
Towards Developer Support for Merging Forked Test Cases
Sandro Schulze

Technical University Braunschweig

Braunschweig, Germany

sandro.schulze@tu-bs.de

Jacob Krüger

Ruhr-University Bochum

Bochum, Germany

jacob.krueger@rub.de

Johannes Wünsche

Otto-von-Guericke University

Magdeburg, Germany

ABSTRACT

Developers rely on branching and forking mechanisms of modern

versioning systems to evolve and maintain their software systems.

As a result, systems often exist in the form of various short-living

or even long-living (i.e., clone& own development) variants. Such

variants may have to be merged with the main system or other

variants, for instance, to propagate features or bug fixes. Within

such merging processes, test cases are highly interesting, since they

allow to improve the test coverage and hopefully the reliability of

the system (e.g., by merging missing tests and bug fixes in test code).

However, as all source code, test cases may evolve independently

between two or more variants, which makes it non-trivial to decide

what changes of the test cases are relevant for the merging. For

instance, some test cases in one variant may be irrelevant in another

variant (e.g., because the feature shall not be propagated) or may

subsume existing test cases. In this paper, we propose a technique

that allows for a fine-grained comparison of test cases to support

developers in deciding whether and how to merge these. Precisely,

inspired by code-clone detection, we use abstract syntax trees to

decide on the relations between test cases of different variants.

We evaluate the applicability of our technique qualitatively on

five open-source systems written in Java (e.g., JUnit 5, Guava).

Our insights into the merge potential of 50 pull requests with test

cases from these systems indicate that our technique can support

the comprehension of differences in variants’ test cases, and also

highlight future research opportunities.

CCS CONCEPTS

• Software and its engineering→Maintaining software; Soft-

ware product lines; Software testing and debugging.

KEYWORDS

feature forks, variant-rich systems, merging, test cases

ACM Reference Format:

Sandro Schulze, Jacob Krüger, and Johannes Wünsche. 2022. Towards De-

veloper Support for Merging Forked Test Cases. In 26th ACM International
Systems and Software Product Line Conference - Volume A (SPLC ’22), Sep-
tember 12–16, 2022, Graz, Austria. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3546932.3547002

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPLC ’22, September 12–16, 2022, Graz, Austria
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9443-7/22/09. . . $15.00

https://doi.org/10.1145/3546932.3547002

1 INTRODUCTION

Implementing and maintaining a large software system requires

a team of software engineers to collaborate, for instance, within

an organization or an open-source community that shares a com-

mon interest. Version-control systems (e.g., Git) [24, 33] and social-

coding platforms that build upon these systems (e.g., GitHub) [12]

have become de facto standards for managing the development

of such systems and for facilitating collaboration. A particularly

interesting practice are the branching and forking mechanisms (to

which we refer to as forking for simplicity) that allow developers

to create a copy of the system and modify that copy independently.

Typically, this widely established practice is called feature forking
and enables developers to implement and test new features (i.e.,
user-visible functionalities of the system [4]) without interfering

with other developers [13, 14, 18–20, 34, 37]. When the new fea-

tures are considered relevant and stable enough, the developers can

merge the forks back into the main system (e.g., after issuing a pull

request on GitHub).

Merging in modern version-control systems is somewhat auto-

mated, meaning that any line-based text changes can be merged

automatically as long as there is no textual merge conflict (i.e., two
different edits to the same line of text). Still, ensuring that the

changes are also semantically correct (i.e., fulfill defined require-

ments, do not comprise bugs) is a different and far more complex

problem [5, 25, 26, 32]. Aiming to check for semantic correctness,

developers primarily rely on testing [14] and have adopted various

concepts for automatically re-running defined test cases before

actually merging forks into a system, for instance, continuous inte-

gration [7] and regression testing [23]. However, what happens

if the changes are not covered by existing test cases, require

adaptations or bug fixes to existing test cases, or propose

their own test cases? We argue that automated analyses can help

to identify and resolve such situations [17], and thus support devel-

opers ensure the semantic correctness of test-case merges.

In this paper, inspired by code-clone detection, we propose a

technique for analyzing forked test cases regarding their merge

potential and for guiding developers in ensuring the semantic cor-

rectness of the merged variants. Precisely, we build on abstract

syntax trees (ASTs) to distinguish between different merge situa-

tions (e.g., new tests, changed tests, missing tests) and provide tool

support to help developers decide what to do in such situations

(e.g., use tests as they are, change tests). We implemented a proto-

type of our technique and evaluated it on five open-source systems.

The results indicate that our technique can guide developers when

merging test cases by highlighting which tests are still up-to-date

or require adaptations.

In detail we contribute the following:

• We propose our technique for analyzing the merge potential

of forked test cases.

https://doi.org/10.1145/3546932.3547002
https://doi.org/10.1145/3546932.3547002

SPLC ’22, September 12–16, 2022, Graz, Austria Sandro Schulze, Jacob Krüger, and Johannes Wünsche

• We evaluate our prototype implementation on 50 pull re-

quests from five open-source systems to discuss our tech-

nique’s feasibility.

• We publish an open-access repository with our prototype,

evaluation dataset, and further documentation.
1

Our contributions are a step towards supporting developers in

identifying and handling problematic situations during test-case

merging. Particularly, our technique can help practitioners save

time during the merging of forks and improve their confidence

that they merged forked test cases correctly. Consequently, we help

limit the potential for bugs, violations of quality requirements, or

reduced test coverage. For researchers, we highlight opportunities

for future work, particularly exploring test-case merges in more

detail and providing further support for developers.

2 FORK-BASED SOFTWARE DEVELOPMENT

In the following, we describe the workflows of version-control

systems and fork-based software development, based on which

we introduce the concept of code clones. We display a conceptual

overview of fork-based software development in Figure 1. Typically,

version-control systems enforce a pull-commit-push workflow (us-

ing different terminologies). For this purpose, a developer sets up a

main repository on a server that comprises the system. Then, any

collaborating developer can clone a local copy on their device to

use or change the system. The usual workflow is to pull any new

changes from the server into the local copy, implement the desired

changes, commit them with a message, and push the commit back

to the main repository. If something changed in the main reposi-

tory in the meantime, an additional merge (potentially manually

if a conflict occurs) and consequent commit are needed. For each

commit, the version-control system creates a revision (black circles

in Figure 1) that has a unique identifier (e.g., a hash) to allow for

reverting to a previous revision.

More important for our idea is that modern social-coding plat-

forms that build on version-control systems also allow to fork the

main repository into another repository. In this case, the devel-

opment of both repositories is independent of each other, if they

are not explicitly synchronized. For instance, fork 1 in Figure 1 is

created by forking the first revision of the main repository. After

implementing a change, the fork is merged back into the main repos-

itory. Similarly, forks can be created from other forks (e.g., fork 3

stems from fork 2 in Figure 1). Since the forks are independent, they

only comprise the system status of the revision they were forked

from. To update a fork to a more recent revision, a developer may

synchronize their fork with another fork by merging the other fork

into their own (e.g., main to fork 3). For the other direction (e.g.,

fork 2 to main), the developers of a fork can ask that their changes

are integrated into another fork or the main repository (e.g., via

pull requests in GitHub). The other fork’s developers then decide

whether to merge the changes. Note that, in our examples, we refer

to Forked being merged into Base, independently of whether Base

is the main repository or another fork.

Synchronizing between forks is not always planned, and some-

times they are kept independent to implement features for specific

customers or users, resulting in a variant-rich system [2, 3, 18, 21,

1
https://doi.org/10.5281/zenodo.6815052

main fork 2fork 1 fork 3

forking

evolution

merging

Figure 1: Conceptual overview of fork-based development.

34, 35]. However, even then some features implemented in one

fork may be interesting for other forks, too. Again, the developers

can synchronize between different forks by merging or by cherry-

picking specific commits into their own fork.

