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Abstract—Modern software development heavily relies on
the reuse of functionalities through Application Programming
Interfaces (APIs). However, client developers can have issues
identifying the correct usage of a certain API, causing misuses
accompanied by software crashes or usability bugs. Therefore,
researchers have aimed at identifying API misuses automatically
by comparing client code usages to correct API usages. Some
techniques rely on certain API-specific graph-based data struc-
tures to improve the abstract representation of API usages. Such
techniques need to compare graphs, for instance, by computing
distance metrics based on the minimal graph edit distance or the
largest common subgraphs, whose computations are known to
be NP-hard problems. Fortunately, there exist many abstractions
for simplifying graph distance computation. However, their
applicability for comparing graph representations of API usages
has not been analyzed. In this paper, we provide a comparison
of different distance algorithms of API-usage graphs regarding
correctness and runtime. Particularly, correctness relates to the
algorithms’ ability to identify similar correct API usages, but also
to discriminate similar correct and false usages as well as non-
similar usages. For this purpose, we systematically identified a set
of eight graph-based distance algorithms and applied them on two
datasets of real-world API usages and misuses. Interestingly, our
results suggest that existing distance algorithms are not reliable
for comparing API usage graphs. To improve on this situation,
we identified and discuss the algorithms’ issues, based on which
we formulate hypotheses to initiate research on overcoming them.

Index Terms—API usage, graph similarity, misuse

I. INTRODUCTION

Modern software development heavily relies on reusing existing
software to effectively and efficiently construct desired products.
Software reuse can include copying & pasting code from other
locations or discussion forums (e.g., StackOverflow), (internal)
software platforms or product lines, and the integration of
specified Application Programming Interfaces (APIs) of
(external) software libraries in an ecosystem [11], [31], [32].
Especially the latter is vulnerable to be misused by client
developers. For instance, a developer may use a method of
an API differently than expected by the API developers (e.g.,
parameters contradicting an implicit specification of that
method). We call cases in which this causes unexpected negative
behavior of the software API misuses, which may manifest
as crashes, usability problems, or security issues [5], [40],
[41], [49]. In this paper, we consider API usages as correct or
incorrect usages (i.e., misuses), and their comparison as a way
to discriminate similar correct API usages from similar misuses
as well as to distinguish completely different API usages.
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We focus on API misuses since they are a prevalent issue
in software development. For example, studies show that
approximately half of the bug fixes in five open-source projects
require an adaptation of API usages [67] and more than half of
806 projects use outdated APIs [64] which may cause security
issues. To describe such API misuses, Amann et al. [4] have
defined a corresponding taxonomy. Other studies identified
root causes of API misuses, for instance, the absence of proper
API documentation, APIs that were too complex, a lack of
domain knowledge, backward incompatibilities, issues with the
execution environment, or a lack of communication channels
between API and client developers [21], [25], [33], [41], [42],
[50], [53], [54], [66].

Researchers focus on two directions to deal with API
misuses: First, avoiding them by mitigating the above causes,
for instance, using automated tools to enhance the documenta-
tion [63]. Second, automatically detecting API misuses. In this
context, techniques for mining and comparing specifications
of API usages against the suspicious API client code are
prevalent. These specifications may be represented as formal
specification, such as finite-state automata [8], [19], [65] and
dynamic invariants [18], or as patterns of API usages [3], [5],
[36], [45], [47], [62].

We focus on the second direction, which typically requires
comparisons of different API usages. This encompasses search-
ing and mining similar API usages [15], [38], [44], [48], [58],
comparing pattern candidates [5], [45], or detecting pattern
violations [5], [26], [48]. Since API usages are more and more
represented as graphs [5], [26], [45], [47], this essentially
means to compare the distance of graphs. However, established
graph-distance algorithms, such as computing the minimal
graph edit distance (GED) or the maximum common subgraph,
are NP-hard. Fortunately, advances have been made to relax
or approximate distance computation. Still, to the best of our
knowledge, the applicability of these algorithms for comparing
API usages has not been systematically analyzed.

In this paper, we address this gap by analyzing a set of well-
known graph-distance algorithms and investigating whether
they are feasible to compare API usage graphs. We consider
a “good” distance algorithm to be effective and efficient. For
detecting API misuses, an effective algorithm is able to compute
a distance that significantly differs when comparing two correct
(or two incorrect) usages rather than comparing a correct usage
and a misuse. So, we can discriminate correct from incorrect



package pkg.at.some.loc;

import from.another.place.Foo;
import from.another.place.Bar;
import from.another.place.Baz;

public class AUGSample {
Foo fooObj = new Foo (42, "text");

N=J-CREN e NV R S S

10 public Integer computeSomething(Bar barObj) {
11 Baz bazObj = new Baz (this.fooObj);

12 if (bazObj.hasCharacteristic()) {

13 bazObj.doSomething (barObj) ;

14 }

15 return bazObj.getResult ();;

Listing 1. Code example for the AUG in Figure 1.

(i.e., misused) API usage, and effectively reduce the false pos-
itive rate of misuse detectors, a well-known issue in static API
misuse detection [7], [35]. For searching similar API usages, the
algorithm should compute a low distance value for API usages
of the same API in similar contexts. This way, the algorithm can
help to effectively filter API usages for subsequent pattern min-
ing. Since pattern mining usually requires multiple thousands to
millions of comparisons, the algorithm must efficiently compute
the distance of real-world graphs. While we do not expect that
the comparison is interactively usable (i.e., done in a fraction of
seconds), it should be efficient enough to compare several thou-
sands of graphs in a matter of minutes. This is comparable to au-
tomated tests executed in a continuous integration system [68].

