and the number of feature
commits is no indicator for the number of commits changing
multiple features. For instance, the Linux kernel has the lowest
number of feature commits, since only 10.6 % of all commits
involve feature changes, and also the lowest number of feature
co-change commits with 25 % out of the feature commits. In
contrast, a smaller system like OpenVPN has feature changes
in nearly 53 % of its commits, with 68 % of these containing
feature co-changes. This implies a wide spreading of the ratio
of feature co-changes across different systems. By inspecting
and comparing all systems, we can see a trend of larger systems
(in terms of lines of code and commits) apparently involving
fewer feature co-changes. One possible explanation for this
could be a decreasing amount of feature code that has been
found for such systems in related studies, but more in-depth
analyses are needed to confirm this assumption.

• Feature commits with co-changes occur frequently in
configurable systems that use the C preprocessor. • Config-
urable C systems with fewer lines of code and commits seem
to involve a higher ratio of feature co-changes compared to
C systems that are larger along these dimensions. •

RQ1: Feature Co-Changes

3) Summary: Overall, we argue that our technique can
provide useful insights into the co-evolution of configurable
features, which seem to occur frequently for systems that use
the C preprocessor. In turn, this means that it can be helpful to
mine association rules to reveal implicit feature dependencies
that are not specified in the source code. For researchers,
our insights open new research directions on studying the co-
evolution of configurable software systems, such as analyzing
whether the co-changes are intentional or not, how developers
document or deal with these changes, or how to untangle the
different feature changes. To this end, we provide tooling and
first insights regarding the extent to which co-evolution occurs

in those systems, not only within commits that touch the often
measured tangling degree (i.e., features that are part of explicit
dependencies) [22], [29], [31]. For practitioners, we provide
a technique that enables them to identify co-changes, which
allows them to identify implicit feature dependencies (e.g., to
document these), potential design flaws (e.g., unintended feature
dependencies), or potential shortcomings in their processes (e.g.,
putting independent feature changes into one commit). Our
insights on implicit feature dependencies in the next section
advance into this research direction and provide additional
tooling for practitioners.

B. RQ2: Implicit Feature Dependencies

In Table IV, we display an overview of the total numbers
of association rules we mined for each system. We distinguish
between simple and complex rules. The former type involves
exactly two features (e.g., A → B), while the latter type refers
to cases in which changes to multiple features imply a change to
another one (e.g., [A, B, C] → D). Next, we first analyze
the general data before going into a more qualitative analysis
of each individual systems.

1) Results: As we can see in Table IV, the number of
association rules we identified varies strongly. In particular,
there is an interesting gap regarding the number of distinct fea-
tures compared to the number of rules. Specifically, postreges
and OpenLDAP both have around 1,300 distinct features and
6,399 as well as 7,762 feature commits, but only 209 and
108 association rules, respectively. In contrast, libxml2 and
OpenVPN are considerably smaller regarding their distinct
features and commits, but for both we mined around 6,000
association rules. The Linux kernel as by far the largest system
is somewhere in the middle with 2,477 association rules. In the
last three columns, we show the average confidence, support,
and minimum support regarding the association rules. We
remark that we also extracted association rules for feature
dependencies that are explicit in preprocessor annotations (e.g.,
code in nested features). These still are implicit dependencies
caused by co-changes, and seeing that the two types of
dependencies match has improved our trust that the association
rule mining yields reasonable and useful insights—particularly
for the remaining dependencies that are not represented in
preprocessor annotations. We do not provide concrete numbers
regarding how many implicit and explicit feature dependencies
match, because this is out of scope for this work and would

TABLE IV
OVERVIEW OF THE ASSOCIATION RULES WE EXTRACTED FOR THE ANALYZED SUBJECT SYSTEMS.

association rules

system # distinct features # simple complex avg. confidence (%) avg. support (%) min support (%)

OpenVPN 425 6,356 49 6,307 98 3.93 0.89
libxml2 509 5,896 11 5,885 95 0.64 0.57
OpenLDAP 1,300 108 44 64 97 0.31 0.19
postgres 1,340 209 42 167 97 0.33 0.23
Linux kernel 18,140 2,477 280 2,197 97 0.016 0.013

require a different analysis to capture and match the feature
conditions specified within annotations. Next, we report our
insights of inspecting the association rules of the individual
systems to shed light into the differences we can observe.

