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ABSTRACT
The annotation-based variability of the C preprocessor (CPP) has a
bad reputation regarding comprehensibility and maintainability of
software systems, but is widely adopted in practice. To assess the
complexity of such systems’ variability, several analysis techniques
and metrics have been proposed in scientific communities. While
most metrics seem reasonable at first glance, they do not generalize
over all possible usages of C preprocessor variability that appear
in practice. Consequently, some analyses may neglect the actual
complexity of variability in these systems and may not properly
reflect the real situation. In this paper, we investigate two types of
variation points, namely negating and #else directives, to which we
refer to as corner cases, as they are seldom explicitly considered in
research. To investigate these directives, we rely on three commonly
used metrics: lines of feature code, scattering degree, and tangling
degree. We (1) describe how the considered directives impact these
metrics, (2) unveil the resulting differences within 19 systems, and
(3) propose how to address the arising issues. The results show
that the corner cases appear regularly in variable feature code and
can heavily change the results obtained with established metrics.
We argue that we need to refine metrics and improve variability
analysis techniques to provide more precise results, but we also
need to reason about the meaning of corner cases and metrics.
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1 INTRODUCTION
The C preprocessor [14, 20], for which we show an example from
Linux in Listing 1, is a widely used tool to implement variability
in software [3, 13, 32]. To this end, conditional directives define
variation points in the code (e.g., #ifndef in Listing 1 Line 58),
whereby their feature constants [6] (i.e., CONFIG_PM) are used to
include or exclude code for a specific feature configuration. This
conditional compilation [11, 20] allows to implement internal (i.e.,
visible to developers) and external (i.e., visible to users) variability
in a configurable software system [24, 32, 39].

The pros and cons of the C preprocessor are extensively dis-
cussed in academia [9, 28, 30, 32, 43, 47]. In particular, the software-
product-line [3, 39] community is concerned with understanding,
analyzing, and refactoring such variability. These efforts have led
to a variety of tools [22, 34] and metrics [6] that allow to perform
different analyses of preprocessor-based variability. These analyses
are usually based on metrics of variation point characteristics, for
instance, size, scattering, and tangling.

In a recent literature review, El-Sharkawy et al. [6] summarize
such metrics and aim to define them more precisely. However, the
results indicate that researchers do not always measure metrics in
the same way throughout all studies (e.g., compare Liebig et al. [29]
and Queiroz et al. [40]). We see three issues in using current metrics
to analyze software variability: (1) varying definitions, (2) different
ways of measurement, and (3) limited applicability. These issues
threaten the results of studies on variable source code, prevent
comparisons, and may mislead discussions on variability.

The first two issues are a concern of clearly defining metrics
and their application. In this paper, we are concerned with the
third issue and the conceptual terms of (i) covert and (ii) phantom
features (cf. Section 2) that are not at all or wrongly captured by
existing metric definitions (cf. Section 3.2): To what extent do vari-
ation points that are either (i) anonymous (i.e., #else directives,
cf. Listing 1 Line 78) or (ii) not depending on a feature presence (i.e.,
negated feature expressions, cf. Listing 1 Line 58) affect variability
metrics? Throughout this paper, we refer to such variability as cor-
ner cases, as we rarely found research that directly mentioned how
to address such cases. For example, Sincero et al. [46] consider all
types of conditional directives (including #else) as propositional
formulas and focus on automated constraint solving. Liebig et al.
[30] focus on specific usage patterns of variable code compared to
feature expressions’ semantics. However, neither study elaborates
on the meaning of variation points for metrics and the consequent
implications for software maintenance and evolution.

To answer the posed question, we first describe and motivate
corner cases and their implications in terms of variability (cf. Sec-
tion 2). Furthermore, we report an empirical study of 19 open-source
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Listing 1: Covert (#else) & phantom (#ifndef) variability in
linux-4.10.4/arch/powerpc/platforms/pseries/power.c.
58 #ifndef CONFIG_PM
59 struct kobject *power_kobj;
60
61 static struct attribute *g[] = {
62 &auto_poweron_attr.attr,
63 NULL,
64 };
65
66 static struct attribute_group attr_group = {
67 .attrs = g,
68 };
69
70 static int __init pm_init(void)
71 {
72 power_kobj = kobject_create_and_add("power", NULL);
73 if (!power_kobj)
74 return -ENOMEM;
75 return sysfs_create_group(power_kobj, &attr_group);
76 }
77 machine_core_initcall(pseries, pm_init);
78 #else
79 static int __init apo_pm_init(void)
80 {
81 return (sysfs_create_file(power_kobj, &auto_poweron_attr.attr));
82 }
83 machine_device_initcall(pseries, apo_pm_init);
84 #endif

systems (cf. Section 3). In this study, we measured how often our
corner cases appear in practice, how many lines of feature code
they comprise, and how they affect the commonly used metrics
scattering degree and tangling degree (cf. Section 4). Overall, we
derived two research questions:
RQ1 To what extent do corner cases exist in real-world systems?
RQ2 To what extent do corner cases affect variability metrics?
The results show that the investigated corner cases appear regularly
in several systems, for instance, influencing over one million lines
of feature code in Linux. Moreover, we found that the impact on
metrics can be heavy, for instance, changing the scattering degree
in MySQL by 25%. We provide our tooling and all measurements of
our study in an open-access repository.1 Finally, we propose ways
to address such corner cases and how to better understand their
meaning as well as their importance for variability analysis.

2 MOTIVATION
In this section, we first describe and motivate the problem of covert
and phantom features (cf. Listing 1). We then describe the individual
corner cases we are concerned with in more detail.

2.1 Problem Statement
It is a general problem if metrics mislead developers in their expec-
tations of what is measured [10, 41], as we experienced ourselves.
While performing our own analyses of C preprocessor variation
points and investigating related studies [29, 30, 40], we searched
for the most wide-spread features using scattering degree and the
most complex feature interactions using tangling degree (we define
these metrics for our study in Section 3.2).

However, we found that the corresponding metric definitions [6]
do not generalize over all possible variation points. Basically, scat-
tering degree and tangling degree count feature constants [6, 29, 40].
Guided by these metrics, developers may then assign code locations

1https://bitbucket.org/ldwxlnx/splc2019data.git

1 #ifdef A
2 // ...
3 #else
4 // ...
5 #endif

(a) #else.

1 #ifndef A
2 // ...
3 #else
4 // ...
5 #endif

(b) #ifndef.

1 #if ! defined(A)
2 // ...
3 #elif ! defined(B)
4 // ...
5 #endif

(c) Negations.

Figure 1: Examples of general corner cases we investigated.

to respective features. For instance, regarding the feature constant
CONFIG_PM in Listing 1, the question arises, whether—although
enclosed by an #ifndef-block—lines 58 to 78 really do belong to
this feature? They are only affected if the feature CONFIG_PM is
deselected, which still aligns to most metric definitions, but seems
unreasonable due to the negating directive.