For our experimental comparison, we systematically iden-
tified eight graph-distance algorithms and selected those able
to achieve our goals. Then, we selected two different datasets
of API misuses and correct usages and transformed each entry
into an API Usage Graph (AUG), an established data structure
proposed by Amann et al. [5], [7] (cf. Section II), as well as
into so-called API misuse correction rules (cf. Section II-B) that
we have proposed [47]. We computed the distances between
all AUGs (i.e., correct to correct usages, misused to misused,
misused to correct usages, and vice versa) within a framework
we implemented. Based on the distribution of the resulting
distance values, we determined the ability of the selected
algorithms to effectively discriminate misused from correct API
usages. We discuss our main results as well as their implications
in Section IV, and publish our data, results, and experimental
framework in our replication package.!

II. API USAGE REPRESENTATIONS

In this section, we describe the basic concepts required to
understand our experimental comparison.

A. API Usage Graphs (AUG)

Source code can be represented by different data structures,
such as text, token streams, Abstract Syntax Trees (ASTs),
control flow graphs, or Program Dependency Graphs (PDGs).
For API misuse detection, Amann et al. [5], [7] developed the
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Fig. 1. AUG representing the method computeSomething in Listing 1.

AUG. It is tailored to represent the specificities of API usages,
in contrast to, for instance, general-purpose PDGs. Using AUGS
as pattern representations of API usages, Amann et al. achieved
a higher precision and recall than comparable algorithms for
detecting API misuses. In their recent work, Kang et al. [26]
defined extended AUGs (eAUGs) to further include specific
properties of API usages as additional nodes and edges. They
found that using these extensions together with active learning
had positive effects on misuse detection. However, for our
experimental comparison of graph-distance algorithms, the
simpler original AUGs are sufficient since these algorithms do
not discriminate between different node and edge types. Note
that we target the Java programming language with its specific
elements, and thus we limit our descriptions to Java, too. As a
running example, we use an AUG (cf. Figure 1) based on the
method computeSomething starting in line 10 of Listing 1.

In general, an AUG represents a directed, labeled multigraph
aug := (V, E, Xy, XE, s, t,ly,lg) where V is a set of vertices
or nodes, F : V x V is a multiset of edges, ¥y and ¥ are
finite alphabets of node (V') and edge (E) labels, s : E =V
and t : EF — V are functions to map an edge to its source
(s) or target (t) node, and Iy : V — Yy and lp : F — Xg
are the node and edge labeling functions, respectively. As we
can see in Figure 1, AUGs may involve multiple types of
nodes and edges. Nodes can represent actions (i.e., rectangles
in the graphical representation) or data (i.e., ellipses in the
graphical representation). An action node describes an API
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method call (e.g., node Baz.doSomething ()) or a control
structure (e.g., node <return>). A data node represents a
raw value or an object instance (e.g., node Baz). There exist
several subtypes of these nodes. To determine these node types,
we define the function type : V' — String, which returns the
type of a particular node as a String value.

An edge can represent either the data-flow (solid arrow) or
the control-flow (dashed arrow). Data-flow edges can show the
usage of a data node as a parameter (e.g., the para edge di-
recting from node Bar to the node Baz.doSomething ()),
an object instance on which a method is called (e.g., the recv
edge directing from node Baz to Baz.doSomething()),
or the creation of a new object instance (e.g., the def
edge directing from node Object.<init> to node Baz).
Control-flow edges can show a condition (e.g., the sel
edge directing from node Baz.hasCharacteristic to
node Baz.doSomething) or certain execution orders (e.g.,
the order edge between node Baz.doSomething and
Baz.getResult). For further details on node and edge types,
we refer to Sven Amann’s dissertation [5].

Since AUGs are generated based on static ASTs, control-
flow information and type resolution are limited. Particularly,
order-edges are generated conservatively, namely as the tran-
sitive closure of all order-edges between each pair of action
nodes. To enable type resolution, the AUG generation requires
access to the source code or library (i.e., of the used API)
to find the declarative type of, for instance, a certain method.
If this is not provided, the AUG generation uses the type
UNKNOWN. Note that the UNKNOWN-node in Figure 1 cannot
be resolved, since the generation did not have access to the dec-
laration of the method Baz.getResult (). Thus, it cannot
decide whether the object (i.e., the return type of the method
computeSomething ()) is of type Integer or of a sub-
type of Integer. Also, the generation fails to correctly resolve
dynamically inferred types, such as generic types in Java.

Some graph-distance algorithms rely on node and edge labels
to compute similarity, which is why the labeling functions /g
(i.e., edge labeling) and Iy, (i.e., node labeling) are important [5].
Regarding edges, [r assigns edges their respective types, and
thus |X | denotes the number of different edge type names.
Labels of action nodes describe API method calls, such as
Baz.doSomething (). This consists of the declaring type
name of the called method (i.e., Baz) and the method name
(i.e., doSomething () ). Note that parameters are not part
of the label, since they are represented by additional nodes
connected with para-edges. In case of specialized action
nodes, for instance, return statements (i.e., <return>) or
object constructors (i.e., <init>), special labels are defined.
For an overview of these label types, we refer to the original
work of Sven Amann [5]. Regarding data nodes, the resolved
declaring type names are used as labels.

For our analysis, we adapted the standard definition twice.
First, we used slightly different labels for data nodes. Namely,
we label nodes representing raw values of primitive types
(e.g., int, String) with the actual value. Our rationale
is that these values may indicate a certain meaning, which

would be hidden when abstracting them with the declaring
type name. For example, the method getInstance from
the class java.security.MessageDigest? requires
a String representing the hashing algorithm as input.
Second, we define a function api : V' — String that returns
the complete declaring type name if it is resolvable (e.g.
java.lang.Object for the node Object.<init>). If
the type cannot be resolved, the String represents the type
name or an empty String in case no type is apparent.

