
To Share, or Not to Share:
Exploring Test-Case Reusability in Fork Ecosystems

Mukelabai Mukelabai,∗§ Christoph Derks,† Jacob Krüger,‡ and Thorsten Berger†§
∗The University of Zambia, Zambia
†Ruhr University Bochum, Germany

‡Eindhoven University of Technology, The Netherlands
§Chalmers | University of Gothenburg, Sweden

Abstract—Code is often reused to facilitate collaborative
development, to create software variants, to experiment with
new ideas, or to develop new features in isolation. Social-coding
platforms, such as GitHub, enable enhanced code reuse with
forking, pull requests, and cross-project traceability. With these
concepts, forking has become a common strategy to reuse code by
creating clones (i.e., forks) of projects. Thereby, forking establishes
fork ecosystems of co-existing projects that are similar, but
developed in parallel, often with rather sporadic code propagation
and synchronization. Consequently, forked projects vary in quality
and often involve redundant development efforts. Unfortunately, as
we will show, many projects do not benefit from test cases created
in other forks, even though those test cases could actually be reused
to enhance the quality of other projects. We believe that reusing
test cases—in addition to the implementation code—can improve
software quality, software maintainability, and coding efficiency in
fork ecosystems. While researchers have worked on test-case-reuse
techniques, their potential to improve the quality of real fork
ecosystems is unknown. To shed light on test-case reusability, we
study to what extent test cases can be reused across forked projects.
We mined a dataset of test cases from 305 fork ecosystems on
GitHub—totaling 1,089 projects—and assessed the potential for
reusing these test cases among the forked projects. By performing a
manual inspection of the test cases’ applicability, by transplanting
the test cases, and by analyzing the causes of non-applicability, we
contribute an understanding of the benefits (e.g., uncovering bugs)
and of the challenges (e.g., automated code transplantation, decid-
ing about applicability) of reusing test cases in fork ecosystems.

Index Terms—test cases, reuse, test propagation, code trans-
plantation, forking, ecosystems

I. INTRODUCTION

Code is often reused in software development. For instance, de-
velopers copy code excerpts from question-answering platforms
and exemplars [5], [44]; they clone repositories from version-
control systems to enable collaboration or isolated development
(e.g., feature forks) [35], [37], [70]; or they use forking
mechanisms to create independent software variants (a.k.a.
clone & own) [14], [63], [79]. Especially modern social-coding
platforms, such as GitHub, actively enhance and promote
the ability to reuse complete systems via forking and the
pull-based development paradigm [8], [9], [23]. Forks typically
involve changes that do not alter the general purpose of the
system. Among others, they implement new or tailor existing
features, or port or improve the system [2], [11], [54], [70].

Together, forks establish fork ecosystems, which are sets of
related projects in a fork relationship. In such an ecosystem,
each fork represents a different, yet similar variant of the

mainline repository. While many forks are short-lived—created
to apply changes, to submit a pull request, and then to abandon
the fork after the pull request was accepted [28], [37]—others
are long-lived, being evolved and maintained independently
of the mainline project. While such code reuse in fork-based
development promises many benefits, changes are typically only
sporadically propagated or synchronized between forks [25],
[35], [70], [71]. Consequently, the different variants (forked
projects) sometimes co-evolve and then diverge in functionality
as well as in quality [73], since bug fixes and test cases are not
shared between them, among other reasons. Of course, sharing
quality improvements is only relevant for actively maintained
forks rather than for those that are abandoned after a pull
request to the mainline project is accepted. To improve the
quality of the projects within a fork ecosystem, we advocate
the propagation of quality improvements, such as bug fixes and
newly created or evolved test cases, among forks [34], [52],
[64]. While change-propagation and program repair techniques
have been proposed [19], there is no specific support to reuse
test cases within fork ecosystems, not even studies of the
potential of test-case reuse—our focus in this paper.

Reusing test cases has been recognized as a viable avenue to
improve the quality of software. Various studies and techniques
have been presented that focus on specific kinds of applications
and application parts, such as on UI testing in Android apps
and in web applications [26], [42], [57], [84], or on highly con-
figurable systems [16], [18], [34], [64]. However, none of these
works on test-case reuse considers ecosystems of forked projects,
where the positive effect may be highest. A notable exception
is the test-case reuse and adaptation technique by Zhang and
Kim [83], which analyzes variations among clones and adapts
existing test cases based on different criteria. Our long-term
goal is to establish techniques, like the one we have proposed
before [52], for automatically reusing test cases among the
forked projects in a fork ecosystem. Still, it is an open question
whether reusing (a.k.a. propagating or transplanting [6]) test
cases with a fork ecosystem promises substantial benefits, or
whether it is just a rare scenario. A particular problem is to
understand and decide whether a test case is actually applicable
at another, forked (a.k.a. cloned or copied) code location, which
may have been modified by the fork developers.

Consider, for instance, a forked project with test cases for
checking a security requirement (e.g., preventing SQL injec-

tions) that are missing in other forks of the ecosystem. If the
tested functionality also exists in other forks, it may be highly
important for the developers to propagate the test case to assess
whether their fork is threatened (i.e., vulnerable to SQL injec-
tions). Beyond cases of simple equivalence, it is challenging to
assess whether a test case is applicable [64]. Among others, the
tested functionality may have been modified, or the test may
be concerned with a feature interaction that does not exist in
the other fork. To leverage existing and design new techniques
for test-case reuse in fork ecosystems, we need to determine
whether and to what extent test cases in a fork ecosystem may
be relevant for other forks, what adaptations may be required
for propagating them, and whether we can identify test-case
applicability criteria for typical changes in fork ecosystems.
This requires to systematically explore the potential of reusing
test cases in fork ecosystems and to assess their applicability.

In this paper, we present a study in which we used
code-clone detection to identify cloned methods within 305
ecosystems mined from GitHub, comprising 1,089 projects
with substantial test case evolution (i.e., on average, 62 new
test cases added by each fork). We identified methods with
test cases (i.e., units under test (UUTs) [77]) for which
cloned methods without the same test cases exist within the
ecosystems. Then, we investigated the reuse potential of 4,347
test cases and manually inspected the applicability of a sample
of 230 candidates for test-case reuse, of which we manually
propagated 23 (10 %) to deepen our understanding of the
necessary adaptations or limitations to test-case applicability.

Our research questions are:

RQ1 To what extent can test cases be propagated within fork
ecosystems? Using our quantitative analysis, we explored
to what extent cloned methods in an ecosystem miss
test cases that exist for their clones. So, we provide an
understanding to what extent test cases are missing in
forks and could be reused to improve their quality.

RQ2 To what extent are non-reused test cases applicable to
other projects in fork ecosystems? By manually inspecting
230 and actually reusing 23 of the non-reused test cases,
we explored under what circumstances test cases are
(not) applicable at the cloned locations. This analysis is
far from trivial, especially for clones adding, altering, or
removing entire statements. We focused on determining
under what circumstances test cases are applicable even
when the cloned code has been severely modified and
applicability cannot be determined automatically.

Our results motivate the need for test-case propagation
techniques. While we found evidence for active test-case
sharing among projects in the ecosystems, with 6 % (i.e.,
1,300 commits) of all merged pull-request commits adding or
modifying test cases, we also found that 48 % (i.e., 18,058 test
cases) of all newly added test cases were missing in at least
one project of their respective ecosystem. Of these missing
test cases, 24 % (i.e., 4,347 test cases) had matching UUTs to
which they could potentially be applied, thus necessitating an
investigation into the extent to which the test cases could be

reused and what could limit their applicability. We contribute
our replication package as an online appendix [1].

II. BACKGROUND AND RELATED WORK

Fork Ecosystems. A fork ecosystem consists of one mainline
project and the forks that have been derived from it. The
notion of fork ecosystems stems from the forking mechanism
of the social-coding platform GitHub, but essentially describes
that a number of systems are cloned from one another (a.k.a.
clone & own). Typically, forking is used in the pull-based
development workflow to implement new features, fix bugs, or
integrate other improvements [23], [28], [35], [37]. However,
fork ecosystems often also involve forks that represent
customized variants of the mainline (e.g., for different
customers or varying hardware [7]–[9], [70]).