Forks are essentially code clones on a system-level scale: They

implement new features or change existing features, but most of

their code is still a clone of another system. For our technique,

we are concerned with differences of test cases (i.e., new tests,

changed tests, removed tests) and the code they test. Consequently,

we are interested in more fine-grained types of code clones that

exist between forks, which we distinguish based on the definitions

of code clones by Roy et al. [29]:

Type-1 clones implement the same functionality through iden-

tical pieces of code with potential changes in whitespaces,

layout (e.g., indentation), or comments.

Type-2 clones implement the same functionality through syn-

tactically identical code, but involve additional changes to

Type-1 clones in identifiers, types, and literals.

Type-3 clones implement the same functionality through code

that is even further modified than Type-2 clones, for instance,

by changing, adding, or removing statements.

Type-4 clones implement the same functionality through syntac-

tically completely different code.

Various techniques have been proposed to identify different types of

code clones [1, 6, 29, 31]. Since they involve more and more complex

changes, higher-level code clones are harder and harder to find. For

our technique, we aim to compare different test cases against each

other, which either existed already (i.e., have been forked as Type-1

clones), are new, or have been deleted. Consequently, we have to

cope with code-clones up to Type-3.

3 AST-BASED TEST CASE SIMILARITY

In this section, we present our technique for determining test-case

similarity using AST-based code-clone detection. Besides explaining

why we cannot reuse existing code-clone detection techniques, we

https://doi.org/10.5281/zenodo.6815052

Towards Developer Support for Merging Forked Test Cases SPLC ’22, September 12–16, 2022, Graz, Austria

Figure 2: Two example ASTs illustrating the different types

of similarity we use in our technique. Same colors indicate

that the nodes are identical between the trees.

present an overview of the workflow of our technique and details

of the different steps therein. Partly, we briefly elaborate on the

implementation of our technique.

3.1 AST-Based Similarity

A crucial aspect of our technique, which also distinguishes its con-

cept from typical code-clone detection, is the evaluation of the

similarity between two test methods. More precisely, our main goal

is to support the merging of test methods, and thus to provide suffi-

cient information to facilitate developers’ tasks when merging the

test cases. For this purpose, in contrast to typical code-clone detec-

tion, we require more details from our similarity analysis to guide

the merging of test methods. In detail, instead of only knowing

what source code of two methods represents code clones, we have

to understand whether and how the clones have been modified (e.g.,

added, modified, or moved lines of code). We use this information

to guide developers in understanding modifications between cloned

test cases, for instance, whether lines have been interchanged to fix

a bug in the test or whether a new line corresponds to modifications

in the method under test. Our argument is that this information

is more helpful to decide how to merge test cases than the pure

existence of code clones.

To compute the similarity between test cases, we implemented an

AST-based technique to obtain a tree-based similarity score, which

is similar to common tree-based code-clone detection techniques.

However, to support developers during the actual merging, we

propose more fine-grained definitions of equality in trees, which

lead to different types of similarity according to the underlying

tree-based structure. In particular, we propose the following four

types of similarity (based on their tree representation), each of

which results in different suggestions with respect to merging the

corresponding test cases (cf. Figure 2 for examples):

• Full equality implies that both ASTs are identical, and thus

the test cases can be merged without any modifications. So,

Listing 1: A collection of example test cases.

1 @Test
2 public void testList () {
3 List <Integer > bar = new ArrayList <>();
4 bar.add (21);
5 bar.add (42);
6 assert bar.size() == 2;
7 }
8

9 @Test
10 public void testArrayList () {
11 TestObject foo = new TestObject () {
12 public test() {
13 List <Integer > foo = new ArrayList <>();
14 foo.add (21);
15 foo.add (42);
16 assert foo.size() == 2;
17 }
18 };
19 foo.test();
20 }

a developer can simply keep either of the test cases, since

neither has been changed in any of the forks.

• Partial equality implies that two ASTs share a common

subtree. We show an example for a common subtree in Fig-

ure 2 (top arrow), where the blue nodes indicate the common

subtree in both ASTs. Note that both ASTs comprise these

nodes, but at different positions. Moreover, we show a cor-

responding code example in Listing 1. This listing contains

two test cases, where the code in Lines 3–6 and Lines 13–

17 constitutes a common subtree on code level. Using this

similarity, we are able to identify that test cases have been

modified, but kept parts of their original implementation

(e.g., added lines of code).

• Partial full equality implies that one AST is completely

contained in the other AST. As an example, consider the two

ASTs in Figure 2: The right AST is completely contained as

a subtree in the left AST, and thus completely subsumed.

Depending on which of these trees represents a test method

in Base and in Forked, respectively, this has crucial impli-

cations on possible merge scenarios. Precisely, it is likely

that the subsumed test case can be replaced by the other

test case if the corresponding changes in the methods under

test are also merged. In contrast to partial equality that only

identifies commonalities and requires detailed manual in-

spection, partial full equality means that one test can simply

be replaced.

• Inequality implies that two ASTs do not share any common

subtrees, or share only a few nodes (i.e., below a specified

threshold). Consequently, we consider these test cases to

be disjunct, and thus constitute independent test cases that

should not be merged at all. We display an example of two

nodes in two ASTs that are unequal in Figure 2, indicated by

the second arrow in the middle of the other two. These nodes

are unequal, because they represent completely different

source code in the test cases.

Note that these similarities are important for comparing cloned

test cases and their modifications. Handling new or removed test

cases only does not require such similarities, since there exist no

counterparts to which we could compare the test cases.

SPLC ’22, September 12–16, 2022, Graz, Austria Sandro Schulze, Jacob Krüger, and Johannes Wünsche

3.4 Test Comparison

Node
Pairs

Comparison
of ASTs

3.5 Similarity Analysis

Results

Classified
Node
Pairs

Node
Classification

Identify Node
Sequences

Identify
Equal Blocks

Compute
Similarity

Repository

3.3 Source Code Preparation

Change
Set

Change
Set

Parse
Test Files

Tree
Generalization

Filter Changed
Test Files

Base

Forked

Figure 3: Workflow of our AST-based technique for analyzing test case similarity.

3.2 Overview

In Figure 3, we display the overall workflow of our proposed tech-

nique. Basically, our technique involves three phases: source code
preparation, test case comparison, and similarity analysis. Initially, a
developer needs to specify the two variants that they want to com-

pare (i.e., merge). We remark again that we refer to these variants as

Base and Forked, where the latter is assumed to be a forked variant

of Base and shall be merged into Base. Note that our assumption

is that both, Base and Forked, can be subject to changes, and thus

must be analyzed with our AST-based similarity technique.

Source Code Preparation. In the first phase, our technique filters

the source code of both variants to identify changed test files. Subse-

quently, it parses only those files into an AST-based representation,

since it is not necessary to merge identical test cases (i.e., those

representing full equality). Moreover, we employ some additional

filtering and normalization (generalization) to the ASTs to reduce

the amount of code our technique has to compare in later phases,

and to improve the recall when comparing methods. As the result

of this phase, we obtain an AST-based representation of all test

cases that have been changed between Base and Forked.

Test Case Comparison. In the second phase, our technique com-

pares all test cases (i.e., methods) of the two variants with each

other; precisely, their AST-based representations created in the pre-

vious phase. For this purpose, we employ a hash-based comparison,

which reduces the effort of comparing the ASTs of all test cases in

Base with those in Forked. As the result of this phase, we obtain

a similarity score for each pair of test cases that has been subject

to this comparison (i.e., all that have not been removed due to full

equality before).

Similarity Analysis. In the last phase, our technique analyzes

the similarity scores of the test-case pairs from the previous phase.

First, we search for best matches, that is, the pairs with the highest

similarity. Afterwards, we classify these best matches according to

the different types of tree similarity we introduced in Section 3.1

to derive guidance for the developer on how to best merge the

test-case pair.

Note that our technique is intended to support the merging

of larger changes, for instance, in large software ecosystems with

many forks (e.g., the Linux Kernel). So, we implemented automation

to allow for a fast analysis of many forked test cases. An ad hoc

use to support a single test-case merge can be easily implemented,

but the usefulness of our technique in this scenario depends on

the complexity of the forked test cases and their modifications. In

the remainder of this section, we explain each of the three phases

in more detail. We remark that our technique is designed for Java

source code and we focus on unit testing (i.e., JUnit
2
) in this paper,

and thus certain steps of our technique are language-specific (e.g.,

how we assume test code to be structured).

