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Abstract. To maintain and evolve a software system, developers need
to gain new or recover lost knowledge about that system. Thus, program
comprehension is a crucial activity in software development and mainte-
nance processes. We know from previous work that developers prioritize
what information they want to remember about a system based on the
perceived importance of that information. However, AI-based software
systems as a special case are not developed by software developers alone,
but also by data scientists who deal with other concepts and have a
different educational background than most developers. In this paper, we
study what information data scientists (aim to) recall about their systems.
For this purpose, we replicated our previous work by interviewing 11
data scientists, investigating the knowledge they consider important to
remember, and whether they can remember parts of their systems cor-
rectly. Our results suggest that data scientists consider knowledge about
the AI-project settings to be the most important to remember and that
they perform best when remembering knowledge they consider important.
Contrary to software developers, data scientists’ self-assessments increase
when reflecting on their systems. Our findings indicate similarities and
differences between developers and data scientists that are important for
managing the processes surrounding a system.
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1 Introduction

Development, maintenance, and evolution (we refer to engineering) processes
surrounding software systems require the involved developers to obtain extensive
knowledge about various properties. In particular, they must know details about
the system and its engineering, such as the system architecture, the employed
engineering processes, or the intended system behavior. Aiming to facilitate de-
velopers’ work, researchers and practitioners continue to investigate and develop
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techniques for recovering and documenting the respective knowledge. Such activ-
ities are key, but also expensive, within engineering processes. Past studies on
these activities have focused on program comprehension and knowledge recovery,
but little on whether, how, and what knowledge the involved developers aim to
memorize [8]. Moreover, the focus has been on software developers and similar
roles (e.g., testers, architects) that are closely connected to software development.

However, software systems are typically engineered by involving various differ-
ent stakeholders and domain experts. Particularly with the rise of artificial intel-
ligence (AI) and AI-based systems, data scientists have become more and more
involved in engineering processes. Data scientists can have considerably different
backgrounds and tasks compared to typical software developers [1,14,18,19], focus-
ing on, for example, data collection, data cleansing, training AI models, or improv-
ing the performance of such a model. Unfortunately, research on AI-based systems
focuses mainly on data quality, algorithms, performance, and similar technicalities,
while the human aspects within the respective engineering processes have received
less attention. In parallel, the findings of studies on developers’ knowledge needs
and what knowledge they consider important may not be fully transferable.

Overall, there are two gaps we aim to tackle in this paper: First, little research
has focused on understanding what knowledge different stakeholder roles consider
important, and thus aim to memorize. Second, none of these studies has focused
on data scientists as a new, but more and more important, role. We address
these gaps by replicating our previous interview survey on software developers’
knowledge needs and memory performance [8] with 11 data scientists. So, in this
paper, we investigate the information needs, memory, and perceived importance of
knowledge of data scientists, contributing to a better understanding of their needs
and characteristics in engineering processes. Our results can help researchers and
practitioners alike, for instance, for developing novel techniques that are focused
on helping data scientists with their specific AI-related knowledge needs.

2 Related Work

Developers need to continuously comprehend the system they are working on
during an engineering process. This may include learning new things or recovering
knowledge they have forgotten over time. Consequently, there has been extensive
research on program comprehension, the activity of recovering knowledge about
the source code a developer is working on [3, 15, 20, 21]. Research in this area
investigates how developers comprehend code, what constructs (e.g., code com-
ments [17], identifier names [4]) facilitate or complicate program comprehension,
and proposes novel techniques for supporting developers. However, program com-
prehension is concerned with recovering detailed knowledge about the code and
consequent system behavior, not tackling other knowledge issues like developers’
memory or forgetting that we are concerned with. In our own previous works,
we have been focusing on such issues, specifically developers’ memory regarding
source code [7, 11] and how to recover knowledge from different artifacts [10].
Most importantly, we [8] have previously investigated the relationship between
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developers’ information needs and their memory decay in a two-fold study. We
collected questions that developers asked during their work by reviewing existing
studies, classifying these questions into three themes: architecture, code, and
meta. Then, we conducted a qualitative interview survey with 17 experienced
developers working mostly on smaller systems, asking questions about their
systems based on the three themes. We aimed to understand what knowledge
developers consider important to recall from memory, assess their actual ability
to remember such knowledge, and understand how they assess themselves in
terms of memorizing. The results of our study imply that developers working on
smaller systems tend to consider architecture and abstract knowledge about the
code more important to remember, with meta knowledge being considered the
least important to remember. For this paper, we replicated the interview part
of our study with a different population: data scientists. Recently, in another
study building on that previous work, we [9] have conducted a questionnaire
to understand what knowledge developers consider important to memorize or
document. So, we contributed complementary insights into how developers would
prefer to document knowledge they may forget over time.

