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ABSTRACT
Modern software development relies on the reuse of code via Appli-
cation Programming Interfaces (APIs). Such reuse relieves develop-
ers from learning and developing established algorithms and data
structures anew, enabling them to focus on their problem at hand.
However, there is also the risk of misusing an API due to a lack of
understanding or proper documentation. While many techniques
target API misuse detection, only limited efforts have been put
into automatically repairing API misuses. In this paper, we present
our advances on our technique API-Specific Automated Program
Repair (ASAP-Repair). ASAP-Repair is intended to fix API misuses
based on API Usage Graphs (AUGs) by leveraging API usage tem-
plates of state-of-the-art API misuse detectors. We demonstrate
that ASAP-Repair is in principle applicable on an established API
misuse dataset. Moreover, we discuss next steps and challenges
to evolve ASAP-Repair towards a full-fledged Automatic Program
Repair (APR) technique.
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1 INTRODUCTION
An Application Programming Interface (API) is the de facto stan-
dard for client developers to reuse algorithms and code implemented
in a library or framework developed by API developers. An API
provides a set of API elements (e.g., methods, fields, data structures).
When using these API elements, client developers can misuse them,
for instance, mixing up the order of method calls or calling methods
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with false parameters [2]. If such a misuse causes negative behavior
(e.g., software crashes, performance issues), we refer to it as API
misuse.

In the past, many techniques for detecting API misuses have
been developed [2, 4, 7, 13–15]. Commonly, these techniques infer
or mine likely correct template usages of the API (e.g., patterns or
change rules) whose violations are reported as misuses. While lim-
ited, such techniques provide a profound way to specifically detect
API misuses. Importantly, they do not require dedicated tests to detect
and localize misuses, and they provide a patch via the template usage
with which the misuse has been detected. A natural way to advance
research is to leverage these templates for automated repair.

In this paper, we introduce the idea of an Automatic Program
Repair (APR) technique for API misuses to which we refer to as
API-Specific Automated Program Repair (ASAP-Repair). ASAP-
Repair builds on a graph-based structure representing API usages
named API Usage Graphs (AUGs), which has been introduced by
Amann et al. [3]. Particularly, we leverage different template usages
represented as AUGs (i.e., patterns and change rules) to repair API
misuses. While currently limited to repairing misuses in AUGs
and not in code, ASAP-Repair’s major benefit compared to state-
of-the-art APR techniques is that it does not require test cases or
the execution of code to localize misuses. We demonstrate its in-
principle applicability by applying ASAP-Repair on the real-world
API misuse dataset MUBench [1]. Moreover, we discuss necessary
steps and challenges to evaluate and to compare ASAP-Repair with
state-of-the-art APR techniques. We publish ASAP-Repair and all
artifacts related to this paper in a publicly available repository.1

2 API USAGE AND API MISUSE DETECTION
API Usage Graphs. Amann et al. [3] have developed a graph-

based structure to describe API usages in Java with the goal to
improve the precision of API misuse detection. For representational
purposes, we introduce AUGs with a fictive fix2 of an API misuse
depicted in Listing 1 and its AUG representation before this fix (cf.
Figure 1a). This fix adds a validation for the method call B.bar()
in line 9 by checking the condition B.isBarable(). In case this
resolves to false, an alternative call to B.bar2() is required.

AUGs are directed, labeled, acyclic multigraphs consisting of
different node (i.e., action and data) and edge types (i.e., data and
control flow). Action nodes are depicted as rectangles representing
method calls (e.g., A.foo()) or control structures, while ellipses vi-
sualize data nodes, such as constants and objects (e.g., A). Data flow
is represented with solid edges connecting parameters to methods

1https://doi.org/10.5281/zenodo.10527304
2Please refer to our replication package for real examples.
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Listing 1: Sample code for an API misuse and fix.
1 import A;
2 import B;
3 public class misuse {
4 public void method () {
5 System.out.println("Start run");
6 A.foo();
7 noise();
8 - B.bar();
9 + if(B.isBarable ()){
10 + B.bar();
11 + } else{
12 + B.bar2();
13 + }
14 A.foobar ();
15 System.out.println("finished run");
16 }
17 }

(i.e., para) or objects to their object methods (i.e., recv). Control
flow is displayed via dashed edges that indicate the order of action
nodes (i.e., order) or the selection after if-conditions (i.e., sel).
AUGs only represent the API usage of a single method declaration
(e.g., method()), and thus are restricted to the intra-procedural
level. However, they have been demonstrated to improve API mis-
use detection and were enhanced as well as used by different re-
searchers [3, 7, 13]; making them a valid basis for an APR technique.