Researchers have studied how developers use forking mech-
anisms and have proposed techniques to facilitate code reuse
in fork ecosystems. For instance, Kawamitsu et al. [31] and
Gharehyazie et al. [20] present empirical studies to understand
the extent of cross-project source-code reuse on GitHub,
indicating that developers clone particularly within their project
and fork ecosystem. Ray et al. [58] use the BSD ecosystem to
detect and characterize semantic inconsistencies in code that
is ported between individual forks. To improve code reuse,
Ren [59] proposes a technique for automatically propagating
bug fixes from one fork to another, which is inspired by the
idea of automatic code transplantation [6], [12], [67], [68].
Lillack et al. [41] propose a technique to integrate forked
projects by specifying the high-level intentions for individual
parts that have diverged. Such works are known under the term
clone management [7], [46], [62], [72]. Other studies focus on
properties and uses of forks, such as developers’ practices and
challenges when forking, or they focus on the evolution and
purposes of forks in practice [8], [9], [23]–[25], [28], [33], [36],
[70], [85]. In particular, Ma et al. [45] study how developers fix
cross-project correlated bugs (i.e., bugs of a system caused by
another system). They find it a challenging activity that can be
eased by the bug reporter sending a feasible test case. Moreover,
Mondal et al. [49], [50] find that even within the same system
18.42 % of the (copy & paste) clones they investigated involved
propagated bugs. Such works indicate the potential benefits test-
case reuse may yield (e.g., increasing test coverage, providing
test cases for bugs in another fork). We complement this
research on fork ecosystems by providing a better understanding
of the potential for reusing test cases across forks.
Test-Case Generation and Program Repair. Testing helps
improve the quality of software by unveiling behavior that
conflicts the intended one (specified by test cases). So, test cases
can also serve as a design mechanism for new software [80].
Various techniques have been proposed to improve the quality
of software by generating test cases [13], [55], [66], [81],
typically building on the competent-programmer hypothesis
[21]. This hypothesis states that catching smaller mutations will
also unveil bigger problems, building on the intuition that good
programmers who are less likely to introduce accidental muta-
tions are also less likely to introduce bigger ones. Generated test

cases aim to catch unwanted code mutations developers may
implement. Consequently, test-case generators exploit ideas
from regression testing [40], mutation testing [27], and search-
based test creation. Closely related is automatic program repair,
which aims to derive patterns of bug fixes to repair similar bugs
in other projects (i.e., bugs identified in similar code locations)
[10], [32], [38], [43], [51]. Typically, automated program
repair builds on bug-fixing changes to derive fixing patterns.
Unfortunately, comparative benchmarks and empirical studies
in practice indicate that test generators and automatic program
repair are not perfect for generating meaningful test cases or
propagating bug fixes [4], [15], [65]. To improve this situation,
we have suggested in recent works to involve developers more
directly into the processes of deriving test cases [52], [53], [64].
Unfortunately, existing techniques are limited to specific testing
techniques (e.g., performance testing), and only recommend
modifications to developers [3]. For designing better automa-
tion and recommenders, further empirical studies on bugs, their
causes, and feasible test cases in real-world systems are needed.

Reusing test cases is a means to improve software quality.
Studies on the potential of test-case reuse exist for (i)
highly configurable systems [16], [18] (applicability of test
cases for other system configurations) and (ii) UI testing of
Android apps or web applications [26], [42], [57], [84] (using
similarities between UI elements and test cases). Most relevant
for us is a technique by Zhang and Kim [83] that reuses
test cases within a project to test code clones. To this end,
the authors measure variations in referenced variables, data
types, and method calls between methods to adapt the test
case of one clone to be applicable for the other. While such
works indicate criteria for assessing the applicability of test
cases to similar systems, none studies the potential of test-case
reuse within fork ecosystems, provides detailed empirical data
on test-case applicability, identifies what kinds of changes
break test cases, or suggests what test cases could be accepted
and (automatically) modified to still reuse them. Our study
provides more in-depth insights that are needed to understand
when and how test-case reuse can be implemented in fork
ecosystems—guiding researchers in advancing and improving
the reliability of automated techniques and unleashing the
potential for improving the quality of huge fork ecosystems.

Code-Test Co-Evolution. Co-evolution in fork ecosystems
is a well-known problem, and, identically, source code and
the test cases covering it may also co-evolve [34], [64], [73],
[82]. To resolve co-evolution problems, several techniques and
refactorings have been proposed that aim to identify whether
a source-code change also requires updates to test cases—and
to ideally update the test cases automatically [39], [56], [76].
Most interestingly, Mirzaaghaei et al. [48] propose a technique
for repairing and generating test cases during the evolution
of a software system. To adapt test cases for the evolved
code, the authors propose four algorithms for identifying
and adapting differences: signature changes (e.g., input and
output), test-class hierarchies, interface implementations, and
new overloaded methods. While software evolution faces

similar problems as test-case reuse, none of these works focuses
on the propagation of test cases in forked ecosystems. So, we
complement this research direction by investigating test-case
reuse and applicability for different forks.

III. METHODOLOGY

Our methodology involved three phases (cf. Fig. 1): First,
we selected subject ecosystems from GHTorrent [22] by
considering mainline projects (not forks) with substantial
evolution (at least 20 forks and 10 test cases). Second, we
extracted test cases from this dataset and identified potential
code locations in other projects at which these could be reused.
For this purpose, we constructed a list of test cases that were
added in one project, but were missing in other projects of
a fork ecosystem. We identified code clones for the code that
is covered by the test case (UUTs). Finally, we analyzed the
resulting dataset of 24,662 clone pairs. We derived descriptive
statistics to assess the overall potential for test-case reuse
(RQ1). Thereafter, we manually inspected a sample of the
test cases to understand why they are non-applicable or how
they could still benefit the code missing the test case, and
propagated a sample of them to validate our results (RQ2).

A. Selecting Subject Ecosystems

On the left of Fig. 1, we show our steps for creating our
dataset of projects to analyze.

Filtering Projects. Our subject ecosystems are open-source
projects hosted on GitHub. We used the June 1st 2019 MySQL
dump of the GHTorrent database [22] to mine our list of
projects, thus circumventing the limitations of the GitHub API,
which allows only a maximum of 1,000 records in a query
session. The MySQL dump comprises different datasets, such
as project meta-data, commits, and developers. We iterated
through 28,843,693 records of the project meta-data dataset
to select Java projects that were last pushed to in 2016 or
later and were not flagged as deleted. Our focus on Java
projects allows us to use existing tools that leverage JUnit
annotations (e.g., @Test) to identify test cases (though this
could be extended to any other language with explicit support
for test case identification). Also, Java is one of the most
popular languages. We wanted to capture recent development
practices, thus limiting our analysis to projects still updated
within the last six years. This resulted in 1,859,871 projects.

Selecting Ecosystems. Next, we selected ecosystems by
considering all projects that are not forks themselves (i.e.,
mainline projects), but have forks. A mainline project together
with its forks forms a fork-ecosystem. Since we are interested
in projects that have wider community engagement (more
diverging forks), we selected mainline projects with at least
20 forks. This resulted in 4,220 ecosystems. To be able to
investigate test-case sharing, we filtered the mainline projects to
only include those with at least 10 test cases. This number may
seem small, but we use it as our minimum because we assume
that any test case that can be reused improves the quality of a
project. This left us with 407 mainline projects and, respectively,

selecting subject ecosystems (Section III.A)

28,843,693 projects

- Java projects only
- not tagged as deleted
- pushed in 2016 or later

1,859,871 projects

mainline projects with 20+ forks

4,220 ecosystems

mainline projects with 10+ tests

407 ecosystems

first 10 forks (sorted by commits)
 - 5+ own commits
 - at least 30 days of evolution
 - non-discontinued forks

GHTorrent
(June 1st 2019)

305 ecosystems
(1,089 projects)

filtering projects

selecting ecosystems

selecting ecosystems

preparing the dataset (Section III.B)

37,256 test cases

18,058 test cases

24,662 clone pairs

extracting added test cases

identifying shared code

identifying missing
test cases

identifying potential UUTs
of missing test cases

extracting diffs between
UUT and clone

24,662 clones
4,347 test cases
119 ecosystems

566 projects

RQ1

RQ2

88 clone pairs
23 clone pairs

analyzing the data (Sections IV & V)

230 clone pairs

12 clone pairs

2 reviewers (6/6 clone pairs)
 - random selection
 - assessed by other reviewer
 - inter-rater agreement of 0.92

1 reviewer3 reviewers

2 reviewers (112/118 clone pairs)
 - time boxed (5 minutes)
 - applicability criterion

computing
descriptive statistics

assessing applicability

performing cross validation

comparing results

inspecting non-applicable
test cases transplanting test cases

Figure 1: Overview of our methodology

ecosystems. Note that we scope our analysis to mainline
projects and their direct forks; we do not consider forks of forks.

Selecting Forks. The mainline projects we identified in our pre-
vious step had 274 forks on average, with a maximum of 3,719.
However, we are interested in long-living forks that co-exist
with the mainline projects and add test cases as well. Therefore,
taking inspiration from previous studies [8], [52] that analyze
the evolution and management of forked projects, we include
only forks that (i) have at least five fork-specific commits, (ii)
comprise at least 30 days of evolution, and (iii) were not discon-
tinued after a merge commit. We applied these criteria and, due
to space and computation limitations, cloned only the top ten
forks with the most fork-specific commits. Note that we excluded
mainline projects comprising no forks matching our criteria.