B. AUG Correction Rules

In our previous work, we introduced the notion of correction
rules [47]: an AUG-based encoding of changes needed to fix
an API misuse, which can be automatically generated from
fixing commits. The goal was to transfer the knowledge of one
API-misuse fix to similar usages in other projects. We show an
example of such a rule in Figure 2. This rule describes a case in
which a developer forgot to call the condition check in line 12
in Listing 1 (i.e., 1 £ (bazObj.hasCharacteristic())),
and defines how to add this call to fix this misuse. Each
rule consists of two AUGs: a misuse AUG (left) and a
fix AUG (right). Furthermore, correction rules describe the
changes needed to transform the misuse into the fix. For that
purpose, we computed the minimal mapping (depicted as blue
transform-edges) between the two AUGs using the Kuhn-
Munkres algorithm [39]. To simplify the rule, we left out nodes
(with their respective edges) that are not affected by any change.
For instance, the nodes Foo and Bar in Figure 1 are not part
of the rule in Figure 2. Note that for real examples, depending
on the committed changes, the number of left out nodes is
usually much higher. An addition, like the added conditional
statement, is represented by mapping a so-called empty node
(i.e., €) in the misuse AUG to the respective added node (e.g.,
Baz.hasCharacteristics ()). A deletion is represented
vice-versa. From such correction rules, we can derive related
misuse and fix AUGs that we can compare to other usages,
allowing us to evaluate graph-distance algorithms.

III. METHODOLOGY

In the following, we describe the methodology we employed
for our experimental analysis.

A. Goal of the Distance Computation

We define dist to be a distance function taking as input
two AUGs aug; and aug; to compute a normalized distance,
namely: dist(aug;,aug;) € [0,1]. 0 denotes that the two
usages described by the AUGs are identical, while 1 means
that the usages are most dissimilar (i.e., completely different
API calls). We distinguish between two types of API usages,
and thus of AUGs: correct usages (i.e., aug.) and misuses (i.e.,
augp,). Moreover, we define two reference usages described
by their respective AUGs: a correct one aug,. and a misuse
augrm. The goal of dist is to compute a distance between a
reference AUG and another AUG so that distances between

Zhttps://docs.oracle.com/en/java/javase/1 1/docs/api/java.base/java/security/
MessageDigest.html
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Fig. 2. AUG correction rule by adding the condition in line 12 in Listing 1.

similar types (i.e., correct usages of the same API) have a
smaller distance than two dissimilar types (i.e., a correct usage
and a misuse). Thus, we expect:

dist(augre, auge) < dist(augre, augm )

1
dist(augrm, auge) > dist(augrm, augm) M

Furthermore, we assume that the reference usages are based
on a correction rule (cf. Section II-B). We denote this rule as
AUGrm — QUGre, Where aug., is the misuse and aug,. is its
respective fix. To discriminate misuses from correct usages, in
addition to Equation 1, dist should satisfy:

dist(augre, auge) < dist(augrm,auge)

2
dist(augre, augm) > dist(augrm, augm) @

So, we can use a correction rule to compute the distance from
both, the misuse and the correct usage, to any arbitrary usage.
If the distance is lower for the misuse than for the correct
part, the usage is marked as misuse. Ideally, the correction rule
could then be used as a patch to fix the misuse.

To assess such rules, we assume a dataset of AUGs describing
correct usages C' = {augc1, augea, -+ ,augen } and a set of
misuses M = {aug,,1, augma, - , AUGmn - We denote a rule
to be applicable with a distance function dist, if it satisfies
Equations 3, 4, 5, and 6:

> aug.cc dist(augre, auge) - > augm e M dist(augre, augm)

3)
IC] | M|
Zaugfec dist(augrm, auge) Zaugm eM dist(augrm, augm)
s > e “4)
IC | M|
zauchC dist(augre, auge) - ZaugCEC dist(augrm, auge) )

IC| IC|

2 augm e m dist(augre, augm)

. 2 augm e M dist(augrm, augm)
|M]

|M]

(6)
These equations generalize Equations 1 and 2 by comparing
the average distance over a set of other usages. More generally,
an applicable rule produces significantly different distributions
of distance values for one set (e.g., dist(aug,¢,aug.)) than
for another set (e.g., dist(augy,., augm)).

Our goal is to find a distance function dist that maximizes
the number of applicable rules on a set of generated correction
rules based on a given dataset of correct and misuse AUGS.
However, this problem is not trivial, since existing graph-
distance metrics usually correlate with general graph similarity.
This can be distorted if, for example, two AUGs share only a
small fraction of a similar usage (e.g., a usage in a different
context), and thus still lead to a too large distance value. Then,
the differences between a misuse and a correct AUG cannot
be determined. Another issue is that two usages may represent
two completely different cases, but the equations may still
be randomly satisfied. Finally, two correct usages may also
represent two alternative solutions for the same misuse, so that
the distance falsely indicates a misuse (i.e., false positive).

B. Graphs-Distance Algorithms

For our comparison, we considered different graph-distance
algorithms that we identified by reviewing surveys on graph
similarity [13], code clone detection [30], [55], and binary code
similarity [61]. In addition, we checked a curated list of binary
graph-distance algorithms available on GitHub.> We focused on

3https://github.com/SystemSecurityStorm/Awesome- Binary-Similarity
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algorithms that compute a distance between graphs. Particularly,
we expect the underlying distance metrics to be applicable
on AUGSs, namely directed labeled multigraphs as defined in
Section II-A. Moreover, we expect the distance metrics to
describe a relative distance (i.e., dist(aug1, augz) € [0, 1]) to
easily compare different algorithms. Furthermore, we selected
those algorithms that directly and only compute the distance
based on the two compared AUGs. This way, we aimed
to avoid that knowledge from other AUG comparisons is
required. For instance, a machine-learning algorithm may
learn certain features from previous comparisons, helping it
to better discriminate other AUGs. However, for such an
algorithm, we can hardly decide (also compared to other
algorithms) whether the results are based on the algorithm
itself or the training data. Finally, we required an existing
implementation that we could apply in our experiment (e.g., via
an API]) or a sufficiently detailed description of the algorithm
to easily re-implement it. Based on these criteria, we selected
the four underlying metrics we introduce in the following.
Note that we used two different versions for the GED and
four different versions of the Exas vector algorithms in our
experiments (cf. Section IV). For the sake of simplicity, we
describe these metrics based on the distance of the two
AUGs augs = (Va,Ea,Xv,,ZE,4,84,ta,lv,,lE,) and
augp = (VB,EB,ZVB,ZEB,SB,tB,ZVB,ZEB).