A different problem arises, as it is unclear whether other features
affect this code region, for example, because of an alternative depen-
dency that is not represented in the code [21]. Similarly, the code
may be intended to be mandatory, for instance, because the feature
CONFIG_PM is optional, but requires overwriting of base code. In
other words, it is undecidable at first glance, whether such varia-
tion points are just phantom features, meaning that their feature
constant suggests an erroneous affiliation to the respective feature.

Even worse, Lines 78 to 84 are not handled by scattering degree
and tangling degree at all, due to missing feature constants in the
#else directive. For that reason, a potential relation to a specific
feature is covert and requires manual or automatic inspection of its
context (i.e., by analyzing all preceding directives in that particular
group). In our example in Listing 1, the actual feature code is present
only in these lines, demanding the selection (presence) of the feature
CONFIG_PM. This results in a blind spot for variability analyses and
developers that rely on the corresponding metrics.

2.2 Corner Cases
Several analyses rely on metrics to infer implications from variabil-
ity in code [6]. However, vague, varying, and incomplete metric
definitions can result in deviations. For instance, the tangling degree
of variation points simply counts the number of feature constants
in a directive, arguing that the variable code is affected by the de-
fined feature. This is reasonable for the usual #ifdef, #if, and
#elif directives, but not for the corner cases that we consider in
the following. We display corresponding examples in Figure 1.

#else Directives. Considering already simple #else directives,
as in Figure 1a, the question arises, whether feature A impacts the
directly following code (i.e., Line 4)? We could argue that the code
depends on the absence of feature A, and thus is closely related to
it. However, from a maintenance perspective, this argumentation
poses problems, for instance, supposing the task: “Perform a walk-
through of all code sections contributing to feature A.” Would we
inspect only the code following the #ifdef directive, only the code
following the #else directive, or both?

Because #else directives induce covert variability, they are ob-
stacles for scattering degree, tangling degree, or any other metric
solely relying on feature constants. As aforementioned, #else di-
rectives may represent various kinds of variability, such as:

 https://bitbucket.org/ldwxlnx/splc2019data.git
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• Code that is solely related to the absence of feature A.
• Base code, if feature A needs to override it.
• Code that is related to other features, for example, if feature
B is in an alternative dependency to feature A.

Considering the third case, metrics may provide biased results not
only for feature A, but also for feature B that is not accounted for.

Negating Directives. In Figure 1b and Figure 1c, we display cases
towhichwe refer to as negations. For example, an #ifndef directive
(cf. Figure 1b) is the inverse of an #ifdef directive (cf. Figure 1a).
Many metrics still account its feature constant and thereby the code
it encloses to feature A. Moreover, the code in the #else directive
is only included if feature A is selected, which renders the #ifndef
directive a phantom feature location.

In more complex situations, such as in Figure 1c, the problems
become more challenging. The feature constants in each directive
are negations, meaning that the corresponding code is only selected
in more specific situations than some metrics would indicate. For
example, simply counting the number of feature constants results
in a tangling degree of one for each directive. However, when de-
velopers use such metrics as indicators to infer the complexity of
feature interactions—which was probably intended by the inven-
tors [29]—an observation of one directive alone is misleading. Since
the #elif directive actually requires feature A to be present and
B to be absent, there is a relation between two features, which
may imply a tangling degree of two. Further considering #elif
directives, the dependencies can become complex, while the pre-
processor needs to check only a single feature in each directive.
Again, the issue arises how different metrics may lead to irritating
measurements depending on the structure of the code. Eventually,
scattering degree and tangling degree count object macro names
in source code—no more, no less. This does only partly allow for
semantic conclusions based on the metrics’ respective values.

Addressing Corner Cases. Properly interpreting all corner cases
requires domain knowledge or technical solutions, such as SAT or
CSP solvers [46, 48]. Still, if our cases are really corner cases that
rarely appear, they may be negligible. In the remaining paper, we
investigate this issue to improve the awareness for such cases and
propose some initial solutions to mitigate them. We do not claim
that our solution is ideal or that existing metrics, on which we
also rely, are unsuited for variability analysis. Our goal is to raise
awareness for such problems, aiming to initiate further research
on their importance and solutions.

3 STUDY DESIGN
In this section, we report the details of our study design, namely
our subject systems, metrics, methodology, and tooling, which other
researchers can reuse to reproduce our study.

3.1 Subject Systems
To answer our research questions, we aimed to investigate a set
of real-world and differently sized software systems that comprise
preprocessor variability. For this purpose, we selected an initial
set of 20 popular and still maintained open-source systems from
previous works [29, 30, 33, 40]. Afterwards, we tested our analysis
tooling [27] in a pilot study to identify and fix potential errors.

During this phase, we found that our tool could not parse 69 files
from the test suite of the GNU Compiler Collection (GCC), which
comprises syntactically malformed input files for testing the fault
and recovery behavior of the C preprocessor and compiler. Conse-
quently, we omitted the GCC in this study and analyzed 19 systems.

Within Table 1, we show our subject systems, which cover a
variety of domains (e.g., web servers, operating systems), develop-
ment periods, and sizes. In particular, we analyzed the Linux Kernel,
which is one of the most common subject systems for variability
analysis, due to its size of almost 15 million source lines of code and
its practical importance. The feature prefixes represent constants
that are commonly used and established for external, customer-
visible features. For Linux, this is the well-known CONFIG_ prefix,
while Vim uses an abbreviation of feature (FEAT_). Furthermore,
most systems rely either on prefixes induced by the GNU Autotools
suite (HAVE_) or make use of prefixes based on established naming
conventions (USE_). In this study, we focus on such external fea-
tures [39], while omitting internal variability that may only be used
during development. We are aware that these features represent
only a subset of each system’s full variability and that the selection
is not perfect and may distort our results. Nevertheless, we still
cover a large set of variability and the extent of corner cases in the
features we inspect can be seen as a lower boundary: Only more
corner cases are possible, not less. While the ratio of corner cases in
the remaining code may be smaller, we still found large differences
for some systems. Moreover, we argue that the situation is com-
parable throughout the selected systems’ variability and also for
other systems—considering that we relied on established and still
maintained open-source projects, which are similar to industrial
systems in terms of C preprocessor usage [13].

3.2 Metrics
We aimed to understand the impact of #else (covert features) and
negating (phantom features) directives on variability analysis. To
this end, we discuss respective implications qualitatively and pro-
vide a quantitative analysis based on the following three metrics:

LoF Lines of Feature Code counts the number of lines that are en-
closed by a conditional directive, without excluding white-
spaces or comments, as defined by Liebig et al. [29]. Regard-
ing the feature CONFIG_PM in our Linux example (cf. List-
ing 1), the area between the #ifndef (line 58) and the #else
directives (line 78) comprises 19 lines of feature code.

