
https://doi.org/10.1007/s10664-020-09892-x

variED: an editor for collaborative, real-time feature
modeling

Elias Kuiter1 · Sebastian Krieter1,2 · Jacob Krüger1,3 ·Gunter Saake1 ·
Thomas Leich2

Accepted: 27 November 2020
© The Author(s) 2021

Abstract
Feature models are a helpful means to document, manage, maintain, and configure the
variability of a software system, and thus are a core artifact in software product-line engi-
neering. Due to the various purposes of feature models, they can be a cross-cutting concern
in an organization, integrating technical and business aspects. For this reason, various stake-
holders (e.g., developers and consultants) may get involved into modeling the features of
a software product line. Currently, collaboration in such a scenario can only be done with
face-to-face meetings or by combining single-user feature-model editors with additional
communication and version-control systems. While face-to-face meetings are often costly
and impractical, using version-control systems can cause merge conflicts and inconsistency
within a model, due to the different intentions of the involved stakeholders. Advanced tools
that solve these problems by enabling collaborative, real-time feature modeling, analogous
to Google Docs or Overleaf for text editing, are missing. In this article, we build on a pre-
vious paper and describe (1) the extended formal foundations of collaborative, real-time
feature modeling, (2) our conflict resolution algorithm in more detail, (3) proofs that our
formalization converges and preserves causality as well as user intentions, (4) the imple-
mentation of our prototype, and (5) the results of an empirical evaluation to assess the
prototype’s usability. Our contributions provide the basis for advancing existing feature-
modeling tools and practices to support collaborative feature modeling. The results of our
evaluation show that our prototype is considered helpful and valuable by 17 users, also
indicating potential for extending our tool and opportunities for new research directions.

Keywords Software product lines · Groupware · Feature modeling · Variability ·
Consistency maintenance · Collaboration

Communicated by: Laurence Duchien, Thomas Thüm and Paul Grünbacher

This paper has been awarded the Empirical Software Engineering (EMSE) open science badge.

This article belongs to the Topical Collection: Configurable Systems

This article belongs to the Topical Collection: Open Science

� Sebastian Krieter
skrieter@hs-harz.de

Extended author information available on the last page of the article.

Empirical Software Engineering (2021) 26: 24

/ Published online: 2 March 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09892-x&domain=pdf
http://orcid.org/0000-0001-7077-7091
mailto: skrieter@hs-harz.de

1 Introduction

Modeling the variability of a configurable platform (i.e., a Software Product Line (SPL))
is essential for an organization to document and manage all implemented software features
and to derive valid product configurations that are tailored to different customer require-
ments (Apel et al. 2013a; Pohl et al. 2005; Czarnecki et al. 2012; Berger et al. 2015). The
variability model of an SPL is not limited to representing implementation artifacts, but can
incorporate additional artifacts, such as requirements, documentation, and tests (Berger et al.
2013; Czarnecki 2013). Moreover, while variability models are usually structured according
to design decisions specific to the SPL’s domain, they can also provide a more abstract rep-
resentation for other stakeholders (Nešić et al. 2019). For instance, a variability model may
be used to allow end users to configure their own products. To derive a meaningful variabil-
ity model that satisfies the defined needs (e.g., representing solution or problem space), all
relevant stakeholders must work collaboratively (Berger et al. 2014; Nešić et al. 2019).

Various tools have been proposed to facilitate variability modeling with tailored user
interfaces, automated analyses, and other editing support. Established examples in the com-
mercial domain are pure::variants (Beuche 2008) and Gears (Krueger 2007); as well as
several research prototypes (Alves Pereira et al. 2014; Horcas et al. 2019). Still, to the best of
our knowledge, there is neither a tool nor a technique that supports collaborative, real-time
editing of the same variability model, similar to the text editors Google Docs and Overleaf.
As far as we know, existing tools allow only a single user to edit the model, and multi-
ple users have to rely on direct communication or version-control systems to collaborate.
Both of these strategies can have major drawbacks that hamper efficient collaboration dur-
ing the modeling process. Direct communication requires either locality of all stakeholders
or screen-sharing, and does not allow all stakeholders to edit the model (e.g., to sketch a
solution or to work on different parts of the model). Version-control systems, such as Git,
allow the stakeholders to share and edit a variability model at different places and at the
same time. However, version-control systems are not designed for real-time editing, which
may easily cause merge conflicts, not only syntactically, but also semantically (e.g., merged
changes may result in an invalid feature model, dead features, or broken dependencies).
Collaborative, real-time variability modeling promises advantages in several use cases, such
as:

– Multiple domain engineers can work simultaneously on the same variability model,
either on different tasks (e.g., editing existing constraints) or on a coordinated task (e.g.,
introducing a set of new features).

– Domain engineers can share and discuss the variability model with other domain
experts, allowing them to evolve the model based on real-time feedback without
requiring costly co-location of the participants.

– Lecturers can teach variability-modeling concepts in a collaborative manner and can
more easily involve the audience in hands-on exercises.

The most established notation for variability models are feature models and their visual rep-
resentations, feature diagrams (Czarnecki et al. 2012; Berger et al. 2013; Chen and Babar
2011; Nešić et al. 2019). For this reason, we focus on the collaborative editing of feature dia-
grams in this article. However, our general technique can be applied to other representations
of variability models as well.

In this article, we extend a previous paper (Kuiter et al. 2019b), in which we describe
the conceptual foundations of collaborative, real-time feature modeling. Within that paper,
we define requirements that our technique aims to fulfill, derive formal specifications for

(2021) 26: 24Empir Software Eng24 Page 2 of 47

Fig. 1 Editing a feature model inside our web-based modeling tool variED

the operations that we need to develop, sketch how to resolve conflicts, and implement and
verify a corresponding tool for collaborative feature modeling (cf. Figure 1). To extend that
paper, we include more details and new information on our specifications, algorithms, and
their implementation, resulting in the first complete description of our technique, including
all operations, conflict detection, and conflict resolution. We further present new contribu-
tions by showing the correctness of our technique, adding a description of our tool, and
providing an empirical evaluation in the form of a user study with 17 participants. Conse-
quently, the overall focus in this article is not on theoretical foundations, as in our previous
paper. Instead, we focus on the concrete implementation of our technique and its evaluation.
Overall, we make the following contributions:

1. We extend the formal foundations of collaborative, real-time feature modeling.
2. We report the algorithms, requirements, and techniques that are part of our own

technique and describe our corresponding tool implementation.
3. We show that our technique works correctly in terms of concurrency control.
4. We report upon a user study to evaluate the usability of our tool.
5. We provide public GitHub repositories that include the open-source implementation of

our tool1 as well as our questionnaire and anonymized responses.2

The goal of our technique is to support use cases that fulfill three general conditions. First,
we assume that different stakeholders want to work on the same feature model at the same
time, for example, to coordinate independent or interacting tasks (Manz et al. 2013), which
requires techniques for concurrency control. Second, based on insights from real-world case
studies and established practices (Fogdal et al. 2016; Berger et al. 2014; Nešić et al. 2019),
we assume that a small team (i.e., ten or fewer stakeholders) edits and maintains a feature
model. Considering larger teams, collaboration and automatic conflict resolution become
much more challenging. Finally, we assume that not all stakeholders are co-located, but

1https://doi.org/10.5281/zenodo.4259912
2https://doi.org/10.5281/zenodo.4259914

(2021) 26: 24Empir Software Eng Page 3 of 47 24

https://doi.org/10.5281/zenodo.4259912
https://doi.org/10.5281/zenodo.4259914

remotely connected (Manz et al. 2013). For this reason, we aim to support peer-to-peer as
well as client-server architectures (Schollmeier 2001).

The remainder of this article is structured as follows. In Section 2, we introduce the for-
mal foundations of feature models and their properties, and describe the general concept of
collaborative, real-time editing. We present the details of our technique, including the oper-
ation model, conflict detection, and conflict resolution in Section 3. Then, in Section 4, we
show the correctness of our technique using formal proofs before explaining the details of
our implementation in Section 5. In Section 6, we present the design and results of our user
study. Finally, we present related work in Section 7 and conclude our findings in Section 8.

2 Foundations

In this section, we present the background and formal concepts of feature modeling and
collaborative, real-time editing.

2.1 Feature Modeling

Feature modeling is a domain-engineering activity, during which an organization defines
and documents the desired variability of its SPL (Apel et al. 2013a; Pohl et al. 2005; Krüger
et al. 2020). This activity results in a feature model, which expresses variability in the
notion of features and dependencies between these features (e.g., one feature may require
or exclude another one). Features typically represent a user-visible functionality that can
be either present or absent in a concrete product of the SPL. Several notations for feature
models have been proposed in the literature, including feature diagrams, grammars, and
propositional formulas (Batory 2005; Berger et al. 2013; Chen and Babar 2011; Czarnecki
et al. 2012; Schobbens et al. 2006).

