
FeatureCoPP: Unfolding Preprocessor Variability
Kai Ludwig

Harz University of Applied Sciences
Wernigerode, Germany
kludwig@hs-harz.de

Jacob Krüger
Otto-von-Guericke University

Magdeburg, Germany
jkrueger@ovgu.de

Thomas Leich
Harz University of Applied Sciences

Wernigerode, Germany
tleich@hs-harz.de

ABSTRACT
Annotation-based and composition-based variability mechanisms
have complementary strengths regarding software maintenance
and evolution. Consequently, several proposals have been made to
combine, integrate, and substitute both mechanisms. An open chal-
lenge is to provide a unified, automatic, and practical technique to
adopt such proposals. In this paper, we present a technique to con-
vert variable feature code that is enclosed in the C preprocessor’s
conditional compilation into compositional feature modules and
vice versa. We facilitate the usability of our technique by keeping
the annotation-based representation of the C preprocessor. Besides
contributing a practicable implementation, we describe the core
principles of our technique and demonstrate its functionality based
on previous empirical studies and by analyzing the Linux kernel.
While our technique is fast in transforming projects, we also illus-
trate the challenges of maintaining fine-grained feature modules.

CCS CONCEPTS
• Software and its engineering → Preprocessors; Software
product lines; Feature interaction; Maintaining software.

KEYWORDS
Software product lines; preprocessor; variability analysis; empirical
study; software metrics

ACM Reference Format:
Kai Ludwig, Jacob Krüger, and Thomas Leich. 2020. FeatureCoPP: Unfolding
Preprocessor Variability. In Proceedings of the 14th International Working
Conference on Variability Modelling of Software-Intensive Systems (VaMoS
’20), February 5–7, 2020, Magdeburg, Germany. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3377024.3377039

1 INTRODUCTION
Variability is an important concept to enable systemic reuse and
customizing of software variants. In particular, variability is often
managed as a software product line, which builds on systematically
reusing features [1, 29]. Such features represent a user-visible char-
acteristic of a system and can be optional or mandatory [13]. While
mandatory features are used in all variants of the system, optional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VaMoS ’20, February 5–7, 2020, Magdeburg, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7501-6/20/02. . . $15.00
https://doi.org/10.1145/3377024.3377039

features can be selected and deselected, and thus are present only
in a subset of all variants.

In order to implement optional features using variation points,
several variability mechanisms can be used [1, 10]. Such mecha-
nisms can be categorized depending on their representation, either
as annotation-based—using annotations in the code base and remov-
ing unselected features—or composition-based—separating features
into modules and integrating selected ones into the code base. There
are arguably complementary pros and cons to these representa-
tions concerning program comprehension and maintenance, with
partly contradicting empirical evidence [1, 8, 17–19, 32, 35]. Conse-
quently, several researchers argue to combine both representations
or transform code from one to the other [3, 14, 16, 20, 21].

To facilitate the practical adoption of such ideas, we proposed to
integrate both representations, enabling a preprocessor to handle
both [21]. In this paper, we present a corresponding solution by
introducing a technique and tool that can automatically extract
optional features implemented with conditional directives (CDs) of
the C preprocessor (CPP)—the most widely used variability mech-
anism in practice [7, 11, 25]—into feature modules. Our tool, the
Feature COmpositional PreProcessor (FeatureCoPP) can be applied
with different options to perform a complete or selective feature ex-
traction. FeatureCoPP implements a merge function to reintegrate
modules into the code base. In detail, our contributions are:

• We describe a technique to automatically separate CPP vari-
ability into feature modules.

• We report an evaluation of our technique, including its per-
formance, verification, and discussion of its usability.

• We share our tool as an open-source project on GitHub.1
The results show that our technique allows to decompose CPP
variability quickly. Still, there are some program limitations, such
as the structure of some modules potentially harming maintenance
and comprehension. These problems result from the granularity,
discipline, and expressions allowed by the CPP [19, 25, 26].

2 COMPOSITIONAL ANNOTATIONS
In this section, we motivate our technique based on related and
previous work. Then, we describe the concept of compositional
annotations (CAs) [21] as basis for our tool.

2.1 Motivation
Several authors have proposed to combine composition-based and
annotation-based representations. This way, developers can se-
lect the representation that is most suitable for them. First ideas
to combine and transform representations have been proposed
by Kästner and Apel [14], who discuss the pros and cons, and later
developed a transformation model for the simplified Featherweight

1https://github.com/ldwxlnx/FeatureCoPP

https://doi.org/10.1145/3377024.3377039
https://doi.org/10.1145/3377024.3377039
https://github.com/ldwxlnx/FeatureCoPP


VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Kai Ludwig, Jacob Krüger, and Thomas Leich

foo.h

Base

Feature A1

Base

Base

Feature C1

Base

Feature B1

foo.c

Feature A2

Base

Base

Feature B2

Base

Base

Feature A3

foo.h

Base

ref(A1)

Base

Base

ref(C1)

Base

ref(B1)

foo.c

ref(A2)

Base

Base

ref(B2)

Base

Base

ref(A3)

Feature A

A1

A2

A3

Feature B

B1

B2

Feature C

C1

Annotations Compositional Annotations

Decomposition
(Split)

Composition
(Merge)

Figure 1: Concept of compositional annotations.

Java [16]. Based on this idea, case studies have been conducted
that indicate the practical problems of combining two variability
mechanisms [4, 20]. A more advanced technique to tackle this issue
is projectional editing [3, 28], which still has to prove its practical
applicability. These works indicate the usability, but also problems,
of combining both representations. From such experiences, we pro-
posed to integrate a compositional layer into an annotative one, and
discussed the specific requirements and goals [21]. Moreover, in a
user study [19], we described this concept to experienced CPP devel-
opers. The results show that, depending on feature characteristics,
developers see practical applications for our technique—partly for
implementing, but especially for analyzing and correcting source
code that belongs to a specific feature (e.g., collecting all feature
code on demand to understand a bug).