Final Dataset. We elicited a final dataset of 305 ecosystems,
totaling 1,089 projects—305 mainline and 784 direct forks, with
a minimum of 2, average of 4, and maximum of 10 projects
per ecosystem. Note that these are only the projects that met
our criteria, whereas some of the ecosystems have hundreds
of forks. In Table I, we summarize the ecosystems. For most
(196), we analyzed 3 or more projects per ecosystem, whereas
109 ecosystems involved 2 projects each. The ecosystems are
from various domains, such as software libraries, frameworks,
desktop applications, web applications, and mobile apps. The
list of all projects is in our online appendix [1].

B. Preparing the Dataset

In the middle part of Fig. 1, we show how we prepared the
dataset for our analysis. This comprised extracting test cases
and their UUTs, identifying which test cases were missing in
projects of their respective ecosystems, identifying potential
UUTs to which the test cases could be applied, and extracting
code differences between the clone pairs of the UUTs, which
we used to analyze test-case applicability.

Extracting Test Cases. We extracted test cases in two steps.
First, from each project, we extracted all test cases and
corresponding UUTs. We used the test-case extraction tool
we have developed in previous work [52] to identify test
cases and related UUTs. The C#-based tool relies on N-unit
annotations, such as @Test, and srcML [47] to extract a
project’s test cases and corresponding UUTs. We considered
all project-specific methods referenced within a test case as
its UUTs, while excluding methods from external libraries
and those that are part of the test suite. For each test case, we
recorded details, such as the project name, file path, as well
as start and end line numbers of the test case and its UUTs.

Many test cases may be shared between forks by default,
since forking also clones test cases that already exist in the
mainline project. In contrast, we are interested in test cases
that are not shared by default. Therefore, we scoped our
analysis to test cases that were added by each project during
its fork-evolution period. In Fig. 2, we display the evolution
periods we analyzed: For mainline projects, we considered
test cases added from the date of the first fork (e.g., F1). For
forks, we considered those added from the date the fork was
created. In the second step, we used pydriller [69] to extract
all files and methods that were added during each project’s
fork evolution period. Then, we mapped the extracted methods
and filenames to the test-case methods and files we identified
in the first step. This resulted in 37,256 test cases that were
added during the fork evolution periods.

Identifying Shared Code. To identify shared code—for test
cases and UUTs—we used the code-clone detection tool
Simian, a commercial code-similarity analyzer that is freely
available for research. Simian can detect Type 1, 2, 3, and
(to some extent) 4 clones [60], [61], [74], with an accuracy
comparable to Deckard [29] and CCFinderX [30], which are
two commonly used code-clone detection tools in research. We

Table I: Overview of the selected ecosystems. Size refers to the number of projects we analyzed. Forks refer to the overall size,
including forks we did not analyze.

size of ecosystem (# of projects) 2 3 4 5 6 7 8 10
∑

of ecosystems 109 65 54 36 18 14 8 1 305
average # of forks 77 67 66 43 53 24 75 84 60∑

forks 16,927 13,193 14,476 7,909 5,787 2,391 4,836 844 66,363

selected Simian over these C-based tools, because it was easier
to integrate into the Java and C# tools we used and extended for
extracting test cases and analyzing variations between UUTs.
We used Simian’s default settings and set the minimum number
of lines of code for a clone to three. To identify cross-project
code clones, we put all projects of an ecosystem into one
parent folder and supplied that folder as a parameter to Simian.
Simian then outputted the clones identified in the ecosystem by
mapping what line-ranges between what files are similar—with
similar code blocks grouped and assigned a unique identifier.
Identifying Missing Test Cases. We considered a test case to
be missing within an ecosystem if it is absent in at least one
project of that ecosystem. Using our list of the 37,256 added
test cases, we used Simian to identity which test cases had
clones in other projects of the respective ecosystem to which
the test case belonged. More specifically, for each test case
in the ecosystem, we checked if its code line-ranges occur in
any of the code-clone groups Simian found for the ecosystem.
We identified 18,058 (48%) missing test cases in at least one
project of the respective ecosystems (i.e., 272 ecosystems).
Identifying Potential UUTs for Missing Test Cases. Next,
we identified missing test cases that could be reused in the
projects they were missing from. Therefore, we extracted clones
of their UUTs: For each missing test case’s UUT whose code
location (line ranges) appeared in the clone detection results, we
collected all matched code clone locations from other projects
in the ecosystem (we excluded within-project clones). Since
each code clone-location may have multiple methods with
similar or different signatures to the missing test case’s UUT,
we applied AST differencing using GumTreeDiff [17] to map

M
2012-01-01

F1
2014-06-12

F2
2015-02-28

F3
2019-03-14

repos cloned for
analysis

Figure 2: Illustration of the fork evolution periods we analyzed.
For a mainline project (M), we consider only test cases added
from the date of the first fork (F1). For forks (F1, F2), we
consider test cases added from the date of forking. We exclude
all forks (F3) discontinued after a merged pull request.

Table II: Descriptive statistics of the fork ecosystems

type min. 1st qu. median mean 3rd qu. max.

m
ai

n commits1 3 115 250 414 472 3,691
developers1 1 12 21 29 37 220
stargazers 2 87 263 812 778 15,616

fo
rk

s commits 2 34 92 234 234 3,621
developers 1 5 10 17 22 359
stargazers 0 0 0 2 0 378

1 Our analysis focuses only on (i) commits affecting Java files and (ii)
commits made from the forking date for forks, or from the date of the
first fork for mainline projects.

the missing test case’s UUT to the correct method in the project
where the test case was missing from. This phase produced our
final set of 4,347 (24 %) missing test cases from 119 ecosystems
for which we identified 24,662 UUT clone pairs. For each clone
pair, we indicated the percentage of mapped AST tokens in
both directions: source to target and target to source—which
helped us understand the extent to which the clone pairs varied.

IV. POTENTIAL OF TEST-CASE REUSE (RQ1)

With our first research question, we aimed to understand and
quantify the potential of reusing test cases in fork ecosystems.

A. Methodology

We derived descriptive statistics and visualizations to assess the
potential of reusing the 37,256 added test cases we identified
within their respective ecosystem. So, we provide a quantitative
overview of how many test cases are missing in the ecosystems
that can potentially be propagated to improve other forks.

B. Results

We first present an overview of the development activity in the
ecosystems (e.g., number of commits and developers, added
test cases). Then, we analyze the test-case sharing and conclude
with a discussion of our results.

Development and Test-Case Evolution. Our dataset comprises
305 ecosystems totaling 1,089 software repositories (305 main-
line projects, 784 forks). We analyzed commits affecting Java
files and made from the date a fork was created (if the project is
a fork) or from the date of the first fork (for mainline projects).
In Table II, we can see that the mainline projects have on aver-
age 812 stargazers (an indication of how engaged a repository
is), and, for the fork-evolution periods analyzed, each mainline
has on average 414 commits made by 29 developers. This gives
us confidence that our projects are non-trivial. Furthermore, we
can see in Table IV that more test cases were modified than

added; mainline projects added 72 and modified 204 test cases
on average, while forks added 62 and modified 155 test cases
on average. Interestingly, some projects added thousands of
test cases, up to 2,219 test cases in a mainline project and up to
8,932 test cases in a fork. Our interest was in understanding the
extent to which the added test cases are shared, and whether
they can be reused in projects they were missing from.

Test-Case Sharing in Fork Ecosystems. We identified a total
of 37,256 test cases that were added during the fork-evolution
periods of our ecosystems. Of these, we found that at the time
of our analysis, 19,198 (52 %) were present in all projects of
their respective ecosystems while 18,058 (48 %) were missing
in at least one project. In Fig. 3, we display the distribution
of test-case presence per ecosystem size. We can see that
the fewer projects in an ecosystem, the more test cases are
shared between the projects: ecosystems with two projects
share almost all the test cases added while those with ten
projects have almost all test cases shared in less than 25 % of
the projects of the ecosystem.

This result is interesting from two perspectives. First, the
high number of shared test cases overall (i.e., 52 %), which were
previously added by individual projects within an ecosystem,
demonstrates the need for techniques that can recommend and
propagate such test cases within an ecosystem. Indeed, for
the fork evolution periods we analyzed, we found a total of
37,118 pull requests, of which 23,558 (63 %) were merged.
Of the merged pull requests, most (i.e., 11,893) were from
forks merging changes into the mainline projects, while 2,246
merged changes from mainline projects into forks. We counted
the distinct number of pull-request merge commits that affected
test cases and found that 300 commits added test cases, 1,000
commits modified test cases, 23 commits renamed test case
files, and 3 commits deleted test cases. So, it is evident that
developers actively share test cases across forked projects and
could benefit from techniques that proactively recommend
and propagate test cases in addition to feature improvements.
Second, the high number of non-shared test cases (i.e., 48 %)
also warrants an investigation into whether they can be reused
or not, and to what extent.

