
Using API-Embedding for API-Misuse Repair
Sebastian Nielebock
University of Magdeburg

Germany
sebastian.nielebock@ovgu.de

Robert Heumüller
University of Magdeburg

Germany
robert.heumueller@ovgu.de

Jacob Krüger
University of Toronto &
University of Magdeburg

Canada & Germany
jacob.krueger@ovgu.de

Frank Ortmeier
University of Magdeburg

Germany
frank.ortmeier@ovgu.de

ABSTRACT
Application Programming Interfaces (APIs) are a way to reuse exist-
ing functionalities of one application in another one. However, due
to lacking knowledge on the correct usage of a particular API, de-
velopers sometimes commit misuses, causing unintended or faulty
behavior. To detect and eventually repair such misuses automat-
ically, inferring API usage patterns from real-world code is the
state-of-the-art. A contradiction to an identified usage pattern de-
notes a misuse, while applying the pattern fixes the respective
misuse. The success of this process heavily depends on the quality
of the usage patterns and on the code from which these are inferred.
Thus, a lack of code demonstrating the correct usage makes it im-
possible to detect and fix a misuse. In this paper, we discuss the
potential of using machine-learning vector embeddings to improve
automatic program repair and to extend it towards cross-API and
cross-language repair. We illustrate our ideas using one particu-
lar technique for API-embedding (i.e., API2Vec) and describe the
arising possibilities and challenges.

CCS CONCEPTS
• Software and its engineering → Error handling and recov-
ery; Software defect analysis.

KEYWORDS
API Misuse, API Embeddings, Program Repair

ACM Reference Format:
Sebastian Nielebock, Robert Heumüller, Jacob Krüger, and Frank Ortmeier.
2020. Using API-Embedding for API-Misuse Repair. In IEEE/ACM 42nd
International Conference on Software Engineering Workshops (ICSEW’20),
May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3387940.3392171

1 INTRODUCTION
Application Programming Interfaces (APIs) describe how function-
alities of a program, for example, a library, can be accessed and
used in a different program. However, due to missing or outdated
documentation, or simply due to a lack of understanding of a par-
ticular API, developers may misuse it [7]. We denote an API misuse

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392171

as any deviant usage of an API compared to the usages intended
by the API developers, causing faulty behavior in the code, such as
software crashes or performance losses. One way to detect and fix
misuses are API usage patterns that describe how an API is correctly
used. Usage patterns are inferred from real-world source code using
temporal specification-mining techniques [1, 3, 10]. A contradic-
tion of a pattern is then considered as a misuse. Eventually, these
patterns can then be used to automatically fix the misuses [9, 11].
The success of this technique strongly depends on the quality of
the patterns and the source code from which patterns are mined [5].
If the code does not contain exactly the patterns of a particular API,
existing techniques cannot fix its misuses.

However, other researchers showed that source code exhibits reg-
ularity, similar to natural languages [4]. So, well-known machine-
learningmodels likeWord2Vec [6] could also be applicable to source
code. In particular, Word2Vec denotes words as high-dimensional
vectors that allow conducting arithmetic operations to express se-
mantic relations, such as 𝑉 (𝐴𝑡ℎ𝑒𝑛𝑠) −𝑉 (𝐺𝑟𝑒𝑒𝑐𝑒) +𝑉 (𝑁𝑜𝑟𝑤𝑎𝑦) ≈
𝑉 (𝑂𝑠𝑙𝑜). Nguyen et al. [8] introduced API2Vec and showed that
such relations can be found for APIs as well. Consequently, it is pos-
sible to find semantic relationships between the elements of one API
that are also present in other APIs, which do not necessarily share
syntactical similarities. Therefore, when lacking sufficient examples
using a particular API, it can be possible to adapt known patterns
from other APIs. Moreover, Nguyen et al. also show the possibility
of using this technique for cross-language migrations, allowing
to transfer patterns from one programming language to another.
Building on such ideas, we propose to use machine learning—and
the example of API2Vec—for automatic API-misuse repair (cf. Sec-
tion 2); and discuss open challenges, especially for cross-API and
cross-language support (cf. Section 3).

2 USING API2VEC FOR API-MISUSE REPAIR
API2Vec [8] uses the continuous bag-of-words (CBOW) model from
Word2Vec to create API embeddings. This network consists of an
input, a hidden, and an output layer. The input is the context of an
API element 𝑤𝑖 (i.e., 𝑤𝑖−𝑛, · · · ,𝑤𝑖−1, 𝑤𝑖+1, · · · ,𝑤𝑖+𝑛) with a fixed
size (i.e., 2𝑛). The network is then trained to determine the missing
API element𝑤𝑖 . After training, API embeddings for each API ele-
ment are inferred as vectors, spanning a high-dimensional API2Vec
space. For training, Nguyen et al. [8] obtained API call sequences
statically from real-world source code. One trained network based
on Java projects and the JDK API is available on GitHub.1

As Nguyen et al. [8] show, API elements frequently used together
also cluster in the API2Vec space, which we expect to identify as API
usage patterns. Patterns mined from code are usually represented

1https://github.com/pdhung3012/api2vec

https://doi.org/10.1145/3387940.3392171
https://doi.org/10.1145/3387940.3392171
https://github.com/pdhung3012/api2vec

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Sebastian Nielebock, Robert Heumüller, Jacob Krüger, and Frank Ortmeier

n2

n1

n3

n4

m2

m1

m3

m4

Figure 1: Mapping pattern nodes based on API2Vec vectors.

as data structures describing the relations of API elements to each
other (e.g., a sequence or a graph) [10]. We apply API usage graphs
as introduced by Amann et al. [2] to repair misuses, since these
effectively decrease the false positive rate in API misuse detection.