3.3 Source Code Preparation

We use the source code preparation to identify relevant test code

that we have to compare, and to transform these test cases into

AST-based representations. Initially, we have to specify the two

variants that our technique shall compare. Since our focus is on

fork-based development, we consider the main branch of a certain

project (specified via its GitHub repository) as Base and a user-

specified fork of that main branch as second variant, called Forked.

Consequently, our perspective is that changed test cases in Forked

are subject to be merged into Base, for example, by means of a pull

request. Based on this perspective, our technique prepares source

code as follows.

Filter Changed Test Files. First, our technique identifies relevant

files that are subject to our analysis in a pre-filtering step. More

precisely, we aim to reduce the number of test cases in Forked

that we have to consider during the comparison by identifying

those cases that have changed compared to Base, as only such test

cases are of interest during a merge. Since we assume a Git-based

repository, we can use git –diff to obtain the modified files from

Forked. In contrast, we do not know which of the files may be

relevant in Base, and thus we take all files from Base into account.

However, we apply one more step of optimization to both variants:

Since we are only interested in test cases, which usually reside in

a dedicated test folder, we can omit any source code files in other

folders. Thus, after this pre-filtering step, we end up only with test

cases that have actually been modified in Forked.

Parse Test Files. In the next step, our technique parses the pre-
viously filtered files (in our prototype, we use JavaParser3). Since
test cases are usually implemented in corresponding test methods

(i.e., JUnit tests), parsing takes place on method level. So, for each

method that our technique parses, we keep its qualified name, the

2
https://junit.org/junit5/

3
https://javaparser.org/

https://junit.org/junit5/
https://javaparser.org/

Towards Developer Support for Merging Forked Test Cases SPLC ’22, September 12–16, 2022, Graz, Austria

whole method itself as an AST, any annotations attached to the

method (e.g., @Test, @Before, or any other commonly used anno-

tations), and a link to the file containing themethod. Alongwith this

parsing step, we also perform another optimization: For each test

case that occurs in the same class in Base and Forked, we perform

a simple comparison on the corresponding ASTs to check for full

equality (cf. Section 3.1). Our rationale is that, while a file may have

changed in Forked, certain test cases in that file are potentially

still identical with the original version in Base. Consequently, if

we identify such test cases, we can discard them for the remaining

steps, because they are not relevant for the merging (since there

are no differences between the test cases of the two variants). Note

that we currently identify corresponding classes between Base and

Forked by comparing the absolute class paths. So, if a class has

been moved or renamed in one variant, we would miss potential

full equality of some test cases in this class at this point. However,

we consider it more important for our technique to achieve a high

precision (i.e., no classes or test cases should be wrongly considered

as corresponding, and thus be wrongly discarded).

Test File Assignment.As an intermediate step, we assign the ASTs

from the parsing step to the variant they originated from, that is,

either Base or Forked. This way, we ensure that, in the comparison

phase (cf. Section 3.4), we only compare test cases between the two

variants, but not within the same variant. For merging, only such

comparisons between variants provide relevant information.

Tree Generalization. As last step of the source code preparation,

we perform tree generalizations on the obtained ASTs by employing

different normalizations to detect test cases that still exhibit a high

structural similarity (as done during code clone detection as well).

In particular, we create two additional versions of each AST: One

version in which we remove all comments, and thus can perform a

more relaxed detection of Type-1 clones. Second, we normalize all

identifiers and literals, which allows us to detect structurally similar

test cases, even though they differ in variable names or constants

(which is comparable to Type-2 clones). As a result, we keep three

versions of each AST for the subsequent test case comparison:

(1) the original AST,

(2) AST without comments (“Type-1 AST”), and

(3) AST with normalized identifiers and literals (“Type-2 AST”).

These ASTs are the input for the test case comparison, which we

describe next. Note that we also consider changes in comments

(original AST), since they may not pose challenges in the code

merge but can indicate improved or updated documentation.

3.4 Test Comparison

In this phase, we perform the actual comparison of test cases that

we obtained through the previous phase, that is, we compare all re-

maining test cases from Base with their counterparts from Forked.

Note that the comparison takes place on all three kinds of ASTs,

individually: the original ASTs as created by the parser, the Type-1

ASTs, and the Type-2 ASTs. Since this can become quite exhaus-

tive, we initially apply a pre-hashing step. Namely, we compute

the hash value for each node of an AST and store these hashes in

a list, associated with the corresponding AST. To this end, we use

the built-in hash function of JavaParser. For each node, the hash

function not only considers the node for which the hash value is

computed itself, it also takes any child nodes into account. Thus, if

two nodes are identical and also have identical child nodes, they

will exhibit the same hash value. As a result, we obtain a list of

hash values for every AST with each value maintaining a link to

its corresponding node in the AST.

Using the resulting hash lists, we now perform the comparison

for all pairs of test cases between the two variants by comparing

the hash values of their AST nodes. If two hash values between two

ASTs are equal, we keep the corresponding nodes as identical node

pair for further comparison (i.e., there is similarity between the test

cases). Otherwise, we discard this pair of test cases as not being

cloned from each other (i.e., since there is not a single equal node,

we assume that the test cases are independent). We remark that the

meaning of two nodes being identical depends on the type of AST

we are considering. For instance, nodes being identical in the origi-

nal AST means that the corresponding source code is syntactically

identical, since we did not perform any normalization. In contrast,

identical nodes between Type-2 ASTs only indicate that the nor-

malized code is identical. This implies that the source code in one

variant differs from the other regarding literals or identifiers (since

we normalized those), and thus the corresponding source code is

syntactically similar to a certain extent. Our technique interprets

such a comparison result as the two test cases being related (i.e.,

cloned), but modified—which are the test cases developers have to

pay particular attention to during a merge.

As a result of this comparison, we obtain a (probably large) list

of node pairs, each of which represents identical nodes. However,

this list contains redundant information, because of the way we

compute the hash values: If a pair of nodes represents identical

subtrees, we also have pairs of nodes in our list that represent the

nodes of these subtrees. Since we are interested in sequences of a

certain length (i.e., whole subtrees rather than sub-sequences or

single nodes therein), we can remove any node pair that is subsumed

by another one. As an example, consider the blue nodes in the two

trees we display in Figure 2. Our comparison would yield three

node pairs for this subtree. One for the leave node, one for the

middle node, and one for the root node of this subtree. However,

the result we are interested in is the pair of root nodes, since these

nodes subsume the other nodes as part of their subtrees.

We clean up the list that we obtained after the hash comparison

as follows. For each node pair, we check whether there is a node

pair of their parent nodes in the respective ASTs. If this is the case,

we can safely discard the pair of child nodes from our result list. For

each pair of test cases, we proceed iteratively in a bottom-up fashion

until we found the topmost nodes that are identical. These nodes

represent the node pair (with the respective subtrees) we keep for

our remaining analysis. Then, our technique uses the resulting list

to continue with the last phase, which we explain next.

3.5 Similarity Analysis

In this last phase, our technique analyzes the result list from the

previous step in greater detail to determine the type of equality

between test cases to provide information useful for developers in

possible merging scenarios. As a preliminary step, we determine

for each pair of nodes which kind of syntactical elements they

represent, for instance, whether it is a block statement, a method

SPLC ’22, September 12–16, 2022, Graz, Austria Sandro Schulze, Jacob Krüger, and Johannes Wünsche

declaration, and so on. Depending on the type of nodes, we analyze

the pair of nodes in different ways, as explained in the following.

Search Longest Node Sequence. In case that the two nodes repre-

sent leave nodes in the ASTswe compare (e.g., assignments, variable

declarations), we perform a search for the longest sequence these

nodes can build with other nodes. The reason is that, while we

already found the topmost nodes representing a subtree in the pre-

vious phase, we may still have multiple sibling nodes within an

AST (and thus between the compared ASTs) that are equal, even

though their parents are not.