Differentiating between typical software developers and data scientists is
important, since engineering AI-based systems exhibits different processes and
consequent knowledge. For instance, Liu [14] performed interviews in which they
identified 25 tasks covering various engineering phases that must be added to
processes for AI-based systems. As a result, the types of knowledge that are
relevant, their perceived importance to know from memory, and data scientists’
ability to actually remember these may deviate compared to typical software
developers—highlighting an important research gap. This gap has not been
tackled in previous work on engineering AI-based systems. However, several
other studies on such systems showcase the differences in terms of engineering
processes [1], reasoning about or explaining AI-based systems [16, 23], or guiding
end users [22]. Lastly, researchers have investigated the challenges for data
scientists in engineering AI-based systems [18,19]. All these works highlight the
differences between data scientists and software developers, but do not investigate
their knowledge needs and memory, which we study in this paper.

3 Methodology

For this paper, we replicated the interview part of our previous work [8] and built
on systematic survey procedures [13]. Due to the different domains (software
developers in the original versus data scientists in this study), we implemented
some changes in the design that we explain in this section.

3.1 Research Questions (RQs)

With our study, we aimed to elicit what types of knowledge data scientists consider
important to remember about their system (RQ1), how well they perform at
remembering these (RQ2), and how their self-assessment matches their actual
ability to remember knowledge (RQ3). For this purpose, we defined four RQs:
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RQ1 What knowledge about their system do data scientists consider important
to memorize and remember?

RQ2 Can data scientists correctly answer questions about their system based
on their memory?

RQ3 To what extent does a data scientist’s self-assessment of their familiarity
with a system align with their actual knowledge about that system?

RQ4 What are the similarities and differences between data scientists and
software developers?

We adapted the first three RQs from our previous study, and defined RQ4 to
compare between both studies.

3.2 Interview Instrumentation

Identically to our previous study, we performed face-to-face interviews admin-
istered by the interviewer. An interviewer-administered interview limits the risk
of misunderstandings and allowed us to gather more reliable data compared to a
questionnaire. For our interview guide, we aimed to keep or adopt the questions
from our previous study, since (1) these questions were established through a
systematic literature review and (2) this allows a comparison of the outcomes for
data scientists to those for software developers. We adjusted and added questions
to account for the different artifacts data scientists work with, for which we built
on the main practices of data scientists described by Burkov [2].
Questions. We provide an overview of the questions we asked during our
structured interviews in Table 1. As we show, the questions align to five sections:
Overall Self-Assessment (OS): This section involves four questions on the

interviewees’ self-assessments regarding their memorized knowledge. These
questions are identical to our previous study and we asked them four times:
once at the beginning and once after each knowledge section (A, M, C). We
did this to identify whether an interviewee’s self-assessment would change
after reflecting on their system.

AI-Project Setting (A): With these seven questions, we investigated our in-
terviewees’ memory of the project setting used for the AI-based part of their
system. This section did not exist in our previous work and substitutes the
questions about architecture that we asked the software developers.

Meta Knowledge (M): Next, we asked five questions on collaboration and sys-
tem evolution, adapting one question (M5) to the specifics of AI engineering.