SD Scattering Degree of Variation Points measures how many
variation points are affected by a specific feature constant.
For instance, if CONFIG_PM in Listing 1 would not appear in
any other part of the system’s code, the scattering degree
for this feature would be one.

TD Tangling Degree of Variation Points represents the counter-
part to the scattering degree. It measures the number of
different feature constants in a single variation point (direc-
tive), for example, for the #ifndef in Line 58 of Listing 1
the tangling degree is also one.

We strictly follow these revised definitions of scattering degree
and tangling degree of Queiroz et al. [40], for which feature con-
stants of enclosing conditional directives are not added to currently
investigated expressions, as, for instance, Liebig et al. [29] do.
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Table 1: Overview of the subject systems that we considered for this study: The versionwe used, each version’s release year, the
domain, development start, and size of C code. We further show the feature prefixes we investigated with the corresponding
number of analyzed (NFeat) and the total number of feature expressions (NTotal).

System Version Year Domain Since #SLOC (C) Feature Prefixes NFeat NTotal

APACHE 8.1 2017 Web server 1995 153,357 (HAVE|USE)_ 86 1,000
CPYTHON 3.7.1rc1 2018 Program interpreter 1989 426,942 (HAVE|USE)_ 686 4,295
EMACS 26.1 2018 Text editor 1985 330,196 (HAVE|USE)_ 680 2,327
GIMP 2.9.8 2018 Image editor 1996 761,314 (HAVE|USE)_ 90 1,996
GIT 2.19.0 2018 Version control system 2005 206,239 (HAVE|USE)_ 65 821
GLIBC 2.9 2018 Programming library 1987 818,176 (HAVE|USE)_ 409 5,217
IMAGEMAGICK 7.0.8-12 2018 Programming library 1987 342,797 (HAVE|USE)_ 5 993
LIBXML2 2.7.2 2018 Programming library 1999 169,761 (HAVE|USE)_ 117 2,360
LIGHTTPD 1.4.50 2018 Web server 2003 49,693 (HAVE|USE)_ 173 450
LINUX KERNEL 4.10.4 2017 Operating system 1991 14,746,931 CONFIG_ 11,011 36,082
MYSQL 8.0.12 2018 Database system 1995 153,157 (HAVE|USE)_ 355 4,901
OPENLDAP 2.4.46 2018 Network service 1998 287,066 (HAVE|USE)_ 347 1,377
PHP 7.3.0rc2 2018 Program interpreter 1985 894,426 (HAVE|USE)_ 1,162 5,977
POSTGRESQL 10.1 2017 Database system 1995 790,282 (HAVE|USE)_ 387 2,585
SENDMAIL 8.12.11 2018 E-mail server 1983 85,639 (HAVE|USE)_ 24 1,223
SUBVERSION 1.10.2 2018 Version control system 2000 967,225 (HAVE|USE)_ 39 1,008
SYLPHEED 3.6.0 2018 E-mail client 2000 117,980 (HAVE|USE)_ 75 417
VIM 8.1 2018 Text editor 2000 343,228 (HAVE|USE|FEAT)_ 1,378 2,570
XFIG 3.2.7a 2018 Graphics editor 1985 109,341 (HAVE|USE)_ 29 193

3.3 Methodology
We addressed our research questions as follows: For RQ1, we ana-
lyzed to what extent corner cases exist within our subject systems
based on quantitative data. To address RQ2 and to demonstrate
the impact of corner cases on metrics, we used our tooling to infer
all feature constants logically involved in #else directives (cf. Sec-
tion 4.4). This allows us to compare scattering degree and tangling
degree measurements with and without inspecting #else direc-
tives. We use the differences as impact indicator and discuss the
measurements qualitatively.

RQ1: Existence of Corner Cases. To investigate to what extent
our subject systems are affected by corner cases, we analyzed the
cases’ impact on variability based on two aspects:

• Frequency: We counted all occurrences of conditional direc-
tives that comprise the feature constants under inspection
(cf. feature prefixes in Table 1). Furthermore, we grouped
these occurrences according to the respective keyword (i.e.,
#if, #ifdef, #ifndef, #elif, #else) to obtain a detailed
overview of the types of variability.

• Size: For each occurrence that we found, we additionally
computed the respective lines of feature code. Again, we
subdivided the results into the respective groups of keywords.
By doing so, we investigated what textual volume corner
cases contribute to each system.

The results demonstrate the spreading and volume of the inves-
tigated variation points within the subject systems, allowing us
to reason about their proportions and impact. We examined all
conditional directives that applied to the same filtering conditions,

namely that at least one feature constant matches the feature pre-
fixes that we show in Table 1 (i.e., CONFIG_, FEAT_, HAVE_, USE_).
We then analyzed the identified variability as follows:
Totality. We counted the occurrences and lines of feature code
grouped by the directives’ keyword. Thus, we summarized the
overall amount and size of variability under inspection.
Absence. We counted the occurrences and lines of feature code of
simple negations for the keywords #if and #elif. Such negations
consist of one unary logical negation (!), an optional defined
operator, and one feature constant (e.g., CONFIG_PM). We define
this subset of directives as simple negations, because their meaning
can be easily interpreted by manual inspection. In contrast, we
omitted complex expressions (e.g., !(A && B) || C). We did this,
because the categorization into absence or presence conditions for
the feature constants in such expressions requires to solve complex
constraints in propositional or higher-order logic.
Presence. We separately counted the occurrences and lines of
feature code for #else directives representing expressions that are
neither simple negations (cf. Figure 1a) nor a complex expression,
but imply requested feature constants. This means, that we inferred
whether a presence condition is enforced by an #else directive
and assigned this condition as feature expression (cf. Figure 1b).
Logically, such directives’ expressions consist of a defined operator
and exactly one feature constant.
#if(n)def Directives. As defined in the C language standard [14],
the directives #ifdef A and #ifndef A are semantically enriched
keyword equivalents of #if defined(A) and #if ! defined(A),
respectively. Since the language standard describes that a defined
operator’s argument is exclusively a single macro name, this group
of conditional directives always represents simple presence or
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Listing 2: Revealing hidden SD and TD values.
1 #if defined(A) && defined(B)
2 // interaction (presence) of A and B
3 #elif defined(C)
4 // simple presence of C (and absence of A and B)
5 #else
6 // interaction (absence) of A, B, and C
7 #endif

absence conditions. We counted these classes of directives unre-
stricted, aside from the precondition that the feature constants
matches a defined prefix.

RQ2: Corner Cases’ Impact on SD and TD. The scattering degree
and tangling degree relate to feature constants and are applied at
the level of individual conditional directives. So, their conventional
application [6, 29, 30, 40] disregards #else directives, due to non-
existing feature expressions and constants. We demonstrate the
impact of #else directives on scattering degree and tangling degree
by pointing out the amount of ignored variation points.