For OpenVPN, we extracted 6,356 association rules, which
are the most even though the system is the smallest. Our
technique shows an average confidence in those rules of 98 %
and average support of 3.39 % (minimum support of 0.89 %).
A majority of the rules for OpenVPN contain features with the
prefix TARGET in their name. During our manual analysis, we
found that this prefix represents the target operating system,
such as Android, Windows, or Darwin MacOS. Moreover, most
rules point from one target operation system to another, which
indicates that changes to OpenVPN for one target operating
system also imply changes for other operating systems. This
makes sense, since OpenVPN is designed for different operating
systems with their own interfaces, meaning that many features
must be adapted whenever behavior of the system changes.

For libxml2, we extracted 5,885 assoication rules with an
average confidence of 95 % and an average support of 0.64 %
(minimum support 0.57 %). While OpenVPN involved many
features with the prefix TARGET, libxml2 involves a majority
of features that contain the String LIBXML. Consequently,
only 10 (antecedent, on the left side) and 13 (consequent,
on the right side) out of the 5,896 association rules do not
contain features comprising this String. So, most features are
represented by the system’s name and an additional descriptive
String (e.g., LIBXML_CATALOG_ENABLED). Based on our
manual analysis, this seems to be an internal naming convention.
Out of the rules without such features, most contain some subset
of __CYGWIN__, _WIN32, and __DJGPP__. CYGWIN is a
tool for developers to port their Linux software to Windows.
DJGPP allows to create executables for Windows and WIN32
directly refers to this operating system. So, all three features
are directly related to a specific operating system, and the
names alone indicate a strong connection between them. Out
of all association rules, 1,132 (19.2 %) contain the feature
LIBXML_DEBUG_ENABLED on either side of the rule. This
suggests that changes to the system’s features often require
changes to the debugging part, too. However, we argue that
such implicit rules are not really problematic, since debugging
is used for internal testing and most developers should be
aware about the debugging feature.

For OpenLDAP we found only 108 association rules with
an average confidence of 97% and an average support of

0.31% (minimum support 0.19%). In contrast to the previous
two systems, OpenLDAP does neither use semantic prefixes
extenisvely (e.g., TARGET for OpenVPN) nor the system’s
name. Still, in the manual inspection of the rules, the relations
between the features become clear. For example, changes in
LDBM_USE_BTREE and LDBM_USE_DBHASH can be found
in rules together. LDBM seems to be a component related to
the database management of OpenLDAP, which also involves
different indexing structures that can be enabled or disabled
(e.g., BTREE, DBHASH).

For postgres, we find similarly few association rules (209)
compared to its size, which have an average confidence of
97 % and an average support of 0.33 % (minimum support
0.23 %). The rules are also similar to those for OpenLDAP,
using neither an identifying prefix for specific sets of features
nor the system’s name. Still, we did again identify logical
connections within the association rules. For example, some
rules combine HAVE_TM_ZONE and HAVE_INT_TIMEZONE,
which both refer to time zones. So, we consider it logical
that these two feature change together, even though this is not
made explicit. Identical to libxml2, __CYGWIN__ and WIN32
reappear in the same rules.

For the Linux kernel, we extracted 2,477 rules, which
is much less compared to the much smaller OpenVPN and
libxml2, even though the Linux kernel involves around 35 times
the number of distinct features. Still, the average confidence in
the rules remains at 97 % and the average support is very low
with 0.016 % (minimum support 0.013 %). This low support is
not surprising, as the number of feature commits and distinct
features is far greater than in the other systems. Within the
Linux kernel, many rules contain features with the prefix
CONFIG, which marks different configuration options for
building user defined variants. For instance, such features
include Bluetooth options for the kernel used in Ubuntu
Core for the Raspberry Pi10. The consequent association
rules contain changes between different components that seem
logical. As an example, changes to features that are located
in different parts of the IPv6 component are interconnected,
and we observed similar cases for configuration options
related to keyboard support or the system architecture. These
dependencies are not explicit, but our association rules show
that such logically connected features are in fact changed
together, and thus seem implicitly linked.