Graph Edit Distance (GED). The Graph Edit Distance
(GED) describes the minimal costs of edit operations (i.e.,
replacements, insertions, and deletions of nodes and edges)
to transform one graph into another [57]. It is widely used
to compute inexact matchings of structurally similar graphs,
and thus applies for our use case [61]. A critical factor to
represent a meaningful GED is a properly chosen cost function
to determine the mapping between two graphs [59]. Assume
i,7 € V4 and k,l € Vp to be nodes of the two AUGs, and
ij € E4 and kl € Ep to represent their edges. To compute
the GED on AUGs, we selected the following cost functions
for node replacement (Equation 7), node deletion and addition
(Equation 8), edge replacement (Equation 9), as well as edge
deletion and addition (Equation 10).

0 if ly, (i) = lv (k) Atype(i) = type(k)
costr(i,k) = ¢ 1 if type(s) = type(k) @)
2 otherwise

costy(i) = costq(k) =2 8)

.. 0 ifl ij) =1 kl
R B
costq(ij) = costq(kl) =2 (10)

Regarding the edge costs (i.e., Equation 9), we do not need to
separate costs for individual types, since the label function (g
already denotes these types (cf. Section II-A).

Due to the variety of different node and edge types in
AUGs, one may define a large number of different cost
functions to account for their specific properties. For the sake
of simplicity, we performed only small modifications to the
cost function (i.e., equal costs for all edit operations) and

handle all nodes identically. Note that our cost functions still
satisfy the triangle inequality: costq()+costy(j) > cost, (i, )
and costq(ij) + costq(kl) > cost,(ij,kl). The GED is
then defined over all possible sequences of edit operations
transforming aug,4 into augp, with the function ged returning
the minimal edit costs. To normalize the distance, we define the
maximum costs between nodes (i.e., Equation 11) and edges
(i.e., Equation 12).

{costr (i, k), costq(i, k), costa (i, k)}  (11)

mcost, = max
Vi€V ,kEVR

mcoste =

{costr (i, kl), costq(i7, kl), costa (i7, kl)} 12

max
Vij€Ea,kl€ER
For our cost definition, this means mcost,, = mcost, = 2.
The normalized distance is then defined as:

distgeq(auga, augp) =

ged(auga, augp)
maz(|Val, |VB|) - mcostn, + maz(|E4l,|EgR|) - mcoste

13)

The exact computation of distseq is known to be NP-hard,
and thus only applicable for small graphs. For this reason, we
applied two algorithms using heuristics to compute an almost
exact GED. First, the algorithm of Abu-Aisheh et al. [1] uses a
simplified version of the well-known A*-algorithm, building on
a depth-first search together with a pruning technique to discard
edit sequences with high costs. Their algorithm is implemented
in the NetworkX python library,* which is why we refer to it
as NetworkXGED.

Second, we applied the Hungarian algorithm (also known

as Kuhn-Munkres algorithm) [39]. This algorithm computes
a one-to-one mapping between the nodes of each partition
in a bipartite graph, producing minimal edit costs for those
nodes. Then, this mapping is used to compute the GED. Since
this algorithm only considers the costs for node edits, we set
mcost, = 0. To compute the minimal mapping, we applied
the linear sum assignment implemented in the python library
scipy,” which is based on the description of Crouse [16]. We
refer to this algorithm as HungarianGED.
Maximum Common Subgraph (MCS). Another distance
metric is the maximum common subgraph [14] (MCS). It is
based on the notion that similar graphs share a larger common
subgraph. A major advantage of this metric is that, in contrast
to the GED, it does not require a carefully designed cost
function to get a valid and meaningful distance. Thus, the
MCS qualifies as another candidate to measure the structural
similarity of AUGs. Still, it has been shown that the MCS can
be calculated with any GED algorithm using the following cost
functions for node replacement (Equation 14), node deletion
and addition (Equation 15), edge replacement (Equation 16),
as well as edge deletion and addition (Equation 17) [12]:

(14)

costy (i, k) = 0 if Iy, (i) = lygz (k) A type(i) = type(k)
e oo otherwise

“https://networkx.org/documentation/stable/reference/algorithms/generated/
networkx.algorithms.similarity.graph_edit_distance.html

Shttps://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize. linear_
sum_assignment.html
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costq(i) = costq(k) =1 (15)

0 if g, (ij) = lg, (kl)

16
oo otherwise a6

costr(ij, kl) = {

costq(ij) = costq(kl) =1 17)

Similar to the ged function, the mcs function computes the
minimal costs to produce the maximum common subgraph.
To obtain a normalized distance between [0, 1], our dist,, s
function is defined as follows:

mes(auga,augp)
maz(|Val,|VB|) + maz(|Eal, |EB|)

13)

distmes(auga, augg) =

Since computing the MCS is also NP-hard, we reuse
HungarianGED as HungarianMCS to compute the maxi-
mum common subgraph. This algorithm includes only node-
related costs, and thus we set the denominator of Equation 18
to maz(|Val|,|Vs]|) (i.e., ignoring edge costs).

Node-Node Similarity. Another metric for graph similarity is
the link-based similarity of nodes originating from hyperlinked
environments, such as the world wide web [28]. However,
most algorithms compute similar nodes within one graph only.
To compare between graphs, Blondel et al. [10] proposed
a vertex similarity. Particularly, they compute a node-node
similarity matrix S as the limit of a normalized iterative matrix
multiplication with an even number of iterations. In each
iteration, the following formula is applied:

Spy1 = BSRAT + BT S, A 19)

A and B are the respective adjacency matrices of aug and
augp, and Sy is an all-ones matrix. So, the information on
the connectivity similarity of the nodes is collected within S.