As an example, consider the code and AST we display in Fig-

ure 4. In this example, we assume that the two yellow sibling nodes

represent identical statements (i.e., Type-2 code clones). However,

in our results list, they occur in at least two independent pairs of

nodes (due to the comparison with the other AST), since there is no

parent-child relationship between them. So, based on the structure

of the AST, we identify which node pairs constitute sibling nodes

and join them into one common sequence as long as there are iden-

tical sibling nodes available. As a result, we obtain sequences of

nodes that represent an identical sequence of statements in the

corresponding test cases.

Search Equal Blocks. If the nodes of a node pair constitute a block

statement (e.g., if blocks, for loops, or even whole methods), we

now check in which type of AST we found them. In case that they

are part of the original AST (i.e., the one we did not normalize), we

know that also the source code between the compared variants is

identical. This means that, if the nodes represent methods (i.e., the

block is a method declaration), we can safely remove them, since

they are not subject tomerging. If they are of any other kind of block

statement, we propose possible refactorings as part of the merging

process, for example, to extract the block in a dedicated method and

merging the remaining (different) parts of the test case. In case that

we found the identical blocks in any of the other two types of ASTs

(i.e., those we normalized), we cannot automatically reason on the

differences. Then, the test cases are subject to merging without

any refactoring recommendations—meaning that a developer has

to inspect and comprehend the differences between the test cases.

Compute Similarity. For all node pairs remaining after the pre-

vious steps, we now compute their similarity (as percentage of

matching). More precisely, we determine the number of nodes from

Forked that are identical with the AST of Base, where they are

located in the ASTs, and whether the lengths of both ASTs differ.

Furthermore, we categorize each pair of ASTs regarding whether

they exhibit partial equality or partial full equality (cf. Section 3.1).

We build on this information to support developers during the

merging process. For instance, by considering the categorization

of partial full equality, a developer knows about cases where a test
case from Base is completely contained in a test case of Forked.

As a result, we can suggest to merge the latter test case into Base,

since it is an extended version of the original method in Base.

All results from this analysis phase together with the information

about where identical nodes are located in the source code are

consolidated into a report. Currently, this is a JSON
4
file. This file

can then be further processed into a format that is understandable

4
https://www.json.org/json-en.html

Figure 4: An example for sibling nodes that are identical be-

tween two ASTs. The colors indicate which node is associated

with which expression.

for the developer (e.g., static HTML pages, visualizations in an IDE

or Git client).

4 EVALUATION

In this section, we first describe the design of our evaluation. Then,

we report and discuss the results we obtained as well as potential

threats to validity.

4.1 Design

To evaluate our technique, we decided to perform a qualitative fea-

sibility study. For this purpose, we employed the following design.

Objectives. Our goal for our evaluation was to understand to what
extent our technique can identify similarities between forked test cases,
and thus can suggest proper actions to developers. For this purpose,

we decided to perform a simulation by using existing, merged pull

requests from real-world software projects. Precisely, we used the

two commits (i.e., main repository, fork) that have been merged as

input for our technique and compare its results to the actual merge.

By analyzing which code structures are detected dependably and

which are falsely reported during this simulation, we evaluate the

performance of our technique.

Dataset.We created an own dataset of pull requests that we picked

from GitHub projects, each of which had to fulfill the following

project-level selection criteria (SCP):

SCP-1 The pull requests of the projects are publicly available.

SCP-2 New features of the project are accompanied by tests.

With SCP-1, we ensured that we could inspect the pull requests

and use them for our simulation; which is typically fulfilled by all

public repositories. We defined SCP-2 to ensure that the projects we

consider use test cases actively (e.g., not only at random or solely

legacy ones), and that we could identify pull requests on which we

can evaluate our technique regarding the different situations we

specified. To identify projects, we inspected the most popular ones

according to mvnrepository.
5
We decided to limit our simulation to

5
https://mvnrepository.com/popular

https://www.json.org/json-en.html
https://mvnrepository.com/popular

Towards Developer Support for Merging Forked Test Cases SPLC ’22, September 12–16, 2022, Graz, Austria

Table 1: Overview of the projects and pull requests we selected for our evaluation. The pull requests are hyperlinked.

project domain # contributors # forks SLOC # test cases pull requests

Guava programming libraries 267 ≈ 9,500 756,069 1,071 5347, 5321, 5307, 5280, 5252,
4035, 4029, 4025, 4020, 3998https://github.com/google/guava

Jackson file parser 181 ≈ 1,200 198,650 2,667 2952, 2948, 2942, 2938, 2931,
2927, 2925, 2922, 2921, 2915https://github.com/FasterXML/jackson-databind

JavaParser code transformation 160 ≈910 272,627 2,371 2974, 2972, 2971, 2969, 2966,
2961, 2956, 2955, 2954, 2952https://github.com/javaparser/javaparser

JUnit 5 unit testing 173 ≈ 1,100 134,727 3,653 2442, 2383, 2382, 2371, 2368,
2342, 2336, 2328, 2387, 2380https://github.com/junit-team/junit5

mockito mocking 230 ≈ 2,200 88,851 2,018 2135, 2071, 2051, 2042, 2034,
2023, 2013, 1996, 1989, 1971https://github.com/mockito/mockito

five projects that fulfilled our project-level selection criteria: Guava,

Jackson-Databind, Javaparser, JUnit5, and Mockito.

In Table 1, we display an overview of these five projects. As we

can see, the projects cover different domains and involve 160 to 267

contributors, indicating larger communities of interest. All projects

are established and widely-used open-source solutions, for example,

the Guava libraries developed by Google or the well-known JUnit

framework. Moreover, we can see that the projects span from 910

to around 9,500 forks, with 88,851 to 756,069 SLOC, and 1,071 to

3,653 test cases. Consequently, we argue that our sample comprises

a diverse set of medium- to large-scale projects that rely on fork-

based software development and extensive testing. These are ideal

subjects, since we aim to support such projects with our technique.

In the next step, we identified pull requests we could use for our

simulation. To this end, we defined the following pull-request-level

selection criteria (SCPR):

SCPR-1 The pull request must involve at least one change to an

existing test case.

SCPR-2 The pull request has been merged into the main repository.

We defined SCPR-1 to ensure that we do not only cover additions of

new or deletions of old test cases, but force our technique to com-

pare modified test cases. Precisely, handling added or deleted test

cases is straight forwardly supported through our technique (i.e.,

the developer has to decide whether to add or delete the test case

during merging), but forked test cases comprising modifications

(i.e., changing the functionality of the test case) are those actually

challenging program comprehension and merges. Using SCPR-2, we

ensured that we have a baseline (i.e., the test cases merged by the

developers) to which we can compare the results of our technique.

We selected the 10 most recent (as of December 11, 2020) pull re-

quests from each of the five projects, resulting in a dataset of the

50 pull requests we display in the last column of Table 1.

Implementation. We implemented two prototypes to conduct

our evaluation: The first implements our technique as described in

Section 3, while the second provides a framework for combining

our technique with Git. For both, we used Kotlin and Gradle to

be able to use existing Java libraries. We relied on JavaParser for

parsing and analyzing ASTs as well as JGit
6
for communicating

6
https://www.eclipse.org/jgit/

with the Git repositories. As output, our prototype generates JSON

files that specify changed files and lines of code relating to test

cases, suggested changes to the tests, and potential warnings (i.e.,

code structures our prototype identified but did not analyze, e.g.,

out of scope, errors). For our evaluation, we used a Debian Buster

operating systemwith a Linux 4.19 LTS Kernel, a 2.5 GHz eight-core

AMP EPYC processor, and 16GB RAM.