In this article, we focus on feature diagrams (cf. Figure 1 for a larger example in var-
iED), which are visual representations of feature models as tree structures. This notation is
human-readable, established in practice (Berger et al. 2013; Nešić et al. 2019), and well-
supported by feature-modeling tools (Meinicke et al. 2017; Beuche 2008; Krueger 2007).
We consider basic feature diagrams, which use binary features and constraints that can be

GraphLibrary

Edge Type Algorithm

Directed Undirected Cycle

Fig. 2 A simplified feature diagram of an SPL of graphs and their algorithms

(2021) 26: 24Empir Software Eng24 Page 4 of 47

expressed as propositional formulas. In contrast, extended feature diagrams allow organiza-
tions to add additional attributes to features and to use constraints of higher-order logic. As
an example, we display an excerpt of a feature diagram in Fig. 2, which represents an SPL of
graph algorithms. The feature model specifies that every product must contain the manda-
tory feature Edge Type and that each product’s Edge Type must either be Directed
or Undirected. Further, a product may include the optional feature Algorithm, which
requires the feature Cycle. The cross-tree constraint below the tree defines that any product
comprising the feature Cycle must also include Directed. In contrast to concrete fea-
tures, the abstract features Edge Type and Algorithm do not map to implementation
artifacts of the underlying SPL, but are used for structuring the feature model.

To allow us to precisely define our technique for collaborative feature modeling, we
formalize feature models as follows:

Definition 1 (Feature Model)

– The identifier pool ID is an infinite set of strings that may be used within a feature
model to identify features or cross-tree constraints.

– A feature is a tuple (ID, parentID, optional, groupType, abstract, name) where

– ID ∈ ID,
– parentID ∈ ID ∪ {⊥, †},
– optional ∈ {true, false},
– groupType ∈ {and, or, alternative},
– abstract ∈ {true, false}, and
– name is any string.

– A cross-tree constraint is a tuple (ID, parentID, φ) where ID ∈ ID, parentID ∈ {⊥, †},
and φ is a propositional formula with variables ranging over ID, that is, Var(φ) ⊆ ID.

– A feature model FM then is a tuple (F,C) where F is a finite set of features and C is a
finite set of cross-tree constraints.

In this definition, ⊥ denotes the parentID of the root feature and of all visible constraints,
while † denotes the parentID of removed features and constraints (cf. Definition 4). Our
definition captures the properties of basic feature diagrams and integrates well with our
technique for collaborative feature modeling. In particular, we introduce the identifier pool
ID, which is critical for describing the feature-modeling operations needed. This identifier
pool and our formalization of the tree structure sets our definition apart from previous for-
malizations by Schobbens et al. (2007) and Durán et al. (2017), and makes it suitable for
our concurrency-control technique.

Example 1 (Feature Model) We use Definition 1 to describe the feature diagram in Fig. 2.
Let FM = (F,C) where

F = {(GPL, ⊥, false, and, false,GraphLibrary),

(ET,GPL, false, alternative, true,Edge Type),

(Dir,ET, true, and, false,Directed),

(Undir,ET, true, and, false,Undirected),

(Alg,GPL, true, or, true,Algorithm),

(Cyc,Alg, true, and, false,Cycle)}
and C = {(constraint1,⊥,Cyc ⇒ Dir)}.

(2021) 26: 24Empir Software Eng Page 5 of 47 24

We use arbitrary identifiers in this example; in practice they will be generated automatically
to ensure that each identifier is unique. The GPL feature is the root feature, as its parentID is
⊥. Every other feature has a parentID that identifies its parent in the feature tree. We under-
line values that are effectively ignored by the user interface. For example, the Directed
feature is part of an alternative group (defined in its parent Edge Type), which overrides
its optional flag. However, it is advantageous to include this information in the formalization
to facilitate conflict detection.

We remark that we introduce a dot notation to access a tuple’s elements (which we also
refer to as attributes) in order to improve the readability of our formalizations. For example,
FM.F refers to the first element of FM = (F,C): the set of features F contained in FM.
Further, in several instances, we interpret the sets F and C as functions ID �→ F and ID �→
C to look up features and cross-tree constraints by their ID in the feature model (if defined
uniquely). So, in Example 1, FM.F(Dir).parentID refers to the value ET defined in the
parentID field for the feature identified by Dir in FM.

To simplify our algorithms and proofs, we define two sets FID
FM and CID

FM for feature and
constraint identifiers, as well as the parent-child relation descends from (FM):

Definition 2 Let FM be a feature model. Further, define

– FID
FM := {F .ID | F ∈ FM.F}, that is, the feature IDs defined in FM,

– CID
FM := {C.ID | C ∈ FM.C}, that is, the cross-tree constraint IDs defined in FM, and

– the relation 	FM as the reflexive transitive closure of {(A.ID, BID) | A ∈ FM.F, BID ∈
FID
FM ∪ {⊥, †} ∧ A.parentID = BID}, that is, a feature descends from another when it is

an immediate or indirect child.

Using our notation from Definition 1, we can formally describe any feature model based
on its feature-diagram representation. However, this definition allows that integral prop-
erties of feature models may be violated (e.g., a feature model must not contain cycles).
These properties are important, as we intend to manipulate feature models by means of
operations. Consequently, we also define the following conditions to describe legal feature
models (such as Example 1):

Definition 3 A feature model FM is considered legal if and only if all of the following
conditions are true:

– All identifiers are unique:
∣
∣FID

FM

∣
∣ ∩ ∣

∣CID
FM

∣
∣ = ∅ ∧ |FM.F| = ∣

∣FID
FM

∣
∣ ∧ |FM.C| = ∣

∣CID
FM

∣
∣

– All parent identifiers refer to valid features: ∀F ∈ FM.F : F .parentID ∈ FID
FM ∪ {⊥, †}

– All variables in constraints refer to valid features: ∀C ∈ FM.C : Var(C.φ) ⊆ FID
FM

– There exists exactly one root feature: ∃!F ∈ FM.F : F .parentID = ⊥
– The feature graph is acyclic and, thus, a tree: ∀F ID ∈ FID

FM : F ID 	FM ⊥ ∨ F ID 	FM †

We denote the set of all legal feature models as FM.

Naturally, our technique has to allow operations for removing features and constraints
from a feature model. However, since our technique should also be extensible for undo and
redo operations, we cannot simply remove an element from F or C, but need to keep track
of its old state and position. To achieve this, instead of removing an element entirely, we
move it to a separate, non-visible area that we call graveyard. So, we adapt the tombstone
concept used in distributed systems, where removed entities are still kept in memory to

(2021) 26: 24Empir Software Eng24 Page 6 of 47

allow undoing and rejecting changes (Chen and Sun 2001c; Oster et al. 2006; Shapiro et al.
2011).

Definition 4 Let FM ∈ FM.

– A feature F ∈ FM.F is graveyarded, denoted as F .ID ∈ F†
FM, if and only if F .ID 	FM

† (where † can be thought of as spanning a second, invisible feature tree).
– A cross-tree constraint C ∈ FM.C is graveyarded, denoted as C.ID ∈ C†

FM, if and only

if C.parentID = † ∨ ∃F ID ∈ Var(C.φ) : F ID ∈ F†
FM (i.e., it has been ex- or implicitly

removed).

We utilize this formalization of feature models to design our collaborative operation
model (cf. Section 3.1) and conflict detection algorithms (cf. Section 3.2).

2.2 Collaborative, Real-Time Editing

The research domain of Computer-Supported Cooperative Work (CSCW) is concerned with
collaborative activities and their computer-assisted coordination (Carstensen and Schmidt
1999; Grudin 1994). CSCW systems (also called groupware Ellis et al. 1991) are typically
classified according to the time and location dimensions (Baecker et al. 1995; Johansen
1991). Collaboration may happen synchronously (i.e., at the same time) or asynchronously
(i.e., at different times). Analogously, collaborators may work co-located (i.e., at the same
location) or remotely (i.e., at different locations). We are interested in synchronous, remote
collaboration, as existing feature-modeling tools do not support this combination, yet.
For this reason, we design a collaborative, real-time editor that enables shared editing by
remotely connected users (Prakash 1999). We use an operation-based editing model to
achieve change propagation and use the definitions of Sun et al. (1998) to formally describe
concurrency, conflicts, and consistency.

2.2.1 Operation-Based Editing

A simple, but effective, technique for propagating changes through a network is to send
the entire document of one user to all other users. However, this technique has drawbacks,
as it sends lots of redundant data and makes consistency maintenance more complicated.
Another technique of distributing changes is operation-based editing (Dewan 1999; Shapiro
et al. 2011). Instead of sending complete copies of a modified document to other users, only
an abstract operation is sent, allowing to transform the previous state of a document into the
new state. So, the complete document must be sent only once: when initializing the system.
We define an operation as follows:

Definition 5 (Operation) An operation is the description of an atomic manipulation of a
document with a distinct user intention. It is applied to a document to transform it from an
old to a new (modified) state.

To identify relevant operations for feature modeling, we reviewed two established
single-user feature-modeling tools that we could investigate without charges, the academic
FeatureIDE (Meinicke et al. 2017) and the industrial pure::variants (Beuche 2008). We can
consider feature-model editors as object-based graphics editors, in which features (or possi-
bly entire subtrees of features) and constraints are represented as objects. Feature-modeling

(2021) 26: 24Empir Software Eng Page 7 of 47 24

operations can target one or multiple objects based on their unique identifiers. To issue
an operation, a user first creates a selection that includes all objects that operation should
target, then proceeds with the actual operation. In Section 2.1, we defined feature models
according to this operation model, as each feature and cross-tree constraint is assigned a
unique identifier that can serve as an operation target. Thus, rather than identifying features
via their name, we use the unique identifiers in the ID set and represent a feature’s name as
an additional attribute.