2) Discussion: The frequent co-changes we identified before
hinted at implicit feature dependencies, and our association

rule mining revealed actual implicit dependencies that are
represented in the version-control data. Across all systems,
the average confidence for the rules is at least 95 % while the
average support is below 4 % (below 1 % for four of the five
systems). The low support is normal for our use case. A support
of 50 % would mean that the same group of features is changed
in 50 % of the feature commits, which would indicate a very
change-prone (e.g., error-prone or “god”) feature—which we
would not consider normal for most software systems. In fact,
previous research [45] indicates that few files are typically
changed within a commit. So, having a high level of support
for an association rule would be in conflict with such findings,
since it would imply that the same set of features changed
very often while most others remained untouched. Our insights
improve our confidence that the association rule mining works
as intended and can be a helpful means to uncover implicit
feature dependencies.

While the number of association rules we could extract
from the systems varies greatly, there is no apparent trend.
However, for similar numbers of distinct features, the number
of association rules is also similar. This indicates that there
may still be a relation regarding the size or complexity of a
system and the number of implicit feature dependencies, but
more research is needed to shed light into this issue. During
our manual analysis of the features, we could observe that most
rules connect features that seem to logically belong together.
So, features may be split into smaller units to customize more
specific behavior. In contrast, for some other rules we could
not identify logical connections between the involved features.
We argue that these may be the most interesting implicit
dependencies for developers and also researchers, since it is
unclear where the dependency stems from, and thus such
dependencies may imply design flaws.

On a final note, we have to put the high numbers for complex
rules into context. During our manual analysis, we noted
that such complex rules are often different combinations of
the same features. Please note that we did not remove such
“duplicates,” because while the support stays the same (since
it is based on the number of occurrences) the confidence can
vary. This situation leads to higher values regarding the number
of complex, and thus the total amount of, association rules. In
future work, further processing can be used to consolidate these
rules at the loss of confidence for the individual rules. However,
since the confidence is an important value for a change
recommendation system, this has to be designed carefully
to propose a practical recommender system.

• We can extract association rules from feature co-changes. •
The consequent implicit feature dependencies seem reliable,
since they involve many logical connections. • There are
cases that demand for more in-depth investigations, since
the implicit dependency is not obvious and may indicate
quality flaws in a system. •

RQ2: Implicit Feature Dependencies

3) Summary: Overall, we argue that our technique for min-
ing association rules is a helpful means for extracting implicit

feature dependencies from feature co-changes. In particular,
the association rules imply several logical dependencies that
are not explicit in the source code, while also revealing some
implicit dependencies that are not intuitive. Investigating these
dependencies in more detail is a promising research direction
to distinguish what constitutes an implicit feature dependency
and how it impacts the comprehension or quality of a software
system, for instance, whether implicit dependencies make it
more likely that developers miss to update all relevant pieces
of source code. Similarly, our technique can help practitioners
identify dependencies that they may not be aware of or that
are unintended, helping them to improve their understanding
of the system and improve its quality.

C. Threats to Validity

In this paper, we proposed a technique for using association
rule mining to identify feature dependencies that are implicit
due to the features’ co-evolution. While our technique works as
intended, it can only indicate likely dependencies, but whether
these are actually logical is a different question. We mitigated
this internal threat by performing an in-depth manual analysis
of all change rules and inspecting whether these are logical or
may even match with dependencies explicitly specified in the
source code of the respective system. Still, it remains a threat to
the internal validity that we cannot judge which of the rules are
meaningful. So, in future work, it would be helpful to combine
our technique with other information sources like commit
messages or interviews to provide a better understanding of
the mined association rules themselves. Nonetheless, we can
reliably analyze whether and where co-changes of features
occur as well as whether these represent recurring patterns,
which was our goal with this research.

As we described, we analyzed modified and added lines of
code only. So, we neglected deleted lines, primarily because
their extraction would have doubled the processing time and
requires multiple additional steps in the data aggregation stage.
Specifically, the line numbers of deleted code correspond to
the file states in the previous commit. For every deletion, we
would need to analyze the preceding commit and to precisely
locate the deleted feature code in the current commit. While
this remains an internal threat, this case is relevant for pure
deletions exclusively. However, this impacts all features and
systems equally and we still obtained a large number of co-
changes for the features of each system. Consequently, we
argue that this threat does not invalidate our results.