Missing Test Cases with Potential Target UUTs. For each
of the 18,058 test cases missing in at least one project of
their ecosystem, we extracted clones of its UUTs in the
projects the test case was missing from. After cleansing the
dataset (cf. Sec. III-B), we found a final set of 24,662 clone
pairs for 4,347 test cases from 119 ecosystems (i.e., 39 % of
ecosystems), comprising 566 projects (i.e., 52 % of projects).

Analyzing the mapped AST tokens of the clone pairs revealed
four kinds of variations between source and target UUT:
Var1 Source and target UUTs had 100 % mapped tokens in

both directions, representing Type 1 or 2 code clones;
Var2 Source tokens were mapped 100 % to target tokens, but

not vice versa, indicating that the target UUT grew more
than the source UUT;

Var3 Target tokens were mapped 100 % to source tokens, but
not vice versa, indicating that the source UUT grew more

25

50

75

100

2 3 4 5 6 7 8 10
ecosystem size

%
 o

f p
ro

je
ct

s
in

 e
co

sy
st

em

Figure 3: Distribution of test-case sharing per ecosystem size
for all 37,256 test cases added during the fork-evolution periods
of the 305 ecosystems (1,089 projects).

97

12

4

5

7

18249

133

22

471

51

206

84

109

22

86

4310

25

24

26

1

24

3

21

16

36

97

1

135

213

8

35

39

155

6

76

12

52

341

35

18

4

5 30

23

2

31

73

20

127

41

128

99

11

740

481

48

6

68

96

13

14

24

54

69

24

45

61

102

18

609

87

499

0−9

10−19

20−29

30−39

40−49

50−59

60−69

70−79

80−89

90−99

100

10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 90−99 100
source−>target matched %

ta
rg

et
−

>
so

ur
ce

 m
at

ch
ed

 %

5000

10000

15000

pairs

Figure 4: Variations between the source and target UUTs of
all 24,662 clone pairs. The percentages of mapped AST tokens
are grouped into 11 bins (from 0–9 % to 100 %).

than the target UUT; and
Var4 Source and target UUTs both comprised tokens that could

not be mapped to the other, indicating that the source
and target UUTs co-evolved.

Figure 4 summarizes these variations between all 24,662
clone pairs, expressed by the percentage of mapped AST
tokens between the source and target UUT. We grouped the
percentages into 11 bins from 0–9 % to 100 %. The x-axis
shows bins for the percentage of tokens mapped from the source
UUT to the target UUT, while the y-axis represents the mapping
from target UUT to source UUT. We can see that 74% (18,249)
of the clone pairs are Type 1 or 2 code clones, since tokens
from the source and target UUTs are mapped to 100 % in both
directions (Var1, top-right corner of Fig. 4). The other clone
pairs detected are of Type 3, and very few also of Type 4. In the
top row (except the top-right corner), we can see that for 7 %
(1,840) of the clone pairs 100 % of the tokens of the target UUT
map to the source tokens, but not vice-versa (Var2). Identically,
the last column (except the top-right corner) represents that

for approximately 5 % (1,227) of the clone pairs 100 % of the
source tokens map to target tokens, but not vice-versa (Var3).
Finally, 14 % (3,346) of the clone pairs comprise tokens that
could not be mapped in either direction and, thus, did evolve
differently (i.e., all other entries in Fig. 4 represent Var4).

C. Discussion

Missing Test Cases. Almost half of the test cases from
all our considered fork ecosystems are missing in one of
the respective projects. Particularly, larger ecosystems are
more likely to involve projects with missing test cases. These
results indicate a huge potential for supporting developers in
identifying opportunities for test-case reuse. Considering that
we only took into account a maximum of 10 projects per
ecosystem, the actual potential in practice may be even higher.
Providing tools that allow to identify missing test cases and
indicate whether as well as how developers could reuse them
would help share test cases across forked projects.

Automated Test Propagation. Since 74 % of UUT clone pairs
for our missing test cases target Type 1 or Type 2 code clones,
it should be simple to propagate these test cases (e.g., by poten-
tially refactoring Type 2 clones or fixing class hierarchies [48]).
Techniques to automatically transplant and refactor such test
cases would greatly benefit developers. Still, to further improve
test-case reuse and provide a better understanding of challenges
and potential improvements, it is particularly interesting to
study the remaining 26 % that are not trivially applicable—
which is the scope of our manual analysis we report in Sec. V.

We explored to what extent 37,256 new test cases from 305
ecosystems with 1,089 projects are shared or missing in
projects of their ecosystem. Our analysis indicates that:
• many test cases are not shared among the projects of a

fork ecosystem (e.g., 48 % of test cases are missing in
at least one project), which is particularly apparent for
larger ecosystems.

• many of 4,347 test cases involved in 24,662 UUT clone
pairs could likely be reused automatically (74 % of target
UUTs are Type 1 or 2 code clones of their source UUT).

So, a very high potential to (automatically) reuse test cases
in fork ecosystems exists.

RQ1: Potential of Test-Case Reuse

V. TEST-CASE APPLICABILITY (RQ2)

With our second research question, we aimed to understand
the extent to which missing test cases are applicable to the
projects they are missing from in an ecosystem.

A. Methodology

Assessing Applicability. We aimed to understand what makes
a test case applicable to a cloned code location, or what
prevents its reuse. While actual transplantation of test cases
and related code is the ideal way of determining applicability,
it may not always be possible, especially when we want to
recommend test cases to developers for propagation. So, it

Table III: Overview of applicability (appl=applicable,
n/appl=non-applicable) assessment of reviewers (rev) on whole
sample of clone pairs (left), and their cross validation (right)

rev rev 1

decision 1 2 total appl n/appl total

appl 79 63 142

re
v

2 appl 10 0 10
n/appl 33 55 88 n/appl 1 1 2
total 112 118 230 total 11 1 12

91.67 % agreement, Cohen’s κ = 0.62

would be helpful to rely on other techniques like static data
flow analysis before proceeding to a transplantation. Therefore,
we assessed the applicability of missing test cases in two parts:
(1) static data flow analysis through manual code inspection of
variations between the source and target UUTs and (2) manual
transplantation of test cases.

Part 1: Manual Code Inspection. We assume that the setup
part (e.g., creating objects, preparing data) of a test case can
always be reused, and thus we assess a test case’s applicability
based only on variations in the source and target UUTs. Using
our list of the 24,662 clone pairs, we grouped each pair into
one of 11 bins according to the percentage of mapped AST
tokens from the source to the target UUTs (i.e., similarity of
the UUTs), namely into: 0–9 %, 10–19 %, 20–29 %, 30–39 %,
40–49 %, 50–59 %, 60–69 %, 70–79 %, 80–89 %, 90–99 %, and
100 %. Then, for each ecosystem, we randomly sampled (up to)
two pairs from the bin of pairs with 100 % mapped tokens and
one pair from each of the other bins, giving us a total of 230
pairs. We sampled two pairs from the bin of 100 %, because
it was the largest group—comprising 74 % of all pairs. Note
that, not surprisingly, most ecosystems did not involve clone
pairs for every bin, which is why we sampled 230 clone pairs
(instead of 12 random samples for each of the 119 ecosystems).

Next, for each of the 230 pairs in the sample, we assessed
whether or not the test case in question can be applied to the
target UUT considering the code modifications in the UUTs.
We did this in two steps: First, similar to previous research [48],
[83], we marked all test cases as non applicable if the UUTs var-
ied in the input (method parameters) or output (returned types
or values), otherwise we marked them as applicable. Second,
for all test cases marked as non applicable in the first step, we
assessed if and to what extent the test cases were still applicable.

Step 1: Applicability Based on Non-Modification to Input and
Output. In the first step, we marked a test case as applicable
if its source and target UUTs do not vary in their input and
output. This strict criterion allowed us to understand potential
for automated transplantation of test cases, especially those
involving Type 1 and 2 clones. For instance, consider the
excerpt we display in Listing 1, in which we focus on lines
added and modified in the target UUT. We see that the target
UUT adds exception handling at lines 3, 4, and 18, and
modifies the output string by URL-encoding it in lines 6, 7,
and 9, making this a Type 3 clone [61]. Though the input (no
parameters) and output types (String) are identical, the output

Listing 1: Simplified and unified example of a clone pair with
indications for code added and modified in the target UUT

1 public String toQueryString()
2 {
3 try add
4 { add
5 // ...
6 key = URLEncoder.encode(key, "UTF-8"); add
7 result.append(key);
8 // ...
9 value = URLEncoder.encode(value, "UTF-8"); add

10 result.append("=" + value);
11 // ...
12 if (i < (values.size() -1)) mod
13 {
14 result.append("&" + key);
15 }
16 // ...
17 return result.toString();
18 } add
19 }
20

value is modified differently. So, we would assess the test case
for this UUT clone pair as non applicable. After training on
five ecosystems together, we assigned two reviewers to assess
the applicability of test cases in the 230 clone pairs, each
independently inspecting approximately half (112 and 118)
of the pairs (see left side of Table III). We time-boxed the
assessment of each pair to five minutes.