Code Knowledge (C): In this last knowledge section, we asked four questions
on code and AI-modeling details. Particularly, we adapted two questions (C3,
C4) to AI engineering. Note that we adapted C3 depending on the learning
algorithm our interviewees used within their systems, differentiating between
the types (e.g., supervised, unsupervised) and changing the respective details
we asked for (e.g., labels, output).

Importance of Knowledge (IK): To wrap up, we asked the same five ques-
tions on the perceived importance of knowledge as in our previous study. In
contrast to our previous study, we did not ask our interviewees to report
their perceived importance of each individual question, but to only mention
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Table 1. Overview of our interview questions. Those questions fully unchanged compared
to our previous study [8] are asterisked (*).
id questions and answering options (AOs)

section: overall self-assessment (repeated after sections A, M, and C)

OS1 * How well do you still know your system?
OS2 * How well do you still know the architecture of your system?
OS3 * How well do you know your code in the system?
OS4 * How well do you know file <three>?

. AO <for each OSi>: 0–100 %

section: AI-project setting (A)

A1 What are the learning algorithms used in your system?
AO: free text

A2 Where did you get your data from?
AO: ◦ provided by customer ◦ generated from another algorithm ◦ others (free text)

A3 Did you continue collecting data? If yes, did you retrain your model?
A4 Did you use a validation set or test sets? How did you split your training dataset?
A5 Did you apply any feature engineering to your dataset? If yes, what techniques did you use?
A6 Did you do any hyperparameter tuning? If yes, what techniques did you use?
A7 Did you combine different models in your system? If yes, what techniques did you use?

AO <for each A3–7>: ◦ yes (free text) ◦ no

section: meta (M)

M1 * Can you point out an old file that has especially rarely/often been changed?
◦ Yes (free text for file name) ◦ No

M2 * How old is this file in the project life-cycle and how often has it been changed since its creation?
M3 * Who is the owner of file <one>?
M4 * How big is file <two>?

AO <for each M2–4>: free text
M5 Did your model have any overfitting or underfitting? If yes, how did you fix it?

◦ Yes (free text) ◦ No

section: code (C)

C1 * What is the intent of the code in file <three> and <four>?
C2 * Is there a code smell in the code of file <three> or <four>?

AO <for each file in C1–2>: free text
C3 If you use <learning>, can you describe your <X>?

AO: free text <for each>
<supervised learning>: <feature vector & labels>
<semi-supervised learning>: <feature vector & labels & data mostly labeled/unlabeled
<unsupervised learning>: <feature vector & types of output>
<reinforcement learning>: <feature vector>

C4 How did you assess your model’s performance? What techniques did you use?
AO: free text

section: importance of knowledge

IK1 * Which part of your system do you consider important?
AO: free text

IK2 * Which type of the previously investigated types of knowledge do you consider important?
AO: ◦ architecture ◦ meta ◦ code

IK3 Which of the previous questions do you consider important or irrelevant when talking about familiarity?
AO: free text

IK4 * What do you consider/reflect about when making a self-assessment of your familiarity?
IK5 * Do you have additional remarks?

AO <for each file in IK4–5>: free text

those questions they considered particularly important or relevant. Our main
motivation for this adaptation was to limit the time needed for each interview.

The first and last sections ask for opinions and experiences, while the other three
(knowledge) sections ask for details about the systems we could verify afterwards.
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Data-Science Adaptations. Initially, we planned to use all of our previous
questions and to only add data-scientist-specific ones. However, this drastically in-
creased the time needed for each interview (≈2 hours). Based on our test runs and
potential interviewees raising the issue that this would be too long and not focused
on their actual tasks, we decided to refocus the interviews on AI engineering.

For this reason, we exchanged the section on software architecture from
our previous study with the section on AI-project settings, namely on the AI
algorithms used (A1), data sources (A2), and similar strategical decisions relevant
for engineering an AI. Note that we initially called this section “architecture”
during the interviews as well. However, as several interviewees pointed out, this
name was not the best fit to describe the type of questions we asked.