Analysis. To evaluate our technique, we relied on a qualitative

analysis of all 50 pull requests. We decided to perform a qualitative

analysis because our technique does not automatically refactor test

cases, but suggests which test cases may require manual changes

by the developers. So, we decided to inspect the JSON files our

prototype generated, and in which it stores information regarding

suggested changes. In detail, the third author of this paper compared

the properties of the suggested (i.e., our prototype) to the real-world

changes (i.e., the merge commit of the pull request) . To this end, he

considered the location, similarity, and resolutions (e.g., removal,

addition, modification) of changes.

4.2 Results

In the following, we first report descriptive statistics of the test cases

in each project. Then, we describe more in-depth insights into our

technique that we derived from qualitatively inspecting the analysis

results of our technique for each pull request we investigated.

Descriptive Results. In Table 2, we provide a descriptive overview

of the results our prototype generated. Note that we analyzed all

test cases within the projects compared to the forks involved in

the pull requests we inspected. We can see that our technique

identified between 10 and 69 similar sequences within the test cases

of each project, with an average length of three SLOC for each

sequence. Moreover, we found a highly varying number of highly-

similar test cases (i.e., more than 95% similarity), ranging from

nine to 2,412 with an average number of SLOC between 3.06 and

11.71. Note that our prototype correctly identified all sequences,

and thus works as intended. Moreover, we found that almost all

identified sequences are relevant for developers when merging

forks (i.e., the corresponding test cases have been modified and

exhibit similarity). During the following qualitative analysis, we

aimed to understand the reasons for the numbers, particularly for

https://github.com/google/guava/pull/5347
https://github.com/google/guava/pull/5321
https://github.com/google/guava/pull/5307
https://github.com/google/guava/pull/5280
https://github.com/google/guava/pull/5252
https://github.com/google/guava/pull/4035
https://github.com/google/guava/pull/4029
https://github.com/google/guava/pull/4025
https://github.com/google/guava/pull/4020
https://github.com/google/guava/pull/3998
https://github.com/google/guava
https://github.com/FasterXML/jackson-databind/pull/2952
https://github.com/FasterXML/jackson-databind/pull/2948
https://github.com/FasterXML/jackson-databind/pull/2942
https://github.com/FasterXML/jackson-databind/pull/2938
https://github.com/FasterXML/jackson-databind/pull/2931
https://github.com/FasterXML/jackson-databind/pull/2927
https://github.com/FasterXML/jackson-databind/pull/2925
https://github.com/FasterXML/jackson-databind/pull/2922
https://github.com/FasterXML/jackson-databind/pull/2921
https://github.com/FasterXML/jackson-databind/pull/2915
https://github.com/FasterXML/jackson-databind
https://github.com/javaparser/javaparser/pull/2974
https://github.com/javaparser/javaparser/pull/2972
https://github.com/javaparser/javaparser/pull/2971
https://github.com/javaparser/javaparser/pull/2969
https://github.com/javaparser/javaparser/pull/2966
https://github.com/javaparser/javaparser/pull/2961
https://github.com/javaparser/javaparser/pull/2956
https://github.com/javaparser/javaparser/pull/2955
https://github.com/javaparser/javaparser/pull/2954
https://github.com/javaparser/javaparser/pull/2952
https://github.com/javaparser/javaparser
https://github.com/junit-team/junit5/pull/2442
https://github.com/junit-team/junit5/pull/2383
https://github.com/junit-team/junit5/pull/2382
https://github.com/junit-team/junit5/pull/2371
https://github.com/junit-team/junit5/pull/2368
https://github.com/junit-team/junit5/pull/2342
https://github.com/junit-team/junit5/pull/2336
https://github.com/junit-team/junit5/pull/2328
https://github.com/junit-team/junit5/pull/2387
https://github.com/junit-team/junit5/pull/2380
https://github.com/junit-team/junit5
https://github.com/mockito/mockito/pull/2135
https://github.com/mockito/mockito/pull/2071
https://github.com/mockito/mockito/pull/2051
https://github.com/mockito/mockito/pull/2042
https://github.com/mockito/mockito/pull/2034
https://github.com/mockito/mockito/pull/2023
https://github.com/mockito/mockito/pull/2013
https://github.com/mockito/mockito/pull/1996
https://github.com/mockito/mockito/pull/1989
https://github.com/mockito/mockito/pull/1971
https://github.com/mockito/mockito
https://www.eclipse.org/jgit/

SPLC ’22, September 12–16, 2022, Graz, Austria Sandro Schulze, Jacob Krüger, and Johannes Wünsche

Table 2: Overview of the descriptive results of our evaluation,

separated by individual sequences and highly-similar test

cases (>95% similarity).

project

sequences test cases

avg. SLOC # avg. SLOC

Guava 18 3.00 154 3.06

Jackson 11 3.00 559 4.43

JavaParser 69 3.00 9 11.34

JUnit 5 10 3.39 2,412 3.11

mockito 30 3.00 55 11.71

the large variations regarding highly-similar test cases. Moreover,

we aimed to understand to what extent corner cases occur in our

results that may require adaptations to our technique (e.g., wrong

matches between test cases, test case designs interfering with the

design of our technique).

Guava. Overall, we identified 154 highly-similar test cases in the

Guava project. However, this is primarily due to the design of

the test suite itself, with our prototype revealing empty test cases

used throughout the project. Reporting such empty test cases as

similar during a merge could arguably cause confusion for the

developers. Moreover, our prototype revealed several test cases

that are identical; typically overwritten wrapper methods of classes

(e.g., hashCode()). During our manual review, we further found

that some added test code (i.e., from a fork) was completely new,

so that no changes were required to existing test cases.

Jackson. Analyzing the Jackson project, we found 559 highly-

similar test cases. During our manual review, we found that this

is mainly due to the structure of the Jackson tests, which use in-

herited classes in separate test cases. The highly-similar test cases

are often duplicated class methods, such as getter and setter.
Arguably, our prototype can help developers identify and resolve

such redundancies by introducing a better abstraction in some

cases. Furthermore, we found some error-prone matches in Jackson.

For instance, we display a high-similarity match in Listing 2. Our

prototype identified this match, because many small sub-trees in

the ASTs of the test cases are similar (e.g., the order of assertions

from Lines 16–18 and Lines 25–27 is represented identically in our

Type-2 ASTs). The issue here is that a large AST in the main repos-

itory means that only a small set of its sub-trees have to match

the AST of a forked test case to yield a high similarity. However,

such cases seem rare and, in general, our manual review of Jackson

also indicates that our technique is helpful. In the future, we have

to update our technique to handle such specific structures of test

cases and to combine the results of the different ASTs more.

JavaParser. The selected pull requests we inspected for the Java-

Parser project yield similar results as the ones of the other projects.

Most matches our prototype reports are concerning similar se-

quences between test cases, found in several positions of the source

code. For example, our prototype often detects builder sequences,

which we would recommend to extract into distinct methods. No-

tably, we identified one false match by our prototype. Namely, it

mismatched two forked test cases, because one involved only a few

lines of code that matched code in another test case with far more

Listing 2: Test case example from Jackson.

1 // base
2 public void testCustomBeanDeserializer () throws

Exception {
3 // [...]
4 assertNotNull(beans);
5 results = beans.beans;
6 assertNotNull(results);
7 assertEquals (2, results.size());
8 bean = results.get(0);
9 assertEquals("", bean.d);
10 c = bean.c; assertNotNull(c);
11 assertEquals(-4, c.a);
12 assertEquals (3, c.b);
13 bean = results.get(1);
14 assertEquals("abc", bean.d);
15 c = bean.c; assertNotNull(c);
16 assertEquals (0, c.a);
17 assertEquals (15, c.b);
18 }
19

20 // fork
21 public void testSingleElementWithStringFactoryRead ()

throws Exception {
22 String json = aposToQuotes("{ 'values ': '333' }");
23 WrapperWithStringFactoryInList response = MAPPER.

readValue(json , WrapperWithStringFactoryInList.
class);

24 assertNotNull(response.values);
25 assertEquals (1, response.values.size());
26 assertEquals("333", response.values.get(0).role.Name)

;
27 }

lines (similar to the Jackson example). Consequently, our prototype

assumed that the test cases are forked from each other (i.e., it iden-

tified identical nodes), but this was not the case. In the future, we

aim to handle such cases either by discarding them earlier or by

providing specific refactoring recommendations to the developer

(e.g., to extract the common code if feasible).