Frequent API Usage Patterns. Researchers have proposed a set
of API misuse detectors, many of them applying frequent pattern
mining [2, 4, 7, 14, 15]. Their conjecture is that the way APIs are
frequently used also represents their correct usages. Thus, they
conduct pattern mining to infer API usage patterns and compare
those with actual usages of that API. If a usage violates this pattern,
it is denoted an API misuse. However, recent work showed that
such misuse detectors typically suffer from a high false positive rate
(i.e., a huge number of correct usages reported as misuses) [2, 5],
and thus research has focused on improving the precision of misuse
detectors. In the following, we assume that a pattern in the form of
an AUG has been found that can correctly detect an API misuse.

API Change Rules. Another idea leverages information from al-
ready fixed misuses by extracting API code changes using version
control [11, 13]. In detail, such techniques infer so-called correction
or change rules, which represent the essential changes needed to fix
an API misuse. A rule has the form𝑚 → 𝑓 where𝑚 and 𝑓 are the
misuse and fixed (sub-)AUGs of the change, respectively. We show
the rule for the fix in Listing 1 in Figure 1b. To match both graphs,
heuristics are applied, which we also apply for ASAP-Repair (cf.
Section 3). A rule consists of the subgraphs describing the misuse
and its fix as well as transform-edges representing how nodes are
transformed into their respective fix. Additions are symbolized by
special 𝜖-nodes indicating “holes” in the misuse graph. Similarly,
deletions are represented by using 𝜖-nodes in the fixed AUG.

To detect API misuses, existing techniques measure the similar-
ity3 𝑠𝑖𝑚 of a candidate API usage 𝑢 and both subgraphs𝑚 and 𝑓 of
the rule. A usage 𝑢 is reported as a misuse if 𝑠𝑖𝑚(𝑚,𝑢) > 𝑠𝑖𝑚(𝑓 ,𝑢)
holds, meaning that the usage is more similar to the misuse part
than to the fixed part. Results indicate that such a technique can
achieve high precision, but suffers from a very low recall [12].

3Originally, this was called “distance,” which is mathematically restricted. Thus, we
use the more general term “similarity.”
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Figure 1: AUG (left) and change rule (right) for the example
code in Listing 1.

3 PROCESS OF ASAP-REPAIR
We depict ASAP-Repair‘s concept in Figure 2. It fixes API misuses in
the form of AUGs using patterns (i.e., as AUGs) or change rules. Both
variants start with an API usage ( A ), which is transformed into its
respective AUG followed by the misuse detection. For the pattern-
based version ( B ), we can apply the violation-based technique by
Amann et al. [3]. When using change rules ( C ), we can use the
similarity-based technique [11, 12]. If a misuse is detected, ASAP-
Repair has different steps to match the nodes of the misuse AUG
with those of the template AUG (i.e., pattern or change rule) through
which the misuse was detected. Using this matching, we identify
which nodes have to be changed (i.e., add, delete, update).

Matching Heuristic. Matching graphs refers to the subgraph iso-
morphism problem known to be NP-complete [6]. Thus, we adapted
the strategy to produce change rules [12, 13] for graph matching.
In detail, we applied the Kuhn-Munkres algorithm [10] to find a
heuristic solution for the matching. This means that we create a
bipartite graph based on the two AUGs (e.g., 𝑎𝑢𝑔𝐴 and 𝑎𝑢𝑔𝐵 ), with
one partition containing the nodes of 𝑎𝑢𝑔𝐴 and the other the nodes
of 𝑎𝑢𝑔𝐵 . Then, we equalize the cardinalities of both partitions by
adding special 𝜖-nodes. These describe the addition and deletion
of nodes (e.g., a node changed to an 𝜖-node represents a deletion)
within the matching. Finally, we add edges between the nodes of
both partitions, which we label with the costs to transform the
respective node into the other (i.e., the number of node relabelings
as well as adding, deleting, and relabeling incoming and outgoing
edges). The Kuhn-Munkres algorithm finds a matching that mini-
mizes the overall costs. Note that this matching can be invalid, since
it ignores the order of nodes and multiple matchings are possible.