Similarly, we exchanged questions in the section code knowledge to refocus it
from code details (e.g., return types, exceptions) towards the coding details of
an AI. Specifically, we added a question about feature vectors and labels (C3)
as well as a question about the assessment of model performance (C4). We also
reduced the number of files about which we asked such questions from three to
two to save time. In the section on meta knowledge, we removed the questions
about the last changes to a file and instead added a question on whether there
had been overfitting/underfitting and how this has been fixed (M5).

Finally, we initially wanted to assess the importance of knowledge as we did
before, namely for each individual question. However, to reduce the interview
length, we decided to assess the importance of the knowledge sections only, and
to depend on the qualitative analysis results that we obtained from the answers
to IK3. In the end, we limited the time of each interview to around 1 hour. Of
course, this means that our new study is not an exact replication, but the focus
on the specifics of AI engineering also promises more important insights into
data scientists’ knowledge needs.
Evaluation. Due to our adaptations, we needed to verify that our interview survey
remained valid and reliable. Besides test runs and checks among ourselves, we
asked particularly our first interviewee to give us their opinion about the questions
and if there were any irrelevant or difficult-to-follow questions. According to that
first interviewee, all questions made sense in the context of AI-based systems and
did not need to be changed. We continued to ask all of our interviewees about the
quality of the questions to reflect on potential threats to validity (part of IK5).
None of our interviewees indicated that our questions were hard to comprehend
or irrelevant for data scientists.

3.3 Interview Conduct

Initially, we planned to conduct the interviews in person. However, most of our
potential interviewees preferred online sessions, we were restricted in traveling
due to the COVID-19 pandemic, and we ended up interviewing data scientists in
different countries. For such reasons, we decided to conduct the interviews via
online meetings using Zoom. This resulted in the structure and assessment of
each interview as we describe in the following.
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Interview Structure. We started each interview by introducing the interview
protocol, checking for the interviewee’s consent, and asking some background ques-
tions (cf. Table 2). Since most of our interviewees’ systems were closed-source, we
could not investigate those beforehand to prepare our questions (i.e., questions ask-
ing about specific files). To solve this problem, we asked each interviewee to write
down four code files in the beginning, to which we then referred to in the respective
questions (cf. Table 1). We aimed to avoid potential threats in the file selection by
asking each interviewee to open their system and navigate to a file based on our
suggestions. Specifically, we asked how many folders their repository involved and
then randomly picked a number to select a folder, and we repeated the same for
the files (or folders) in that folder. Using this method, we aimed to avoid our inter-
viewees selecting a file they were particularly familiar with. Note that we ensured
that the interviewee had worked on the file to ensure that we were not asking ques-
tions about a completely unknown piece of the system. Then, we continued with
iterating through our questions without the interviewee looking into their system.
Rating Correctness. As in our previous study, we aimed to understand to
what extent our interviewees could answer our questions correctly based on their
memory. Unfortunately, we were not allowed to investigate the systems together
with the interviewees, since the systems were closed source. For this reason, each
interviewee had to re-iterate through the questions and assess themselves whether
the question was correct or not—this time being allowed to look at the system’s
code and artifacts to compare their answers against the actual implementation.

While this strategy may have introduced bias, we trusted our interviewees
to provide truthful assessments, since there were no negative consequences and
they could check to what extent they could trust their memory. Moreover, while
some questions can be easily self-corrected (e.g., M1–4), others require a detailed
reflection about various parts of the system and involve subjective opinions
anyway (e.g., C1, A2–4). This problem is inherent to program comprehension,
since two individuals may have different perceptions about the same concept. To
mitigate potential threats, we asked the interviewees to explain their reasoning for
each assessment to us, which we considered to improve the fairness. For instance,
to compare their answers to C1 and C2 against the actual code, two interviewees

Table 2. Overview of the 11 included interviewees.
id degree exp. domain devs.