In our framework, we used the existing python implementa-
tion in graphsim,® which is based on NetworkX and call the
algorithm NodeSimilarityOpt. To convert the similarity
matrix S into a distance metric, we reduced it with the
maximum linear sum assignment (Isa) to find the maximum
node-node similarities as a set of similarity values. In the
second step, we use the average node-node similarity from that
result to compute the distance metric as follows:

S lsa(S)

~ Jisa(S)) 0

distNodesim(auga,augp) =1
Exas-Vectors. Lastly, we employed distance metrics from the
code-clone domain using so-called Exas-Vectors to measure
graph distances. Nguyen et al. [43] have shown that Exas-
Vectors are able to reasonably approximate the GED, and thus
they are eligible to measure the distance of AUGs. Exas-Vectors
denote vectorizations of graphs whose elements represent the
number of certain features present in the graphs. Their definition
involves two different kinds of features: (p,q)-nodes and n-paths.
(p,q)-nodes describe the individual nodes (e.g., denoted by their
label function ly/) together with the number of incoming (i.e.,
p) and outgoing edges (i.e., q). N-paths describe paths of the
size length (i.e., number of visited nodes), where nodes and
edges are identified via their respective label function (i.e., Iy

Shttps://github.com/caesar0301/graphsim

and /). In our experiments, we omitted n-paths of size one
(i.e., single nodes), since they are included in the (p,q)-node
feature. Moreover, building on the results of Nguyen et al., we
limited the maximum path length to four.

To measure the distance between two AUGs, we compute the
norm of the difference between their respective Exas-vectors.
Since the vectors may differ in their specific number and type
of features, we first determined the shared features among the
two vectors as sub-vectors containing only those features with
their respective counts. Similarly, we also computed super-
vectors containing a union of all features of both vectors,
in which the respectively added features are filled up with
zeros. We then computed two different norms, namely L1-
norm and cosine-distance, on the Exas vectors. Since the cosine
distance is less sensitive to individual differences in the feature
count than the L1-norm, we also included the proportion of
shared features for this distance. We refer to those distances as
ExasVectorLlNorm and ExasVectorCosine. Assume
vecy and vecp are the Exas vectors of the AUGs aug4 and
augp, vecy and vecp are the respective super-vectors with
all features, vecy and vecp the respective sub-vectors with
all shared features, len a function to compute the length (i.e.,
number of elements) of a vector, and maxVal a function to
determine the maximum absolute value of a vector. Then, we
can compute the respective distances as follows:

distEzasVectorL1Norm (augA7 augB) =

I vecy — vecp @20

max (1, mazVal(vecs — veey)) Il

dist BrasVectorCosine (au.‘]Av augB) =

- - (veea,veep) )A€ [0,1] (22)

len(vecy)

len(vecy) [lvecallz2||veer]|2

(+,+) denotes the scalar product of two vectors. In our experi-
ments we set A = 0.5.

We also constructed two additional distance algorithms
by splitting the AUGS into subgraphs. For this purpose, we
cluster nodes of an AUG based on their related packages
determined by the api function (cf. Section II-A). Then, we
construct each subgraph by removing all nodes (together with
their connected edges) from the original AUG that does not
belong to that cluster. So, we obtain a list of subgraphs from
a single AUG, each related to a certain API package and,
regarding nodes for which no package could be determined,
a special miscellaneous subgraph. Finally, we compute the
distance between two AUGs by computing the distances of
their subgraphs that belong to the same API package and
averaging all resulting distances. During this mean computation,
we ignore subgraphs that do not have a counterpart in the other
AUG (i.e., those that depict a different API usage) as well
as sub-distances that equal one. The rationale is that these
values typically distort the distance computation with noise
introduced by unrelated API usages. We reused the L1-norm
and the cosine distance from above and refer to those sub-
graph distance algorithms as ExasVectorSplitL1Norm
and ExasVectorSplitCosine, respectively.


https://github.com/caesar0301/graphsim

IV. EXPERIMENT

Next, we describe our experiments and discuss their results.

A. Data and Experimental Setup

We analyzed the described distance algorithms based on two
datasets. First, we used MUBench’ by Amann et al. [6]. This
dataset contains a set of fixed API misuses together with their
repository information, the fixing commit, the fixed method,
and more details. We selected all 116 misuse entries that are
linked to a git repository, provide the fixing commit hash, as
well as the containing method and source file path. Based on
these entries, we generated AUGs of the respective misuse (i.e.,
commit before the fix) and the correct usage (i.e., commit after
the fix) as well as the respective correction rule as described in
our previous work [47]. Instead of manually determining the
import statements to generate rules, we automatically included
all external import statements, namely those not starting with
the same prefix as the package of the analyzed source file. We
could generate AUGs and corresponding correction rules for
96 of the 116 misuses (e.g., some source files could not be
properly parsed).

The second dataset, AU500,8 has been published by Kang
et al. [26] and includes manually labeled correct API usages
and API misuses. This dataset was constructed to provide an
independent baseline to assess API-misuse detection tools. It
comprises 500 API usages, 385 of which are correct usages,
while the other 115 represent misuses. We were able to generate
AUGs for 493 entries (114 misuses and 379 correct usages).

We transformed all generated AUGs and their correction rules
into a dot-representation,’ including their respective information

on the API as well as the types and labels of nodes and edges.

This way, we could conduct all of our experiments in the same
python-based framework by converting and processing AUGSs
and correction rules with the NetworkX library.'® Within our
framework, we analyzed the effectiveness and the efficiency
of the distance algorithms. For both, we first generated the
correction rules from the MUBench dataset as reference
usage in the form aug,,, — aug,., where aug,,, represents
the misuse part of the misuse and aug,. its respective fix.
Moreover, we denote the set of misuse AUGs as M v Bench
and the set of correct usages as Cp;yBench- For each rule,
we then computed the analyzed distance function dist, to
assess the rule’s applicability as discussed in Section III-A.
To this end, we computed the four individual distances
dist, (augre, aug.), disty (augre, augy,), disty(augrm, aug.),
and dist,(augym, augy,), where aug. € Cprupench and
augm € MuyriBench- When computing these four distance
values, we measured the time using python’s t ime library.!!
For the algorithm NetworkXGED, we defined a timeout for
individual computations, which we set to 15 seconds. We
selected this value since it ensures that the maximum time to

"https://github.com/stg-tud/MUBench
8https://github.com/ALP-active-miner/ALP
“https://graphviz.org/doc/info/lang.html
10https://networkx.org/
Uhttps://docs.python.org/3/library/time.html

TABLE I
NUMBER OF Applicable RULES

distance #rules-sat /  #rules
ExasVectorL1Norm 0 / 96
ExasVectorCosine 6 / 96
ExasVectorSplitL1Norm 2/ 96
ExasVectorSplitCosine 1/ 96
HungarianGED 0 /7 96
NetworkXGED 15 /7 9
HungarianMCS 0 /7 96
NodeSimilarityOpt 0o / 92

compute all four distances would be at one minute, which was
comparable to the execution time of the other algorithms.