To this end, we measured scattering degree and tangling de-
gree with and without the inspection of #else directives. As both
metrics measure at the level of variation points, differences here
are problematic to visualize. For this reason, we use a condensed
overview by summing up scattering degree and tangling degree
values with and without inspecting #else directives for each of our
subject systems.With respect to Listing 2, this results in a scattering
degree of three for the feature constants A, B, and C, as each exists
only at one location. The directive in Line 1 has a tangling degree
of two and the directive in Line 3 of one, summing up to three,
too. In this example, we completely ignored the meaning of #else
directives, strictly following the aforementioned metric definitions.

Then, we applied the metrics to all #else directives, namely on
their inferred feature expressions. For our example in Listing 2, the
#else directive in Line 5 represents the expression:

!((defined(A) && defined(B)) || defined(C))

Now, every feature constant exists twice, increasing the scattering
degree to two for each feature constant and summing up to six.
The tangling degree remains the same as before for Lines 1 and 3,
but the #else directive has a tangling degree of three, due to the
three different feature constants within the expression it represents,
resulting in an overall value of six, too.

By computing the differences for each system, we investigated
the impact of #else directives for both variability metrics. Regard-
ing our examples, the differences for scattering degree and tangling
degree are three, for each. Thus, #else directives affect bothmetrics
by 50%, considering our example in Listing 2.

3.4 Tooling
In order to analyze our subject systems, we continued to implement
our Java application FeatureCoPP [26].2 FeatureCoPP searches a
specified folder for all C header (.h) and implementation (.c) files of
a software system. In parallel, it analyzes the usage of conditional
directives within the found files. FeatureCoPP is a purely text-
based analysis tool, similar to the C preprocessor. Still, compared
to TypeChef [18, 19] and SuperC [12], which actually parse the

2https://github.com/ldwxlnx/FeatureCoPP

writes

contains

writes

Folder
System (i)

Separated System (i)
System(i)_split

Combined Logging File
SPLC__LOGFILE_COMBINED.LOG

Logging File System (i)
FeatureCoPP_splc2019_system(i).0.log

Wrapper Script
fc_splc2019_run.bash

Java Application
FeatureCoPP.jar

returns

fetches analyzesinvokes

Figure 2: Conceptual behavior of our tool-chain.

code, FeatureCoPP performs equally well in identifying presence
conditions [27].

We integrated FeatureCoPP into a bash-script tool-chain to auto-
mate the analysis and data collection, facilitating the replication of
our study. In Figure 2, we depict the general workflow of our tool-
chain. First, our wrapper script fetches specified systems from their
repositories. Then, the script invokes FeatureCoPP, which analyzes
the systems according to its configuration. During the analysis,
FeatureCoPP creates two outputs for each system:

(1) A new system with physically separated features and a re-
port on these features. This is the original purpose of Fea-
tureCoPP [26] and facilitates manual inspection of features,
which we used to test our tooling and verify our data.

(2) A logging file that tracks the analysis and summarizes the
data we need as a statistical overview.

To facilitate reviewing of all systems (i.e., 19 logging files for this
study), our wrapper script extracts and combines the statistics of all
logging files into a single file. This combined logging file provides a
condensed and more comprehensible overview of all systems and
the corresponding data.
Reproducing this Study. We published our tooling and data in
an open-access git repository1 to enable other researchers to use
our setup, for example, to replicate our study, to employ it on other
systems, and extend it. In the repository, we provide an extended
documentation on how to use and adapt our tool-chain. Moreover,
we describe the details of our study and tagged the revision we
used, ensuring reusability of this study’s setup, despite future de-
velopments of FeatureCoPP.

4 RESULTS & DISCUSSION
In this section, we first discuss the suitability of our analysis for
answering our research questions. Then, we present our results,
discuss their implications, and propose how to address corner cases.

4.1 Appropriateness of Investigated Variability
Results. Before presenting our findings, we evaluate the appropri-
ateness of our investigated subset of features. The question arises,
whether we analyzed a representative portion of variability in our
subject systems? In Table 2, we show the corresponding statistics.
For example, we analyzed 278 variation points (i.e., conditional
directives) in the Apache web-server that are induced by the Auto-
tools (HAVE_) or by coding conventions (USE_). In contrast, we ig-
nored 1,995 variation points, consisting of include guards (directives

https://github.com/ldwxlnx/FeatureCoPP
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Table 2: Variation points in our subject systems.

System Total Analyzed % Ignored

APACHE 2,273 278 12.23 1,995
CPYTHON 7,997 1,320 16.51 6,677
EMACS 6,524 2,701 41.40 3,823
GIMP 3,763 256 6.80 3,507
GIT 1,506 121 8.03 1,385
GLIBC 17,766 1,167 6.57 16,599
IMAGEMAGICK 3,250 6 0.18 3,244
LIBXML 9,859 427 4.33 9,432
LIGHTTPD 1,101 473 42.96 628
LINUX 102,939 49,771 48.35 53,168
MYSQL 10,328 1,237 11.98 9,091
OPENLDAP 3,992 1,008 25.25 2,984
PHP 17,837 3,474 19.48 14,363
POSTGRESQL 7,796 1,371 17.59 6,425
SENDMAIL 3,422 49 1.43 3,373
SUBVERSION 7,607 381 5.01 7,226
SYLPHEED 1,670 559 33.47 1,111
VIM 15,489 10,713 69.17 4,776
XFIG 523 66 12.62 457

assuring the singular parsing of header files), directives controlling
internal variability (e.g., WIN32), but also unidentified external vari-
ability. However, to identify the missing external variability, we
would need specific domain knowledge about the features in each
of our subject systems. In total, we examined 12.23% of all variation
points in Apache.
Discussion. We examined a noticeable low number of variation
points for ImageMagick (six out of 3,250; 0.18%) and Sendmail (49
out of 3,422; 1.43%). Arguably, these systems are outliers that require
a more appropriate selection of feature prefixes (cf. Table 1) based
on domain knowledge, which we aim to address in future research.
Although the results for other systems also indicate relatively low
percentages of analyzed variability (e.g., libxml2), we argue that we
examined a reasonable amount of directives to assess the impact of
our corner cases. In 12 out of 19 subject systems, we investigated
more than 10 percent of the overall variability, ranging fromMySQL
(1,237 out of 10,328 variation points; 11.98%) to Vim (10,713 out of
15,489 variation points; 69,17%). Especially for larger systems, such
as Vim, Linux, and Emacs, we analyzed high ratios of variability.

Insight:
Overall, we argue that our subject systems are a sound foun-
dation for our analysis. We deliberately did not exclude outlier
systems, in which we analyzed less variability, to show the
complete picture and see whether the results are comparable.