JUnit 5. As in the other projects, our prototype reveals similar se-

quences in JUnit 5 in object builders and initializations in forked test

cases. Analogous to the other examples, an extraction may be done,

but many short sequence extractions could lead to a reduction in

code readability. So, we would highlight such cases to the developer

and ask them to decide whether to merge and extract which of the

common sequences. However, our prototype also reveals almost

identical test cases except for literals passed to builder functions

and checks, which indicates a high merge potential.

One interesting observation we found only for JUnit 5 is the

existence of exactly equal test cases with intentionally different

names. For example, we found two test cases in the test suite with

exactly the same content, which call a method with a shared object

from the global scope. The actual test is whether all methods are

called correctly and in the order of the test criteria (i.e., checking for

side effects on the shared object caused during the execution of the

methods). While our prototype detected the similarity in the forked

test cases correctly, the implication of this result violates the actual

intent of the test cases. In fact, merging the test cases would modify

their outcome and mean that they do not fulfill their purpose any-

more. To avoid such false matches, we would need exceptions to the

similarity detection of our technique. However, a general implemen-

tation of such exceptions is hardly possible, since they may vary

between different projects and the duplication may also be an error.

Towards Developer Support for Merging Forked Test Cases SPLC ’22, September 12–16, 2022, Graz, Austria

Listing 3: Test case example from Mockito Base.

1 @Test
2 public void can_define_class_in_closed_module () throws

Exception {
3 assumeThat(Plugins.getMockMaker () instanceof

InlineByteBuddyMockMaker , is(false));
4 Path jar = modularJar(true , true , false);
5 ModuleLayer layer = layer(jar , false);
6 ClassLoader loader = layer.findLoader("mockito.test")

;
7 Class <?> type = loader.loadClass("sample.MyCallable")

;
8 ClassLoader contextLoader = Thread.currentThread ().

getContextClassLoader ();
9 Thread.currentThread ().setContextClassLoader(loader);
10 try {
11 Class <?> mockito = loader.loadClass(Mockito.class.

getName ());
12 @SuppressWarnings("unchecked")
13 Callable <String > mock = (Callable <String >) mockito.

getMethod("mock", Class. class).invoke(null , type)
;

14 Object stubbing = mockito.getMethod("when", Object.
class).invoke(null , mock. call());

15 loader.loadClass(OngoingStubbing.class.getName ()).
getMethod(" thenCallRealMethod").invoke(stubbing);

16 boolean relocated = !Boolean.getBoolean("org.
mockito.internal. noUnsafeInjection") &&
ClassInjector.UsingReflection.isAvailable ();

17 String prefix = relocated ? "sample.
MyCallable$MockitoMock$" : "org.mockito. codegen.
MyCallable$MockitoMock$";

18 assertThat(mock.getClass ().getName ()).startsWith(
prefix);

19 assertThat(mock.call()).isEqualTo("foo");
20 } finally {
21 Thread.currentThread ().setContextClassLoader(

contextLoader);
22 }
23 }

Some other tests in JUnit 5 are empty (i.e., they test whether tests

can be named in a certain way). While these cases were not relevant

during the pull requests we analyzed with our prototype, this would

cause a similar problem. A possible solution to such problems would

be to add configuration options to our technique or annotations to

the test cases that specify their purpose. In fact, incorporating a

detailed analysis of test annotations (which are already available in

our prototype) could help us improve its performance.

During our continued analysis of JUnit 5, we noticed that one

commit did not pass the parsing and detection of commonalities of

ASTs in our technique. While we did not find specific properties in

this commit that would cause this problem, some part of our analysis

exceeded the memory reserved for our prototype. We intend to

conduct further tests to isolate and understand this problem, but

this is out of scope for this paper. Generally, our prototype correctly

identifies relevant test case changes in JUnit 5, which are typically

highly relevant for developers during merges. However, we also

found a bug and potentially misleading recommendations, which

highlight the limitations of our technique and prototype.

Mockito. In Mockito, we found large overlaps between many test

cases, with some different calls in between, indicating a high similar-

ity with smaller changes. Due to the high similarities and identical

literals, we consider such test cases to have a high potential for

merging—and for introducing errors (e.g., because it can be un-

clear why a test case has been changed in what way). We display

Listing 4: Test case example from Mockito Forked.

1 @Test
2 public void can_define_class_in_open_java_util_module

() throws Exception {
3 assumeThat(Plugins.getMockMaker () instanceof

InlineByteBuddyMockMaker , is(false));
4 Path jar = modularJar(true , true , true);
5 ModuleLayer layer = layer(jar , true , namedModules);
6 ClassLoader loader = layer.findLoader("mockito.test

");
7 Class <?> type = loader.loadClass("java.util.

concurrent.locks.Lock");
8 ClassLoader contextLoader = Thread.currentThread ().

getContextClassLoader ();
9 Thread.currentThread ().setContextClassLoader(loader

);
10 try {
11 Class <?> mockito = loader.loadClass(Mockito.class

.getName ());
12 @SuppressWarnings("unchecked")
13 Lock mock = (Lock) mockito.getMethod("mock",

Class.class).invoke(null , type);
14 Object stubbing = mockito.getMethod("when",

Object.class).invoke(null , mock. tryLock ());
15 loader.loadClass(OngoingStubbing.class.getName ())

.getMethod("thenReturn", Object.class).invoke(
stubbing , true);

16 boolean relocated = !Boolean.getBoolean("org.
mockito.internal. noUnsafeInjection") &&
ClassInjector.UsingReflection.isAvailable ();

17 String prefix = relocated ? "org.mockito.codegen.
Lock$MockitoMock$" : "java. util.concurrent.locks.
Lock$MockitoMock$";

18 assertThat(mock.getClass ().getName ()).startsWith(
prefix);

19 assertThat(mock.tryLock ()).isEqualTo(true);
20 } finally {
21 Thread.currentThread ().setContextClassLoader(

contextLoader);
22 }
23 }

a prime example for such regular occurrences across our whole

dataset in Listing 3 (Base) and Listing 4 (Forked). The test case in

Listing 4 has been modified in eight of 23 lines (i.e., Lines 4, 5, 7, 13,

14, 15, 17, 19). However, we can see that the basic structure of the

test cases is still identical, and most of the modifications are small

(e.g., a Boolean value in Line 4, a String in Line 7). So, a developer

may want to merge the test cases if the underlying changes have

also been merged, or refactor the test cases to provide a common

template that can be adapted more easily. Our technique can help

developers identify such cases, understand to what extent the test

cases have been modified, and abstract their implementation to mit-

igate bugs. In general, we found that the reports of our technique

for Mockito are a good showcase for using it.

Moreover, our technique identified further duplicated sequences

in added and changed tests. Mainly, these are already existing

builder sequences to prepare objects for testing. The longer of

these sequences are good candidates for simplifications by merging

common code into helper methods. Interestingly, we found one

mismatch between an existing test case and a method that was

introduced in a fork, but that is not a test. Instead, the new method

only instantiates objects for other tests (which is why it is part of

the test suite). While this is somewhat of a mismatch, we consider

such cases also valuable, since they may provide an indication for

developers how to merge test cases in their project.

SPLC ’22, September 12–16, 2022, Graz, Austria Sandro Schulze, Jacob Krüger, and Johannes Wünsche

4.3 Discussion

Our feasibility study indicates that our technique produces good

results for most of the pull requests we inspected, but requires a

few adjustments in the future. Some situations we analyzed have

indicated matches of empty methods or side-effect driven test cases,

which are correct matches but do not serve the purpose of detecting

code duplication or helping developers during fork merges—they

are often purposefully designed and created to behave in this man-

ner. Additionally, in case of short methods (one to five SLOC) false

matches occurred if other methods in comparison were consider-

ably larger, for instance, in Jackson. Generally, our technique does

not miss major modifications within the test cases of the selected

pull requests, more often the matching was too inclusive. This

indicates that we should concentrate on understanding the con-

text in which tests are used to be able to provide more automated

suggestions and better warnings.