Regarding the external validity, we are aware that we used
only five subject systems, all open-source, implemented in the
same programming language, and using the same variability
mechanism. As a consequence, our results are likely not
entirely transferable to all other configurable software systems.
This is why we emphasized that our study and findings
correspond primarily to C systems, even though our idea and
the association rule mining can be adopted for other variability
mechanisms as well. We chose C with the C preprocessor
due to their widespread use in practice and open source,
making them the most relevant implementation techniques for

developing configurable systems Moreover, research has shown
that industrial and open-source C systems are comparable [15],
which is why open-source systems are feasible subjects. Seeing
that some of our findings correspond to other studies improves
our trust in the validity of our work. So, while this external
threat remains, we argue that it should neither impair our
insights on C systems nor invalidate our contribution of
extracting implicit feature dependencies.

VI. RELATED WORK

How developers implement configuration options within
software systems has been extensively studied in different
contexts [13], [29], [36], [46]. Most relevant with respect to our
work in this paper are analyses of C preprocessor annotations
and their properties as well as evolution. Due to its widespread
use in industry and open-source software, the C preprocessor
has actually been discussed and researched for a long time [15],
[28], [48]. In particular, researchers have analyzed different
properties of C preprocessor annotations like their distribution,
scattering, or tangling across software systems to understand
these properties’ impact on program comprehension, code
quality, and bugs [1], [6], [7], [10], [23], [25], [26], [29],
[30], [32], [34], [35], [37], [43], [47]. Many of such studies
are (indirectly) concerned with developers’ comprehension
of features and their dependencies, often arguing in favor of
refactoring C preprocessor annotations towards a disciplined
use (i.e., annotating complete lines only instead of individual
words or even tokens). In contrast to such works, we are not
concerned with program comprehension, bugs, or code quality,
but with extracting implicit feature dependencies—which of
course can relate to all of such concerns. Additionally, we
employ an evolutionary analysis across all relevant system
versions via the version-control system instead of a static
analysis of one specific release.

Other researchers have proposed techniques and tools for
analyzing variability and particularly C preprocessor annota-
tions. For instance, TYPECHEF [21], PCLOCATOR [27], or
SUPERC [14], among many others [22], have been proposed as
static analyses for such annotations and the individual variants
that can be derived. However, these techniques are similar to
CPPSTATS in that they themselves do not analyze the evolution
of feature changes, but the preprocessor annotations in one
specific system version at a time. Other techniques are intended
to extract feature dependencies or constraints from source code
and other artifacts [19], [20]. For instance, Nadi et al. [38], [39]
have developed a static analysis that is able to extract around
28 % of existing explicit dependencies from the C preprocessor.
Similarly, Oliveira et al. [41] have extracted structural feature
dependencies from different releases of C systems. The authors
found that roughly 25 % of the explicit dependencies are
changed between two releases. Rodrigues et al. [44] have
empirically studied what types of explicit feature interactions
occur to what extent in C preprocessor systems. However,
they do not actually investigate means for extracting such
dependencies. Ludwig et al. [31] have analyzed the meaning of
different C preprocessor annotations (e.g., negations) and their

impact on variability-related metrics. Their results indicate that
not all preprocessor annotations can be clearly assigned to
specific features. Fenske et al. [9] have analyzed the change-
proneness of code that involves C preprocessor annotations
over time. Their findings suggest that code with annotations
is changed more often throughout a system’s evolution, but
if corrected for the size of those files these findings diminish.
Fischer [11] has analyzed the evolution of configuration options
across four versions of Bugzilla. However, Bugzilla does not
use the C preprocessor and the analysis focuses on static
changes only (e.g., configuration options added). While closely
related to our work, we have a different goal and follow another
idea compared to this existing research by analyzing feature
co-changes in version-control data to extract implicit feature
dependencies. In fact, we can see that integrating our technique
with existing ones may yield great synergies to extract feature
dependencies even more reliably and provide novel analyses
regarding the evolution of configurable systems.