2.2 Compositional Annotations
Analogously to OOP or FOP, where objects contribute to features in
different roles [2, 22, 30, 34], in CPP systems CDs act as roles, which
contribute to features spread across multiple source files. The idea of
CAs is to allow preprocessor variability to comprise separate feature
modules (cf. Figure 1). So, instead of having all features cluttered
into a single code base, references to parts of a feature module are
included in the code [21]. In order to facilitate the adoption of our
tool and its refactoring, we require two functions: First, we provide
a functionality to automatically extract (split) code from CDs into
modules, including the creation of suitable references and updating
the project structure. Second, we provide the inverse functionality
of our preprocessor, allowing to reintegrate (merge) these modules
back into the code by replacing references with the corresponding
code. The textual analysis of our technique aligns to the workflow
of the CPP and its corresponding C standard [12].
Decomposition (Split). On the left side of Figure 1, we depict an
exemplary input. Here, we consider two files (foo.h, foo.c) with
three optional (A, B, and C) and one mandatory feature (Base). The
features may be scattered throughout the code base, consisting of
multiple variation points (e.g., A1), which we refer to as roles. For
the CPP, every role is marked with CDs (e.g., #ifdef). FeatureCoPP
extracts these roles into separate feature modules, resulting in the
structure that we display on the right side of Figure 1. Now, three
new files exist, each representing one feature and comprising all

of its roles. As said, the original position of each role is annotated
with a reference that identifies each role in the feature modules.
Composition (Merge). At this point, developers can work with
the separated modules, which provide a consolidated view on the
feature code. Still, before compiling the system, it must be reassem-
bled. To this end, FeatureCoPP implements a merge functionality
that reintegrates the separated modules into the code base. This
functionality reversely substitutes all references in the code with
the corresponding roles. So, it creates a single code base comprising
all features. Logically, if the developers did not employ any change
to the feature modules, splitting and merging result in exact copies.
Annotation ≠ Feature. Pohl et al. [29] describe that features can
represent internal and external variability, where internal variability
is not exposed to the customer. Furthermore, not all CDs contribute
to an actual feature. For instance, include guard CDs only avoid
erroneous repeated header inclusions. Consequently, a selective
decomposition of features should be possible. For now, FeatureCoPP
allows developers to specify feature and file names to extract only
a selected subset of variability.

2.3 Project and File Structure
As large-scale software systems can have identically named files,
we have to preserve their structure during decomposition.
Project Structure. We differentiate between four entities while
analyzing a system:

(1) Selected files: A selected file is explicitly selected by a user
(i.e., based on its name or a suffix). There are two situa-
tions that can appear if a selected file is analyzed: First, the
file has user-specified feature code, which is extracted by
FeatureCoPP—we refer to such entities as selected files with
feature. Second, the file does not have user-specified feature
code, and therefore is ignored by FeatureCoPP—we refer to
such entities as selected files without feature.

(2) Deselected files: A deselected file is a file the user wants
FeatureCoPP to ignore. FeatureCoPP neither inspects nor
transforms such files into a CA output.

(3) Folders: Folders are only preserved if they contain at least
one selected file with feature anywhere in their structure.

(4) Feature modules: FeatureCoPP composes feature modules
from all selected roles that it identifies in the aforementioned
selected files. Feature modules have a unique identifier and
are stored separately in an additional directory.

File Structure. In Figure 2, we show how FeatureCoPP decomposes
selected files with feature into modules. On the left, we show the
annotation-based input file src.c. The outermost code contributes
to the mandatory feature BASE. BASE surrounds a CD #ifdef A
with code that is a role for feature A. Moreover, within this CD,
three other roles are nested: #ifdef B, #ifdef A, and #ifdef C.

Our technique transforms the file src.c into the CA structure on
the right side of Figure 2. FeatureCoPP preserves CDs and extracts
only the corresponding variable C code. The C code is substituted
with a textual reference, which links to the extracted code in the fea-
ture module. We preserve the nesting structure of variability, which
results in roles pointing to roles in another (e.g., Feature A Role 1
→ Feature B Role 1) or the same (e.g., Feature A Role 1 →



FeatureCoPP: Unfolding Preprocessor Variability VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

src.c

BASE

BASE

#ifdef A
...

...
#endif

#ifdef C
...
#endif

#ifdef B
...
#endif

#ifdef A
...
#endif

Module
Feature A

Role 2

Role 1
...

#ifdef A

#endif
•

#ifdef B

#endif
•

#ifdef C

#endif
•

...

Module
Feature B

Role 1

Module
Feature C

Role 1

src.c

BASE

BASE

#ifdef A

#endif
•

Decomposition
(Split)

Composition
(Merge)

Figure 2: Conceptual overview of FeatureCoPP on file level.

Feature A Role 2) feature module. Within feature modules, we
use markup text (i.e., annotations) to distinguish roles.

If the user does not request features B and C to be extracted, the
respective feature-related code would remain as is within the CDs.
This may prevent further indirections, but potentially clutters a
feature with unrelated code. As we keep the original CDs in con-
junction with modularized variability, our current implementation
can be considered as a hybrid of the inter approach for variant-
preserving mapping following the taxonomy of Fenske et al. [9].

2.4 Feature Mapping
Mapping a role to its corresponding feature module creates the
problem of making a feature uniquely identifiable. We exemplify
this problem with the following equivalence relations:
#ifdef A ≡ #if defined(A) ≡ #if defined A
#ifndef A ≡ #if ! defined(A) ≡ #if ! defined A

Each row shows semantically equivalent CDs that differ syntacti-
cally. Simply decomposing based on comparing macro names would
assign #ifndef A to feature A, although it is an absence condition,
meaning that it does not contribute code to feature A [26]. Moreover,
#if needs to be followed by a constant expression (e.g., macro name,
arithmetic, and relational expressions) [12]. Thus, solely using the
macro name as identifier for a feature is insufficient. To address
these problems and to provide a unified naming, we identify each
feature by its constant expression. In case of #if[n]defs, we create
equivalent constant expressions using defined and negation oper-
ators. Consequently, we treat explicit feature interactions as one
distinct feature. However, this results in the assignment of, for ex-
ample, #if A && B and #if B && A to different features, namely
A&&B and B&&C. Moreover, we do not perform constant expression
evaluation and macro expansion, meaning that semantically equiv-
alent, but syntactically different CDs, are also assigned to different
features. We will address these aspects in future work.