One concept we implemented in our technique did not occur:

the unification of exactly equal code blocks. We did not observe

such situations, since its restrictions are rather strict compared

to the others, though this stands in relation to our dataset. This

dataset contains only mature projects and recent pull requests at

the time of our analysis. Due to the projects’ nature (i.e., extensive

testing), this maturity comes with an established review process of

code changes before they are merged. So, it is not likely that our

technique unifies complete code blocks.

Overall, we argue that our technique provides a foundation for

supporting developers in merging and evolving the test cases in

their systems. In particular, our results indicate that our technique

reliably identifies similarities and differences between test cases,

guiding developers in which test cases require more effort and

which can simply be merged. To improve our technique in the

future, we have to fix small bugs, consider how test cases are used

by developers and when these should not be merged, as well as

how to present the results to a developer.

4.4 Threats to Validity

The validity of our evaluation is compromised by the dataset we

created, which is relatively small since we performed a manual

feasibility study. We assessed only 50 recent pull requests of five

open-source projects, but more projects and pull requests can be

added. Historic data in the form of older pull requests can offer valu-

able insights regarding how our technique performs in an evolving

system. Moreover, the project range we considered is rather narrow,

since we chose to pick popular Java projects. Our technique may

perform differently on less popular projects, since these are not

as stable. The generalizability of our technique could be improved

by including projects in other programming languages, such as C,

Rust, or Kotlin. However, we argue that the selection of projects

from different communities that employ testing extensively is a rea-

sonable method for evaluating the feasibility of our technique; and

the focus on Java is caused by technical necessities. Finally, we iden-

tified positive results that improve our confidence in our technique,

while also identifying some mismatches or unintended matches

that we want to tackle in future work. So, we argue that our evalu-

ation results are reasonable and provide a good indication that our

technique can be helpful for developers when merging test cases.

5 RELATEDWORK

Test-Case Similarity. Test-case (dis-)similarity is of particular

interest for test-suite reduction, for instance, during the execution

(i.e., sampling) or during the development (i.e., merging) [11, 16,

22, 28, 30] of a software system. Particularly merging similar test

cases is closely related to our work. In principle, any code-clone

detection technique [6, 29] can be used to identify similar test cases

on code level. However, researchers have proposed other techniques

to measure test-case similarity. For example, Cartaxo et al. [8] rely

on analyzing stack traces and Cichos and Heinze [10] compare state

machines instead of source code. While related, we have a different

goal than such techniques, since we aim to merge tests cases of

different forks instead of only reducing a test suite. So, we have to

handle a number of scenarios (e.g., for new and modified test cases)

that differ from these for test-suite reduction. As a consequence,

we also had to adopt AST-based code-clone detection to consider

the specific cases we described in Section 3.1.

Automated Test-Case Refactoring. Different researchers have

studied test-case refactoring and proposed techniques for automat-

ing the process [9, 15, 17, 36]. For instance, Passier et al. [27] have

proposed a technique for tracing changes to the source code that im-

pact Unit tests, and for advising developers how to update the tests.

In contrast to such techniques, we do not focus on the evolution of a

single system, but the merging of forked test cases. Combining the

different techniques for covering all aspects of software evolution

is a direction for future work.

Semantic Merging and Regression Testing. Semantic merging

aims to elevate merges from a purely textual level towards a se-

mantic level, which is why they often need test cases that cover

corresponding requirements [5, 26, 32]. Similarly, regression test-

ing [23] aims to identify changed behavior in a system by executing

a (sub-)set of tests that cover the corresponding requirements. Both

types of techniques require a well-defined test suite to cover the re-

quirements of the system’s behavior, which is typically based on the

test suite of the main repository. However, this does not cover the

problem we aim to solve with our technique: deciding which forked

test cases to keep, add, or modify. Consequently, our technique

is a complement to enable more reliable semantic merging and

regression testing by updating the tests used by such techniques.

6 CONCLUSION

In this paper, we have introduced a technique for comparing forked

test cases to provide developers with more support for comprehend-

ing the differences in these test cases during merges. We evaluated

our technique in a qualitative analysis of 50 pull requests from

five established open-source systems. The results indicate that our

technique faces some limitations, particularly due to the test struc-

tures employed in some projects. Still, we could also show that our

technique is a helpful means to support developers by highlight-

ing what test cases are similar to what extent, which we plan to

improve in the future. In this regard, we plan to tackle the techni-

cal limitations of our technique and conduct an actual user study

with open-source developers to see whether our technique can help

them during real-world merges.

Towards Developer Support for Merging Forked Test Cases SPLC ’22, September 12–16, 2022, Graz, Austria

REFERENCES

[1] Qurat U. Ain, Wasi H. Butt, Muhammad W. Anwar, Farooque Azam, and Bilal

Maqbool. 2019. A Systematic Review on Code Clone Detection. IEEE Access 7
(2019), 86121–86144. https://doi.org/10.1109/access.2019.2918202

[2] Sofia Ananieva, Sandra Greiner, Timo Kehrer, Jacob Krüger, Thomas Kühn, Lukas

Linsbauer, Sten Grüner, Anne Koziolek, Henrik Lönn, S. Ramesh, and Ralf Reuss-

ner. 2022. A Conceptual Model for Unifying Variability in Space and Time:

Rationale, Validation, and Illustrative Applications. Empirical Software Engineer-
ing 27, 101 (2022), 1–53. https://doi.org/10.1007/s10664-021-10097-z

[3] Sofia Ananieva, Sandra Greiner, Thomas Kühn, Jacob Krüger, Lukas Linsbauer,

Sten Grüner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn, Sebastian

Krieter, Christoph Seidl, S. Ramesh, Ralf Reussner, and BernhardWestfechtel. 2020.

A Conceptual Model for Unifying Variability in Space and Time. In International
Systems and Software Product Line Conference (SPLC). ACM, 15:1–12. https:

//doi.org/10.1145/3382025.3414955

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer. https://doi.org/10.1007/978-3-642-

37521-7

[5] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian

Kästner. 2011. Semistructured Merge: Rethinking Merge in Revision Control

Systems. In Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 190–200. https:

//doi.org/10.1145/2025113.2025141

[6] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo.

2007. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions on
Software Engineering 33, 9 (2007), 577–591. https://doi.org/10.1109/tse.2007.70725

[7] Jan Bosch (Ed.). 2014. Continuous Software Engineering. Springer. https://doi.

org/10.1007/978-3-319-11283-1

[8] Emanuela G. Cartaxo, Patrícia D. L. Machado, and Francisco G. O. Neto. 2009.

On the Use of a Similarity Function for Test Case Selection in the Context of

Model-Based Testing. Software Testing, Verification and Reliability 21, 2 (2009),

75–100. https://doi.org/10.1002/stvr.413

[9] Peng-Hua Chu, Nien-Lin Hsueh, Hong-Hsiang Chen, and Chien-Hung Liu. 2011.

A Test Case Refactoring Approach for Pattern-Based Software Development.

Software Quality Journal 20, 1 (2011), 43–75. https://doi.org/10.1007/s11219-011-

9143-x

[10] Harald Cichos and Thomas S. Heinze. 2011. Efficient Test Suite Reduction by

Merging Pairs of Suitable Test Cases. In International Conference on Model Driven
Engineering Languages and Systems (MoDELS). Springer, 244–258. https://doi.

org/10.1007/978-3-642-21210-9_24

[11] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino.

2019. Scalable Approaches for Test Suite Reduction. In International Conference
on Software Engineering (ICSE). IEEE, 419–429. https://doi.org/10.1109/icse.2019.

00055

[12] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding

in GitHub: Transparency and Collaboration in an Open Software Repository. In

Conference on Computer Supported Cooperative Work (CSCW). ACM, 1277–1286.

https://doi.org/10.1145/2145204.2145396

[13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,

and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial

Software Product Lines. In European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 25–34. https://doi.org/10.1109/csmr.2013.13

[14] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen.