I1 master <1 finance 7
I2 bachelor 15 telecommunications 3
I3 master 2 machine learning 15
I4 master 4 finance 6
I5 master 10 healthcare 3
I6 master 5 agriculture 4
I7 PhD 5 software engineering 1
I8 master 10 image processing 2
I9 master 5 image processing 2
I10 master 7 real estate 2
I11 master 4 biomedicine 1

exp.: years of experience
devs.: number of developers involved
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explained to us in detail what they thought the intention of each file was after
looking at it again and what they considered to represent a code smell within
each file. Note that we followed a similar strategy as in our previous study to
deal with such inherently more subjective questions, which we found to yield
reliable results and to connect better to an interviewee’s memorized knowledge
(which is based on their subjective perception, too).
Rating Scheme. To make it possible that we could compare the findings of
our previous to this study, we employed the same rating scheme. Specifically,
we awarded 0 points for incorrect, 0.5 points for partially correct, and 1 point
for correct answers. We considered an answer partially correct if we and the
interviewee noticed that an answer was missing important details that were
relevant to the question. Identically, we awarded half a point if an interviewee
was not completely sure about or confident in their answer.

3.4 Target Population and Sampling

We characterized our target population based on characteristics recommended
in established guidelines [5, 13]. Namely, we targeted data scientists, initially
those located in Sweden or working for Swedish companies. We did not put
limitations on the educational level, gender, age, or years of experience in data
science when recruiting interviewees. Due to time constraints, a lack of direct
contacts, and other restrictions (e.g., COVID-19), finding interviewees within
Sweden was challenging. Therefore, we decided to interview any data scientist
who accepted our interview request, regardless of whether they worked in Sweden
or for Swedish companies. In the end, we interviewed 12 data scientists of different
genders, with varying years of experience, and working in various countries (e.g.,
Sweden, Germany) as well as domains. However, similar to our previous study,
most of them have been working on smaller systems. Note that we excluded
one interview during a quality check. The interviewee worked on a system at a
very early development stage. As a consequence, seven out of 18 questions in the
knowledge sections were not applicable and we could not assess the respective
correctness. To improve the trust into our results, we decided not to use the
respective interview data for our analysis. We provide an overview of the included
interviews in Table 2.

We used judgment and snowballing sampling to recruit interviewees. Both are
non-probabilistic sampling strategies, which we chose because we assume that the
target population is rather large but its actual size and the respective individuals
are unknown to us—which is why we cannot employ probabilistic sampling [13].
Specifically, we employed judgment sampling by contacting data scientists that we
identified through searching on public company websites and Linked-In profiles.
On Linked-In, we searched for data scientists who are working in Sweden. Then,
we contacted the data scientists we could find via email and asked them to
introduce us to any other data scientists that they thought may be interested to
participate (i.e., snowballing). We also used our personal networks (convenience
sampling), which yielded four additional interviewees from different countries.
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3.5 Data Analysis

To answer RQ1, we analyzed the interviewees’ responses to the questions within
the section importance of knowledge qualitatively and quantitatively. We used
open coding on the free texts and computed the number of times each knowl-
edge section was chosen as important or not important. To answer RQ2, we
quantitatively analyzed the correctness of the answers to the three knowledge
sections. Specifically, we computed the average of the overall correctness for each
question within the knowledge sections in Table 1 individually as well as for the
knowledge sections combined. To answer RQ3, we compared the interviewees’
self-assessments to their correctness. Finally, to answer RQ4, we compared our
previous findings on software developers to those we obtained during this study
for data scientists.

4 Results

Next, we present the results for each of our RQs individually.

4.1 RQ1: Importance of Memorizing

To answer RQ1, we asked our interviewees to choose the knowledge sections they
think are important (I2 in Table 1) while reflecting on the questions that we had
in the questionnaire. Not surprisingly, considering their background, 10 out of the
11 interviewees chose AI-project setting knowledge as an important knowledge
type, and seven out of the 11 interviewees chose code knowledge. Only one out
of the 11 interviewees chose meta knowledge (cf. Figure 1). This interviewee
selected all three types of knowledge as important.