3 DECOMPOSING DIRECTIVES
In this section, we detail the decomposition functionality (split) of
our technique that extracts CDs into feature modules.

3.1 Preconditions
First, we have to ensure that the created CA system contains only
files and folders that represent the most recent state of the input
and aligns to the user’s feature selection. To exemplify this require-
ment, we highlight two scenarios, which potentially impair project
integrity and code maintenance:

• A previous execution decomposed all available roles of the
code base. When a new selective decomposition is invoked,
the new output retains files of the previous execution. Thus,
the CA system could become inconsistent with files that do
not belong to the new selection.

• Between two executions, the file and/or folder structure of
the input project is changed. In this case, files could co-exist
as duplicates within different folders, also resulting in an
inconsistent CA system.

To avoid these problems, we recursively delete the previous CA
system before performing a new decomposition.

3.2 Handling Conditional Directives
We implemented a functionality to detect CDs within the input
project. To implement the recognition of CDs directly at the charac-
ter level, we use the Java-based scanner generator JFlex2 to create an
appropriate platform-independent lexer. During the lexical analysis,
we explicitly recognize the following classes of reserved words:

(1) Conditional Directives: The CPP keywords #if, #ifdef,
#ifndef, #elif, #else, and #endif are recognized with
regular expressions conforming to the C specification [12].

(2) Comments: Multi-line (/**/) and single-line comments
(//) are recognized, as they may contain reserved words.

(3) Line Extension: We concatenate multi-line CDs ('\') to
complete their constant expressions.

(4) String andCharacter Literals:Wehandle such literals sep-
arately, because their content may contain reserved words.

(5) Anything Else:We preserve any character input not match-
ing the aforementioned ones as is. This includes disregarded
CPP directives (e.g., #define, #include), C source code, and
white space symbols.

Parsing Constant Expressions. To identify roles and features by
name (cf. Section 2), we analyze the constant expression of each CD
with a Java-based LALR(1) [6] parser we generated with JCup.3 Dur-
ing this analysis, we also transform #if[n]defs to their equivalent
counterparts with constant expressions (i.e., [!] defined).
Parsing #else-Directives. While #else-directives do not have
macro names or constant expressions, they may contain feature
code. To identify roles from #else-directives by name, we transform
#else-directives to equivalent constant expressions by assembling
their preceding CDs [26].

3.3 Variant-Preserving Mapping
Having defined the prerequisites to identify roles and features,
we now present our technique from the perspective of a variant-
preservingmapping [9]. Technically, our extractionmaps one source
file to 1 + 𝑛 output files (i.e., the transformed file plus feature mod-
ules). While it is mandatory to transfer the transformed files with
2http://jflex.de/
3http://www2.cs.tum.edu/projects/cup/

http://jflex.de/
http://www2.cs.tum.edu/projects/cup/


VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Kai Ludwig, Jacob Krüger, and Thomas Leich

Listing 1: Example Source for Variant-preserving mapping.
1 # i f A
2 in t a00 ; / / v a l i d
3 # e l i f B
4 in t b00 ; / / v a l i d
5 # i f A
6 in t a10 ; / / dead
7 # e l i f B
8 in t b10 ; / / v a l i d
9 # endif
10 in t b01 ;
11 # e l se
12 in t c00 ; / / v a l i d
13 #endif

identical names and relative folder locations to the output project,
this becomes more difficult for feature modules. Ideally, each mod-
ule would be named according to its feature name (constant ex-
pression). However, since different file systems prohibit the use of
certain characters, this is not possible for a portable solution. For
instance, the operator symbols < , >, ?:, /, |, and * are prohibited
within file and directory names on NTFS. To solve this problem
in a portable way, we successively assign each feature module a
unique number 𝑛 ∈ N+, which simultaneously acts as its filename.
For instance, the first feature module we create is named 1.fcp.

To explain our variant-preserving mapping more thoroughly,
we use the exemplary input source file we depict in Listing 1. This
file consists of partially nested CDs plus their respective controlled
code. Starting from line 1, three CDs span three roles at top-level,
namely #if A in line 1, #elif B in line 3, and #else in line 11.
Each of these CDs starts a new text scope, which is terminated by
the following directive or by an #endif (cf. lines 9 and 13). Any
kind of text within such a scope is a role that contributes to its
feature. For instance, the first role contains an integer declaration
in line 2 and contributes to feature A. The integer declaration in line
6 also contributes to feature A, but as a different role. With regards
to our example in Listing 1, we emphasize the following important
implications for our technique:

(1) The text of a CD itself (e.g., #if A, but not its controlled
code) contributes to the mandatory base, if it is at top-level—
or to an optional feature, if it is nested. For instance, line
1 needs to be written to the source file, since it is at top-
level. In contrast, the C code (int a00;), all whitespaces,
and the comment (// valid) belong to feature module A.
The nested #if A in line 5 is part of feature module B, while
its controlled code in line 6 belongs to feature A.

(2) Our technique performs a flat extraction of the controlled
code and disregards file inclusion (#include <file>). Thus,
every file is inspected in isolation and without inlining fur-
ther source files.

(3) We do not expand function or object macros, and thus dis-
regard the unsatisfiability of CDs. This means, that roles
within CDs, such as #if 0 or the nested #if A in line 5 of
our example, are extracted if their feature name is selected
by the user, although they are not processed by the CPP.