We classify operations on the feature model as view-, feature-, or constraint-related. First,
view-related operations customize the visual representation of a feature model to a user’s
demands, for example, changing the diagram layout (e.g., tree, table, or graph visualiza-
tion), visually pruning the feature tree, and hiding cross-tree constraints. As view-related
operations do not change the semantics of the feature model (i.e., the modeled set of product
variants), we do not consider them for collaborative feature modeling. Instead, we can apply
view-related operations locally and provide each collaborator with their own, customized
modeling view according to their preferences. Second, feature-related operations encom-
pass creating, removing, and updating features in the feature tree. Users can create features
at different positions within the feature tree, for instance, below or above another feature.
They can also move features within the tree by moving a sub-tree below another feature.
In addition, most attributes of a feature can be updated, including the optional, groupType,
or any other arbitrary attribute, such as the name or description. Third, constraint-related
operations allow users to create, edit, or remove arbitrary cross-tree constraints. These oper-
ations are similar to the feature-related ones, but they are simpler as they do not span a
tree. As aforementioned, we focus on the last two classes of operations, since they intro-
duce semantic changes that we need to propagate to users. In Section 3.1, we describe our
operation model for collaborative feature modeling.

2.2.2 Concurrency and Conflicts

In collaborative editing systems, multiple users can create operations at different sites (i.e.,
workstations) at different times. To ensure that a document has the same state for all users,
their sites must be synchronized eventually. However, as synchronization between sites is
affected by network latency, and thus not instant, we cannot simply track the order of sub-
mitted operations based on physical time. Instead, we adapt a well-known strict partial
order (Lamport 1978; Mattern 1988; Sun et al. 1998) to determine the temporal (and thus
causal) relationships of operations, and define the notion of concurrency:

Definition 6 (Causal Ordering) Let Oa and Ob be two operations generated at sites i and
j , respectively. Then, Oa → Ob (Oa causally precedes Ob) if and only if at least one of the
following is true:

– i = j and Oa is generated before Ob,
– i �= j and at site j , Oa is executed before Ob is generated, or
– ∃Ox : Oa → Ox ∧ Ox → Ob

where before refers to a site’s local physical time. Ob is then said to depend on Oa . Further,
Oa and Ob are causally related if and only if Oa → Ob or Ob → Oa . Otherwise they are
concurrent, denoted as Oa ‖ Ob.

This causal ordering replaces physical timestamps in the communication between differ-
ent sites. Note that we make no distinction between time and causality: If Oa →Ob, we say

(2021) 26: 24Empir Software Eng24 Page 8 of 47

that Oa causes Ob, even if the intention of Oa is not related to Ob at all. This is a convention
in distributed systems to capture all events that may have caused an event, which facilitates
concurrency control (Mattern 1988).

Two concurrent operations may cause a conflict, if applying both on a document would
lead to an inconsistent state. Consequently, whether two operation are in conflict, depends
on the kind of document. In Section 3.2, we define conflicts of feature-modeling operations.

2.2.3 Consistency

Several challenges hamper the maintenance of a consistent document state in collaborative,
real-time editors (Sun and Chen 2002; Sun et al. 1998). First, operations in such editors
do not generally commute, meaning that they do not yield the same result for all execu-
tion orders. So, the document state may diverge when concurrent operations are applied
in varying orders at different sites. Second, when an operation arrives before an operation
it depends on, the user interface may behave surprisingly and the document may become
invalid. This challenge arises from network latency, which may lead to causality violation
in peer-to-peer architectures. Third, concurrent operations may violate each other’s inten-
tion (i.e., an operation’s execution effect when applied on the document state from which it
was generated). For example, two operations that set the same feature’s name to different
values are intention-violating, as both override the other operation’s intention. Apart from
these syntactic challenges, semantic consistency properties should also be considered (Sun
et al. 1998). In Section 3.2, we identify semantic properties that we aim to ensure when
editing feature models. Based on these challenges, Sun et al. (1996, 1998) have proposed a
consistency model for collaborative, real-time editors as follows:

Definition 7 (CCI Model) A collaborative, real-time editing system is CCI-consistent if it
always maintains all of the following properties:

– Convergence: When the same set of operations have been executed at all sites, all copies
of the shared document are identical.

– Causality Preservation: For any pair of operations Oa and Ob, if Oa → Ob, then Oa is
executed before Ob at all sites.

– Intention Preservation: For any operation O, the effects of executing O at all sites are
the same as the intention of O, and the effect of executing O does not change the effects
of concurrent operations.

These properties define what behavior collaborators can expect from the system. In
Section 4, we point out why our concept conforms to the CCI model. So, we ensure the syn-
tactic and semantic consistency of edited feature models at all times. We proceed to describe
the technique we adapt to build a CCI-consistent collaborative feature model editor.

2.2.4 Multi-Version Multi-Display Technique

To achieve CCI-consistency, several concurrency-control techniques have been proposed.
Roughly, we can distinguish between techniques that work either on a single document or
on multiple versions of a document to resolve conflicts. Single-document techniques are,
for example, turn taking (Ellis et al. 1991; Greenberg 1991), locking (Elmasri and Navathe
2010; Greenberg and Marwood 1994), serialization (Berlage and Genau 1993; Greenberg
and Marwood 1994), and operational transformation (Ellis and Gibbs 1989; Sun et al.

(2021) 26: 24Empir Software Eng Page 9 of 47 24

1998, 2004). However, these techniques have severe disadvantages for our considered use
cases (Kuiter 2019a): None of these techniques can properly handle conflicting operations,
as they usually block the document or its parts completely to avoid conflicts (they are pes-
simistic), or can only resolve conflicts automatically with arbitrary policies, such as “last
writer wins.”

In the context of feature modeling, we argue that collaborators should participate in the
conflict resolution to preserve the intentions of all conflicting operations. To this end, we
use a multi-versioning concurrency-control technique (Chen 2001a; Stefik et al. 1987; Wulf
1995). In contrast to the single-document techniques, multi-versioning techniques keep dif-
ferent versions of objects on which conflicting operations have been performed (similar to
parent commits that are merged in version-control systems). Multi-versioning techniques
can be implemented in two ways, mainly differentiating whether they expose only a single
document version (and keep others only internally) or expose multiple, conflicting doc-
ument versions (Sun et al. 2002, 2004). The first type of techniques has the problem of
committing to one particular version based on arbitrary rules. Moreover, feature modeling
poses semantic problems during conflict resolution that are hard to address in an automated
process. The second type, called Multi-Version Multi-Display (MVMD) (Sun and Chen
2002; Chen and Sun 2001b), lets users decide which new document version should be used
in case of a conflict. In Fig. 3, we show how this technique allocates two conflicting update
operations to two different versions of an edited feature model, preserving intentions and
allowing for subsequent manual conflict resolution. This technique encourages communi-
cation between collaborators and improves the confidence in the correctness of the resulting
feature model. As MVMD fulfills all of our requirements, we use it as basis for our col-
laborative feature-model editor. However, it needs further adjustments to support feature
modeling, such as defining a conflict relation for feature-modeling operations, which we
describe in Section 3.2.

MVMD has been introduced in the Graphics Collaborative Editing (GRACE) system to
maintain multiple versions of edited objects in the face of conflicts (Sun and Chen 2000;
2002; Chen and Sun 2001b). It groups operations according to whether they are conflicting

site A

,,

site B

setFeatureGroupType(or)

setFeatureOptional(false)

Fig. 3 A conflict scenario detected with the multi-version multi-display technique. Both sites arrive at the
same maximum compatible group set (cf. Definition 9)

(2021) 26: 24Empir Software Eng24 Page 10 of 47

or compatible. To determine algorithmically whether two operations are in conflict, we
utilize a conflict relation (Sun and Chen 2002; Xue et al. 2003):

Definition 8 (Conflict Relation) A conflict relation ⊗ is a binary, irreflexive, and symmet-
ric relation that indicates whether two given operations are in conflict. If two operations Oa

and Ob are not in conflict with each other, namely Oa �⊗ Ob, they are compatible, denoted
as Oa � Ob. Only concurrent operations may conflict, that is, for any operations Oa and
Ob, Oa ∦ Ob ⇒ Oa � Ob.

The specific conflict relation used in GRACE states that two concurrent operations are
in conflict if they set the same attribute of the same object to different values. However, the
conflict relation of GRACE is not suitable for collaborative, real-time feature modeling, as it
only captures overwrite conflicts, while feature modeling can cause other kinds of conflicts
as well. For example, the acyclic property in Definition 3 can be violated by concurrently
moving two features below one another. In addition, the conflict relation of GRACE cannot
capture semantic inconsistencies, such as dead features or redundant constraints (Benavides
et al. 2010; Felfernig et al. 2013; Kowal et al. 2016). Therefore, we introduce new conflict
relations specific to feature modeling in Section 3.2.

By using a proper conflict relation, we can create different versions of a feature model
whenever a conflict occurs. However, as we consider multiple remotely connected collab-
orators, we may also need to resolve conflicts for three or more concurrent operations at a
time. In such a situation, if we would create a different version for each conflicting opera-
tion, the conflict resolution could overwhelm the collaborators. To avoid this problem, we
rely on the combined effect of the MVMD technique to minimize the number of versions,
while still preserving the intentions of all operations (Sun and Chen 2002):

Definition 9 (Combined Effect) Let GO = {O1, O2, . . . , On} be a group of operations
targeting the same object.