To obtain more detailed insights, we also analyzed the answers to question I3
to understand what questions we asked target knowledge that the interviewees
consider important or irrelevant for reflecting on their familiarity with a system.
Note that the interviewees chose what questions they wanted to make statements
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AI settings meta code
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1
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Fig. 1. IK2: Importance of types of knowledge.
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Fig. 2. Assessed correctness of our interviewees for each question on average.

about. AI-project setting questions were mentioned by six of the interviewees
as being important when talking about familiarity. Most of them mentioned all
questions in the AI-project setting section. One specified in more detail that they
considered knowledge about the learning algorithms (A1), data collection (A3),
feature engineering (A5), and hyperparameter tuning (A6) as important.

When it comes to code knowledge, three interviewees elaborated about what
knowledge they consider important. One of them made a general statement
that code is important for detailed knowledge. The second interviewee said that
knowledge about code smells (C2) and feature vectors/labels (C3) is important.
Lastly, the third interviewee only mentioned that feature vectors/labels (C3)
are important. Interestingly, another interviewee referred to knowledge about
code smells (C2) explicitly as not important. Lastly, six interviewees chose meta
questions as not important, stating that questions about, for instance, the size of
a file (M4) are irrelevant to remember. Another interviewee mentioned explicitly
that remembering whether an old file has been rarely or frequently changed (M1)
is not important.

Observations RQ1 • The majority of our interviewees believes that
AI-project setting knowledge is important to remember. • A little more
than half of the interviewees thinks that code knowledge is important to
remember. • The majority of the interviewees mentioned meta knowledge
as not important when talking about familiarity with a system. •

4.2 RQ2: Correctness of Memory

To assess how well our interviewees could remember the different parts of their
systems (RQ2), we calculated the average correctness of each question. We
display a summary of the results in Figure 2.
AI-Project Settings. Most interviewees have scored noticeably high in the
AI-project settings section. As we can see in Figure 2, the average correctness
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for the AI-project settings section is 92%. The highest average correctness is
actually at 100% and it was scored for A2, which asks about the source of the
data used in the system. In contrast, the lowest average correctness is 86 % and
it was scored for two questions: A5, which asks about feature engineering, and
A6, which asks about hyper-parameter tuning.
Meta. Our interviewees had the lowest correctness when it comes to meta
knowledge. We can see in Figure 2 that the average correctness of the meta section
is 64%. However, our interviewees scored 100% on question M5 about whether
the model in the system had an overfitting or underfitting. For question M4,
about the size of a file in terms of lines of code (approximated), our interviewees
had an average correctness of only 9 %.
Code. Similar to the AI-project settings, our interviewees scored a considerably
high correctness of 92 % for code knowledge. They scored on average 98 % correctly
for question C1 about the intent of two different files in the system. The lowest
average correctness score is 84% for question C2 about the presence of code
smells in selected files.
Overall Average. On average, our 11 interviewees reached a correctness score
of 83 %, with one interviewee scoring a correctness of 100 % and the interviewee
with the lowest correctness scoring 66 %.

Observations RQ2 • Only one interviewee could remember all details
we asked about correctly. • All interviewees could remember the source
of their data and whether their model had an overfitting or underfitting.
• Interviewees seem to remember the intent of their files, as well as
their feature vector and labels better than code smells and the model-
performance assessment techniques used. • Interviewees remember AI-
project setting knowledge and code knowledge equally well. •

4.3 RQ3: Self-Assessments Versus Correctness

To answer RQ3, we compared the interviewees’ average correctness to their
initial and final self-assessments, which we display in Figure 3. We used Kendall’s
τ [6] on this data to test for rank correlations. The results indicate no significant
correlation between the overall self-assessment and the average correctness of
the interviewees (both p-values > 0.05, initial τ = 0.242, final τ = 0.061). We
also looked into how the results of the initial and final overall self-assessments
changed during the interview. In particular, five interviewees increased and three
interviewees decreased their overall self-assessment during the interview. Three
interviewees left their self-assessments unchanged during the interview.