VII. CONCLUSION

In this paper, we have proposed a technique that extracts
feature co-changes from configurable software systems’ version
histories and applies association rule mining to elicit implicit
dependencies. We implemented our technique in a prototype
that enabled us to analyze five open-source C systems regarding
potential implicit dependencies. Our results indicate that our
technique works as intended and can help researchers as well
as practitioners identify implicit feature dependencies that are
otherwise hidden in a system’s evolution history. By manually
inspecting the association rules, we learned that they indicate
logical dependencies sometimes already represented in explicit
preprocessor annotations. This underpins the value of our idea,
but we see the primary benefits in identifying fully implicit
feature dependencies that are otherwise missed and that may
indicate quality or process issues.

As a consequence, we plan to improve our technique,
incorporate further analyses, and conduct empirical studies
to shed more light onto implicit feature dependencies. In
particular, it would be interesting to directly compare explicit
and implicit feature dependencies and to what extent the former
differ from than latter one. Moreover, we envision a more
detailed analysis on how developers deal with either of the
two, for instance, regarding their awareness or documentation
preferences for either. Also, it could be interesting to analyze
how much the code changes of implicitly dependent features
are scattered across the code base. Intuitively, we would assume
that a high scattering degree makes it more difficult to know
about all the change locations, which in turn may imply that
a recommendation mechanism, based on our analysis, can be
beneficial for developers Finally, larger studies with different
metrics would be great to fully validate that the extracted rules
are correct and meaningful.

REFERENCES

[1] I. Abal, J. Melo, S, . Stănciulescu, C. Brabrand, M. de Medeiros Ribeiro,
and A. Wąsowski, “Variability Bugs in Highly Configurable Systems: A

Qualitative Analysis,” ACM Transactions on Software Engineering and
Methodology, vol. 26, no. 3, pp. 10:1–34, 2018.

[2] R. Agrawal, T. Imieliński, and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” in International Conference
on Management of Data (SIGMOD). ACM, 1993, pp. 207–216.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[4] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wąsowski,
“Cool Features and Tough Decisions: A Comparison of Variability Mod-
eling Approaches,” in International Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 2012, pp. 173–182.

[5] E. Engström and P. Runeson, “Software Product Line Testing - A
Systematic Mapping Study,” Information and Software Technology,
vol. 53, no. 1, pp. 2–13, 2011.

[6] W. Fenske, J. Krüger, M. Kanyshkova, and S. Schulze, “#ifdef Directives
and Program Comprehension: The Dilemma between Correctness and
Preference,” in International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2020, pp. 255–266.

[7] W. Fenske and S. Schulze, “Code Smells Revisited: A Variability
Perspective,” in International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS). ACM, 2015, pp. 3–10.

[8] W. Fenske, S. Schulze, D. Meyer, and G. Saake, “When Code Smells
Twice as Much: Metric-Based Detection of Variability-Aware Code
Smells,” in International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2015, pp. 171–180.

[9] W. Fenske, S. Schulze, and G. Saake, “How Preprocessor Annotations
(Do Not) Affect Maintainability: A Case Study on Change-Proneness,”
in International Conference on Generative Programming: Concepts and
Experiences (GPCE). ACM, 2017, pp. 77–90.

[10] G. Ferreira, M. Malik, C. Kästner, J. Pfeffer, and S. Apel, “Do #ifdefs
Influence the Occurrence of Vulnerabilities? An Empirical Study of
the Linux Kernel,” in International Systems and Software Product Line
Conference (SPLC). ACM, 2016, pp. 65–73.

[11] S. Fischer, “A Case Study on the Evolution of Configuration Options of
a Highly-Configurable Software System,” in International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2021, pp. 630–635.

[12] H. Gall, K. Hajek, and M. Jazayeri, “Detection of Logical Coupling
Based on Product Release History,” in International Conference on
Software Maintenance (ICSM). IEEE, 1998, pp. 190–198.

[13] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,
“Variability in Software Systems—A Systematic Literature Review,” IEEE
Transactions on Software Engineering, vol. 40, no. 3, pp. 282–306, 2014.

[14] P. Gazzillo and R. Grimm, “SuperC: Parsing All of C by Taming the
Preprocessor,” in Conference on Programming Language Design and
Implementation (PLDI). ACM, 2012, pp. 323–334.