Performing Cross Validation. To ascertain the level of agree-
ment between the two reviewers, we randomly sampled 5 % of
the 230 pairs they reviewed; six pairs from each reviewer’s half,
totaling 12 pairs. Then, we let each reviewer assess the appli-
cability of the six pairs from the other reviewer’s half, without
knowing the original reviewer’s assessment. We investigated all
disagreements and summarize the results of our cross-validation
on the right side of Table III. We can see that the two reviewers
disagreed only in one case of the 12 validated clone pairs. So,
the inter-rater agreement is very high (91.67 %) with Cohen’s κ
indicating substantial agreement (0.62). This improves our con-
fidence that our assessment builds on a common understanding
between the reviewers and provides a reliable dataset.

Step 2: Applicability of Test Cases With UUTs Varying in Input
and Output. Since our first assessment criterion was conserva-
tive (i.e., scoped for reliable automation of test-case transplan-
tation), many of the test cases we marked as not applicable may
still be applicable by modifying the target UUT or test case. For
instance, consider Listing 1 again. The changed encoding intro-
duced in the target UUT prevents that the provided String may
cause bugs (e.g., preventing code injection). Consequently, the
developers of the fork may want to reuse the test case we identi-
fied, even though it would fail before adapting it to the modified
implementation. Even more interesting, the developers of the
target UUT could likely benefit from knowing this case to im-
prove the quality of their fork by propagating the String encod-
ing. So, the test would become applicable after fixing the code.

To understand such cases and guide advanced test-case
reuse (i.e., cases challenging simple transplantation), we
performed a manual inspection of all 88 test cases (in the

88 clone pairs) we assessed as non-applicable (left side of
Table III). Precisely, after a training on seven examples among
three reviewers (including the previous two reviewers), these
three re-iterated through test cases marked as non-applicable
to assess under what circumstances these could still be reused;
inspecting code, comments, and the clone pair to comprehend
how a test case could be made applicable. Then, they derived
a decision based on the modifications between source and
target UUTs, providing a short description for their reasoning,
which the other reviewers re-checked and discussed to achieve
agreement. For example, the test case in Listing 1 would
now be assessed as applicable, since the test case would only
require that the String in its assertion is also encoded in UTF-8.
In contrast, some target UUTs involved context changes, with
context referring to the class the source UUT stems from and
a context change referring to the target UUT being part of the
same class (same context), a similarly named or sibling class
(similar context), or a completely different class (major context
change). For instance, a test case for an overwritten equals
method could be applicable. However, the target equals
method may be implemented in a completely different class,
overwrites a different interface, and has several further
modifications in itself—basically requiring developers to
completely rewrite the test case, which is why we would assess
such a case as still not applicable. We used a card-sorting-like
method to cluster the re-assessed test cases into thematic
topics based on the documented reasonings, discussed these
topics to achieve agreement, and structured the topics based
on how the respective test cases could be made applicable.

Part 2: Transplanting Test Cases. To deepen our understand-
ing about the applicability of the missing test cases, and about
possible challenges that may arise when propagating such test
cases to target projects, we manually transplanted 23 (10 %) test
cases randomly sampled from the 230 UUT clones pairs that
we previously reviewed. Then, we compared the classification
of these transplanted test cases to their classification when we
judged their applicability solely based on manually reviewing
modifications to their UUT.

B. Results

From the sample of 230 clone pairs with a missing test case, we
assessed 142 to be applicable based on our data-flow criterion
(cf. Table III). In contrast, the remaining 88 cases differed
in input and output or involved modifications to the target
UUT that impacted the data-flow compared to the source UUT.
While one cannot simply see it, these test cases may still
be reusable for the target UUT. We re-assessed all of these
cases by performing a more in-depth manual inspection and
transplanting a sample of 23 test cases.

Manual Analysis. Table V summarizes our reasoning behind
each test case’s final classification after our in-depth analysis.
We now assessed 32 (36 %) test cases as applicable and 9
(10 %) as not applicable. However, we still could not derive
a clear decision for 44 (50 %) cases, and we marked three as
special cases in which an assessment was not useful because

Table IV: Descriptive statistics of test case evolution during
the fork evolution periods of the fork ecosystems

type min. 1st qu. median mean 3rd qu. max.

m
ai

n

ADD 1 12 27 72 60 2,219
MODIFY 1 29 86 204 220 3,691
DELETE 1 2 5 14 14 111
RENAME 1 2 4 24 13 639

fo
rk

s

ADD 1 5 16 62 46 3,816
MODIFY 1 11 37 155 106 8,932
DELETE 1 3 7 20 13 624
RENAME 1 2 6 18 19 408

the UUT mappings were test-specific UUTs, such as the test
setup or helper methods.
Non-Applicable. We identified five main issues that led us to
classify nine of the 88 test cases as still not applicable to the
target UUT. Foremost, the target UUT was implemented in
an unrelated context. This was followed by: cases were the
dataflow differed considerably, accessing different methods or
attributes that made a relation to the source UUT very difficult;
cases where the perceived purpose of the methods varied to
an extent that the test case did not fit the target UUT; cases
were the differences in the input and output of the UUTs were
non-trivial to convert or did not make sense in the remainder
of the test case; and, lastly, cases that would require the whole
test case to be rewritten to make it applicable to the target
because the test case has a very specific execution environment.
Applicable. Even though all UUTs involved in the 88 pairs
differed either in terms of input and output or dataflow, we
assessed 32 cases to still be applicable. In fact, in 22 cases,
the UUTs were implemented in the same or a closely related
context while in 23 cases, the UUTs had an identical or at least
similar purpose. In general, we viewed test cases as applicable
if we identified a clear way to substitute the source UUT with
the target UUT within the test case—allowing for modifications
to the setup or parametrization of the UUT or the test case. We
found eight cases in which input and output were convertible,
since inputs that the target UUT needed existed in the source
UUT as attributes, or the target UUT could be called through an
existing gateway method providing default values for missing
parameters. Similarly, differences in output types could be con-
verted using an additional method call or simply did not matter
as the test case did not use the output, but just the method’s side
effects. In 14 cases, differences in the data flow were irrelevant,
since they were guarded by conditional statements that were not
met by the test case’s input to the UUT or based on different, yet
name-wise similar, code elements that seemed to require little
modification to make the test case applicable. Finally, we identi-
fied nine cases in which the test case was actually applicable be-
cause a perfectly matching UUT existed in the target project in-
stead of the one in the clone pair that only had few similarities.
Unclear. In 44 cases, we could not arrive at a clear decision.
In some cases, we needed detailed domain knowledge to
understand whether a given long setup method for a test case
could sensibly be reused or had to be rewritten from scratch.

Especially in cases with context switches, it was hard to infer
whether a test case would actually make sense in the target
as it may test context-specific functionality. We found a set
of target UUTs that could not easily be executed as they were
implemented in abstract classes or private methods, where a
developer would need to identify suitable ways of making them
testable. Most interestingly, we discovered a set of pairs that
tested functionality present in the source project but missing in
the target project. These were test cases that check for specific
edge cases, which may also be new functionality. Reusing such
a test case likely requires modifying the target UUT, which may,
in turn, fix existing bugs or enrich the target’s functionality. Fi-
nally, we could not classify cases where we had difficulties com-
prehending the test case’s purpose or the UUT implementation.

Manual Transplantation. Following our manual inspection
and classification of the 230 UUT pairs, we randomly
sampled 23 (10 %) of them and attempted to transplant them to
determine their applicability. We sampled nine applicable, seven
not applicable, and seven undecidable test cases—indicating
that of the 16 decidable test cases, 56 % were actually useful
for target UUTs. Of the nine applicable ones, three test cases
were applicable without requiring any changes to the target
project, four required minor modifications to the test case
(i.e., calling a different method or declaring and instantiating
a different type), and two required some modification to the
project of the target UUT because the test cases targeted
specific functionality missing from the target, which we copied
from the source and integrated into the target classes.

Of the seven non-applicable test cases, four had target
projects missing the tested functionality: either the UUTs were
missing in the target and we could not transplant them or the
tested functionality was deprecated in the target project. In
the remaining three cases, the test cases were transplantable
and reusable. However, they were irrelevant or redundant
because they were already present in the target UUT’s project,
even though implemented differently to match the target’s
functionality. This highlights some of the limitations of using
clone detection tools to assess test case applicability.