Regarding effectiveness, we checked for all computed
metrics whether each analyzed rule is applicable (i.e., satisfies
Equations 3, 4, 5, and 6). We then counted the number of
all satisfying rules per distance algorithm (i.e., on MUBench).
To further assess a rule’s ability to detect and fix misuses,
we computed the distance values to AU500. More detailed,
we checked each entry of AU500 for which the condition
in Equation 2 holds, and thereby decided if this entry was
identified as a misuse. For a reference rule aug,,, — aug,c,
this means that an entry AUG aug, in AU500 satisfies the
condition dist,(aug,.,aug.) > dist,(aug,m,auge). Since
the entries in AU500 are manually labeled as misuse or correct
usage, we can compare this result against the labeled ground-
truth and compute the rule’s precision and recall. To assess the
efficiency, we measured the execution time when computing
the four distances for each entry on the MUBench dataset. We
provide our experimental data, the framework, and all other
scripts in our replication package.'

B. Effectiveness

In Table I, we summarize the number of applicable rules
per distance algorithm. We can see that only the Exas vector
algorithms and NetworkXGED algorithm found applicable
rules. However, even in the best case (i.e., NetworkXGED),
they found only a minority of 15 out of 96 possible rules. Note
that for the NodeSimilarityOpt-algorithm, we could not
compute the distance for four rules, and thus the number of
checked rules is lower. Overall, we could identify 24 rules (20
unique ones) for four different metrics.

We then checked these 24 rules against the AUS00 dataset
using the respective algorithm to compute the distance. Based
on the number of true and false positives, we computed the
precision and recall, which we depict in Table II. Overall, we
can see that for rules that detected at least one misuse (i.e., with
#tp > 0 or # fp > 0), the precision and recall are constantly
very low. In comparison to the results obtained by Kang
et al. [26], who applied MUDetect (precision 27.6%, recall
29.6%) and ALP (precision 44.7%, recall 54.8%) using the
same dataset, the simple distance metrics could not successfully
discriminate misuses from correct usages. While we expected
our rules to achieve a low recall, since they describe very
specific fixes, they could not achieve the aspired high precision.


https://github.com/stg-tud/MUBench
https://github.com/ALP-active-miner/ALP
https://graphviz.org/doc/info/lang.html
https://networkx.org/
https://docs.python.org/3/library/time.html

TABLE 11

POSITIVES/NEGATIVES (1.E., #TP, #FP, #TN, #FN)

PRECISION AND RECALL OF APPLICABLE RULES TOGETHER WITH THEIR APPLIED DISTANCE METRIC AND THE NUMBER OF TRUE AND FALSE

distance rule_id #p #tp #fn #tn  precision recall
ExasVectorCosine 1_TuCanMobile 0 0o 114 379 0.0% 0.0%
ExasVectorCosine 2_alibaba_druid 26 5 109 353 16.13% 4.39%
ExasVectorCosine 30_visualee 74 17 97 305 18.68% 14.91%
ExasVectorCosine 390_paho.mgqtt.java 28 6 108 351 17.65% 5.26%
ExasVectorCosine 473_ntru 3 1 113 376 25.0% 0.88%
ExasVectorCosine 56_2_gora 2 3 111 377 60.0% 2.63%
ExasVectorSplitLINorm  1_Apache_Commons_Math 42 5 109 337 10.64% 4.39%
ExasVectorSplitLINorm  1_Mozilla_Rhino 0 0 114 379 0.0% 0.0%
ExasVectorSplitCosine 1_Mozilla_Rhino 0 0 114 379 0.0% 0.0%
NetworkXGED 1_Apache_Commons_Lang 52 14 100 327 21.21% 12.28%
NetworkXGED 1_Apache_Commons_Math 39 10 104 340 20.41% 8.77%
NetworkXGED 1_Closure_Compiler 16 3 111 363 15.79% 2.63%
NetworkXGED 1_Onosendai_-_A_Better_Deck 8 2 112 371 20.0% 1.75%
NetworkXGED 1_Screen_Notifications 3 4 110 376 57.14% 3.51%
NetworkXGED 1_WordPress_for_Android 94 20 94 285 17.54%  17.54%
NetworkXGED 29_visualee 41 9 105 338 18.0% 7.89%
NetworkXGED 2_Apache_Commons_Lang 47 9 105 332 16.07% 7.89%
NetworkXGED 2_Apache_Commons_Math 24 5 109 355 17.24% 4.39%
NetworkXGED 2_Closure_Compiler 24 6 108 355 20.0% 5.26%
NetworkXGED 2_alibaba_druid 31 11 103 348 26.19% 9.65%
NetworkXGED 30_visualee 61 11 103 318 15.28% 9.65%
NetworkXGED 361_Joda-Time 22 5 109 357 18.52% 4.39%
NetworkXGED 39_gae-java-mini-profiler 72 19 95 307 20.88%  16.67%
NetworkXGED 3_Closure_Compiler 23 5 109 356 17.86% 4.39%
TABLE III
MEAN/MEDIAN TIMES OF THE EFFICIENCY RESULTS ON MUBENCH o
distance time in sec (mean) time in sec (median) 8 ° 7
ExasVectorCosine 1.363347 0.046309 T s
ExasVectorL1Norm 1.442757 0.049212 °
ExasVectorSplitCosine 1.163106 0.061127 60 I
ExasVectorSplitL.1Norm 1.177104 0.062430 o 0 °
HungarianGED 0.010174 0.006016 g 7 ! g 8
HungarianMC$S 0.007411 0.003391 c g § 1
NetworkXGED 15.552184 0.323910 ' 40 ! ! i i
NodeSimilarityOpt 0.043162 0.034601 £ ! ! i
- °
.
C. Efficiency 2008 ! : ; |
Based on our time measurements, we obtained time distribu- I I ! .
tions (cf. Figure 3) as well as median and mean times (cf. i 1 i 1 | | L
Table III) to compute the four mentioned distance values per °
rule. Based on our results, we observe that most algorithms - 5\1ectoé:::\\12%:;\;3::s;?ss:\\iz::::p\\t\_l“:\?‘gar‘\af‘f\i?\gaﬂanw‘f:‘wo:“:;z?m\\ar\wopt
ex