To explain the general notion of the repair mechanism, we as-
sume a two-dimensional projection of the API2Vec space (cf. Fig-
ure 1). Our intent is to find a pattern consisting of nodes𝑚𝑖 (desti-
nation pattern) that is similarly structured as the pattern consisting
of nodes 𝑛𝑖 (source pattern). To find this pattern, we can apply
a similar technique as Nguyen et al. [8]. First, we identify two
nodes, one from each pattern, serving as “hook nodes” (e.g., 𝑛1
and 𝑚1 in Figure 1). A possible way to identify the hooks is to
choose 𝑛1 randomly from the known pattern and to determine
𝑚1 as the closest node in the API2Vec space that belongs to a dif-
ferent API than 𝑛1. Based on these nodes, we can compute the
likely position of API elements that, for instance, represent node 𝑛2
from the source pattern in the destination pattern (i.e., node𝑚2 by
𝑉 (𝑚2) ≈ 𝑉 (𝑛2) −𝑉 (𝑛1) +𝑉 (𝑚1)). Usually, the position of a node
is only an approximation, so that we have to check the closest API
elements—ranked by a distance metric. Note that we only need one
hook node per pattern, since we can always compute the vector
from the hook node to any other node in the source pattern.

This process yields patterns that are likely similar in their func-
tionality. For example, adding an element to a list shares some
similar API calls with adding an element to a stack. In case we
found such a pair of patterns (i.e., source and destination patterns),
the destination pattern can then be used to detect and repair API
misuses. Usually, one would repair API misuses by the source pat-
tern. However, in case we cannot infer this pattern, we are not
able to fix the misuse. Still, we can leverage the existing API em-
beddings, to map a known and frequent destination pattern to the
source API, forming a source pattern. For evaluation, we plan to use
a set of well-known API misuses (e.g., the MuBench dataset used
in previous studies by Amann et al. [1]) and generate the source
patterns to fix the misuses based on similar destination patterns. To
check whether we can really infer destination patterns, we prepare
source-code files that have an over-represented amount of usages
of the similar API compared to the “required” API of the misuse.
So, we will re-train the existing CBOW model and implement a
technique for transforming graph-based patterns into code patches.

3 CHALLENGES FOR API-MISUSE REPAIR
Even though very promising, we faced several challenges using the
API2Vec technique, which are arguably transferable to other ma-
chine learning techniques for automatically repairing API misuses.

(1) We require a minimum number of example usages for both
the source and destination patterns. Otherwise, it is impossible to
compute the mappings, even if they exist. For finding destination
patterns, we also envision applying API2Vec in its cross-language
configuration, to find similar patterns in other languages. This re-
quires a transformation of the two vector spaces [8]. Therefore, we
have to show whether and between which paradigms of program-
ming languages such relations exist.

(2) We assume that API elements frequently applied together
are not only in local proximity, but are structured similarly. So, the
vectors between nodes of a pattern are similar to the vectors of
another, comparable pattern. Currently, this has only been shown
for simple patterns, such as API method-call pairs. Whether more
complex patterns are similar is an open question for future work.

(3) Some patterns describe the same concept but need more or
fewer API elements. Our technique would then fail to find a one-
to-one mapping of nodes. A possible solution could be to split and
merge nodes in source patterns to find more similar patterns.

(4) We will extend the existing data set with third-party APIs.
While JDK APIs indicate good results, we do not know whether
these relations also exist among third-party libraries.

4 SUMMARY
In this paper, we proposed the idea of combining API2Vec with
API misuse repair. API2Vec introduced the idea of using a vector
representation to find similar API usages across different APIs (and
even programming languages), where APIs must not necessarily
share syntactical similarities. While promising, we also identified
important challenges, for example, learning appropriate neural net-
works or collecting empirical evidence on whether similar patterns
exhibit similar structures in the API2Vec space. Arguably, other
machine-learning techniques can also be adopted to facilitate API
misuse repair, but face similar problems.
Acknowledgments. This research has been supported by the Ger-
man Research Council DFG (grant no. SA 465/49-3).

REFERENCES
[1] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.

2018. A Systematic Evaluation of Static API-Misuse Detectors. IEEE TSE 45, 12
(2018).

[2] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2019. Investigating next Steps in Static API-Misuse Detection. In 16th MSR. IEEE.

[3] Glenn Ammons, Rastislav Bodík, and James R Larus. 2002. Mining Specifications.
In 29th POPL. ACM.

[4] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In 34th ICSE. IEEE.

[5] Claire Le Goues and Westley Weimer. 2012. Measuring Code Quality to Improve
Specification Mining. IEEE TSE 38, 1 (2012).

[6] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In 26th NeurIPS. Curran Associates.

[7] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?. In 38th ICSE
(Austin, Texas). ACM, 12.

[8] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API Embedding for API Usages and Applications. In 39th ICSE.
IEEE.

[9] Sebastian Nielebock. 2017. Towards API-Specific Automatic Program Repair. In
32nd ASE. IEEE.

[10] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. 2013. Automated API Property Inference Techniques. IEEE TSE 39, 5
(2013).

[11] Westley Weimer. 2006. Patches as Better Bug Reports. In 5th GPCE. ACM.

	Abstract
	1 Introduction
	2 Using API2Vec for API-Misuse Repair
	3 Challenges for API-Misuse Repair
	4 Summary
	References