After the preconditions (cf. Section 3.1) are met, our technique
for a variant-preserving mapping performs a depth-first search to
locate the selected source files. These files are scanned for CDs
that match the selected constant expressions. The textual structure
of the located CDs is preserved by setting up a two-dimensional

Listing 2: Extracted feature module B.
1 / ∗ @in l i n e o c c _ i d = " 4 " e n c l _ o c c _ i d = " 2 " s r c = " / tmp / t e s t _ s p l i t /

___F ea tu r eCoPP_modu l e s / 2 . f c p " d i r e c t i v e = "# e l i f B " ∗ /
2 in t b10 ; / / v a l i d
3 / ∗@end ∗ /
4 / ∗ @in l i n e o c c _ i d = " 2 " e n c l _ o c c _ i d = " 0 " s r c = " / tmp / t e s t _ s p l i t /

i m p l _ t e s t . c " d i r e c t i v e = "# e l i f B " ∗ /
5 in t b00 ; / / v a l i d
6 # i f A
7 / ∗ $ i n l i n e o c c _ i d = " 3 " e n c l _ o c c _ i d = " 2 " d s t = " / tmp / t e s t _ s p l i t /

___F ea tu r eCoPP_modu l e s / 1 . f c p " ∗ /
8 # e l i f B
9 / ∗ $ i n l i n e o c c _ i d = " 4 " e n c l _ o c c _ i d = " 2 " d s t = " / tmp / t e s t _ s p l i t /

___F ea tu r eCoPP_modu l e s / 2 . f c p " ∗ /
10 # endif
11 in t b01 ;
12 / ∗@end ∗ /

stack. In the first dimension, we preserve the nesting structure
of CDs, while we store the ordering of sibling directives in the
second dimension. At the bottom of the stack, we always insert
the mandatory base feature (i.e., the transformed file). Each bucket
in the stack is connected to the appropriate feature module. By
writing the currently processed text on top of the stack, we map the
respective source code to the appropriate feature module. We write
the text of CDs to the previous top-most bucket. This can either
be the source file or another feature module if the CD is nested. In
case a feature has not been selected, we traverse the stack to its
bottom, either finding a selected feature or the base feature.

With regards to the I/O strategy, our technique works on a per-
file level. After an inspected input file is analyzed, we systematically
cache all of its textual content and write it to the respective output
files—the transformed file and feature modules—during the system-
atic tear-down of the stack. Thus, we never keep more than the
textual volume of the currently processed input file plus additional
data structures in heap memory. An alternative strategy could be a
complete assembly of the extracted text in heap memory, which ar-
guably can become problematic in case of very large source projects.
For instance, the Linux kernel with nearly 500 MiB 8-Bit plain text
in all C header and implementations files would require at least a
doubling of the text size in memory, due to internal charset con-
version to UTF-16 for Java’s string representations. Such a drastic
growth can quickly result in heap memory shortage for systems
with limited resources.

3.4 Output
After the previously described transformation of an input system,
our technique generates the corresponding CA system. This output
system contains all extracted features in their modules and map-
pings to all affected source files. We exemplify a simple feature
module that is extracted from Listing 1 in Listing 2.
Roles. We enclose roles with markups (i.e., /*@inline ...*/ and
/*@end*/) for separation. The markups are embedded in C multi-
line comments to avoid lexical inferences with potential tool sup-
port (e.g., syntax highlighting, the CPP). Within such a markup, our
technique writes the content of the corresponding role. For instance,
line 2 of Listing 2 refers to the role comprising the extracted integer
declaration from line 8 in Listing 1. As we also extract whitespaces
and comments, we emphasize the non-invasive behavior of our
technique. Furthermore, each markup contains additional machine
and human readable information regarding a particular role. We can



FeatureCoPP: Unfolding Preprocessor Variability VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

Listing 3: Transformed source file src.c.
1 # i f A
2 / ∗ $ i n l i n e o c c _ i d = " 1 " e n c l _ o c c _ i d = " 0 " d s t = " / tmp / t e s t _ s p l i t /

___F ea tu r eCoPP_modu l e s / 1 . f c p " ∗ /
3 # e l i f B
4 / ∗ $ i n l i n e o c c _ i d = " 2 " e n c l _ o c c _ i d = " 0 " d s t = " / tmp / t e s t _ s p l i t /

___F ea tu r eCoPP_modu l e s / 2 . f c p " ∗ /
5 # e l se
6 / ∗ $ i n l i n e o c c _ i d = " 5 " e n c l _ o c c _ i d = " 0 " d s t = " / tmp / t e s t _ s p l i t /

___F ea tu r eCoPP_modu l e s / 3 . f c p " ∗ /
7 #endif

identify each role internally based on a unique occurrence identifier
𝑛 ∈ N+, namely occ_id. A role could be nested in an enclosing role,
which we indicate by adding encl_occ_id. Additionally, the file
from which this role is referenced, is listed as src, together with the
CD’s text, which encloses the role. This information is required for
the composition of a project of CAs, and it helps developers to keep
track of the textual relations between particular roles. While not all
the information may be necessary to reintegrate feature modules,
it supports the comprehensibility of the transformed system.
References. We show a second type of markup in lines 7 and 9
of Listing 2. While the CDs #if A and #elif B are part of this
role themselves, each of them references a further role (i.e., their
respective controlled code). Such a referencing is introduced by the
markup /*$inline ...*/. Here, occ_id and encl_occ_id refer
to the same meaning, while the dst-markup refers to the feature
module where the corresponding role is written to. As we show
in Listing 2, a role in a feature module can reference another role
within that same feature module. The reference in line 9 points to
role number 4 (occ_id) within the same file (2.fcp). This particular
role is located at the beginning of the file (lines 1 to 3). With regard
to Listing 1 (cf. lines 3 and 7) this makes sense, as there is a nested
feature B at this point. The ordering of the roles within a feature
module results from our depth-first writing, including the stack
ordering during variant-preserving mapping. While this can seem
confusing, it is mitigated by the internal numbering of roles, which
helps in tracing back the respective structure.
Source File. Finally, we outline the transformed source file of List-
ing 1 in Listing 3. A source file is always the root of references
in a system of CAs. While the CDs in lines 1, 3, 5 and 7 are pre-
served, our technique references the respective roles with markup
text in lines 2, 4 and 6. From this combination of preserved annota-
tions in conjunction with extracted variability, originates the name
compositional annotations.

4 REINTEGRATING MODULES
Reintegrating feature modules encompasses the backward transfor-
mation fromCAs towards a source project of pure annotation-based
variability. We have to perform this transformation before an actual
translation of the system with standard build mechanisms, such as
configure scripts or makefiles.