4.2 RQ1: Existence of Corner Cases
Results. In Table 3, we show the number of matched directives we
analyzed (N) and their total lines of feature code (LoF). We display
these values grouped by directive and for each of our subject sys-
tems. Furthermore, we highlight corner-case directives with gray
columns. Considering #else directives, we analogously show the

corner cases in which these enclose code that is related to a fea-
ture presence. That is, its preceding #if or #ifndef forms a simple
absence condition for a particular feature constant (cf. Listing 1
and Section 3.3). At the bottom of Table 3, we summarize statisti-
cal properties of each measurement based on the actual ratios in
percent to show the extent of corner cases compared to the overall
variability we analyzed.

In Table 4, we summarize the measurements from Table 3. To this
end, we summarize the occurrences (N) and sizes (LoF) of examined
directives (All) and their respective subset of corner cases (CC) in
order to show how the latter affect each subject system. We also
show the percentages of corner cases within each subject system
for an easier interpretation of their impact.
Discussion: #else Directives. We show the total number of fea-
tures related #else directives per system in the second last com-
pound column (All) in Table 3. In every system, #else directives are
used in conjunctionwith the feature constants that we investigated—
sometimes rarely, as with two occurrences in ImageMagick com-
prising 13 LoF, or more frequently, as with 10,449 occurrences in
Linux comprising 109,750 LoF. The median and mean values of
around 17% demonstrate the quantitative impact of #else direc-
tives in all systems. We can explain the relatively high dispersion
(s = 7.17) based on three factors:

(1) Heterogeneous sizes: The systems differ in their sizes, which
can also impact the corner cases’ occurrences and sizes.

(2) Heterogeneous coding style: Developers may avoid #else di-
rectives for project specific reasons (e.g., coding standards).

(3) Inappropriately selected feature prefixes for subject systems:
As we examined only a subset of the variability in some of
our subject systems (cf. Section 4.1), the measurements of
these systems may bias the overall image.

In particular, #else directives that follow after a simple absence
condition (i.e., #if ! defined and #ifndef) occur rarely (e.g., one
in ImageMagick, Libxml2, Xfig, and Sendmail, each). Only seven
subject systems comprise such variation points in more than ten
cases. Nevertheless, we argue that 488 locations comprising 13,309
LoF in the Linux Kernel or the 15 variation points with 1,340 LoF
in Glibc indicate the relevance of this group of corner cases.

Insight:
We argue that the omnipresence of #else directives in all sub-
ject systems, the comparatively high number of such variation
points, and especially their extent in the Linux Kernel under-
pin their significance and importance for variability analysis
and management.

Discussion: Negating Directives. The quantitative impact of sim-
ple absence conditions related to #if and #elif directives appar-
ently converges towards zero, with a mean of 2.54% in terms of
occurrences and 2.48% in lines of feature code for #if and a median
of 0% in bothmetrics for #elif (cf. Section 4.1). The noticeable 33.3%
(#if) for ImageMagick originate from the small number of analyzed
directives and resemble an outlier system. In contrast, negations
appear quite regularly as #ifndef directives (i.e., 5.91 ± 5.23% of
the code). Again, ImageMagick induces a bias on the measurements
as an outlier system. We have to mention that we cannot draw
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Table 3: Overview of the analyzed preprocessor directives, including the number of variation points (N) and the corresponding
lines of feature code (LoF). To investigate corner cases, we separately list the values for simple negations in #if, #ifndef, and
#elif directives (Absence) as well as situations where an #else block is connected to such a negation. So, the #else directive
indicates the presence of code if the previously checked feature expression is true. To make the results more comprehensible,
all corner cases are highlighted in gray. Thereby, we distinguish between phantom (•) and covert (◦) features.

#if #ifdef #ifndef #elif #else
All • Absence Presence • Absence All • Absence All ◦ Presence

System N LoF N LoF N LoF N LoF N LoF N LoF N LoF N LoF
APACHE 28 405 0 0 208 3,165 13 121 5 295 0 0 24 206 4 92
CPYTHON 275 5,357 15 73 727 14,372 53 753 37 369 0 0 228 1,977 10 80
EMACS 613 17,318 64 2,191 1,391 50,669 158 4,418 74 1,655 3 23 465 8,149 30 710
GIMP 60 1,242 0 0 130 2,100 22 300 14 233 0 0 30 286 6 137
GIT 21 236 1 3 65 974 8 101 2 32 0 0 25 306 3 144
GLIBC 393 5,261 14 108 416 4,196 71 905 6 57 0 0 281 3,368 15 1,340
IMAGEMAGICK 4 50 2 20 0 0 0 0 0 0 0 0 2 13 1 6
LIBXML2 47 724 3 43 263 2,238 22 115 45 465 0 0 50 577 1 7
LIGHTTPD 112 1,197 0 0 254 4,325 12 562 12 91 0 0 83 475 2 21
LINUX 7,221 161,649 118 1,454 29,805 849,807 1,409 21,055 887 6,247 11 141 10,449 109,750 488 13,309
MYSQL 97 2,248 9 761 728 7,641 74 784 43 298 0 0 295 1,727 5 24
OPENLDAP 133 2,954 1 3 571 16,304 38 827 71 857 2 10 195 1,725 5 76
PHP 1,208 98,827 20 781 1,570 25,951 125 1,013 129 1,142 2 14 442 4,329 17 1,370
POSTGRESQL 142 2,076 11 45 785 19,160 96 823 36 267 1 3 312 2,896 16 167
SENDMAIL 32 256 3 22 3 202 6 18 0 0 0 0 8 147 1 13
SUBVERSION 16 244 0 0 145 815 92 360 11 155 0 0 117 451 2 63
SYLPHEED 304 7,032 0 0 189 7,246 7 28 5 42 0 0 54 317 0 0
VIM 1,870 203,255 12 124 7,598 88,503 193 3,094 25 108 0 0 1,027 11,295 32 960
XFIG 3 11 0 0 53 459 4 49 0 0 0 0 6 185 1 151

Unweighted statistical summary of ratios in percent (%)

MEAN 24.00 28.88 2.54 2.48 49.68 51.44 5.91 4.59 2.67 2.52 0.02 0.01 17.75 12.56 1.82 3.45
MEDIAN 17.46 18.00 0.58 0.18 53.72 59.07 5.15 3.30 2.54 1.37 0.00 0.00 17.27 9.91 0.98 1.04
STD. DEV. 19.07 23.19 7.59 7.26 20.40 21.02 5.23 4.08 2.67 3.17 0.05 0.01 7.17 7.82 3.67 5.42
MIN. 4.20 1.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.63 2.16 0.00 0.00
MAX. 66.67 79.37 33.33 31.75 80.30 75.97 24.15 17.78 10.54 11.29 0.20 0.04 33.33 26.28 16.67 21.45

conclusions on the influence of #else directives representing sim-
ple absence conditions. This relates to the fact that the difference
of simple presence conditions from the totality of such directives
also includes more complex expressions, for example, inferred from
preceding #if and multiple #elif directives.

Insight:
While simple absence conditions appear seldom in our sub-
ject systems, we argue that the consequent use of #ifndef
directives asks for analyzing and discussing these directives.