Note that most of these 16 test cases that we transplanted
required us to update testing library dependencies, such as
Mockito, since their versions varied between the source and
target projects. Lastly, we were not able to decide a test case’s
applicability in seven of the 23 pairs, mainly because we
could not setup or build the projects: either we could not load
the project’s dependencies (via Maven or Gradle), the project
had several sub-projects, some of which could not be retrieved
by the IDE, or adding missing UUTs in the target project
caused ripple effects with compilation errors.

Comparing the Results.. We compare our classification of the
23 manually transplanted test cases to how we classified these
during our manual code inspection. Note that we exclude all
cases that we marked as undecidable in either classification
(nine cases in total: two in the manual inspection, five in trans-
plantation, and two in both). This leaves us with 14 cases with
a clear decision. In seven of these cases, we have agreement

Table V: Overview of the reasonings we elicited through our
re-assessment of 88 test cases assessed as non-applicable.

applicability # reasoning #

non-applicable 9

unrelated context 6
complete rewrite 4
different dataflow 4
different purpose 4
different I/O 3

applicable 32

same/similar context 22
same/similar purpose 23
irrelevant differences 14
same I/O 15
convertible/irrelevant I/O 8
mismatches 9
different context 2

unclear 44

comprehension of UUTs 17
reuse of setup 16
additional setup 13
comprehension of test case 11
keeping test purpose 16
modifications to UUT 12
applicability hindrance 7

special cases 3 — —

whereas we disagreed in the other seven. However, three of the
cases we disagreed on are those we marked as not applicable
during the transplantation because they were redundant for
the target project, but we marked them as applicable during
the manual inspection. So, our actual agreement is 10 out of
14 cases (i.e., 71 %). In three of the four cases we disagreed
on, we marked test cases as applicable during the manual
code inspection, but we marked them not applicable during the
transplantation. For the last case, we marked the test case as
not applicable during the manual inspection, while we could
actually transplant it with modifications to the test case (i.e.,
applicable). These disagreements occurred due to well-known
limitations of our manual code inspection, namely analyzing a
single UUT pair for each test case and limiting the comparison
to the files containing these specific UUTs, as well as lacking
details on the impact of applying certain code changes.
Therefore, while our limited set of actually transplanted test
cases may not allow for statistical conclusions, our result of
matching 71 % cases between manual code inspection and
transplantation indicate that an analysis similar to ours may
be useful as a heuristic to assess test-case applicability.

C. Discussion

Test-Case Applicability. Deciding whether a test case is
applicable to a target UUT is challenging and requires detailed
comprehension of the UUTs, test case, and domain, as we
experienced first hand. It is not surprising that we could often
not decide whether a test case is applicable because of missing
domain knowledge. In fact, program comprehension is one
of the most challenging activities for developers [75], [78],
and domain knowledge can benefit it. To solve this problem,
automated analyses and propagation techniques are of limited
use at best. Instead, it would be necessary to involve experts of
the domain and document knowledge, as proposed in similar

research areas recently [52], [53], [64], also to decide whether
some missing test cases and even functionalities could be
useful to a project. While the feasibility of full automation
is questionable, we believe that there is great potential for
guiding developers through recommendation systems. After
deciding whether a test case is applicable, the next challenge
is to understand how to make it applicable to the target UUT.
We found several types of smaller modifications that could be
exploited for automated techniques, such as utilizing inheritance
structures, identifying behavior-keeping modifications (e.g.,
refactorings), or identifying the test case to reveal bug fixes.

Automated Test Propagation. Our insights highlight that
techniques for automatically propagating test cases in fork
ecosystems can be highly beneficial, but require more advanced
tooling than currently available. For instance, the algorithms
proposed by Mirzaaghaei et al. [48] for evolving test cases
in a single system can be adapted to support the identification
and resolution of inheritance modifications. Also, it is rather
simple to identify some cases of whether a test case can be
executed on a method (i.e., target UUT is in an abstract class)
or where the modifications are not within the test coverage.
However, there are various research opportunities to tackle the
area between existing or straight-forward automation and the
need for extensive domain knowledge. Specifically, the most
interesting test cases to propagate are those that could unveil
bugs in the target UUT, which requires more advanced analyses.

Benefits of Reusable Test Cases. While testing improves the
software quality, it is expensive to create test cases. So, test-
case reuse is a viable avenue to improve the software quality at
lower costs. Our investigation shows that most of the missing
test cases from our subject ecosystems are reusable. However,
to fully appreciate the benefits of these reusable test cases, we
still need to address some open questions as future work.

First, an open question is to what extent do reusable test cases
capture bugs introduced in the projects they are missing from?
While we found a few cases during our manual transplantation
where a reusable test case would fail in the target project (cf.
Listing 1), we still need to quantify why the test case fails
and whether this failure may actually reveal a bug. Particularly
the latter case is interesting to improve the quality of forked
projects. However, determining whether test cases actually fix
bug is a general and non-trivial problem in software engineering,
and understanding what constitutes a bug may in some cases
require extensive domain knowledge of the target system.

Second, we found that some test cases were not useful to
propagate because a similar test case existed in the target
project. Consequently, it is an open question to what extent do
reusable test cases improve the test coverage? Answering this
question should consider the fact that we found several cases
where a target UUT already had other test cases exercising
it. Deciding whether a test case is useful is a complex task
that may benefit from heuristics, but most likely will require
developer involvement.

Finally, an open question is: what would make a developer
not reuse a reusable test case? We know from experience

that assessing test-case applicability and even propagating test
cases requires cognitive load and effort that developers may not
be willing to spend due to other priorities. In contrast, as we
explained in Sec. IV-B, we have evidence that developers do
propagate test cases between forked projects (as seen from pull
requests). We also know that it is unlikely that a developer will
reuse a test case they are not aware of, which is why we need
techniques that can identify, recommend, and propagate such
test cases in the future. However, we cannot speculate why a
developer would choose not to reuse an applicable test case that
they are aware of, which is a topic that requires a future study.

We determined when and how test cases are applicable
despite changes above Type 2 code clones between source
and target UUT. Our results indicate that:
• neither a simple data-flow analysis nor a manual inspec-

tion of a single UUT can reliably identify whether a
test case is (non-)applicable, since the source and target
projects may differ heavily, while the purpose of the test
case is still fulfilled.

• reusing test cases for clone pairs with more differences is
an important research problem, helping to unveil unknown
bugs and improving the test coverage of forks.

So, assessing the applicability of test cases is challenging,
but promises to improve the quality of fork ecosystems.

RQ2: Test-Case Applicability

VI. THREATS TO VALIDITY

Internal Validity. We relied on various tools and libraries
to elicit our dataset, such as Simian for code-clone detection,
GumTreeDiff [17] for AST diffing, and our own tool [52]
for identifying test cases through srcML [47]. Moreover,
we implemented further tooling to combine and extend such
tools. To mitigate that bugs may have biased our dataset
(e.g., not identifying all clone pairs or missing test cases),
we cross-checked results, tested our setup, relied on existing
tools, created a large dataset, and conducted quantitative as
well as qualitative analyses—with our analysis showing that
we have a reliable dataset for our study.

We manually assessed the applicability of a sample of 230
clone pairs, mimicking an independent developer inspecting test
cases for reuse. So, the validity of our sample may be threatened
by our understanding of the source code and test cases (e.g.,
disagreements or errors), the time-boxing we employed to keep
the effort manageable, as well as the sample itself. To mitigate
inconsistent assessments, we performed training among the
reviewers, defined a strict applicability criterion upon related
work [48], [83], and cross-validated a random sample of
12 clone pairs. Thereafter, we performed a detailed manual
inspection of 88 test cases we assessed as non-applicable to
obtain and provide an in-depth understanding of why these are
non-applicable—or could still be applicable. Since all of these
manual analyses rely on our own understanding and may require
domain knowledge, we sometimes disagreed about reasonings
and individual corner cases (e.g., regarding side effects of

other methods in the target UUT when testing constructors).
We discussed the disagreements, derived a solution, re-checked
the test case (and similar ones) based on the solution, and
performed a card-sorting-like method to abstract the many
individual cases into comprehensible topics (each with multiple
examples)—limiting the threat that misinterpretations bias
the outcome. Additionally, we transplanted 23 test cases and
compared the outcomes against our manual assessment.

External Validity. We only considered Java ecosystems,
partially due to tooling limitations. So, our results may
not apply to other languages. However, Java is among the
most popular languages, and our insights about changes and
kinds of similarities are not specific to Java. They involve
language elements found in typical object-oriented languages.
Similarly, we considered only ecosystems from GitHub, which
may yield different results compared to other platforms like
BitBucket or GitLab. Still, GitHub is the largest and most
widely used platform, involving open-source and industrial
projects, various domains, different development practices,
as well as expert and novice developers. As such, GitHub
involves a representative and large portion of fork ecosystems.