require roughly one second except for NetworkXGED, which
has a mean time of ~ 15 seconds. This mean value is heavily
influenced by a smaller number of long-lasting computations.
Particularly, 1,841 of 5,467 distance computations last longer
than 2 seconds. So, most algorithms can efficiently compute
a distance except for NetworkXGED. Unfortunately, this
algorithm was the one that found most applicable rules in
our dataset (cf. Section IV-B).

D. Root Causes of Low Precision and Recall

Our results indicate that none of the algorithms we selected
is sufficient (regarding precision and recall) to effectively
discriminate correct usages from misuses. Thus, we conducted
a qualitative, in-depth analysis of the root causes for the

distance

Fig. 3. Boxplot of the efficiency results on MUBench

low precision and recall. In detail, for each algorithm, two
reviewers analyzed a sample set of ten pairs of a correction
rule aug,,, — aug,. together with the complete misuse AUG
augy, and its respective corrected AUG aug, originating from
another misuse-correction pair (all from the MUBench dataset).
For those samples, the conditions formulated in Equations 1 and
2 must hold. Moreover, we ensured that rm % m and rc # c to
avoid that a correction rule is compared to itself. We were able
to analyze such pairs for all metrics, but HungarianGED and



HungarianMCS. For those algorithms, we did not obtain
any entry satisfying our previously mentioned conditions.
Considering NetworkXGED, nine out of 10 entries have a
correction rule and a misuse/correction AUG stemming from
the same project. Therefore, we re-sampled this set and allowed
only entries from different projects.

The two reviewers individually analyzed the samples to
decide whether the usages contain at least one identical API-
method call (agreement in 60 out of 70 cases), identify whether
this method call is used in a similar context (agreement in 58
out of 70 cases), and add a textual discussion justifying their
decision. For instance, assume a misuse of an unlabeled button,
which was fixed by a correction rule adding a textual label.
Further, a similar correction fixed the same issue by adding an
image to the empty button. Then, the reviewer comparing these
entries would decide that the same API method call is used,
for example, the constructor of the button, and the correction
is done in the same context, namely labeling a button. Finally,
the reviewers discussed their decisions with each other and
identified the root causes of falsely matched entries. Next, we
discuss general and metric-specific causes for false misuse
detection. For each cause, we formulate hypotheses, which
have to be evaluated in subsequent research.

General. We observed that almost all metrics tend to work
better when comparing API usages in the same project than
with an external usage. This seems to be reasonable, since an
API usage may share more structural similarities to a usage in
the same project than to an external usage. Thus, applicable
rules may hardly apply to external projects:

Hypothesis 1

API misuse detection with correction rules using distance
metrics will be more precise if it is applied within the same
project than on an external one.

GED. We obtained most results for the NetworkXGED
algorithm. This algorithm had issues with the large number of
order edges in AUGs. Particularly, many order-edges are
“recycled” without any further costs in the GED computation.
Therefore, the differences in the node labels, which we
perceived as more important for detecting API misuses, are
under-represented. For this reason, we argue that:

Hypothesis 2

API misuse detection with correction rules using the GED
is more precise if the costs are adapted to edits of certain
AUG element types.

MCS. We obtained no rules satisfying the sampling condition,
and thus we conclude that computing graph distances using
MCSs may not be a valid metric for detecting API misuses.

Node-Node Similarity. In our analysis, we noticed that this
algorithm usually computes a low distance (i.e., high similarity)
in case the graphs share nodes that are similarly connected
to each other; even though the respective node labels differ.
For instance, we observed many matches that were caused
by handling an exception even though the exception and its
causing API differ. This happens since nodes, which handle
an exception, tend to share structural similarities (e.g., catch-

blocks, initialization of an exception object). Based on this
insight, we hypothesize:
Hypothesis 3

API misuse detection with correction rules using the
Node-Node Similarity is more precise when including the
similarity of the node labels in the computation.

Exas Vectors. We determined two issues regarding the Exas-
vector algorithms. First, in some cases, the similarity originates
from trivial and individual features that match, such as (p,q)-
nodes of <return> or <throw> nodes. This matches many
non-similar API usages (e.g., since many API usages contain
<return>-nodes), which is why:

Hypothesis 4

API misuse detection with correction rules using the Exas
Vectors is more precise when including only features from
the vector containing relevant API information.

Second, especially for the ExasVectorLlNorm algo-
rithm, we found many cases in which a high frequency of
a single feature diminishes the effect of other differences
of the two vectors. Particularly, assume two super-vectors
vy = (1,0,1) and vy = (0,1,0) from their respective
Exas vectors in which the position in the vector denotes
a unique feature. Then, distgiasvectoriiNorm(V1,02) = 1
(i.e., maximum distance), which is reasonable since both
vectors share no feature. However, assume v} = (0, 2,0), then
diSt BrasVectorL1Norm (V1,V5) = % In fact, the normalization
of the subtraction v; — v} causes a decreasing distance value
even though both vectors still do not share any feature. To
avoid normalization, one may substitute the frequencies with
simple indicators (i.e., O if the feature is absent and else 1), so:

Hypothesis 5

API misuse detection with correction rules using the
ExasVectorLlNorm metric is more precise when using
Exas vectors with indicators rather than frequencies.