Summary. While single corner cases may appear rarely, we can
see (cf. Table 4) that the total ratios of affected directives and feature
code vary heavily. For instance, in Sylpheed, we can see that corner
cases affect only 2.35% of feature code, while they represent 10.91%
of directives. More extreme, for Linux, we analyzed 49,771 directives
in total, of which 24.08% are connected to our corner cases, affecting
over 100 thousand (11.53%) lines of feature code.

Answering RQ1 (existence of corner cases):
While our analysis shows that we cover only a small part of
some systems, we are still able to emphasize the relevance and
impact of our corner cases. The results show that these corner
cases appear regularly, and thus require more attention.

4.3 RQ2: Corner Cases and Metrics
Results. In order to show the impact of our corner cases on the
scattering degree and tangling degree, we show the summarized
results (cf. Section 3.3) for #else directives in Table 5. For instance,
within the Linux Kernel, we obtained a summarized scattering
degree of 41,992 and 54,056 for omitting (SD¬else ) and including
(SDelse ) #else directives, respectively. This represents a noticeable
difference (∆) of 12,064 (22.32%). Likewise, the tangling degree is
remarkably influenced in Linux (aTD¬else of 42,335 compared to a
TDelse of 54,634) with a loss of 22.51%, caused by not taking #else
directives into account. Each of our subject systems comprises
a sufficient number of #else directives, which explains average
misses for the scattering degree of 18.37±7.16% and for the tangling
degree of 20.03 ± 9.64%.
Discussion. The dispersions for bothmetrics are caused by systems
like Vim (9.39%, 8.97%) or Apache (8.56%, 9.27%) that comprise rather
small differences. This situation may occur due to two reasons:

(1) A modest usage of #else directives.
(2) Less complex preceding conditional expressions, resulting

in less complex expression equivalents for #else directives.
However, our results indicate that metrics that address only fea-
ture constants—and thus ignore #else directives—are not able to
draw reliable conclusions on a systems’ variability. We underpin
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Table 4: Comparison of corner cases (CC) to all variation
points analyzed in numbers (N), size (LoF), and percent (%).

N LoF
System All CC % All CC %
APACHE 278 37 13.31 4,192 327 7.8
CPYTHON 1,320 296 22.42 22,828 2,803 12.28
EMACS 2,701 690 25.55 82,209 14,781 17.98
GIMP 256 52 20.31 4,161 586 14.08
GIT 121 34 28.1 1,649 410 24.86
GLIBC 1,167 366 31.36 13,787 4,381 31.78
IMAGEMAGICK 6 4 66.67 63 33 52.38
LIBXML2 427 75 17.56 4,119 735 17.84
LIGHTTPD 473 95 20.08 6,650 1,037 15.59
LINUX 49,771 11,987 24.08 1,148,508 132,400 11.53
MYSQL 1,237 378 30.56 12,698 3,272 25.77
OPENLDAP 1,008 236 23.41 22,667 2,565 11.32
PHP 3,474 589 16.95 131,262 6,137 4.68
POSTGRESQL 1,371 420 30.63 25,222 3,767 14.94
SENDMAIL 49 17 34.69 623 187 30.02
SUBVERSION 381 209 54.86 2,025 811 40.05
SYLPHEED 559 61 10.91 14,665 345 2.35
VIM 10,713 1,232 11.5 306,255 14,513 4.74
XFIG 66 10 15.15 704 234 33.24

our argumentation with Figure 3, in which we show an exam-
ple from the Linux Kernel. In this example, we depict the five
most scattered feature constants, which are ranked by their cor-
responding scattering degree. Furthermore, to derive this rank-
ing, we measured with ( ) and without ( ) analyzing #else di-
rectives. Unsurprisingly, the scattering degree values increase for
each feature constant that occurs in any #if, #ifdef, #ifndef, and
#elif directive that precedes an #else directive, if we also ana-
lyzed that respective #else directive. For example, the scattering
degree of feature CONFIG_PM increases from 1,597 to 2,018, which
is caused by 421 occurrences in #else directives. Remarkable is
the exchange of features CONFIG_COMPAT and CONFIG_OF between
rank four and five. Without the analysis of #else directives, the
feature CONFIG_COMPAT has a slightly higher scattering degree of
683. When we analyzed #else directives, the feature CONFIG_OF is
suddenly scattered more often with a scattering degree of 894.

Similar situations appear for the tangling degree in #else di-
rectives. For instance, for the Linux Kernel, we found a maxi-
mum tangling degree of 12 for the #if directive in Line 1202
of the file linux-4.10.4/drivers/tty/vt/keyboard.cwhen we
did not analyze the corresponding #else directive. In contrast,
we identified the feature expression with the highest number of
different feature constants for the #else in Line 141 of the file
linux-4.10.4/arch/mips/include/asm/module.h, which has a
tangling degree of 28. Admittedly, this particular variation point
comprises only a single line of feature code with no functional
impact (i.e., it is an #error directive).

Answering RQ2 (corner cases’ impact on metrics):
The example and our results are good indicators for the impact
of ignoring #else directives in practice: The measurements
based on existing metrics may be wrong and can lead to faulty
assumptions about a project’s variability.
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Figure 3: Linux’ five most scattered features with and with-
out analyzing #else directives.

4.4 Tackling Corner Cases
As we demonstrated the relevance of #else and negating directives
for our subject systems, we now suggest an initial idea on how to
cope with the corner cases discussed.
#else Directives. Variability analysis tools using scattering de-
gree and tangling degree in a blackbox approach (cf. Section 3.2)
would be more precise if #else directives are also analyzed. Yet,
the expressiveness of the obtained values remains limited. In case
the tooling follows a white box approach—meaning that it presents
developers a detailed overview of all directives examined together
with their respective file locations—the quality of the analysis in-
creases alongside with developers’ variability knowledge of the
system under inspection. Still, the question remains: How to obtain
involved feature constants especially for bare #else directives?

As a starting point, we propose our technique that we used in
our tooling (cf. Section 3.4) to perform this study. We sketch our
technique conceptually in Figure 4 and display a corresponding
code example in Listing 3. Our technique parses contiguous con-
ditional directives with a generated LALR(1) parser [5], which is
based on the C language standard specification [14]. During the syn-
tactical analysis, we create an abstract syntax tree (AST), consisting
of each directive’s operators and operands (e.g., feature constants).
Furthermore, associativity and precedence of the respective con-
ditional directive’s feature expression are preserved by the AST
structure. We need to handle the directives #ifdef and #ifndef
separately, as the keywords (#if) are semantically enriched with
operations (i.e., !, defined). Thus, we transform such directives’
ASTs into an equivalent AST containing a defined operator and,
if necessary, a leading logical unary negation (!), to separate the
operations from the keyword. This is important to derive correct
feature expressions for potentially following #else directives. In
the last step, we preserve the ordering of a complete conditional di-
rective: All ASTs from the opening #if(def) to the closing #endif
are interconnected, preserving their order in the source code. If
our technique recognizes an #else directive, it interconnects all
previously built ASTs with logical disjunctions (||). Finally, the
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Table 5: Comparison of unweighted and summarized scattering and tangling degrees with and without (¬) #else analysis.