We focused on test-case reuse in fork ecosystems. This
allowed us to easily identify cloned code with missing tests
that would be very likely to benefit from propagating a missing
test case. So, as intended, our results are primarily relevant
for fork ecosystems and may not be transferable to test-case
reuse in more independent projects. Still, the more high-level
insights we obtained can also be helpful in such contexts (e.g.,
program repair and code transplantation in general).

VII. CONCLUSION

We presented a study on the potential of reusing test cases
within fork ecosystems. Our results indicate that forked projects
often do not benefit from test cases created in other forks (48 %
of test cases are missing in at least one fork), even though they
could be propagated (74 % of UUTs are Type 1 and 2 clones).
We quantified the benefit of reusing test cases among forks,
investigated what changes between projects do not hinder
test-case propagation, and inspected changes that hinder the
propagation. Importantly, we found that 62 % of the test case’s
applicability can be decided based on data-flow analysis. Our
results show that there is huge potential to enhance the software
quality of fork-ecosystems by propagating test cases, and that
we need automated techniques to support this propagation. We
hope to pave the way to enhanced and fork-ecosystem-specific
test-case reuse techniques [26], [34], [42], [57], [64], [83],
[84]. It is also a call to arms for research on reusing test cases
for fork or clone pairs with more intricate differences.

ACKNOWLEDGMENT

Supported by a fellowship of the Royal Swedish Academy of
Sciences and of the Wallenberg Foundation, and by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.

REFERENCES

[1] “Appendix.” [Online]. Available: https://bitbucket.org/easelab/
testcasepropagationappendix

[2] J. Åkesson, S. Nilsson, J. Krüger, and T. Berger, “Migrating the
Android Apo-Games into an Annotation-Based Software Product Line,”
in International Systems and Software Product Line Conference (SPLC).
ACM, 2019, pp. 103–107.

[3] H. M. AlGhmadi, M. D. Syer, W. Shang, and A. E. Hassan, “An
Automated Approach for Recommending When to Stop Performance
Tests,” in International Conference on Software Maintenance and
Evolution (ICSME), 2016, pp. 279–289.

[4] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An Industrial Evaluation of Unit Test Generation: Finding Real Faults
in a Financial Application,” in International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP).
IEEE, 2017, pp. 263–272.

[5] S. Baltes and S. Diehl, “Usage and Attribution of Stack Overflow Code
Snippets in GitHub Projects,” Empirical Software Engineering, vol. 24,
no. 3, pp. 1259–1295, 2019.

[6] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
Software Transplantation,” in International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2015, pp. 257–269.

[7] T. Berger, J.-P. Steghöfer, T. Ziadi, J. Robin, and J. Martinez, “The State
of Adoption and the Challenges of Systematic Variability Management
in Industry,” Empirical Software Engineering, vol. 25, pp. 1755–1797,
2020.

[8] J. Businge, O. Moses, S. Nadi, E. Bainomugisha, and T. Berger, “Clone-
Based Variability Management in the Android Ecosystem,” in Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2018, pp. 625–634.

[9] J. Businge, O. Moses, S. Nadi, and T. Berger, “Reuse and Maintenance
Practices among Divergent Forks in Three Software Ecosystems,”
Empirical Software Engineering, vol. 27, no. 2, pp. 54:1–47, 2022.

[10] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert: Suggesting
Repairs for Broken Unit Tests,” in International Conference on Automated
Software Engineering (ASE). IEEE, 2009, pp. 433–444.

[11] J. Debbiche, O. Lignell, J. Krüger, and T. Berger, “Migrating Java-
Based Apo-Games into a Composition-Based Software Product Line,”
in International Systems and Software Product Line Conference (SPLC).
ACM, 2019, pp. 98–102.

[12] C. Derks, D. Strüber, and T. Berger, “A benchmark generator framework
for evolving variant-rich software,” Journal of Systems and Software, vol.
203, p. 111736, 2023.

[13] X. Devroey, S. Panichella, and A. Gambi, “Java Unit Testing Tool
Competition: Eighth Round,” in International Conference on Software
Engineering Workshops (ICSEW). ACM, 2020, pp. 545–548.

[14] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial software
product lines,” in CSMR, 2013.

[15] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical Review
of Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs
and 23,551 Repair Attempts,” in Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2019, pp. 302–313.

[16] E. Engström and P. Runeson, “Software Product Line Testing - A
Systematic Mapping Study,” Information and Software Technology,
vol. 53, no. 1, pp. 2–13, 2011.

[17] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-Grained and Accurate Source Code Differencing,” in International
Conference on Automated Software Engineering (ASE), 2014, pp. 313–
324.

[18] S. Fischer, R. Ramler, L. Linsbauer, and A. Egyed, “Automating Test
Reuse for Highly Configurable Software,” in International Systems and
Software Product Line Conference (SPLC). ACM, 2019, pp. 1–11.

[19] L. Gazzola, D. Micucci, and L. Mariani, “Automatic Software Repair:
A Survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1,
pp. 34–67, 2019.

[20] M. Gharehyazie, B. Ray, and V. Filkov, “Some from Here, Some from
There: Cross-Project Code Reuse in Github,” in International Coference
on Mining Software Repositories (MSR). IEEE, 2017, pp. 291–301.

[21] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How Close Are They
to Real Faults?” in International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2014, pp. 189–200.

[22] G. Gousios, “The GHTorent Dataset and Tool Suite,” in International
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 233–236.

[23] G. Gousios, M. Pinzger, and A. van Deursen, “An Exploratory Study
of the Pull-Based Software Development Model,” in International
Conference on Software Engineering (ICSE). ACM, 2014, pp. 345–355.

[24] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work Practices and
Challenges in Pull-Based Development: The Contributor’s Perspective,”
in International Conference on Software Engineering (ICSE). ACM,
2016, pp. 285–296.

[25] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
Practices and Challenges in Pull-Based Development: The Integrator’s
Perspective,” in International Conference on Software Engineering (ICSE).
IEEE, 2015, pp. 358–368.

[26] G. Hu, L. Zhu, and J. Yang, “AppFlow: Using Machine Learning to
Synthesize Robust, Reusable UI Tests,” in Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2018, pp. 269–282.

[27] Y. Jia and M. Harman, “An Analysis and Survey of the Development of
Mutation Testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[28] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why and
How Developers Fork What from Whom in GitHub,” Empirical Software
Engineering, vol. 22, no. 1, pp. 547–578, 2017.

[29] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and Accurate Tree-Based Detection of Code Clones,” in International
Conference on Software Engineering (ICSE). IEEE, 2007, pp. 96–105.

[30] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source Code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[31] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and
K. Inoue, “Identifying source code reuse across repositories using lcs-
based source code similarity,” in International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, 2014, pp.
305–314.

[32] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. Le Traon, “FixMiner: Mining Relevant Fix Patterns for Automated
Program Repair,” Empirical Software Engineering, vol. 25, no. 3, pp.
1980–2024, 2020.

[33] S. Krieter, J. Krüger, T. Leich, and G. Saake, “VariantInc: Automatically
Pruning and Integrating Versioned Software Variants,” in International
Systems and Software Product Line Conference (SPLC). ACM, 2023.

[34] J. Krüger, M. Al-Hajjaji, S. Schulze, G. Saake, and T. Leich, “Towards
Automated Test Refactoring for Software Product Lines,” in International
Systems and Software Product Line Conference (SPLC). ACM, 2018,
pp. 143–148.

[35] J. Krüger and T. Berger, “An Empirical Analysis of the Costs of Clone-
and Platform-Oriented Software Reuse,” in Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2020, pp. 432–444.

[36] J. Krüger, A. Mikulinski, S. Schulze, T. Leich, and G. Saake, “DSDGen:
Extracting Documentation to Comprehend Fork Merges,” in International
Systems and Software Product Line Conference (SPLC). ACM, 2016.

[37] J. Krüger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, and T. Berger,
“Where is My Feature and What is it About? A Case Study on Recovering
Feature Facets,” Journal of Systems and Software, vol. 152, pp. 239–253,
2019.

[38] X.-B. D. Le, D. Lo, and C. Le Goues, “History Driven Program
Repair,” in International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2016, pp. 213–224.

[39] X. Li, M. d’Amorim, and A. Orso, “Intent-Preserving Test Repair,” in
International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2019, pp. 217–227.

[40] Y. Li and N. J. Wahl, “An Overview of Regression Testing,” ACM
SIGSOFT Software Engineering Notes, vol. 24, no. 1, pp. 69–73, 1999.