– A compatible group CG is a subset CG ⊆ GO where ∀Oa,Ob ∈ CG : Oa � Ob.
– A compatible group CG is maximum if ∀Oa ∈ GO : (Oa ∈ CG∨∃Ob ∈ CG : Oa⊗Ob).
– A maximum compatible group set MCGS = {CG1,CG2, . . . ,CGm} is a set of

maximum compatible groups where all of the following conditions are true:

– ∀O ∈ GO : ∃CGi ∈ MCGS : O ∈ CGi

– ∀Oa, Ob ∈ GO : (Oa � Ob ⇒ ∃CGi ∈ MCGS : Oa,Ob ∈ CGi)

– all maximum compatible groups belonging to GO are included in MCGS.

– Given a maximum compatible group set MCGS, the combined effect for GO is that

– for each CG ∈ MCGS, one version VCG of the targeted object is created, and
– for each CG ∈ MCGS, all included operations are applied to VCG.

By using an MCGS, we can generate a minimum number of versions, while still satisfy-
ing all submitted operations’ intentions. It can be shown that the MCGS, and thus the com-
bined effect for a given group of operations, is unique (Sun and Chen 2002). For example,
given a group of operations {O1, O2,O3,O4} and the conflict relation O1�O2, O1�O3,
O1�O4, O2⊗O3, O2�O4, and O3⊗O4, their unique MCGS is {{O1, O3}, {O1,O2,O4}}.
The MCGS for a group of operations can be constructed incrementally at any site using the
MOVIC algorithm proposed by Sun and Chen (2002). When targeting a single object, this
algorithm has been proven to converge to the same MCGS at all sites (Sun and Chen 2002).

(2021) 26: 24Empir Software Eng Page 11 of 47 24

3 Designing a Collaborative, Real-Time Feature Model Editor

In this section, we describe the concepts of our technique that enables users to collabo-
ratively edit the same feature model. For this purpose, we introduce an operation model,
conflict detection, and conflict resolution.

3.1 OperationModel

A collaborative feature-model editor must support a variety of operations to achieve a simi-
lar user experience as single-user editors. However, supporting various operations can lead
to more interactions between these, which makes consistency checking, resolving conflicts,
and reasoning about the editor’s correctness more complex. To address this issue, we use a
two-layered operation architecture (Sun et al. 2006), in which we separate two kinds of oper-
ations: low-level Primitive Operations (POs) and high-level Compound Operations COs.
POs represent fine-grained edits to a feature model and are suitable to use in concurrency-
control techniques. COs then expose actual feature-modeling operations to the application.
A COs is a sequence of POs that are executed in a defined order, and thus can express all
feature-modeling operations mentioned in Section 2.2.

Using this two-layer architecture instead of single set of operations has several advan-
tages: When detecting conflicts between operations, we can focus on POs and do not need
to analyze COs, since they are PO sequences. For the same reason, we can implement multi-
target operations, such as remove, by composing several single-target COs into a new CO.
Also, to extend the editor with additional operations, we need to implement only new COs,
without making major changes to the conflict detection. In the following, we provide an
overview of the current set of operations that we support.

3.1.1 Primitive Operations

Single-user feature-modeling tools implement COs to create, remove, and modify features
as well as cross-tree constraints in various ways. We define five POs that serve as build-
ing blocks for such COs. For each PO, we specify pre- and postconditions with formal
semantics, where FM and FM’ refer to the feature model before and after applying the PO,
respectively. By convention, no PO shall have any other side effects than those specified in
the postconditions. For the sake of brevity, we only present the formal details of the primitive
operation createFeaturePO and provide the details of all other POs in Appendix A.1.

The operation createFeaturePO (PO 1) creates a new feature in the feature model:

(2021) 26: 24Empir Software Eng24 Page 12 of 47

An existing feature can be updated using the operation updateFeaturePO (PO 2). This
operation allows to modify any attribute of any existing feature. For creating and updat-
ing cross-tree constraints, we define the analogous operations createConstraintPO (PO 3)
and updateConstraintPO (PO 4). We do not require any operations for removing features
or cross-tree constraints, because they can be expressed as update operations, setting the
parentID to † (i.e., graveyarding). Finally, we define a single assertion operation, assert-
NoChildAddedPO (PO 5), which we need to detect conflicts related to operations that
graveyard features (cf. Section 3.2). With these five POs, we can assemble more complex
COs for feature-modeling.

3.1.2 Compound Operations

To allow for high-level modeling operations, we employ COs. Each CO consists of a
sequence of POs, which are applied atomically. A CO is defined by its associated precon-
ditions and an algorithm that generates the CO’s PO sequence, which has to ensure the
preconditions of each comprised PO. To model control flow and loops when generating
COs, we use regular if and for statements; however, their application is strictly sequential
to facilitate conflict detection. Whenever a user requests to generate a CO, its preconditions
are checked against the current feature model FM, then the CO’s algorithm is invoked with
the required arguments, such as the feature model (FM), a feature parent (FP), or feature
children (FC). The generated CO is first applied locally and then propagated to other users.

In the following, we present the COs that we implemented in our tool. We introduce
six feature-related operations for inserting and arranging features in the feature tree and
three constraint-related operations for creating, modifying, and removing constraints. How-
ever, to allow for new functionality, more COs can be designed on top of the existing POs.
Analogous to POs, we present only one CO and describe all other COs in Appendix A.2.

The operation createFeatureBelow (CO 1) creates and inserts a feature in the feature
tree as the child of an existing feature:

Similarly, the operation createFeatureAbove (CO 2) creates a new feature and inserts it
in the feature tree as parent of an existing feature. If the existing feature was not the root fea-
ture, its original parent becomes the parent of the new feature. Features can also be moved
within the feature tree using the operation moveFeatureSubtree (CO 3), which changes the
parent of a subtree to another existing feature. With the operation removeFeatureSubtree
(CO 4), an entire subtree can be removed from the feature tree by graveyarding it. In con-
trast, the operation removeFeature (CO 5) graveyards only a single feature and pulls its
children up by replacing the children’s parent with its own parent. For modifying additional
feature attributes, such as the optional flag, group type, and feature name, we introduce oper-
ations to set the values of these attributes. For instance, the operation setFeatureOptional

(2021) 26: 24Empir Software Eng Page 13 of 47 24

(CO 6) sets the attribute optional of a single feature to either true or false. The definitions
of setFeatureGroupType, setFeatureAbstract, and setFeatureName are analogous.

The operation createConstraint (CO 7) creates a new constraint and adds it to the feature
model. An existing constraint can be modified by applying the operation setConstraint (CO
8), which replaces a given constraint with a new one. With the operation removeConstraint
(CO 9), an existing constraint can be graveyarded, and thus effectively removed from the
feature model.

3.1.3 Applying Operations

As POs and COs are only descriptions of edits on a feature model, we further need to
define how to apply them to produce a new (modified) feature model. We define application
functions for POs and COs as follows:

Definition 10 Let FM ∈ FM. Further, let PO and CO be a primitive and a compound
operation whose preconditions are satisfied with regard to FM. Then, FM’ = applyPO(FM,

PO) denotes the feature model FM’ that results from applying PO to FM. Further, we define
applyCO(FM,CO) as the subsequent application of all primitive operations contained in
CO to FM with applyPO.

Our tool provides applyPO and ensures all postconditions of POs. Note that applyCO
does not treat any CO specially, which facilitates conflict detection and extensions. From the
definitions of the application function applyCO and the COs, we can derive that applyCO
always preserves the syntactical correctness of feature models (cf. Section 2.1) when no
concurrent operations are submitted (i.e., in a single-user scenario):

Theorem 1 Let FM ∈ FM be a legal feature model. Further, let CO be a com-
pound operation whose preconditions are satisfied with regard to FM. Then, FM’ =
applyCO(FM,CO) ∈ FM, that is, FM’ is again a legal feature model.

We omit the proof for this theorem here, but provide it in Appendix A.3.

3.2 Conflict Detection

For any collaborative work, it is essential to detect conflicts between the edits users per-
form (e.g., changing the name of the same feature to different values). In the following,
we describe how we extended the MVMD technique with new conflict relations for fea-
ture modeling to allow for the detection of conflicting operations. To this end, we briefly
motivate and describe several required strategies and mechanisms. The globally targeted
object strategy, causal directed acyclic graph, outer conflict relation, and topological sorting
strategy are novel extensions to the MVMD technique. These extensions are, in principle,
agnostic to feature modeling and may be adapted to other domains of collaborative editing
in the future. Building on these extensions, we then discuss an inner conflict relation that is
specific to feature modeling.

3.2.1 Globally Targeted Object Strategy

The combined effect specified in Definition 9 considers targeted objects for which multiple
versions may be created. In the graphics-editing system GRACE, an object refers to a dis-
tinct graphical element on the screen, which may be duplicated if a conflict appears (as we

(2021) 26: 24Empir Software Eng24 Page 14 of 47

show in Fig. 3). However, we argue that in a collaborative feature-model editor, only one
globally targeted object, namely the feature model, should be considered. Feature models
impose additional semantics (i.e., the variability modeled in an SPL), which can be con-
flicted simply by having two versions of the same feature. Further, certain conflicts, such
as cycle-introducing moveFeatureSubtree operations, cannot be resolved when features are
considered as individual objects. Considering the feature model as one global object enables
more comprehensive conflict detection and avoids the introduction of semantic inconsis-
tencies. So, conflicts cause multiple versions of the feature model, which collaborators can
then inspect to determine the desired resolution.