Σ Missed Σ Missed
System SD¬el se SDel se % ∆ TD¬el se TDel se % ∆

APACHE 267 292 8.56 25 274 302 9.27 28
CPYTHON 1,189 1,443 17.60 254 1,308 1,598 18.15 290
EMACS-26.1 2,551 3,081 17.20 530 2,692 3,268 17.63 576
GIMP 228 263 13.31 35 236 277 14.80 41
GIT 98 124 20.97 26 116 147 21.09 31
GLIBC 935 1,229 23.92 294 1,192 1,584 24.75 392
IMAGEMAGICK 4 6 33.33 2 4 8 50.00 4
LIBXML2 384 447 14.09 63 410 496 17.34 86
LIGHTTPD 453 551 17.79 98 469 569 17.57 100
LINUX 41,992 54,056 22.32 12,064 42,335 54,634 22.51 12,299
MYSQL 969 1,295 25.17 326 1,016 1,391 26.96 375
OPENLDAP 884 1,138 22.32 254 908 1,194 23.95 286
PHP 3,286 3,816 13.89 530 3,567 4,283 16.72 716
POSTGRESQL 1,104 1,442 23.44 338 1,167 1,551 24.76 384
SENDMAIL 41 49 16.33 8 52 61 14.75 9
SUBVERSION 265 382 30.63 117 278 405 31.36 127
SYLPHEED 506 563 10.12 57 513 577 11.09 64
VIM 10,741 11,854 9.39 1,113 11,722 12,877 8.97 1,155
XFIG 63 69 8.70 6 61 67 8.96 6

MEAN 18.37 849.47 20.03 893.11
MEDIAN 17.60 117.00 17.63 127.00
STD.DEV. 7.16 2,729.46 9.64 2,778.26
MIN 8.56 2.00 8.96 4.00
MAX 33.33 12,064.00 50.00 12,299.00

created AST gets a logical unary negation as root node. This equiv-
alence transformation follows De Morgan’s laws. We illustrate this
procedure in Figure 4, where we use the feature expressions of three
conditional directives (i.e., one #ifdef and two #elifs), to con-
struct a semantically equivalent feature expression for the trailing
#else directive.

Our artificial creation of expressions for #else directives has
the following advantages:

• We can create a textual representation of an #else directive
by traversing the AST. Afterwards, each #else has a virtual
name, which leverages developers to spot respective code
locations more easily.

• The generated AST can be applied to a SAT or CSP solver in
order to test satisfiability of the #else directive [46, 48]. This
allows to analyze #else directives more easily, for example,
to identify dead features.

Insight:
The preservation of feature constants allows us to apply scat-
tering degree and tangling degree on every variation point,
which results in more precise measurements.

Absence and Presence. The main issue with metrics, such as scat-
tering degree and tangling degree, is the divergence from what is
actually measured and what developers may expect to infer from
values obtained with such metrics [10, 41]. Since scattering degree

and tangling degree only allow to draw conclusions with regards to
what feature name is somehow textually involved in what code lo-
cation, they are limited to perform a sound reasoning about feature
presence or absence conditions. Chances may be high that such
text locations really enclose actual feature code, but, considering
our results, this can barely be seen as a rule of thumb.

To improve metrics that build on counting feature constants (or
other values) in preprocessor directives, the semantic evaluation of
such variation points is necessary. Consequently, we need tooling
that is able to perform constraint solving, since expressions in vari-
ation points do not only allow Boolean logic, but even arithmetic,
bitwise, and relational operations [14]. With regards to our example
in Listing 3, a metric for mapping text locations to actual features
could roughly behave as follows:

For each conditional directive in a contiguous group, repeat until
#endif is reached:

(1) Emulate the C preprocessor’s control flow. In order to read the
second #elif, the absence of feature A is necessary. Thus, a
preceding expression needs to be negated and conjunctively
connected to its successor expression (i.e., !defined A && B
&& C). If a directive has no predecessor and is not an #else
directive, we can take it as is. If a directive is an #else, the
conjunction of all negated preceding directives is exactly its
feature expression.

(2) Find all models. After creating a respective expression, we
can introduce it to a CSP solver. For each found solution,
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Listing 3: Complex contiguous conditional directives.
1 #ifdef A
2 // presence of A
3 #elif B && C
4 // presence of B and C (absence of A)
5 #elif ! defined D
6 // absence of A, B, C, and D
7 #else
8 // absence of A, B, and C, presence of D
9 #endif

every feature constant is counted only once if its value ex-
pands to a value different from zero in a solution model. This
counting happens only once, regardless whether the same
constant has a value different from zero in multiple possible
solutions or not. Admittedly, this step is expensive in terms
of computation time [42].

(3) Summarize occurrences. After this step, for the tangling de-
gree, we can summarize all counted feature constants, and
for the scattering degree, we can increment a global counter
for each constant. We arguably obtain more precise results
for both metrics, as we analyze covert and phantom features.

This conceptual technique ignores the nesting of directives, though.
However, it can be extended to consider surrounding directives in
the same conjunctive fashion. To this end, a tool must be able to
follow file inclusion directives (#include), since nesting structures
may occur only after such inclusions.

This solution is only a rough scaffold for extending metrics that
are based on feature constants towards semantic capabilities. Or
simply put, this solution may be a way to let these metrics answer
questions, such as: What directive does really enclose feature code?

Insight:
Metrics that rely on analyzing feature constants are only suit-
able to identify feature locations if the respective features’
presence is guaranteed, and thus absence is ruled out.

5 THREATS TO VALIDITY
In this section, we provide an overview of threats to validity. To
this end, we follow proposed classifications [38, 50] and discuss the
construct, internal, and external validity of our study.

Construct Validity. Considering the construct validity, we strictly
followed the metric definitions of other researchers. In particular,
for lines of feature code, we used the definition of Liebig et al. [29],
namely, we counted any line between consecutive conditional di-
rectives. Regarding scattering degree and tangling degree, we used
the revised definitions of Queiroz et al. [40], meaning that we did
not construct complex feature expressions from nested directives,
as done by Liebig et al. [29]. Consequently, the results for these
metrics provide insights into the impact of considering corner cases,
but may not be representative about the systems themselves. They
are still suitable to achieve our goal, and thus we argue that we
mitigated this threat.