[15] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker,
and S. Apel, “Preprocessor-Based Variability in Open-Source and
Industrial Software Systems: An Empirical Study,” Empirical Software
Engineering, vol. 21, no. 2, pp. 449–482, 2016.

[16] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining Sequences of Changed-
Files from Version Histories,” in International Workshop on Mining
Software Repositories (MSR). ACM, 2006, pp. 47–53.

[17] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Carnegie
Mellon University, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[18] K. C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product Line
Engineering,” IEEE Software, vol. 19, no. 4, pp. 58–65, 2002.

[19] C. Kästner, A. Dreiling, and K. Ostermann, “Variability Mining with
LEADT,” Philipps University of Marburg, Tech. Rep. BI2011-01, 2011.

[20] ——, “Variability Mining: Consistent Semi-Automatic Detection of
Product-Line Features,” IEEE Transactions on Software Engineering,
vol. 40, no. 1, pp. 67–82, 2014.

[21] A. Kenner, C. Kästner, S. Haase, and T. Leich, “TypeChef: Toward
Type Checking #ifdef Variability in C,” in International Workshop on
Feature-Oriented Software Development (FOSD). ACM, 2010, pp.
25–32.

[22] C. Kröher, S. El-Sharkawy, and K. Schmid, “KernelHaven – An
Experimentation Workbench for Analyzing Software Product Lines,”
in International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). ACM, 2018, pp. 73–76.

[23] J. Krüger, “Separation of Concerns: Experiences of the Crowd,” in
Symposium on Applied Computing (SAC). ACM, 2018, pp. 2076–2077.

[24] J. Krüger, G. Çalıklı, T. Berger, T. Leich, and G. Saake, “Effects of
Explicit Feature Traceability on Program Comprehension,” in Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 2019, pp.
338–349.

[25] J. Krüger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger,
“Towards a Better Understanding of Software Features and Their
Characteristics,” in International Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 2018, pp. 105–112.

[26] J. Krüger, K. Ludwig, B. Zimmermann, and T. Leich, “Physical
Separation of Features: A Survey with CPP Developers,” in Symposium
on Applied Computing (SAC). ACM, 2018, pp. 2042–2049.

[27] E. Kuiter, S. Krieter, J. Krüger, K. Ludwig, T. Leich, and G. Saake,
“PCLocator: A Tool Suite to Automatically Identify Configurations for
Code Locations,” in International Systems and Software Product Line
Conference (SPLC). ACM, 2018, pp. 284–288.

[28] D. Le, E. Walkingshaw, and M. Erwig, “#ifdef Confirmed Harmful:
Promoting Understandable Software Variation,” in Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 2011, pp.
143–150.

[29] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An Analysis
of the Variability in Forty Preprocessor-Based Software Product Lines,”
in International Conference on Software Engineering (ICSE). ACM,
2010, pp. 105–114.

[30] J. Liebig, C. Kästner, and S. Apel, “Analyzing the Discipline of
Preprocessor Annotations in 30 Million Lines of C Code,” in International
Conference on Aspect-Oriented Software Development (AOSD). ACM,
2011, pp. 191–202.

[31] K. Ludwig, J. Krüger, and T. Leich, “Covert and Phantom Features in
Annotations: Do They Impact Variability Analysis?” in International
Systems and Software Product Line Conference (SPLC). ACM, 2019,
pp. 218–230.

[32] R. Malaquias, M. Ribeiro, R. Bonifácio, E. Monteiro, F. Medeiros,
A. Garcia, and R. Gheyi, “The Discipline of Preprocessor-Based
Annotations - Does #ifdef TAG n’t #endif Matter,” in International
Conference on Program Comprehension (ICPC). IEEE, 2017, pp. 297–
307.

[33] F. Medeiros, C. Kästner, M. de Medeiros Ribeiro, S. Nadi, and R. Gheyi,
“The Love/Hate Relationship with the C Preprocessor: An Interview
Study,” in European Conference on Object-Oriented Programming
(ECOOP). Schloss Dagstuhl, 2015, pp. 495–518.

[34] F. Medeiros, M. Ribeiro, and R. Gheyi, “Investigating Preprocessor-Based
Syntax Errors,” in International Conference on Generative Programming:
Concepts and Experiences (GPCE). ACM, 2013, pp. 75–84.