3.2.2 Causal Directed Acyclic Graph

In Section 2.2, we introduced a causal ordering for tracking operations’ concurrency rela-
tionships in the tool. However, the conflict relations for collaborative feature modeling
require further information about causality relationships. To this end, we utilize that the
causally-preceding relation is a strict partial order, and thus corresponds to a directed acyclic
graph (Mattern 1988; Schwarz and Mattern 1994). Using such a Causal Directed Acyclic
Graph (CDAG), we define the sets of Causally Preceding (CP) and Causally Immediately
Preceding (CIP) operations for a given operation as follows:

Definition 11 (Causal Directed Acyclic Graph) Let GO be a group of operations.

– The causal directed acyclic graph for GO is the graph G = (V ,E) where V = GO
is the set of vertices and E = {(Oa, Ob) | Oa,Ob ∈ GO ∧ Oa → Ob} is the set of
edges. Then, the set of causally preceding operations for an O ∈ GO is defined as
CPG(O) := {Oa | (Oa,O) ∈ E}.

– Now, let (V ,E′) be the transitive reduction of (V ,E). Then, the set of causally immedi-
ately preceding operations for an O ∈ GO is defined as CIPG(O) := {Oa | (Oa, O) ∈
E′}.

The transitive reduction of a graph removes all edges that represent only transitive
dependencies (Aho et al. 1972). Therefore, an operation Oa causally immediately precedes
another operation Ob when there is no operation Ox such that Oa → Ox → Ob. Both,
the CDAG and its transitive reduction are unique, so that the CP and CIP sets for an oper-
ation are well-defined. Each collaborating site has a copy of the current CDAG, which is
incrementally constructed and includes all previously generated and received operations.

3.2.3 Outer Conflict Relation

The GRACE system uses solely the operation metadata to determine conflicts. However, no
complex syntactic or semantic conflicts can be detected this way, because the underlying
document is not available for conflict detection. In contrast, we propose that a conflict rela-
tion for feature modeling should not only consider operation metadata, but also the targeted
feature model. This is possible due to our globally targeted object strategy. Such a conflict
relation may inspect the involved operations and apply them to the targeted feature model
to check whether their application introduces any inconsistencies.

In order for such a conflict relation to work properly, we need to address the technical
difficulty of finding the appropriate targeted feature model that the two operations should
be applied on, which may differ from the currently displayed one. Such a feature model can
be derived from the checked operations’ common ancestor in the CDAG and their causally

(2021) 26: 24Empir Software Eng Page 15 of 47 24

preceding operations. However, this feature model is only meaningfully defined if all
causally preceding operations of both checked operations are compatible. Otherwise, the
intention preservation property may be violated, so that the conflict relation would rely on
potentially inconsistent and unexpected feature models. Thus, an appropriate outer conflict
relation, termed ⊗O , must propagate any conflict between two operations to all causally
succeeding operations. We can express this property as follows:

Definition 12 (Conflict Propagation) Let GO be a group of operations and Oa,Ob ∈ GO.
Then, Oa ⊗O Ob if at least one of the following conditions is true:

– ∃Ox ∈ GO : Ox → Oa ∧ Ox ⊗O Ob,
– ∃Oy ∈ GO : Oy → Ob ∧ Oa ⊗O Oy , or
– ∃Ox,Oy ∈ GO : Ox → Oa ∧ Oy → Ob ∧ Ox ⊗O Oy .

To determine the outer conflict relation for two given COs, we introduce OUTERCON-
FLICTING (cf. 1), a recursive algorithm that uses the CDAG to propagate conflicts as defined
above:

OUTERCONFLICTING ensures that there is a well-defined feature model for subsequent
conflict detection, which enables us to check arbitrary consistency properties—with the
disadvantage that in few cases operations may be falsely flagged as conflicting, because we
make no distinction between time and causality. Essentially, OUTERCONFLICTING defers
the conflict detection to the inner conflict relation ⊗I , which we discuss below. So, we
separate two concerns, that is, the technical problem of ensuring an appropriate targeted
feature model (⊗O , instead of ⊗ in Definition 9), as well as conflict-detection rules specific
to collaborative feature modeling (⊗I). Using OUTERCONFLICTING, we can compute ⊗O

as follows:

Definition 13 (Outer Conflict Relation) Two compound operations COa and COb are in
outer conflict (i.e., COa ⊗O COb), iff OUTERCONFLICTING(G,COa,COb) = true, where
G is the current CDAG at the site that executes OUTERCONFLICTING. Otherwise, they are
outer compatible, i.e., COa �O COb.

3.2.4 Topological Sorting Strategy

The outer conflict relation ⊗O ensures that we can produce an appropriate feature model.
To actually produce such a feature model, we employ a topological sorting of operations

(2021) 26: 24Empir Software Eng24 Page 16 of 47

according to their causality relationships, which we implemented as APPLYCOMPATIBLE-
GROUP (Algorithm 2). We need APPLYCOMPATIBLEGROUP to apply (unordered) sets of
mutually compatible operations, namely CGs, to a feature model. Because the application
order of operations is important for producing a correct result, our topological sorting strat-
egy ensures an application order that respects all causal relationships captured in the CDAG.
Note that a topological sorting exists and can be constructed for any CDAG, but is not neces-
sarily unique, since concurrent operations may still be swapped (Kahn 1962). This, however,
does not impact the correctness of our technique, since concurrent compatible operations
always commute in our tool, as guaranteed by the no-overwrites rule that we introduce next.

3.2.5 Inner Conflict Relation

The inner conflict relation ⊗I detects conflicts that are specific to feature modeling. To this
end, we first introduce SYNTACTICALLYCONFLICTING (Algorithm 3), which determines
whether two compound operations have a syntactic conflict that concerns basic syntactic
properties of feature models.

First, SYNTACTICALLYCONFLICTING applies one compound operation, COy , to an
appropriate feature model. We produce this feature model with APPLYCOMPATIBLEGROUP

from the initial feature model, to which no operations from the CDAGs have been applied,
yet. Then, the POs that COx comprises are subsequently applied to this feature model, so
that, finally, COx and COy are both applied. While applying these COs, we can inspect
the current feature model for potential consistency problems using the following set of
conflict-detection rules.

The no-overwrites rules state that no two concurrent operations may update the same
feature’s or cross-tree constraint’s attribute to a new value. Thus, the intentions of con-
current updates on the same model element are preserved by accommodating them into
different versions. Next, the no-cycles rule preserves the preconditions of the moveFeature-
Subtree CO by forbidding to move (i.e., updating the parentID) features that are themselves
moved. So, we preserve the acyclic property from Definition 3. The no-graveyarded rules
guarantee that no operation targets a graveyarded feature or cross-tree constraint. This way,
no remove operation can override other collaborators’ update operations. Further, the no-
group-optional rule detects when a groupType update would override a concurrent update
of an optional attribute and ensures that the root feature is always mandatory. Finally, the
assert-no-child-added rule ensures an assumption of the removeFeature CO, namely that
removed features’ children are not changed concurrently. This helps to preserve the single
root property of legal feature models (cf. Definition 3).

(2021) 26: 24Empir Software Eng Page 17 of 47 24

(2021) 26: 24Empir Software Eng24 Page 18 of 47

Building on SYNTACTICALLYCONFLICTING, we introduce INNERCONFLICTING

(Algorithm 4) to determine ⊗I for two given compound operations.

To ensure the symmetry of ⊗I , INNERCONFLICTING uses SYNTACTICALLYCONFLICT-
ING to check for syntactic conflicts in both directions. Finally, INNERCONFLICTING may
check additional arbitrary semantic properties of a feature model that includes the effects
of COa and COb. A semantic property SP ∈ SP is a deterministic function SP : FM →
{true, false} that returns whether a given legal feature model includes a semantic inconsis-
tency. SP may be adjusted according to the collaborators’ needs when the tool is initialized.
For instance, collaborators may want to ensure that the modeled SPL has at least one product
(void feature model analysis) at all times and does not include dead features, false-optional
features, or any redundant cross-tree constraints (Benavides et al. 2010; Felfernig et al.
2013; Kowal et al. 2016). Note that our technique allows only pairwise conflict detection of
operations, since interactions of higher order are hard to detect (Bowen et al. 1989; Calder
et al. 2003; Apel et al. 2013b). Using INNERCONFLICTING, we can compute ⊗I as follows:

Definition 14 (Inner Conflict Relation) Two compound operations COa and COb are in
inner conflict, i.e., COa ⊗I COb, iff INNERCONFLICTING(G,FMinit,COa,COb) = true,

Fig. 4 UML state diagram of feature modeling at a single site with our tool. The substate describes our
conflict resolution process

(2021) 26: 24Empir Software Eng Page 19 of 47 24

where G and FMinit ∈ FM are the current CDAG and initial feature model at the site that
executes INNERCONFLICTING. Otherwise, they are inner compatible, i.e., COa �I COb.