Moreover, we are fully aware of the shortcomings of so called
“size metrics” [10, 41], such as lines of feature code. Since these only
provide an absolute measure for actual lines of code (no matter
how measured), they are never a reliable measure (and moreover
language independent) to draw conclusion of the actual systems’
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#elif ! defined D
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defined
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#else !( (defined A) || (B && C)
|| (! defined D) )
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B C

!

defined

A

D

defined

Figure 4: Automatic synthesis of #else directives, exempli-
fied for Listing 3.

code volume. However, as these metrics are heavily used in the
scientific community, we still used them to allow for comparisons
to other research in this area.

Internal Validity. A threat to the internal validity is the fact that
we implemented our own tooling, which is more lightweight com-
pared to existing, static variability-analysis tools. There may be
bugs caused by unidentified and unintended usage patterns of our
tooling. However, we have tested it extensively and applied it care-
fully. Moreover, we already compared it to existing tools, namely
TypeChef [19] and SuperC [12], and found that it performs similar
or even better for our purposes [27]. Although we addressed this
threat properly, we cannot completely avoid it.

External Validity. For the external validity, we are aware that we
only consider a limited set of features, corner cases, and metrics.
All these points limit our ability to generalize our results. Despite
these limitations, we could already show strong impacts of corner
cases on variability analysis. Considering that we found over one
million feature lines of code being affected in Linux, we argue that
the unveiled problems are important to consider. Furthermore, con-
ducting our study exclusively on open-source subject systems may
prevent us from generalizing the results with regards to proprietary
software systems. However, Hunsen et al. [13] have demonstrated
that C preprocessor usage patterns are nearly identical between
open-source and closed-source systems. For this reason, we con-
sider this limitation as tolerable and argue that our insights are also
relevant for industrial systems.

6 RELATEDWORK
Open-source systems that incorporate C preprocessor variability
are common subject systems for static variability analyses, due to
their availability and usage in practice. Consequently, there are
numerous studies on analyzing the conditional directives of the C
preprocessor. For example, Liebig et al. [29, 30] are concerned with
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the discipline of preprocessor usage. They argue that using such
directives in undisciplined styles, for example, annotating code
below the statement level, hampers the applicability of tools and
the maintainability of code. Based on these findings, Medeiros et al.
[33] have proposed a set of refactorings to improve the discipline of
preprocessor directives and showed that most developers prefer this
refactored code. In contrast, Schulze et al. [43] report a controlled
experiment in which they found no differences between disciplined
and undisciplined annotations on program comprehension.

The initial discussions on problems of the C preprocessor on
software development emerged from personal, negative opinions
and experiences [3, 47]. To underpin these experiences, several
researchers have investigated the problems of C preprocessor usage
based on user studies [24, 28, 32, 45]. They partly show that the
raised problems exist and can be improved, but that a lot depends
on the single developer and the preprocessor usage.

Fenske et al. [9] report an empirical study on the C preprocessor’s
change proneness, and thus tackle the impact of negating and #else
directives from a different perspective. To this end, the authors
inspect variation points only in implementation files (.c) at function
level. As a result, they disregard variability in interface declarations
and inline function definitions [14] induced by header files (.h).

Sincero et al. [46] present a linear growing algorithm to create
propositional formulas from C preprocessor variation points in C
source code. The authors focus primarily on aspects of satisfiability
to detect, for example, dead feature code. To this end, they also take
#else directives into account and transform them into equivalent
expressions, comparable to our technique (cf. Section 4.4). While
the authors assumed a potential impact of their technique on the
understanding of variability and corresponding metrics, they did
not address this topic, as we did with this work.

Some researchers have proposed new techniques to replace or
improve C preprocessor variability. Most prominently may be the
concept of virtually separating concerns [15, 16] and adding back-
ground colors to highlight feature code within an integrated de-
velopment environment [7, 8]. While empirical studies show ad-
vantages for both techniques, they do not seem to be adopted in
practice—where conventional development tools still dominate.
Other researchers have proposed to integrate, combine, or replace
preprocessor code with other variability mechanisms [17, 25, 26],
for example, by using projectional editing to simply switch the
representations of feature code to the user [4, 35, 49].

Considering different metrics, Queiroz et al. [40] investigate
whether these have special statistic properties—namely power laws.
Krüger et al. [23] compare them for mandatory and optional fea-
tures in Marlin. Both studies show that the metrics align to certain
patterns and may help developers to better understand the code
or identify critical parts. Overall, numerous tools [22, 34] and met-
rics [6] have been proposed to perform such analyses.

In the context of reverse variability engineering, several re-
searchers aim to extract variability information, for example, feature
constraints from preprocessor directives [36, 37] or configuration
options [31]. The goal of such techniques is to understand depen-
dencies among configuration options (and thus their features) and
their relation to the source code. To support the understanding of
variability in a software system and define its configuration space,
the reverse engineered constraints are used to derive a variability

model of the system [1, 2, 44]. The results of our study may indicate
limitations for such automated techniques, depending on how and
what constraints the techniques extract and use—but can also guide
new concepts to extend the currently existing techniques.

We are not aware of another study investigating corner cases
of the C preprocessor and their impact on variability analysis and
metrics. The aforementioned works all report and investigate other
issues of the C preprocessor. Some of them also use different sets
of metrics to perform their studies. Still, none of them seems to
address the issue of negations or #else directives and their impact
on metrics for variability analysis. Therefore, our work differs from
existing works and can be seen as a complement that may ask for
reshaping some metrics or investigating to what extent these are
suitable to achieve the goals of previous studies.

7 CONCLUSION
In this paper, we analyzed how specific corner cases of C prepro-
cessor directives, namely negating and #else directives, affect the
variability analysis of such systems. To this end, we focused on de-
termining the extent to which such cases appear in the source code
of 19 open-source systems. We compared the results for scattering
degree and tangling degree after applying them to our corner cases.
Finally, we proposed first steps towards improving variability anal-
ysis and the conceptual understanding of corner cases. However,
our most important results indicate that:

• Corner cases can hide variability information that only exist
as domain knowledge.

• Corner cases appear frequently in several systems, whether
as #else directives—inducing anonymous, covert variation
points—or as negated feature expressions, which require
the absence of a feature—yielding phantom variation points
regarding their involved feature constants.

• Resolving corner cases can significantly change the results of
variability metrics that focus on counting feature constants,
such as scattering degree and tangling degree.

• Variability enclosed in corner cases has a relevant textual
size, which highlights the importance of considering covert
and phantom features in real-world systems.

We hope to motivate discussions and further analyses regarding
evaluation, precision, and purpose of existing and upcoming vari-
ability metrics. Based on our findings, we argue that more research
about such corner cases is necessary to better understand their
characteristics and provide guidance for practitioners.

To this end, we plan to extend our analysis significantly, includ-
ing more advanced parsers and metrics, as well as more subject
systems. A particularly interesting factor that we want to focus on
is the question how and why corner cases are applied: When and
for what purpose are developers using them? For this purpose, we
intend to conduct interview studies and surveys on various systems
to collect real-world experiences and practices. This knowledge
may help us to improve and scope variability analysis and to reason
about the importance of considering corner cases.
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