When analyzing the interviewees’ responses to IK4, we found that many
of them reflect on their AI-project settings or architectural knowledge when
making a self-assessment of how well they know their system. Namely, six of the
interviewees described that they reflected on the pipeline flow and model training,
their ability to explain the system structure or architecture, and the idea of the
implementation. Three of these six interviewees also talked about reflecting on
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Fig. 3. Participants’ self assessment in the beginning (left, some points overlap) and
end (right) compared to their correctness. The diagonals serve as indicators only.

code knowledge. Other reflections were on what aspects are relevant in a system
(two interviewees) and on the confidence in the own memory regarding the system
(one interviewee). Lastly, one of the interviewees mentioned that they were not
considering anything in particular, because the system was small and fairly recent
and they were the only developer.

Observations RQ3 • There is no correlation between interviewees’ self-
assessment of their familiarity and the correctness of their answers from
memory. • The most mentioned aspect interviewees consider when making
a self-assessment is their AI-project settings knowledge. •

4.4 RQ4: Data Scientists Versus Software Developers

In Table 3, we compare the perceived importance that interviewees assigned to
the different types of knowledge in this study (data scientists) and in our previous
one [8] (software developers). We found that the results from both studies are
similar with regard to the following aspects: The perceived importance is similar.
AI-project settings knowledge is, identically to architectural knowledge, considered
most important. Note that data scientists assign even higher importance to AI-
project settings knowledge than software engineers do to architectural knowledge.
The importance that is assigned to code knowledge and meta knowledge is
comparable for both populations, too. We can observe that in both cases abstract
knowledge, such as the intent of code [12], was considered more important. Also,
both populations considered meta-knowledge to be the least important.

Observations RQ4 • The order of perceived importance of knowledge
types by data scientists and software engineers is similar: AI-project
settings knowledge and architecture knowledge are followed by code
knowledge and, lastly, meta-knowledge. •
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Table 3. Comparison of the perceived importance of different types of knowledge.

type of knowledge software developers [8] data scientists

architecture 76.5% n.a.
ai-project settings n.a. 90.9 %
code 52.9% 63.6%
meta 11.8% 9.1%

5 Discussion

In the following, we summarize our findings’ implications for researchers and
practitioners, before discussing threats to the validity of our results.

5.1 Implications for Researchers

Be careful with using self-assessments of familiarity. Just as for software
developers [8], researchers should be careful when using data scientists’ self-
assessments of their familiarity with a system. Our results indicate no correlation
between self-assessments and the actual correctness of answers.
Plan comparisons between data scientists and software developers
carefully. Comparing between data scientists and software developers needs
to account for differences in the way of thinking and working. Specifically, we
formulate the following conjectures that should be investigated in future work:
– A different intensity of knowledge use? We observed that data scientists are

specifically good at remembering answers to questions that are data-science
specific (answering each question added to this study compared to our pre-
vious work with >80% correctness). In contrast, they answered only one of
the questions we also asked to developers with this high level of correctness.
Thus, it does not seem reasonable to assume that they are simply better at
remembering things. Another logical interpretation is that data scientists use
individual pieces of knowledge about the data science-specific questions more
often during their daily work. In contrast, software developers may have to
switch contexts more often, recovering the same knowledge less frequently.

– A different way to structure knowledge? Data scientists seem to structure
their knowledge about a system less in terms of files than software engineers
would. This is supported by the observation that questions on meta knowl-
edge that concern files (M1–4) were answered with lower correctness by data
scientists than by software developers.

– A different notion of “big picture?” In our previous study [8], software devel-
opers have indicated that the architectural knowledge is considered the big
picture of a software system, with all interviewees agreeing on the importance
of being able to draw a high-level architecture of the system. Even though we
did not explicitly ask about architecture in this study, we collected some input
from interviewees that indicate a different idea about what the “big picture”
of an AI-enabled system is. One of the interviewees remarked that they are
not too fond of software engineers who are “always thinking about code,” and
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that they—as a data scientist—prefer to always think about design and the
solution on a “higher level.” We can only guess whether this higher level refers
to AI-project settings knowledge or to a different type of knowledge that we
did not capture here.

In future work, we need to investigate such questions in more detail.