3.2.6 Feature-Modeling Loop

In the previous sections, we described algorithms for calculating two conflict relations
for collaborative feature modeling. We apply these algorithms in a feature-modeling loop,
which we show in Fig. 4. In this loop, a site may, after initialization (1), send (i.e., generate
and propagate) new feature-modeling operations (2). Moreover, a site receives all operations
generated at other sites (2). Receiving an operation may lead to a conflict, which triggers
our conflict resolution mechanism (detailed in Section 3.3). We proceed to describe site
initialization and operation processing in more detail.

When a new site (i.e., collaborator) joins an editing session (1), it must call INITIALIZE-
SITE (Algorithm 5) with the current feature model, which is provided by another site. This
algorithm returns the site’s initial state, which consists of an empty CDAG, empty MCGS,
and the initial feature model. In addition, the returned uiState is passed to the user interface
of the feature model editor, to be rendered as a feature diagram.

Once initialized, the site may send and receive operations (2), both of which are pro-
cessed by the same algorithm, PROCESSOPERATION (Algorithm 6). To this end, the site
calls PROCESSOPERATION with its current state (CDAG, MCGS, and initial feature model)
and the newly received or sent CO. PROCESSOPERATION adds the new operation to the

(2021) 26: 24Empir Software Eng24 Page 20 of 47

CDAG and detects potential conflicts with MOVIC (the MCGS construction algorithm pro-
posed by Sun and Chen 2002), which utilizes our outer conflict (⊗O) and compatibility
(�O) relations. Depending on the constructed MCGS, the new uiState is constructed: If
MCGS′ is empty (just after site initialization) or consists of one version (i.e., compatible
group), a feature model can be constructed with APPLYCOMPATIBLEGROUP and passed
to the user interface for rendering. In case of a conflict (i.e., two or more compatible
groups), a conflict descriptor that comprises detailed information about the conflicting oper-
ations and involved collaborators is passed to the editor to aid in the conflict resolution
(cf. Section 3.3). Note that, in the case of generating a new operation, MOVIC is guaranteed
to not detect any conflicts, because a locally generated operation always causally succeeds
all previously seen operations. In particular, the resulting feature diagram can be rendered
immediately, without waiting for other sites to acknowledge the change, which makes our
technique optimistic (in contrast to, for example, locking).

3.3 Conflict Resolution

Our extension of the MVMD technique fully automates the detection of conflicts and allo-
cation of feature-model versions. However, MVMD does not offer functionality for actually
resolving conflicts. Thus, we propose a manual conflict resolution process (cf. Figure 4)
during which collaborators examine alternative feature-model versions and negotiate a spe-
cific version (Stefik et al. 1987; Wulf 1995). To this end, we allow collaborators to cast
votes for their preferred feature model versions, which allows for fair and flexible conflict
resolution (Dennis et al. 1998; Gibbs 1989; Morris et al. 2004).

In our process, a site forbids any further editing (referred to as freeze) when a conflict
is detected (i.e., |MCGS| > 1). This forces collaborators to address the conflict, avoiding
any further divergence. Freezing the tool also ensures the correctness of our technique, as
the MVMD technique has only been proven correct for this use case (Sun and Chen 2002;
Xue et al. 2003). After freezing, the tool synchronizes all sites (i.e., waits until all sites
received all pending operations) so that all collaborators are aware of all versions before
starting the voting process, which is the only synchronization period that is required by
our technique. Next, a set of voters V (i.e., collaborators that are eligible to vote) may be
flexibly computed based on the collaborators’ preferences. For example, we implemented
the following possibilities:

– V = ∅, that is, no collaborator may vote.
– V consists of all collaborators that are involved in the conflict (they are involved in a

conflict when they have submitted an operation O such that ∃CG ∈ MCGS : O /∈ CG).
– V contains all collaborators participating in the editing session.

To start the voting, we initialize a set of vote results, VR, as an empty set. In the voting
phase, every voter may cast a vote on a single feature-model version, which is added to the
local vote result set and propagated to all other sites. After a vote is processed at a site, a
resolution criterion decides whether the voting phase is complete. Again, we implemented
several resolution criteria in our prototype, including:

– |VR| = 0, that is, the voting phase is concluded immediately, which is useful to
implement a reject-all-conflicts policy.

– |VR| > 0, so the voting phase is concluded after the first vote has been cast, which
roughly corresponds to a first-writer-wins policy.

– |VR| = |V |, that is, all collaborators have to vote for the voting phase to conclude.

(2021) 26: 24Empir Software Eng Page 21 of 47 24

– |VR| = |V | or there are two distinct collaborators with different votes. This way, the
voting phase will conclude after all collaborators have cast a vote or there is any dissent
among collaborators.

When the chosen resolution criterion has been triggered, we compute the elected feature-
model version (the resolution outcome) from VR. To be able to discard all conflicting
changes (e.g., when collaborators cannot agree on one version), we introduce the neutral
compatible group, which can be calculated just before the voting phase starts:

Definition 15 (Neutral Compatible Group) Let MCGS be a maximum compatible group
set. Then, the neutral compatible group NCGMCGS for MCGS is defined as NCGMCGS :=
⋂

CG∈MCGS CG.

In particular, the neutral CG contains all operations that are applied in every feature-
model version and have no conflict potential with any other operations. With this in mind,
we implemented different resolution outcomes in our tool:

– NCGMCGS wins unconditionally, undoing any conflicting changes in the process.
– Plurality: The CG ∈ MCGS with the most votes in VR wins. In case of a tie or |VR| = 0,

NCGMCGS wins.
– Majority: The CG ∈ MCGS with the most votes in VR wins if it has more than |VR| /2

votes, otherwise NCGMCGS wins.
– Consensus: If |VR| > 0 and all votes in VR agree on a single CG ∈ MCGS, CG wins,

otherwise NCGMCGS wins.

When the outcome has been computed at a site, our tool calls RESOLVECONFLICT (Algo-
rithm 7) with that outcome, that is, the chosen compatible group CG. RESOLVECONFLICT

then transitions back to the feature modeling phase (3) by re-initializing the site with the fea-
ture model corresponding to CG and resetting the CDAG and MCGS in the process. Then,
the collaborators can proceed with modeling activities until the next conflict is detected.

4 Correctness

A particular challenge in designing optimistic schemes for concurrency control is to prove
their correctness, which is essential to avoid defective systems (Imine et al. 2006; Randolph
et al. 2013; Sun et al. 2014; Cormack 1995). To address this challenge, we chose the MVMD
technique, which has been carefully designed with the CCI model in mind (cf. Definition
7). So, we have to reason solely about the correctness of our adaptations for collaborative

(2021) 26: 24Empir Software Eng24 Page 22 of 47

feature modeling, the CDAG, and outer as well as inner conflict relations. By ensuring com-
pliance with the CCI model, we avoid inconsistent feature models, raise the collaborators’
confidence in the system, and thus allow effective and efficient editing of feature models.

4.1 Causality Preservation

A collaborative, real-time editing system preserves causality when it ensures that for any
operation, all causally preceding operations are processed beforehand (Sun et al. 1998).
This is satisfied in client-server architectures and can be achieved in peer-to-peer archi-
tectures with existing techniques that are not specific to feature modeling (Fidge 1988;
Sun et al. 1998, 1999). In client-server architectures with well-ordered message channels,
causality preservation is achieved trivially (Sun and Sosič 1999). For other topologies (e.g.,
peer-to-peer architectures), suitable causality preservation schemes have been proposed in
the literature (Fidge 1988; Sun et al. 1998). These schemes are not specific to feature
modeling and can be applied to our concept without modifications. Assuming a suitable
causality preservation scheme, we can show that at any site, an operation’s set of causally
(immediately) preceding operations is fully known when the operation is being processed.

Theorem 2 Let G be the CDAG for a group of operations GO and O ∈ GO. Further, let
G′ be the current CDAG at any site at any time. Then, if G′ includes O, also CPG′(O) =
CPG(O), that is, the set of causally preceding operations is computed correctly at said site.

Proof Recall that G′ is incrementally constructed as a site processes operations. That is,
when an operation is sent or received, it is inserted into G′ by PROCESSOPERATION. As
guaranteed by a suitable causality preservation scheme, any Ox ∈ CPG(O) is processed
before O at all sites. Thus, when O is processed, G′ already includes all operations in
CPG(O) and CPGp(O) = CPG(O).

Below, we use this property to reason about the outer and inner conflict relation and the
combined effect of a maximum compatible group set.

4.2 Convergence

A collaborative, real-time editing system converges if all sites arrive at identical feature
models after a group of operations has been processed, although the arrival order may differ
from site to site (Sun et al. 1998). To this end, we rely on the correctness of the MVMD
technique (and the MOVIC algorithm in particular), as described by Sun and Chen (2002).
Sun and Chen prove that MOVIC converges for operations that target the same version of
an object. We enforce this with our globally targeted object strategy (cf. Section 3.2) and by
freezing all sites when a conflict occurs (cf. Section 3.3). However, we introduced two new
conflict relations and a topological sorting strategy in Section 3.2, which require further
verification to confirm that our system converges.