4.1 Preconditions
The preconditions for a reintegration refer to the prototypical state
of our tool. To prove the correctness of our technique, we need
an annotation-based output system that we can compare to the
annotation-based input system. In case the extraction works cor-
rectly, a reassembled system and its original counterpart have to be

role begin

role end

reference

text concatena�on

lookup edge

concat edge

Legend

role text

Figure 3: Reintegrating feature modules.

identical. Since a system of CAs consists only of the user-selected
optional and its mandatory feature code, other system components
are missing (e.g., invariant sources, documentation, scripts, etc.).
Thus, a direct reintegration of an extracted system would only re-
sult in reassembled variable source files, which makes a system
comparison impossible. To solve this issue, our technique copies
the original annotation-based system before an actual reintegration.
Afterwards, the copied files are overwritten with feature modules of
the CA system. So, an immediate functional composition of extrac-
tion and reintegration, without intermediary source modifications
will result in two identical systems. For the future, we aim at per-
forming the reintegration directly into the original system, which
makes the duplication unnecessary.

4.2 Depth-First Text Concatenation
We exemplify the process of reintegration more thoroughly in Fig-
ure 3. With regards to Listing 1, we have a system of CAs, which
consists of one source file (src.c) and two feature modules—1.fcp
for feature A and 2.fcp for feature B. We omit the third feature
module ! (A || B), since it is not required for a basic understanding
of the functionality and to improve the clarity of our example. The
reintegration starts with localizing all copied source files, namely
src.c in our example. Our technique now reads the source file
line-wise and buffers the text in memory until it identifies the
first reference ($1). If we detect such a reference, we parse it for
the role number (occ_id) and the file name of the feature mod-
ule (dst="..."), which we find immediately before reading of the
source file continues. We display this with lookup-edges.

Afterwards, our tool starts detecting the role @1. We parse the
corresponding featuremodule for the role number, whichwe extract



VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Kai Ludwig, Jacob Krüger, and Thomas Leich

from the reference. If we find the role, its source code is concate-
nated to the same text buffer, which we depict as concat-edge.
Three situations may occur:

(1) The role is read without finding further references, which
means that within this particular role no CDs are nested.
After appending the last character of the role’s source code,
we stop processing the feature module.

(2) A reference is detected within the role, which is immediately
dereferenced, as described for the source file.

(3) After reaching the end of the featuremodule file, the searched
role is not found. In this case, the integrity of the physically
separated project is impaired and the reintegration finishes
with an error.

Since role @2 comprises reference $3, the lookup continues in fea-
ture module 2.fcp. Here, we locate and concatenate 𝑡7 to the text
buffer before we stop processing this feature module. Within fea-
ture module 1.fcp, we read 𝑡5 and append it to the text buffer
after 𝑡7. We propagate this concatenation backwards to where the
dereferencing of $2 started. By this means, we correctly inject the
text compound 𝑡7 .𝑡5 between 𝑡3 and 𝑡4. The reintegration of source
file src.c finishes when the end-of-file is reached. At this stage,
the source code is completely reassembled in the text buffer and
written to the respective output file.

5 STUDY DESIGN
Subject System. To evaluate the applicability of our technique on
large-scale real-world software, we conducted a case study using
the Linux kernel, which is a well explored [5, 24, 33] and contin-
uously evolving system. The kernel comprises more than 10,000
features implemented with the CPP. Moreover, it includes nearly
15 million lines of source code in 18 thousand header and 24 thou-
sand implementation files. So, we argue that the Linux kernel is
appropriate to evaluate our tool.
Research Questions. To investigate the practical usefulness of
our technique, we formulate two research questions:
RQ1 Is the performance and resource consumption of our tool suitable

for real-world scenarios?
RQ2 What impact do compositional annotations have on software

maintainability?
Methodology. First, we decompose the Linux kernel with our tool,
using all header and implementation files. This transformation is
performed twice:

(1) Informed:We only decompose kernel features, namely CDs
containing CONFIG_ macros.

(2) Uninformed:We decompose all CDs without considering
naming conventions, extracting any variability; even delib-
erate dead code (e.g., #if 0) or code in include guards.

We use informed and uninformed decomposition of variability as
lower and upper bounds for our evaluation. Developers who are
familiar with a system will arguably prefer an informed transfor-
mation for a defined set of features. We use this scenario as lower
bound with regards to performance. In contrast, a complete, un-
informed transformation of a system represents the worst-case
scenario; so it represents our upper bound with regards to per-
formance. Both scenarios allow us to reason about a real-world
application of our tool.

Table 1: Properties of our test system.

CPU: 4x AMD Phenom II X4 945, 800MHz, L1-Cache 512 KB
RAM: 4x 8GB, DDR3, 1333 MHz
OS: Debian GNU/Linux, 7.11, 64-Bit
Filesystem: XFS, block size 4096 Bytes
Harddisk: Samsung SSD 850 EVO 500 GB
Java-VM: Java HotSpot 64-Bit Server VM (build 25.131-b11)

Second, we perform a reintegration on both, informed and un-
informed, transformed systems to show how the respective input
relates to the inverse transformation. To address our first research
question (RQ1), we measure computation and heap usage, and the
required time of the transformations. Our evaluation is based on
the hardware and software we describe in Table 1.

To perform our tests, we use standard system configurations
without optimizations regarding CPU, filesystem, operating system
or the Java virtual machine. We measure the duration of decompo-
sition and re-integration effectively within the application, which
means that runtime for the preconditions deletion and copying is
not included. We obtained our measurements from single tool ex-
ecutions after assuring comparable system states (e.g., cpu and
memory load, process activity) The heap consumption is profiled
with VisualVM4 within Eclipse™ Oxygen.2.
Reflecting on Maintainability. To tackle our second research
question (RQ2), we reflect on the maintainability of CA projects.
To this end, we build on the results of surveying its practical ap-
plicability [19] and using it to analyze systems [26]. Moreover, we
use the results we obtained during our case study to compare the
findings and qualitatively discuss the usability of our tool and CAs.

6 RESULTS & DISCUSSION
In this section we present and discuss the findings of our case
study, starting with a summary of the measured data in Section 6.1.
Within Section 6.2, we illustrate the applicability of our tool from
a technical perspective, analyzing important performance aspects,
such as, runtime and resource consumption. In Section 6.3, we
reflect on CAs in terms of maintainability. We conclude by showing
the current limitations of FeatureCoPP in Section 6.4.