5.2 Implications for Practitioners

Focus on AI-project settings during documenting and onboarding.
Knowledge related to AI-project settings received the highest vote of impor-
tance, even compared to the importance software developers put on architectural
knowledge. Thus, the respective pieces of information seem to be crucial for
data scientists to perform their work, which is confirmed by their very high
ability to answer these questions correctly without looking at their system (i.e.,
from memory). In practice, documenting an AI-system and onboarding new data
scientists to an existing project should focus on these questions.

5.3 Threats to Validity

Internal Validity. The individual characteristics of our interviewees like their
age, gender, or memory performance may have impacted their perceptions and
responses. Due to the limited number of interviewees, we could not perform
population analyses, which are subject to future work. Also, there is the risk that
some questions may have been misunderstood by an interviewee. To mitigate this
risk, we performed test runs among ourselves and at least one interviewer was
present in each interview to explain questions and clarify potential confusions.

As we have mentioned before, we added and modified some questions to focus
on knowledge relevant to data scientists. These new questions have a weaker
foundation in empirical evidence compared to our original study for which we
elicited the questions via a systematic literature review. However, to the best of
our knowledge, there is currently no comparable data basis that we could have
built on for data scientists. To still mitigate this threat, we derived our questions
from the main practices of AI-based systems that are described by Burkov [2].

While we did not inform the interviewees in our previous study about the
interviews’ exact purpose to avoid biases, we had to briefly explain our motivation
for this study to gain the interest of the data scientists. This may have caused a
threat to the internal validity, because the interviewees may have prepared for
our interviews by investigating their system beforehand or proposing to work on
a system they know particularly well. While this is unlikely since all of them are
working in practice, we further aimed to mitigate this threat. For this purpose, we
did only share a short motivation for our interviews without details on the types
of questions we would ask. Moreover, we asked rather different questions and
chose files at random. On a related matter, there is the risk that an interviewee
looked at their system while answering our questions, since the online setting
limited our control at that point. However, this is very unlikely and we did not
observe any behaviors that would hint at such a case.
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As indicated in Section 3, we used the term “architecture knowledge” for
the AI-project settings section during the interviews. Some interviewees pointed
out that the term “architecture” is not the best description for that type of
knowledge. In the end, we renamed the section for this paper using a term that
was suggested by one of the interviewees: “project settings.” It is possible that
the use of the term architecture confused some interviewees and influenced their
judgment of the importance of knowledge. We would assume that such confusion
would decrease their rating of importance, and thus the values we present may
be an underestimate. Moreover, among us authors, we discussed whether the
placement of question C4 (assessment of the model’s performance) in the code
knowledge section is appropriate, or whether the question should have been placed
in the AI-project settings section. It is possible that the placement changed the
perceived importance of the code knowledge section.
External Validity. The primary external threat to this study is the small
sample size. We analyzed only 11 interviews, which means that it is not clear
to what degree the results can be generalized. This uncertainty holds especially
with regard to data scientists working on larger systems, since we mostly studied
data scientists working on smaller systems. Furthermore, after interviewing data
scientists who are working in different companies, it became clear that the tasks
assigned to data scientists in such companies vary. This may cause individuals
with the same title (data scientist) to have very different responsibilities, which
eventually leads to varying perceptions. Such threats are partly inherent to
interview surveys as well as human cognition, and thus we cannot fully overcome
them. Still, we aimed to mitigate such threats by involving a diverse sample of
data scientists to cover broader experiences and perceptions.

6 Conclusion

In this paper, we presented an interview survey with 11 data scientists, investi-
gating what knowledge they consider important, aim to remember, and how they
perform when recalling it from memory. For this purpose, we replicated parts of
our previous work with software developers [8], against which we also compared
our results. Among others, our results indicate that data scientists (identical to
software developers) consider more abstract knowledge more important to re-
member, and perform quite well at recalling it from memory. Also, we highlighted
differences between data scientists and software developers, particularly with
respect to what constitutes “more abstract” knowledge. Based on these findings,
we have discussed concrete recommendations and steps for future work to improve
our understanding of data scientists’ knowledge needs and to facilitate their work.
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