[35] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira,
L. Carvalho, and B. Fonseca, “Discipline Matters: Refactoring of
Preprocessor Directives in the #ifdef Hell,” IEEE Transactions on
Software Engineering, vol. 44, no. 5, pp. 453–469, 2018.

[36] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner, “Exploring
Differences and Commonalities between Feature Flags and Configuration
Options,” in International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). ACM, 2020, pp. 201–210.

[37] A. Mordahl, J. Oh, U. Koc, S. Wei, and P. Gazzillo, “An Empirical Study
of Real-World Variability Bugs Detected by Variability-Oblivious Tools,”
in Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 2019, pp.
50–61.

[38] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining Configuration
Constraints: Static Analyses and Empirical Results,” in International
Conference on Software Engineering (ICSE). ACM, 2014, pp. 140–151.

[39] ——, “Where Do Configuration Constraints Stem From? An Extraction
Approach and an Empirical Study,” IEEE Transactions on Software
Engineering, vol. 41, no. 8, pp. 820–841, 2015.

[40] D. Nešić, J. Krüger, S, . Stănciulescu, and T. Berger, “Principles of Feature
Modeling,” in Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2019, pp. 62–73.

[41] R. Oliveira, B. Cafeo, and A. Hora, “On the Evolution of Feature
Dependencies: An Exploratory Study of Preprocessor-Based Systems,”
in International Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, 2019, pp. 14:1–9.

[42] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering. Springer, 2005.

[43] R. Queiroz, L. Passos, M. T. Valente, C. Hunsen, S. Apel, and
K. Czarnecki, “The Shape of Feature Code: An Analysis of Twenty
C-Preprocessor-Based Systems,” International Journal on Software &
Systems Modeling, vol. 16, no. 1, pp. 77–96, 2017.

[44] I. Rodrigues, M. de Medeiros Ribeiro, F. Medeiros, P. Borba, B. Fon-
seca, and R. Gheyi, “Assessing Fine-Grained Feature Dependencies,”
Information and Software Technology, vol. 78, pp. 27–52, 2016.

[45] T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. Binkley,
“Generalizing the Analysis of Evolutionary Coupling for Software Change
Impact Analysis,” in International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2016, pp. 201–212.

[46] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, “Software Con-
figuration Engineering in Practice: Interviews, Survey, and Systematic
Literature Review,” IEEE Transactions on Software Engineering, vol. 46,
no. 6, pp. 646–673, 2020.

[47] S. Schulze, J. Liebig, J. Siegmund, and S. Apel, “Does the Discipline
of Preprocessor Annotations Matter? A Controlled Experiment,” in
International Conference on Generative Programming: Concepts and
Experiences (GPCE). ACM, 2013, pp. 65–74.

[48] H. Spencer and G. Collyer, “#ifdef Considered Harmful, or Portability
Experience With C News,” in USENIX Conference (USENIX). USENIX,
1992, pp. 185–197.

[49] M. Svahnberg, J. van Gurp, and J. Bosch, “A Taxonomy of Variability
Realization Techniques,” Software: Practice and Experience, vol. 35,
no. 8, pp. 705–754, 2005.

[50] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Feature
Consistency in Compile-Time-Configurable System Software: Facing the
Linux 10,000 Feature Problem,” in European Conference on Computer
Systems (EuroSys). ACM, 2011, pp. 47–60.

[51] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A Classification
and Survey of Analysis Strategies for Software Product Lines,” ACM
Computing Surveys, vol. 47, no. 1, pp. 1–45, 2014.

[52] R. K. Yin, Case Study Research and Applications: Design and Methods.
Sage, 2018.

[53] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting
Source Code Changes by Mining Change History,” IEEE Transactions
on Software Engineering, vol. 30, no. 9, pp. 574–586, 2004.

[54] B. Zhang, S. Duszynski, and M. Becker, “Variability Mechanisms and
Lessons Learned in Practice,” in International Workshop on Conducting
Empirical Studies in Industry (CESI). ACM, 2016, pp. 14–20.

[55] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining Version
Histories to Guide Software Changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429–445, 2005.