First, we examine APPLYCOMPATIBLEGROUP, which applies a set of mutually compat-
ible operations (a compatible group) to a feature model by means of a topological sorting.
We mentioned that multiple topological sortings may exist for a compatible group, which
only differ in the execution order of concurrent operations. As APPLYCOMPATIBLEGROUP

requires the supplied operations to be mutually compatible, we only have to show that
any two compatible concurrent operations commute in our system. This follows from the

(2021) 26: 24Empir Software Eng Page 23 of 47 24

no-overwrites rules introduced in SYNTACTICALLYCONFLICTING: COs that modify the
same feature or cross-tree constraint’s attribute are considered conflicting. Such operations,
however, are the only operations in our system that do not necessarily commute. Thus, com-
patible concurrent operations always commute in our system. No matter which topological
sorting APPLYCOMPATIBLEGROUP determines, it computes the same feature model for a
given compatible group. In particular, it is also stable across sites, that is, the computed
result does not depend on the executing site. We proceed to prove the precondition that
APPLYCOMPATIBLEGROUP is only invoked with sets of mutually compatible operations:

– In SYNTACTICALLYCONFLICTING, APPLYCOMPATIBLEGROUP prepares feature mod-
els by applying subsets of operations’ causally preceding operation sets (their CP sets).
Note that the CP set of an operation Oa only includes mutually compatible operations:
If there were Ob, Oc ∈ CPG(Oa) such that Ob⊗OOc, the system would have been
frozen until the conflict is resolved, and Oa would have never causally succeeded both,
Ob and Oc. Thus, the CP subsets used in SYNTACTICALLYCONFLICTING include only
mutually compatible operations.

– In INNERCONFLICTING, APPLYCOMPATIBLEGROUP prepares a feature model that
includes the effects of both checked operations, COa and COb, and all their causally
preceding operations. Using the same argument as above, we can see that operations in
both CP sets are mutually compatible. This also applies to CPG(COa) ∪ CPG(COb)

because of the conflict propagation property of ⊗O (cf. Definition 12). Further, the
no-overwrites rules have already been checked by SYNTACTICALLYCONFLICTING at
this point, therefore COa and COb commute. Because COa and COb are mutually
compatible with their causally preceding operations by definition, the set applied by
APPLYCOMPATIBLEGROUP altogether (i.e., CPG(COa)∪CPG(COb)∪{COa,COb})
only includes mutually compatible operations.

– To compute the uiState in PROCESSOPERATION and RESOLVECONFLICT (i.e., to
derive a feature model to pass to the user interface), APPLYCOMPATIBLEGROUP is
invoked with a maximum compatible group from an MCGS, which only contains
mutually compatible operations by definition.

Next, we show that our conflict relations ⊗I and ⊗O are proper conflict relations
(cf. Definition 8), that is, they both must be irreflexive and symmetric (Xue et al. 2003).
Further, as we compute both conflict relations algorithmically, the algorithms must be sta-
ble across sites, meaning that all sites must always compute the same result for two given
operations.

We show that ⊗I , when computed by INNERCONFLICTING, is suitable for use within
⊗O to detect conflicting operations. Because ⊗I is only used from within ⊗O , we may
assume that all causally preceding operations are compatible as guaranteed by conflict
propagation. Further, we show that ⊗O , as computed by OUTERCONFLICTING, is also a
conflict relation and therefore suitable to be used within the MOVIC algorithm instead of
the GRACE conflict relation ⊗.

Theorem 3 Recall that COa ⊗I COb if and only if INNERCONFLICTING(G, FMinit, COa ,
COb) = true, where G and FMinit are the current CDAG and initial feature model at the site
that executes INNERCONFLICTING. Further, COa⊗OCOb if and only if OUTERCONFLICT-
ING(G, COa , COb) = true, where G is the current CDAG at the site that executes
OUTERCONFLICTING. Then, ⊗I and ⊗O are conflict relations (i.e., symmetric, irreflexive,
and stable across sites).

(2021) 26: 24Empir Software Eng24 Page 24 of 47

Proof ⊗I is stable across sites, that is, INNERCONFLICTING (and SYNTACTICALLYCON-
FLICTING) always return the same results for two given operations COa and COb, although
the passed CDAG may differ across sites. This is because the CDAG is only used to deter-
mine CP sets, which are fully known for COa and COb (cf. Theorem 2). Further, we
have shown above that the preconditions of APPLYCOMPATIBLEGROUP are satisfied in this
context, so that its invocation is stable across sites. Altogether, ⊗I is then stable across
sites as well. Furthermore, ⊗I is irreflexive because INNERCONFLICTING returns false if
COa = COb. It is also symmetric because SYNTACTICALLYCONFLICTING is used to check
both potential execution orders for conflict. Thus, ⊗I is a conflict relation.

⊗O is stable across sites, because the CDAG is only used to determine CIP sets. Because
these are subsets of CP sets, they are also fully known (cf. Theorem 2). Further, ⊗O is
irreflexive because OUTERCONFLICTING returns false if COa = COb. The symmetry of
⊗O follows from the symmetry of ⊗I . Thus, ⊗O is a conflict relation as well.

From these proofs and previous theorems establishing the correctness of the MOVIC
algorithm, we can derive the convergence of our collaborative feature modeling editor.

Theorem 4 Let GO = {O1,O2, . . . , On} be a group of operations. Let MCGSi denote a
maximum compatible group set constructed by MOVIC that includes i operations from GO.
Then, MCGSn is the same no matter in which order the n operations are processed. Further,
the combined effect (i.e., feature model) derived from MCGSn is identical regardless of the
processing order, that is, the system converges.

Proof As per our globally targeted object (cf. Section 3.2) and site freeze (cf. Section 3.3)
strategies, all operations in our system target always a single feature-model version. Further,
⊗O is a conflict relation (cf. Theorem 3) and can therefore replace the GRACE conflict
relation ⊗ in the MOVIC algorithm. Thus, MOVIC constructs the same MCGSn for GO
regardless of the processing order (Sun and Chen 2002, Property 3). The combined effect
is then computed by invoking APPLYCOMPATIBLEGROUP on some resulting maximum
compatible group, which we have shown to be stable across sites.

4.3 Intention Preservation

To preserve intentions, a collaborative, real-time editor must ensure that an operation per-
forms its intended execution effect at every site and any time, regardless of its execution
context. In other words, its generation and execution contexts always match, where the gen-
eration context of an operation consists of the initial feature model and all operations that
causally precede the operation; and the execution context may then additionally include
operations that do not conflict with any operations in the generation context (Sun et al.
1998). By design, ⊗O ensures that intentions are preserved by only invoking ⊗I when it
can guarantee that the execution context is appropriate.

However, we have yet to show that the combined effect derived from the MCGS con-
structed by MOVIC also satisfies this property. The combined effect (i.e., the feature model
displayed in the user interface) is computed within PROCESSOPERATION by applying a
maximum compatible group CG on the initial feature model using APPLYCOMPATIBLE-
GROUP. In order to show that for an operation in CG, its execution context matches its
generation context, we prove that each operation’s CP set is also fully contained in CG. In
other words, CG contains no gaps with regard to an operation’s causal history.

(2021) 26: 24Empir Software Eng Page 25 of 47 24

Theorem 5 Let G be the CDAG for a group of operations GO = {O1,O2, . . . , On}.
Let MCGSi be any maximum compatible group set constructed by MOVIC that includes i

operations from GO. Then, for any CG ∈ MCGSi and Oa ∈ CG, CPG(Oa) ⊆ CG.

Proof First, because Oa has been processed by MOVIC, CPG(Oa) is fully known (Theo-
rem 2). Now suppose there is any Ox ∈ CPG(Oa) that is not in CG. Then there must be
an operation Ob ∈ CG such that Ox⊗OOb, otherwise CG would not be a maximum com-
patible group. Due to the conflict propagation property of ⊗O , also Oa⊗OOb. However,
Oa,Ob ∈ CG and Oa⊗OOb, therefore CG is not a compatible group, which contradicts
the definition of MCGSi . Thus, there is no Ox ∈ CPG(Oa) that is not in CG, that is,
CPG(Oa) ⊆ CG.

Furthermore, we desire that no operation is ever rejected, masked, or overridden to
improve the collaborators’ confidence in the system. We ensure this with the no-overwrites,
no-graveyarded, and no-group-optional rules, as described in Section 3.2.

For conflict resolution, we introduced the neutral compatible group to allow cancellation
of all pending conflicts. We show that this neutral compatible group is computed the same
at all sites and does not contain any gaps, that is, every contained operation’s execution
context matches its generation context.

Theorem 6 Let G and MCGS be the CDAG and maximum compatible group set for a
group of operations GO. Further, let NCGMCGS := ⋂

CG∈MCGS CG be its neutral compatible
group. Then, NCGMCGS is stable across sites. Further, for any O ∈ NCGMCGS, CPG(O) ⊆
NCGMCGS.

Proof First, NCGMCGS is stable across sites when conflict resolution is initiated. This is
because the MCGS is unique (Sun and Chen 2002, Property 1) and converges at all sites
(Theorem 4). Now, for any O ∈ NCGMCGS, O ∈ CG for all CG ∈ MCGS. By Theorem 5,
also CPG(O) ⊆ CG for all CG ∈ MCGS, therefore also CPG(O) ⊆ NCGMCGS.

From the above theorems, we infer that our collaborative, real-time feature model-
ing system is CCI-consistent according to Definition 7. As the CCI model has proven
itself in practice (Sun and Ellis 1998; Sun et al. 1998), we are confident that our
system allows highly-responsive, unconstrained collaboration, while still ensuring basic
consistency properties.