Finally, we investigated the effect of splitting AUGs into API-
specific sub-graphs. We found that splitting usually improves
the results, while the corresponding metrics still suffer from the
previously mentioned problems. As a consequence, we argue:

Hypothesis 6

API misuse detection with correction rules using the Exas
vectors is more precise when splitting graphs into API-
specific subgraphs.

V. THREATS TO VALIDITY

Following the classification by Siegmund et al. [60], we
consider threats to the internal and external validity.

A. Internal Validity

Threats to the internal validity describe phenomena of our
setup that may harm the trustfulness of the results. First, our
implementation may contain errors that eventually lead to null
results. While we cross-checked and tested our implementation
on sample data, we still cannot ensure its correctness. Moreover,



conceptional issues with the algorithms can taint the results
(e.g., different methods produced by overloading could result
in the same features in Exas vectors). Thus, for transparency
and replication, we publish our code.! Second, whether a
misuse in the original dataset represents a real misuse is
dependent on the original decision of the respective authors.
Since we did not re-check the validity of the ground truth,
this may influence the results. Third, even though we carefully
reviewed existing literature, we have arguably not identified,
nor used, all existing algorithms—which may perform better
than the analyzed ones. However, this could be easily fixed by
integrating and comparing other algorithms in our published
framework. Finally, even though the reviewers individually
performed the root-cause analysis and discussed their decisions
with each other, it is still a subjective view. Other reviewers
may find different issues or argue that our derived hypotheses
are not reasonable. Thus, we recommend further experiments
to validate our hypotheses, and potentially derive new ones.

B. External Validity

External validity considers phenomena that may prevent us from
generalizing our results. In our experiments, we restricted the
applicability of the algorithms on API usage graphs, and thus
on the Java programming language. While we expect that AUGs
can be adapted to other programming languages, we cannot
ensure that the results apply to other languages. Moreover, we
cannot state whether the results apply to other graph types,
such as control-flow graphs or the extended AUGs introduced
by Kang et al. [26]. This will be subject of further research.
Finally, the MUBench dataset may not be a representative set
of API misuses, which could cause their limited applicability
to detect misuses in the AUS5S00 dataset. Thus, other datasets
should be researched, such as the ones provided by Kechagia
et al. [27] or ourselves [46].

VI. RELATED WORK

Our work relates to surveys on code similarity techniques,
graph similarity, and comparative studies of automated software-
engineering techniques.

A. Surveys on Code Similarity

Code similarity is actively used for code-clone detection [30],
[55], analyzing plagiarism and software license compli-
ance [51], code search [9], [24], [56], code quality analy-
sis [51], as well as automated program repair (e.g., plastic
surgery hypothesis) [34]. Most prominently, Haq et al. [23]
surveyed 70 techniques on binary code similarity regarding
their applications, characteristics, implementation, benchmarks,
and evaluation techniques. They focus on techniques for binary
code, and thus deal with additional noise, for instance, by
different compiler settings or obfuscation. Also, Haq et al.
did not perform comparative experiments. Ragkhitwetsagul
et al. [51] analyzed 30 different code similarity techniques
regarding their applicability to certain degrees of code changes,
for instance, global and local changes. The study focuses on
detecting copied and modified code, while our study refers to

detecting similarities between correct and false API usages.
Moreover, our study involves AUGs as intermediate code
representation, while Ragkhitwetsagul et al. used text similarity
and simpler code structures, such as ASTs.

B. Surveys on Graph Similarity

While driven by the respective domains in which graph-
similarity algorithms are needed, some general surveys on
graph similarity exist. For instance, Aggarwal [2] discusses the
general problem of (sub-)graph isomorphism and graph distance
together with state-of-the-art algorithms in his data mining book
(cf. Chapter 17). Gao et al. [20] provide a survey on algorithms
computing the graph edit distance. We used these works as
sources to systematically select candidate distance algorithms.
Ren et al. [52] observed that the performance of subgraph
isomorphism algorithms is correlated to the structure of graphs.
Thus, we directly analyzed the performance of realistic AUGs
and the respective AUG correction rules. Other surveys consider
more advanced metrics, such as parallel algorithms to compute
graph distances [29] or deep learning techniques [37]. We did
not consider these algorithms, since they require more complex
computation and hardware as well as carefully selected training
sets. However, in case our hypotheses are shown to not be true,
will not significantly improve the results, or suffer from poor
performance, we will analyze more complex algorithms.

C. Studies on Automated Software-Engineering Techniques

Our work aligns with different comparative studies on tech-
niques in the automated software-engineering domain, such as
automated program repair in general [17], automated repair of
API misuses [27], static code analysis for detecting security
vulnerabilities [22], fault localization techniques [69], or the
performance of API misuse detectors [4]. To the best of
our knowledge, no previous work exists that evaluates graph-
distance algorithms for API usages comparisons. So, even
though our results did not indicate a clear benefit of such algo-
rithms, we still contribute to the existing body of knowledge.

VII. CONCLUSION

Using APIs is accompanied by their potential misuses causing
negative effects in the implemented software. Thus, researchers
developed automated techniques to detect such misuses. For
this purpose, recent techniques represent API usages as AUGSs
and compare usages to known correct usages or misuses to
detect and ideally repair misuses. However, to the best of
our knowledge, no studies analyzing existing graph-distance
algorithms to detect API misuses exist. Therefore, in this paper,
we formalized this problem and the desired goal, introduced a
set of well-known algorithms, and conducted a study using two
independent data sets of real API misuses. Our results indicate
that the analyzed algorithms fail to effectively discriminate
correct API usages from misuses. Based on a post-analysis,
we identified the potential issues of individual algorithms and
derived six hypotheses for further improvements. In the future,
we will analyze these hypotheses and investigate more advanced
techniques for graph distance computation.
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