Pattern-Based Matching. In case we repair an API misuse based
on patterns, we cannot directly match the misuse with the pattern
AUG. The reason is that the pattern is typically smaller (in terms of
number of nodes) than the misuse. Thus, a matching would indicate
that every node not part of the pattern must be deleted. We avoid
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Figure 2: Concept of Pattern- and Rule-based API-specific Automated Program Repair

this issue by conducting a preprocessing of the misuse to find and
match only those nodes that relate to the pattern. Particularly, we
leverage that AUGs contain information on the API type of single
nodes (e.g., java.util.List). Then, we consider only those nodes
of the misuse for matching that have the same API type as the
nodes in the pattern. Thus, we determine the API types present
in the pattern AUG ( D ) and filter nodes from the misuse AUG to
extract a subgraph, consisting only of nodes of these types ( E ).
Then, we match only this subgraph to the pattern ( F ).

Rule-Based Matching. Matching an API misuse with a change
rule is simpler, since such rules describe exactly which nodes have
to be changed. In detail, we match the misuse AUG with the misuse
part AUG of a change rule ( G ). If the rule contains an addition
of nodes (i.e., the misuse part contains 𝜖-nodes), we temporarily
disregard these from the matching procedure. Then the matching
can have three possible cases:
(1) A node from the misuse AUG is matched to a non-𝜖-node of

the misuse part AUG. This indicates that this node has to be
either deleted or updated (i.e., depending on whether this node
is connected via a transform-edge to an 𝜖-node or not).

(2) A node from the misuse AUG is matched to a generated 𝜖-node
in the misuse part (i.e., due to the cardinality equalization step
of the matching). Then, this node will not be part of the trans-
formation, since it cannot be matched to the change represented
by the rule.

(3) For every disregarded 𝜖-node in the misuse part AUG of the
rule, we add a respective 𝜖-node in the misuse AUG as well.
We match those to the counterparts in the misuse part AUG to
indicate that nodes have to be added according to the fixed part
AUG of the change rule.

This way, we obtain a triple matching between misuse AUG, misuse
part AUG, and fix part AUG. Note that nodes of the misuse AUG
falling under case (2) are not part of the final repair step.

AUG-Based Repair. In the final step of ASAP-Repair, we trans-
form the misuse graph into the fixed version ( H ). We refer to the
changes indicated by the respective matching, either pattern-based
or rule-based, as corrections. We distinguish between three cases of
transformations/corrections:

(1) A non-𝜖-node from the misuse is matched to a non-𝜖-node in the
correction: Then, ASAP-Repair updates the node by updating
its label, node type, as well as adding, deleting, updating the
respective incoming and outgoing edges.

(2) An 𝜖-node from the misuse is matched to a non-𝜖-node in the
correction: ASAP-Repair adds the non-𝜖-node to the AUG, which
also contains the addition of the respective edges represented
by the correction.

(3) A non-𝜖-node from the misuse is matched to an 𝜖-node in the
correction: ASAP-Repair removes the non-𝜖-node from the AUG,
which also contains the deletion of the respective incoming and
outgoing edges of this node.

Note that ASAP-Repair keeps nodes unmatched (i.e., filtered out
in the pattern-based repair or case (2) in the rule-based repair),
except by changing incoming or outgoing edges from previously
changed neighbor nodes. Since the Kuhn-Munkres algorithm does
not always produce a valid matching, it may happen that the trans-
formed AUG contains cycles, which results in an invalid AUG. We
tackle this problem by conducting a graph cycle check. If the trans-
formed AUG contains cycles, we retry the transformation by testing
another matching, which we obtain based on an internal data struc-
ture of the Kuhn-Munkres algorithm. In case none of the possible
matchings produces a valid AUG, no repaired AUG is generated.