[41] M. Lillack, S, . Stănciulescu, W. Hedman, T. Berger, and A. Wąsowski,
“Intention-Based Integration of Software Variants,” in International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 831–842.

[42] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test Transfer Across Mobile
Apps Through Semantic Mapping,” in International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 42–53.

[43] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting
Template-Based Automated Program Repair,” in International Symposium
on Software Testing and Analysis (ISSTA). ACM, 2019, pp. 31–42.

https://bitbucket.org/easelab/testcasepropagationappendix
https://bitbucket.org/easelab/testcasepropagationappendix

[44] X. Liu and H. Zhong, “Mining StackOverflow for Program Repair,” in
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2018, pp. 118–129.

[45] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How Do Developers Fix
Cross-Project Correlated Bugs? A Case Study on the GitHub Scientific
Python Ecosystem,” in International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 381–392.

[46] W. Mahmood, D. Strueber, T. Berger, R. Laemmel, and M. Mukelabai,
“Seamless variability management with the virtual platform,” in 43rd
International Conference on Software Engineering (ICSE), 2021.

[47] J. I. Maletic, M. L. Collard, and A. Marcus, “Source Code Files
as Structured Documents,” in International Workshop on Program
Comprehension (IWPC). IEEE, 2002, pp. 289–292.

[48] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Supporting Test Suite
Evolution through Test Case Adaptation,” in International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 2012,
pp. 231–240.

[49] M. Mondal, B. Roy, C. K. Roy, and K. A. Schneider, “An Empirical
Study on Bug Propagation Through Code Cloning,” Journal of Systems
and Software, vol. 158, pp. 110 407:1–18, 2019.

[50] M. Mondal, C. K. Roy, and K. A. Schneider, “Bug Propagation Through
Code Cloning: An Empirical Study,” in International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2017, pp. 227–
237.

[51] M. Monperrus, “Automatic Software Repair: A Bibliography,” ACM
Computing Surveys, vol. 51, no. 1, pp. 17:1–24, 2018.

[52] M. Mukelabai, T. Berger, and P. Borba, “Semi-Automated Test-Case
Propagation in Fork Ecosystems,” in International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
IEEE, 2021, pp. 46–50.

[53] S. Nielebock, R. Heumüller, J. Krüger, and F. Ortmeier, “Cooperative API
Misuse Detection Using Correction Rules,” in International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
ACM, 2020, pp. 73–76.

[54] L. Nyman and T. Mikkonen, “To Fork or Not to Fork: Fork Motivations
in SourceForge Projects,” International Journal of Open Source Software
and Processes, vol. 3, no. 3, pp. 1–9, 2011.

[55] C. Pacheco and M. D. Ernst, “Randoop: Feedback-Directed Random
Testing for Java,” in International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA). ACM,
2007, pp. 815–816.

[56] H. Passier, L. Bijlsma, and C. Bockisch, “Maintaining Unit Tests During
Refactoring,” in International Conference on Principles and Practices of
Programming on the Java Platform (PPPJ). ACM, 2016, pp. 1–6.

[57] A. Rau, J. Hotzkow, and A. Zeller, “Transferring Tests Across Web
Applications,” in International Conference on Web Engineering (ICWE).
Springer, 2018, pp. 50–64.

[58] B. Ray, M. Kim, S. Person, and N. Rungta, “Detecting and Characterizing
Semantic Inconsistencies in Ported Code,” in International Conference
on Automated Software Engineering (ASE). IEEE, 2013, pp. 367–377.

[59] L. Ren, “Automated Patch Porting Across Forked Projects,” in Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 2019, pp.
1199–1201.

[60] C. K. Roy and J. R. Cordy, “A Survey on Software Clone Detection
Research,” Queen’s University at Kingston, Tech. Rep. 2007-541, 2007.

[61] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[62] J. Rubin, K. Czarnecki, and M. Chechik, “Managing Cloned Variants:
A Framework and Experience,” in International Software Product Line
Conference (SPLC). ACM, 2013, pp. 101–110.

[63] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing Forked
Product Variants,” in International Software Product Line Conference
(SPLC). ACM, 2012, pp. 156–160.

[64] S. Schulze, J. Krüger, and J. Wünsche, “Towards Developer Support
for Merging Forked Test Cases,” in International Systems and Software
Product Line Conference (SPLC). ACM, 2022, pp. 131–141.

[65] D. Serra, G. Grano, F. Palomba, F. Ferrucci, H. C. Gall, and A. Bacchelli,
“On the Effectiveness of Manual and Automatic Unit Test Generation: Ten
Years Later,” in International Coference on Mining Software Repositories
(MSR). IEEE, 2019, pp. 121–125.

[66] S. Shamshiri, “Automated Unit Test Generation for Evolving Software,”
in Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 2015, pp.
1038–1041.

[67] R. S. Shariffdeen, S. H. Tan, M. Gao, and A. Roychoudhury, “Automated
Patch Transplantation,” ACM Transactions on Software Engineering and
Methodology, vol. 30, no. 1, pp. 6:1–36, 2020.

[68] G. S. Sodhi and D. Rattan, “An Insight on Software Features Sup-
porting Software Transplantation: A Systematic Review,” Archives of
Computational Methods in Engineering, pp. 1–38, 2021.

[69] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python Frame-
work for Mining Software Repositories,” in Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2018, pp. 908–911.

[70] S, . Stănciulescu, S. Schulze, and A. Wąsowski, “Forked and Integrated
Variants in an Open-Source Firmware Project,” in International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 2015,
pp. 151–160.

[71] T. A. Standish, “An Essay on Software Reuse,” IEEE Transactions on
Software Engineering, vol. SE-10, no. 5, pp. 494–497, 1984.

[72] M. Staples and D. Hill, “Experiences Adopting Software Product Line
Development without a Product Line Architecture,” in Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2004, pp. 176–183.

[73] D. Strüber, M. Mukelabai, J. Krüger, S. Fischer, L. Linsbauer, J. Martinez,
and T. Berger, “Facing the Truth: Benchmarking the Techniques for
the Evolution of Variant-Rich Systems,” in International Systems and
Software Product Line Conference (SPLC). ACM, 2019, pp. 177–188.

[74] J. Svajlenko and C. K. Roy, “Evaluating Clone Detection Tools With
Bigclonebench,” in International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2015, pp. 131–140.

[75] R. Tiarks, “What Maintenance Programmers Really Do: An Observational
Study,” in Workshop on Software Reengineering (WSR). University of
Siegen, 2011, pp. 36–37.

[76] A. van Deursen, L. M. F. Moonen, A. van den Bergh, and G. Kok,
“Refactoring Test Code,” CWI, Tech. Rep. SEN-R0119, 2001.

[77] B. Van Rompaey and S. Demeyer, “Establishing Traceability Links
Between Unit Test Cases and Units Under Test,” in European Conference
on Software Maintenance and Reengineering (CSMR). IEEE, 2009, pp.
209–218.

[78] A. von Mayrhauser and A. M. Vans, “Program Comprehension During
Software Maintenance and Evolution,” Computer, vol. 28, no. 8, pp.
44–55, 1995.

[79] A. Wąsowski and T. Berger, Software Product Lines. Springer
International Publishing, 2023, pp. 395–435. [Online]. Available:
https://doi.org/10.1007/978-3-031-23669-3_11

[80] T. Winters, T. Manshreck, and H. Wright, Software Engineering at
Google: Lessons Learned from Programming Over Time. O’Reilly,
2020.

[81] Z. Xu and G. Rothermel, “Directed Test Suite Augmentation,” in Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2009, pp.
406–413.

[82] V. G. Yusifoğlu, Y. Amannejad, and A. B. Can, “Software Test-
Code Engineering: A Systematic Mapping,” Information and Software
Technology, vol. 58, pp. 123–147, 2015.

[83] T. Zhang and M. Kim, “Automated Transplantation and Differential
Testing for Clones,” in International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 665–676.

[84] Y. Zhao, J. Chen, A. Sejfia, M. Schmitt Laser, J. Zhang, F. Sarro,
M. Harman, and N. Medvidovic, “FrUITeR: A Framework for Evaluating
UI Test Reuse,” in Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2020, pp. 1190–1201.

[85] S. Zhou, B. Vasilescu, and C. Kästner, “How Has Forking Changed in
the Last 20 Years? A Study of Hard Forks on GitHub,” in International
Conference on Software Engineering (ICSE). ACM, 2020, pp. 445–456.

https://doi.org/10.1007/978-3-031-23669-3_11

	Introduction
	Background and Related Work
	Methodology
	Selecting Subject Ecosystems
	Preparing the Dataset

	Potential of Test-Case Reuse (RQ1)
	Methodology
	Results
	Discussion

	Test-Case Applicability (RQ2)
	Methodology
	Results
	Discussion

	Threats to Validity
	Conclusion
	References