6.1 Results
We report the transformations and their required execution times
in Table 2. In the first row, we show the results for an informed
transformation—decomposing only the actual Linux kernel features.
Analogously, we show the results for an uninformed transformation
in the second row—decomposing all CDs, even if they may not
represent external variability. For the investigated Linux kernel we
decomposed 11,103 kernel features (CONFIG_) with 49,996 roles into
feature modules (.fcp) in the CA system.

For the uninformed transformation, the number of conditional
directives that are decomposed into feature modules increases by a
factor of three to 36,226. The number of roles is more than doubled
compared to before (103,135). This shows the high degree of CDs
that do not represent external variability. However, actual features

4https://visualvm.github.io/

https://visualvm.github.io/


FeatureCoPP: Unfolding Preprocessor Variability VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

Table 2: Times for decomposition and re-integration.

Transformation #Features #Roles Time (Sec.)
.fcp split merge

Informed 11,103 49,996 68 181
Uninformed 36,226 103,135 73 456

(CONFIG_) seem to comprise a larger number of roles on average,
compared to the remaining CDs.

6.2 RQ1 – Performance
Runtime. While FeatureCoPP decomposes the Linux kernel re-
markably fast in the informed transformation (68 seconds), the
reintegration takes nearly three times as much with 181 seconds.
The reason is the increasing I/O overhead during the reintegra-
tion, when FeatureCoPP has to repeatedly open the same feature
modules. This effect increases for an uninformed, and thus com-
plete, decomposition of the Linux kernel. Here, reintegration takes
unsurprisingly more time (456 seconds), as more feature modules
must be processed resulting in more I/O operations. In contrast, for
extracting features, FeatureCoPP’s execution time increases only
slightly to 73 seconds, despite the drastic increase in modules and
roles. Remarkably, the analysis of presence conditions (i.e., CDs)
with FeatureCoPP is faster and equally reliable compared to existing
static type checkers—as these tools do parse the system [23].
Heap Usage. A potential bottleneck for our Java application is the
garbage collection, when a shortage of heap memory occurs. To
investigate the memory consumption, we monitored both transfor-
mations to explore how the runtime is affected by memory man-
agement. In Figure 4, we display the results for the uninformed
transformation (the worst case), but the graphs for informed are
very similar. The red graph represents the heap consumption of the
available heap memory of the Java VM—drawn in blue. For both
transformations, shortly after starting FeatureCoPP, the VM reallo-
cates from 512 to 1024 MiB to handle the internal data structures.
As the graph shows, the reintegration results in more frequent heap
usage changes, due to many files being read into objects with short
lifespans. So, its memory consumption is actually better than for
the extraction. Overall, the results show that the heap usage of
FeatureCoPP is—even for the Linux kernel—rather slim and does
not run out of memory with normal VM settings.
CPU Usage. Another aspect affecting program runtime is the CPU
usage, since a high utilization of the processor by (a single) ap-
plication(s) may impair system performance. We inspected the
CPU usage of FeatureCoPP during the uninformed extraction and
reintegration and show the results in Figure 5. The spikes after pro-
gram invocation illustrate the load produced by the precondition
activities (i.e., copying files during the initial depth-first filesys-
tem traversal). Besides occasional spikes above 50%, FeatureCoPP
mainly utilizes 25% of the CPU. We also find few garbage collector
activities with slim CPU usage. Again, the results show that our
tool should pose no problems in its practical usage.
Validation. To validate that our technique works non-invasive
for both, extraction and reintegration, we performed a recursive
file and directory comparison with the diff -tool—comparing the

0

250

500

750

1000

0 20 40 60

Time in Seconds

S
iz

e 
in

 M
eg

ab
yt

es

(a) Heap usage for uninformed extraction.

0

250

500

750

1000

0 100 200 300 400

Time in Seconds

S
iz

e 
in

 M
eg

ab
yt

es

Total Heap Used Heap

(b) Heap usage for uninformed reintegration.

Figure 4: Heap usage for uninformed working mode.

original input project and its reintegrated copy (cf. Section 2). Both
projects are textually and structurally identical, besides platform-
based differences regarding line breaks (\n vs. \r\n), and character
encodings in comments, strings, and character literals. This happens
if the application is transformed on a different platform than the
one on which the input text has been encoded. We tolerate this
invasiveness, since it is related to the experimental state of our
application and will be improved in future versions.
Summary. All results indicate that our tool can be used in normal
Java VMs. Consequently, we argue that the practical applicability of
our tool is ensured and may be integrated into other techniques or
frameworks. For example, we used FeatureCoPP in a static analysis
framework [23], which was unproblematic and worked equally well
as comparable tools we integrated.

6.3 RQ2 – Reflecting on Maintainability
Comprehensibility. Since the CPP allows lexical variability, an-
notation-based systems allow very fine-grained feature code [1, 15].
This can result in a scattering and tangling of features, hampering
code comprehension, and thus maintainability [27, 35, 36]. In case
of separating fine-grained code into feature modules, this problem
increases [19, 21]. Especially, decomposing code on statement level
or below results in a removal of the related functional context.
Thus, developers will face problems especially during bottom-up



VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Kai Ludwig, Jacob Krüger, and Thomas Leich

0

20

40

60

0 100 200 300 400

Time in Seconds

C
P

U
 U

sa
ge

 in
 %

Merge

Split

Figure 5: CPU usage for both working modes.

comprehension [38, 39], due to inexplicable execution plans and
reduced knowledge of investigated type information of symbols.
Such issues have been anticipated by a majority of developers that
we surveyed to assess the conceptual approach of CAs [19]. In
contrast, a majority of developers found CAs useful in an analysis
use case, when, for example, quick feature outlines are requested.
Nevertheless, a more sophisticated experiment with developers
and our tooling is needed, to investigate comprehensibility aspects
more thoroughly, which we will address in future work.
System Integrity. For our technique, the overall system integrity
relies on the presence of all feature modules. The loss of one module
renders a valid re-integration impossible. Since a feature module
can crosscut through a multitude of source files, it is challeng-
ing for developers to figure out which files are affected—to which
some developers refer to as action-at-a-distance [17–19]. To sup-
port developers in tracing affected files, we preserve the entire CPP
variability for each CA system in an XML structure. Still, there are
pros and cons of this representation, but further empirical studies
are necessary.
Summary. Overall, FeatureCoPP achieves its goal of decomposing
features into modules, which can have pros and cons. Due to the fil-
ter capabilities we implemented and the user feedback we received,
we argue that such transformations can support the analysis, com-
prehension, and maintenance of software systems. The problems
that may occur due to fine-grained features are rather due to the
legacy variability we decompose automatically.