2015. Work Practices and Challenges in Pull-Based Development: The Integrator’s

Perspective. In International Conference on Software Engineering (ICSE). IEEE,
358–368. https://doi.org/10.1109/icse.2015.55

[15] Eduardo M. Guerra and Clovis T. Fernandes. 2007. Refactoring Test Code Safely.

In International Conference on Software Engineering Advances (ICSEA). IEEE, 44:1–
6. https://doi.org/10.1109/icsea.2007.57

[16] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. 2012. On-

Demand Test Suite Reduction. In International Conference on Software Engineering
(ICSE). IEEE, 738–748. https://doi.org/10.1109/icse.2012.6227144

[17] Jacob Krüger, Mustafa Al-Hajjaji, Sandro Schulze, Gunter Saake, and Thomas

Leich. 2018. Towards Automated Test Refactoring for Software Product Lines. In

International Systems and Software Product Line Conference (SPLC). ACM, 143–148.

https://doi.org/10.1145/3233027.3233040

[18] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs

of Clone- and Platform-Oriented Software Reuse. In Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 432–444. https://doi.org/10.1145/3368089.3409684

[19] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A

Round-Trip Engineering Process Model for Adopting and Evolving Product Lines.

In International Systems and Software Product Line Conference (SPLC). ACM, 2:1–

12. https://doi.org/10.1145/3382025.3414970

[20] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and

Thorsten Berger. 2019. Where is My Feature and What is it About? A Case

Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
239–253. https://doi.org/10.1016/j.jss.2019.01.057

[21] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.

2018. Getting Rid of Clone-And-Own: Moving to a Software Product Line for

Temperature Monitoring. In International Systems and Software Product Line
Conference (SPLC). ACM, 189–189. https://doi.org/10.1145/3233027.3233050

[22] Remo Lachmann, Sascha Lity, Mustafa Al-Hajjaji, Franz Fürchtegott, and Ina

Schaefer. 2016. Fine-Grained Test Case Prioritization for Integration Testing of

Delta-Oriented Software Product Lines. In International Workshop on Feature-
Oriented Software Development (FOSD). ACM, 1–10. https://doi.org/10.1145/

3001867.3001868

[23] Yuejian Li and Nancy J. Wahl. 1999. An Overview of Regression Testing. ACM
SIGSOFT Software Engineering Notes 24, 1 (1999), 69–73. https://doi.org/10.1145/

308769.308790

[24] Panagiotis Louridas. 2006. Version Control. IEEE Software 23, 1 (2006), 104–107.
https://doi.org/10.1109/ms.2006.32

[25] Wardah Mahmood, Moses Chagama, Thorsten Berger, and Regina Hebig. 2020.

Causes ofMerge Conflicts: A Case Study of ElasticSearch. In InternationalWorking
Conference on Variability Modelling of Software-Intensive Systems (VaMoS). ACM,

9:1–9. https://doi.org/10.1145/3377024.3377047

[26] Hung V. Nguyen, My H. Nguyen, Son C. Dang, Christian Kästner, and Tien N.

Nguyen. 2015. Detecting Semantic Merge Conflicts with Variability-Aware

Execution. In Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 926–929. https:

//doi.org/10.1145/2786805.2803208

[27] Harrie Passier, Lex Bijlsma, and Christoph Bockisch. 2016. Maintaining Unit

Tests During Refactoring. In International Conference on Principles and Practices
of Programming on the Java Platform (PPPJ). ACM, 1–6. https://doi.org/10.1145/

2972206.2972223

[28] Gregg Rothermel, Mary J. Harrold, Jeffery von Ronne, and Christie Hong. 2002.

Empirical Studies of Test-Suite Reduction. Software Testing, Verification and
Reliability 12, 4 (2002), 219–249. https://doi.org/10.1002/stvr.256

[29] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison

and Evaluation of Code Clone Detection Techniques and Tools: A Qualitative

Approach. Science of Computer Programming 74, 7 (2009), 470–495. https:

//doi.org/10.1016/j.scico.2009.02.007

[30] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.

2018. Evaluating Test-Suite Reduction in Real Software Evolution. In International
Symposium on Software Testing and Analysis (ISSTA). ACM, 84–94. https://doi.

org/10.1145/3213846.3213875

[31] G. Shobha, Ajay Rana, Vineet Kansal, and Sarvesh Tanwar. 2021. Code Clone

Detection—A Systematic Review. In International Conference on Emerging Tech-
nologies in Data Mining and Information Security (IEMIS). Springer, 645–655.
https://doi.org/10.1007/978-981-33-4367-2_61

[32] Leuson D. Silva, Paulo Borba, Wardah Mahmood, Thorsten Berger, and João

Moisakis. 2020. Detecting Semantic Conflicts via Automated Behavior Change

Detection. In International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 174–184. https://doi.org/10.1109/icsme46990.2020.00026

[33] Diomidis Spinellis. 2005. Version Control Systems. IEEE Software 22, 5 (2005),
108–109. https://doi.org/10.1109/ms.2005.140

[34] S, tefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked

and Integrated Variants in an Open-Source Firmware Project. In International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 151–160.
https://doi.org/10.1109/icsm.2015.7332461

[35] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-

bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Bench-

marking the Techniques for the Evolution of Variant-Rich Systems. In Inter-
national Systems and Software Product Line Conference (SPLC). ACM, 177–188.

https://doi.org/10.1145/3336294.3336302

[36] Arie van Deursen, Leon M. F. Moonen, Alex van den Bergh, and Gerard Kok.

2001. Refactoring Test Code. Technical Report SEN-R0119. CWI.

[37] Shurui Zhou, S, tefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wą-

sowski, and Christian Kästner. 2018. Identifying Features in Forks. In Inter-
national Conference on Software Engineering (ICSE). ACM, 106–116. https:

//doi.org/10.1145/3180155.3180205

https://doi.org/10.1109/access.2019.2918202
https://doi.org/10.1007/s10664-021-10097-z
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1109/tse.2007.70725
https://doi.org/10.1007/978-3-319-11283-1
https://doi.org/10.1007/978-3-319-11283-1
https://doi.org/10.1002/stvr.413
https://doi.org/10.1007/s11219-011-9143-x
https://doi.org/10.1007/s11219-011-9143-x
https://doi.org/10.1007/978-3-642-21210-9_24
https://doi.org/10.1007/978-3-642-21210-9_24
https://doi.org/10.1109/icse.2019.00055
https://doi.org/10.1109/icse.2019.00055
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1109/csmr.2013.13
https://doi.org/10.1109/icse.2015.55
https://doi.org/10.1109/icsea.2007.57
https://doi.org/10.1109/icse.2012.6227144
https://doi.org/10.1145/3233027.3233040
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3382025.3414970
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1145/3233027.3233050
https://doi.org/10.1145/3001867.3001868
https://doi.org/10.1145/3001867.3001868
https://doi.org/10.1145/308769.308790
https://doi.org/10.1145/308769.308790
https://doi.org/10.1109/ms.2006.32
https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1145/2786805.2803208
https://doi.org/10.1145/2786805.2803208
https://doi.org/10.1145/2972206.2972223
https://doi.org/10.1145/2972206.2972223
https://doi.org/10.1002/stvr.256
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1007/978-981-33-4367-2_61
https://doi.org/10.1109/icsme46990.2020.00026
https://doi.org/10.1109/ms.2005.140
https://doi.org/10.1109/icsm.2015.7332461
https://doi.org/10.1145/3336294.3336302
https://doi.org/10.1145/3180155.3180205
https://doi.org/10.1145/3180155.3180205

	Abstract
	1 Introduction
	2 Fork-Based Software Development
	3 AST-Based Test Case Similarity
	3.1 AST-Based Similarity
	3.2 Overview
	3.3 Source Code Preparation
	3.4 Test Comparison
	3.5 Similarity Analysis

	4 Evaluation
	4.1 Design
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References