4 PRELIMINARY RESULTS
We conducted a preliminary evaluation of ASAP-Repair by applying
it to MUBench,4 a dataset consisting of real API misuses that has
been constructed by Amann et al. [1]. More precisely, we used the
subset of 116 misuses provided in the replication package by Niele-
bock et al. [11]. In our evaluation, we conducted a sanity check on
whether ASAP-Repair is applicable for real misuses. That means, for
every single API misuse, we used its fix as a pattern and the changes
of the fixing commit as the basis for the change rule. This way, we
validated ASAP-Repair in an ideal situation, in which a perfectly
matched pattern and change rule are found. Therefore, we cannot
draw general conclusions about the applicability of ASAP-Repair

4https://github.com/stg-tud/MUBench/
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Table 1: Results of repairing 116 misuses form MUBench:
D - #generated data structures for repair (i.e., pattern AUG or
change rule), C - #created, V - #valid, and U - #unique fixes.

D (%) C (%) V (%) U (%)

pattern-based 110 (94.8%) 61 (52.6%) 34 (29.3%) 11 (9.5%)
rule-based 86 (74.1%) 38 (32.8%) 27 (23.3%) 4 (3.4%)

in practice or in comparison to state-of-the-art APR techniques,
which are subject to our future work.

For each example in the dataset, we downloaded the code version
directly before and after a fixing commit, representing the misuse
and fixed version, respectively, and used them to mimic the pattern
and change rule. For each repair, we set a timeout of five minutes.
Then, the first author checked how many repaired AUGs ASAP-
Repair generated and manually validated each fix using an AUG
comparison technique to decide whether the AUG of the fixed
version and the generated fix were semantically equal. In Table 1,
we summarize the results. We observed that ASAP-Repair produced
more valid pattern-based fixes than rule-based ones (i.e., 34 vs 27)
with more unique fixes (i.e., 11 vs. 4). However, the rule-based repair
obtained a larger proportion of valid fixes within the generated
fixes (i.e., 27/38 ≈ 71% vs. 34/61 ≈ 55.7%), indicating a better
precision of the rule-based repair. We also analyzed the reasons why
the other repairs could not be generated or were invalid. For the
pattern-based repair, major issues were that fixed AUGs contained
cycles (36 cases), invalid edges in the fixed AUG (16 cases), or
timeouts during the repair (11 cases). For the rule-based repair, we
encountered timeouts and out-of-memory exceptions (59 cases) as
well as invalid edges in the fixed AUGs (11 cases). Moreover, we
found 16 cases in which MUBench had a false misuse description
causing false or no repair at all. Three of these false descriptions
caused an unsuccessful pattern-based AUG generation. For more
details, we refer to our replication package.

While still limited, these results are promising to further im-
prove and apply ASAP-Repair as a full-fledged APR-technique. It
provides a framework to synthesize results from pattern-based
and rule-based misuse detectors in a single APR technique. The
main challenge lies in improving the matching efficiency as well as
prohibiting the construction of invalid fixed AUGs.

5 CONCLUSION AND PROSPECTS
We demonstrated that AUG-based repair is possible for real API mis-
uses. To obtain a valid APR technique, we will continue addressing
the following prospects.

From AUGs to Code. While AUGs represent a good visual way
to describe required API fixes, a more practical approach is a full-
fledged technique producing repaired source code. We can imagine
two possible ways to achieve this: (1)We directly transform an AUG
into its respective source code. This requires a valid specification on
how to transform code into an AUG, which is only implicitly given
by the implementation4 of MUBench [3]. Moreover, we need the
back-transformation from AUGs to code. (2) We use the matching
to perform the respective code transformations. In detail, we need
to define for each possible node and edge transformation in the
AUG a proper abstract-syntax-tree transformation.

Representative Misuse Datasets. While MUBench [1] is a valid
misuse dataset, its representativeness is debatable, as many entries
represent essentially the same misuse. Thus, other misuse datasets,
such as AU500 [7] with its manually labeled misuses, must be used,
too. However, these are limited in their size, which, in turn, limits
external validity. Thus, larger validation datasets must be build.

Comparison to State-of-the-Art APR Techniques. Many APR tech-
niques have been developed in the past [9], to which we have to
compare ASAP-Repair. While we validated ASAP-Repair manually
and statically, we also have to validate whether the code fixes imply
a correct dynamic behavior. This requires the execution of the code
using test cases. A good starting point is the APIARTy framework
by Kechagia et al. [8], which analyzes state-of-the-art APR tech-
niques on API misuses that were validated via tests. However, we
noticed that some misuses are not replicable, since repositories
became outdated. Thus, their build process does not work anymore.
So, the underlying misuse data and build commands have to be
updated manually to ensure a valid evaluation and comparison.
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