6.4 Limitations
Due to the prototypical state, FeatureCoPP faces some limitations.
Tool Support. To support developers, we need additional tooling
for FeatureCoPP (e.g., IDE integration). In particular, there can be
fine-grained roles that cannot be parsed without their context. For
instance, without context it is undecidable if the C code a * b; is a
multiplication or a pointer declaration. So, we aim to integrate our
technique into an IDE that enables real-time analysis of the code to
investigate such issues. This way, we can provide developers a tool
suite for our technique and also improve its capabilities.
CPP Compliance. At its current state, our tool accepts only macro
names that align to usual C identifiers, conforming to the C stan-
dard [12]. However, this standard also allows lexical extensions,

which are made in recent gcc and clang implementations. If our tool
is applied on systems that use of such extensions (e.g., gcc itself),
our parser refuses to transform the respective project.
Lexical Inferences. Although it is commonly argued that the CPP
is language independent, its capabilities of string concatenation and
character disambiguation imply that this is untrue. Consequently,
compiler suites (e.g., gcc) discourage the application of the CPP on
other languages, due to lexical interferences—although they provide
switches to make the processing of some languages possible [37].
To this date, our tool only accepts the interaction of the CPP and
the C language. For instance, the interaction of the CPP with assem-
bler code, which occurs twice in our version of the Linux kernel,
is refused by our parser. To allow developers a means to bypass
this limitation, we provide a blacklisting mechanism, to explicitly
exclude affected files from processing.

7 THREATS TO VALIDITY
Internal Validity. Our performance analyses (cf. Section 6.2) fo-
cuses on the resource consumption of our tool itself. However, the
behavior of an application relates to far more confounding variables,
such as, the current overall system load, operating system schedul-
ing strategies, and cache management. Although the stabilization
of all confounding variables is hardly possible, we endeavored to
use homogeneous system states for profiling. Nevertheless, such
variables may have impacted our results.
External Validity. Due to the analysis of only one subject sys-
tem, we cannot draw conclusions on possibly further limitations
of our tool when applied to other systems. Furthermore, since our
approach is I/O-intensive, the introduced runtime measures will
differ on different platforms and filesystems, due to changed jour-
naling and I/O caching strategies [31]. As this paper focuses on the
technique itself and its applicability with regards to time behavior
and resource consumption, we argue that the Linux kernel provides
an appropriate upper bound to gain insights.

8 CONCLUSION
In this paper, we introduced the concrete implementation of com-
positional annotations (CAs) [21]. Our implementation allows to
decompose variable, annotated C code into feature modules and
the reverse reintegration of the resulting CAs into an annotation-
based project. We demonstrated that our technique extracts the
Linux kernel features in around one minute, while the respective
reintegration has a runtime of approximately seven minutes, due to
the currently I/O intensive implementation. Also, we show that our
technique is modest in terms of memory and CPU consumption.

For future research, we aim for case studies with more subject
systems and a removal of our tool’s limitations. Further improve-
ments and tool integrations will help us to conduct user and em-
pirical studies to assess its usability, as well as the suitability of
such code transformations in general. We also plan to improve the
analysis capabilities of our tool, as especially this use case has been
highlighted as valuable in a developer survey [19].

ACKNOWLEDGMENTS
This research has been supported by the German Research Founda-
tion (DFG) grants LE 3382/2-3 and SA 465/49-3.



FeatureCoPP: Unfolding Preprocessor Variability VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2016. Feature-

Oriented Software Product Lines. Springer.
[2] Don Batory, Jacob N. Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise

Refinement. IEEE Transactions on Software Engineering 30, 6 (2004), 355–371.
[3] Benjamin Behringer, Jochen Palz, and Thorsten Berger. 2017. PEoPL: Projectional

Editing of Product Lines. In International Conference on Software Engineering
(ICSE). IEEE, 563–574.

[4] Fabian Benduhn, Reimar Schröter, Kenner Andy, Kruczek Christopher, Thomas
Leich, and Gunter Saake. 2016. Migration fromAnnotation-Based to Composition-
Based Product Lines: Towards a Tool-Driven Process. In Conference on Advances
and Trends in Software Engineering (SOFTENG). IARIA, 102–109.

[5] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. 1999. Linux as a Case
Study: Its Extracted Software Architecture. In International Conference on Software
Engineering (ICSE). ACM, 555–563.

[6] Frank DeRemer. 1969. Practical Translators for LR(k) Languages. Ph.D. Disserta-
tion. Massachusetts Institute of Technology.

[7] Michael D. Ernst, Greg J. Badros, and David Notkin. 2002. An Empirical Analysis
of C Preprocessor Use. IEEE Transactions on Software Engineering 28, 12 (2002),
1146–1170.

[8] Wolfram Fenske, Sandro Schulze, and Gunter Saake. 2017. How Preprocessor
Annotations (Do Not) Affect Maintainability: A Case Study on Change-Proneness.
In International Conference on Generative Programming: Concepts and Experiences
(GPCE). ACM, 77–90.

[9] Wolfram Fenske, Thomas Thüm, and Gunter Saake. 2014. A Taxonomy of Soft-
ware Product Line Reengineering. In International Workshop on Variability Mod-
elling of Software-Intensive Systems (VaMoS). ACM, 4:1–4:8.

[10] Cristina Gacek and Michalis Anastasopoules. 2001. Implementing Product Line
Variabilities. ACM SIGSOFT Software Engineering Notes 26, 3 (2001), 109–117.

[11] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich,
Martin Becker, and Sven Apel. 2016. Preprocessor-Based Variability in Open-
Source and Industrial Software Systems: An Empirical Study. Empirical Software
Engineering 21, 2 (2016), 449–482.

[12] ISO/IEC. 2011. Programming Languages - C. Technical Report 9899:2011. Interna-
tional Standards Organization.

[13] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis: A Feasibility Study. Technical
Report CMU/SEI-90-TR-21. Carnegie-Mellon University.

[14] Christian Kästner and Sven Apel. 2008. Integrating Compositional and Annota-
tive Approaches for Product Line Engineering. InWorkshop on Modularization,
Composition and Generative Techniques for Product Line Engineering (McGPLE).
University of Passau, 35–40.

[15] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in
Software Product Lines. In International Conference on Software Engineering
(ICSE). ACM, 311–320.

[16] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2009. A Model of Refac-
toring Physically and Virtually Separated Features. ACM SIGPLAN Notices 45, 2
(2009), 157–166.

[17] Jacob Krüger. 2018. Separation of Concerns: Experiences of the Crowd. In Sym-
posium on Applied Computing (SAC). ACM, 2076–2077.

[18] Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake.
2019. Effects of Explicit Feature Traceability on Program Comprehension. In Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 338–349.

[19] Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich. 2018.
Physical Separation of Features: A Survey with CPP Developers. In Symposium
on Applied Computing (SAC). ACM, 2042–2049.

[20] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher Kruczek, Fabian
Benduhn, Thomas Leich, and Gunter Saake. 2018. Composing Annotations

Without Regret? Practical Experiences Using FeatureC. Software: Practice and
Experience 48, 3 (2018), 402–427.

[21] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher Kruczek, and Thomas
Leich. 2016. FeatureCoPP: Compositional Annotations. In International Workshop
on Feature-Oriented Software Development (FOSD). ACM, 74–84.

[22] Thomas Kühn and Walter Cazzola. 2016. Apples and Oranges: Comparing Top-
down and Bottom-up Language Product Lines. In International Systems and
Software Product Line Conference (SPLC). ACM, 50–59.

[23] Elias Kuiter, Sebastian Krieter, Jacob Krüger, Kai Ludwig, Thomas Leich, and
Gunter Saake. 2018. PCLocator: A Tool Suite to Automatically Identify Configu-
rations for Code Locations. In International Systems and Software Product Line
Conference (SPLC). ACM, 284–288.

[24] Jorg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware Product Lines. In International Conference on Software Engineering (ICSE).
IEEE, 105–114.

[25] Jörg Liebig, Christian Kästner, and Sven Apel. 2011. Analyzing the Discipline
of Preprocessor Annotations in 30 Million Lines of C Code. In International
Conference on Aspect-Oriented Software Development (AOSD). ACM, 191–202.

[26] Kai Ludwig, Jacob Krüger, and Thomas Leich. 2019. Covert and Phantom Features
in Annotations: Do They Impact Variability Analysis?. In International Systems
and Software Product Line Conference (SPLC). ACM, 218–230.

[27] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
2015. The Love/Hate Relationship with the C Preprocessor: An Interview Study.
In Leibniz International Proceedings in Informatics. Schloss Dagstuhl.

[28] Mukelabai Mukelabai, Benjamin Behringer, Moritz Fey, Jochen Palz, Jacob Krüger,
and Thorsten Berger. 2018. Multi-View Editing of Software Product Lines with
PEoPL. In International Conference on Software Engineering (ICSE). ACM, 81–84.

[29] Klaus Pohl, Günter Böckle, and Frank J. van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[30] Christian Prehofer. 1997. Feature-oriented Programming: A Fresh Look at Objects.
In European Conference on Object-Oriented Programming (ECOOP). Springer, 419–
443.

[31] Drew S. Roselli, Jacob R. Lorch, Thomas E. Anderson, et al. 2000. A Comparison of
File System Workloads. In USENIX Annual Technical Conference (ATEC). USENIX,
41–54.

[32] Alcemir R. Santos, Ivan do Carmo Machado, Eduardo S. de Almeida, Janet Sieg-
mund, and Sven Apel. 2019. Comparing the influence of using feature-oriented
programming and conditional compilation on comprehending feature-oriented
software. Empirical Software Engineering 24, 3 (2019), 1226–1258.

[33] Stephen R. Schach, Bo Jin, David R. Wright, Gillian Z. Heller, and A. Jefferson
Offutt. 2002. Maintainability of the Linux Kernel. IEE Proceedings-Software 149, 1
(2002), 18–23.

[34] Lars Schütze and Jeronimo Castrillon. 2017. Analyzing State-of-the-Art Role-
Based Programming Languages. In International Conference on the Art, Science
and Engineering of Programming (Programming). ACM, 9:1–9:6.

[35] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel. 2012. Comparing
Program Comprehension of Physically and Virtually Separated Concerns. In
International Workshop on Feature-Oriented Software Development (FOSD). ACM,
17–24.

[36] Henry Spencer and Collyer Geoff. 1992. #ifdef Considered Harmful, or Portability
Experience With C News. In USENIX Conference. USENIX, 185–198.

[37] Richard Stallman and Zachary Weinberg. 2016. The C Preprocessor.
[38] Anneliese von Mayrhauser and Marie Vans. 1994. Comprehension Processes Dur-

ing Large Scale Maintenance. In International Conference on Software Engineering
(ICSE). IEEE, 39–48.

[39] Anneliese von Mayrhauser and Marie Vans. 1995. Program Comprehension
During Software Maintenance and Evolution. IEEE Computer 28, 8 (1995), 44–55.


	Abstract
	1 Introduction
	2 Compositional Annotations
	2.1 Motivation
	2.2 Compositional Annotations
	2.3 Project and File Structure
	2.4 Feature Mapping

	3 Decomposing Directives
	3.1 Preconditions
	3.2 Handling Conditional Directives
	3.3 Variant-Preserving Mapping
	3.4 Output

	4 Reintegrating Modules
	4.1 Preconditions
	4.2 Depth-First Text Concatenation

	5 Study Design
	6 Results & Discussion
	6.1 Results
	6.2 RQ1 – Performance
	6.3 RQ2 – Reflecting on Maintainability
	6.4 Limitations

	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