5 Implementation

As a proof-of-concept, we have implemented our technique for collaborative, real-time fea-
ture modeling in the open-source prototype variED. variED is a web-based feature modeling
tool that allows multiple users to collaborate on a feature model by visiting the same var-
iED instance in their web browser. In Fig. 5, we depict the user interface of our tool in both
phases of the feature-modeling loop as described in Section 3.2.6. We chose a web-based
approach because it allows for universal and portable usage of our editor across all plat-
forms, without requiring any setup. In addition, the high degree of abstraction allowed us to
implement our prototype in a relatively short time.

(2021) 26: 24Empir Software Eng24 Page 26 of 47

(a) Feature Modeling Phase (b) Conflict Resolution Phase

Fig. 5 Collaborative, real-time feature modeling with variED

When using our editor, collaborators assume a client role and connect to a centralized
server, which acts as a message broker for the clients. Thus, our prototype employs a client-
server architecture, which allows for simple integration with the web platform and trivially
guarantees causality preservation (cf. Section 4). However, our concept is not specific to
client-server scenarios and may also be employed in peer-to-peer topologies.

In Fig. 6, we depict the architecture of our prototype, which comprises three components,
namely the collaboration kernel, client, and server. The collaboration kernel (cf. Figure 6a)
comprises all modules required for collaborative, real-time feature modeling as described in
this article. We further provide a client and server component (cf. Figure 6b and c), which

Feature Model

MOVIC

Primitive
Operations

Conflict
Resolution

Core

Client API Server API
Shell

Compound
Operations

CDAG
Topological

Sorting

Conflict
Relations

Garbage
Collection

D
at

a
S

tr
uc

tu
re

s
C

on
fli

ct
D

et
ec

tio
n

Kernelsend receive forward

(a) Collaboration Kernel

Client

Client API

Kernel

State Management

User Interface

Messaging

(b) Client

Server

State Management

Messaging

Server API

Kernel

Client Management

(c) Server

Fig. 6 Architecture of variED. Client and server share a collaboration kernel

(2021) 26: 24Empir Software Eng Page 27 of 47 24

are executed on the client and server sites, respectively. In the following, we discuss each
component in more detail.

The collaboration kernel is primarily concerned with processing operations, that is,
detecting and resolving feature modeling conflicts. We chose to implement this component
in the Clojure programming language (Hickey 2008), which is a Lisp dialect with immutable
persistent data structures. Using Clojure integrates well with our client-server infrastructure
and allowed us to implement most of our technique rapidly in mathematical pseudocode.
To optimize performance, we implemented a garbage collection scheme for pruning the
CDAG and introduced a conflict cache that caches the computation results of ⊗O and ⊗I

to speed up the recursion in OUTERCONFLICTING, the details of which we described pre-
viously (Kuiter 2019a). For tracking the causal ordering of operations (cf. Definition 6), we
employ the vector clock algorithm developed independently by Fidge (1988) and Mattern
(1988).

The mathematical core of the collaboration kernel is surrounded by an imperative shell,
which implements Algorithms 6–9 and exposes the send, receive, and forward algorithms
as an external API to the client and server component. Send is called at a client when-
ever the user issues an editing operation, which invokes PROCESSOPERATION internally.
The data returned by send is intended to be sent to the server to serve as input to forward,
which retrieves an operation at the server, calls PROCESSOPERATION, and returns the oper-
ation again, intended to be forwarded to all clients but the originally issuing client. Finally,
receive accepts such a forwarded operation and calls PROCESSOPERATION as well, possibly
creating multiple feature-model versions in the process.

The client component runs at each user’s local site inside the web browser. It utilizes
TypeScript (Bierman et al. 2014) and ClojureScript (McGranaghan 2011) to provide a local
feature-modeling environment, which is connected via a WebSocket (an ordered, real-time
messaging channel) to a central server. This central server executes the server component
with a Java servlet container, such as Apache Tomcat (Hunter and Crawford 2001). Instead
of a user interface, the server component includes a client manager, which allows clients to
join and leave collaborative editing sessions.

Our prototype can be deployed on various cloud infrastructure providers, including Ama-
zon AWS, Heroku, and Microsoft Azure to allow for practical usage.3 In addition, we
developed integration and unit test suites for the collaboration kernel and client compo-
nents. We are confident that the test suites we developed, together with our argumentation
in Section 4, confirm the correctness of our prototype.

6 Evaluation

In this section, we report the details of our tool evaluation. To this end, we describe our
study design before reporting and discussing its results. We designed and conducted our
study based on the guidelines of Wohlin et al. (2012). All artifacts and results are part of our
meta repository.2

3Deployment instructions and a live instance are available in our tool repository.

(2021) 26: 24Empir Software Eng24 Page 28 of 47

6.1 Study Design

As we have formally justified the correctness of our technique in Section 4 and showed
its feasibility by implementing it (cf. Section 5), our evaluation focused on the usability
of our tool (von Nostitz-Wallwitz et al. 2018; Lethbridge et al. 2008; Molich 2010; Mace-
field 2009). In particular, we aimed to compare our tool to existing collaboration practices.
Further, we tried to identify opportunities to improve our implementation, identify core lim-
itations, and collect empirical data that can convince practitioners to use our tool. For this
purpose, we defined 15 questions for a survey, which we show in Table 1. First, we asked
our participants to provide background information about themselves to help us understand
their experiences regarding feature modeling. This included questions on the roles they had
during feature modeling (Q1), their experiences with feature modeling in teaching, study-
ing, academia, and industry (Q2), and estimates of the feature models’ sizes (Q3). Second,
we asked questions regarding collaborative feature modeling. In particular, we were inter-
ested in each participant’s involvements (Q4), practices, and strategies (Q5–Q8), as well as
satisfaction, problems, and limitations of the strategies they employ (Q9–Q11). Next, each
participant had the opportunity to test our tool, either during a live session, by inviting oth-
ers, or by simulating multi-user editing with multiple browser instances. Finally, we asked
the participants to assess our tool (Q12) and describe its limitations as well as benefits com-
pared to current strategies (Q13–Q15). After each of the three sections, all participants also
had the option to state additional comments.

As participants, we personally invited researchers and practitioners that we knew worked
on feature modeling. To ensure that our tool was used in a collaborative fashion and that we
could obtain insights on this aspect, while also aiming to increase the number of responses,
we decided to employ two distribution strategies: First, we invited pairs of participants to do
live sessions during which two of the authors were present. For this purpose, we designed
simple tasks that could cause conflicts (i.e., the participants worked on the same part of
an example feature model, e.g., renaming the same feature, changing the same constraints,
moving features in conflicting ways). Besides filling in the survey questions, the authors
could help the participants with any questions and took notes to document the actions of
each participant. So, we obtained additional qualitative insights on the usage of our tool
and different strategies to use it. In the end, we conducted four live sessions (each about
one hour), resulting in eight responses. Second, we sent out the survey to other invitees
with whom it would have been problematic or impossible to coordinate a live session. As
aforementioned, these participants had multiple ways to try the collaborative behavior of our
tool and we provided our tasks as additional material. We received nine additional responses
from these invitations, resulting in a total of 17 surveys being filled out (from participants
in Austria, Brazil, France, Germany, Spain, Sweden, and the United States). Even though
small, we argue that this sample size is reasonable to understand the usability and major
problems of our tool, for three reasons: (1) We are not focusing on statistical tests, but
qualitative responses of a comparable, limited number of subjects (i.e., feature-modeling
experts), which is why having many participants is less important (Wohlin et al. 2012). (2)
We focus on identifying serious problems of our current prototype with a usability study, for
which (Molich 2010) actually recommend to involve four to eight participants in each cycle
(we conducted one cycle). (3) We found that newer responses (i.e., in they survey) did not
identify new serious problems of our technique or disagreements in the satisfaction with our
tool (cf. Figure 9), meaning that we achieved saturation as a suitable stop criterion (Wohlin
et al. 2012).

(2021) 26: 24Empir Software Eng Page 29 of 47 24

Table 1 Survey questions to evaluate our tool

ID Questions & Answers

General Feature Modeling Experience

Q1 What have been your involvements in feature modeling?

� Developer � Modeler � Researcher � Domain Expert � Student � Lecturer � Other

Q2 What is your experience in feature modeling in the following roles?

Likert scale (0 - no experience, 5 expert) for roles: teaching, studying, academic, industrial

Q3 How many features do your feature models contain, on average?

� <50 � 50–100 � 100–500 � 500+
Collaborative Feature Modeling Practices

Q4 What is your experience in collaborative feature modeling?

� Personally involved � Observing/studying � Second-hand � None � Other

Q5 For what use cases do you use collaborative feature modeling and why?

Free text

Q6 How often do you edit feature models collaboratively?

Likert scale (0 - never, 5 - frequently)

Q7 With how many people do you edit a feature model in a collaborative fashion, on average?

Free text

Q8 What strategy do you employ for collaborative feature modeling and what systems do you use?

Free text

Q9 How satisfied are you with the implemented strategy?

� Very <un− >satisfied � <Un− >Satisfied � Slightly <un− >satisfied � Not applicable

Q10 What problems do you face during collaborative feature modeling?

Free text

Q11 In what use cases do you not apply collaborative feature modeling and why?

Free text

Tool

Q12 How satisfied are you with the tool?

� Very <un− >satisfied � <Un− >Satisfied � Slightly <un− >satisfied

Q13 What functionalities of the tool could be improved or are missing with regard to
collaborative feature modeling?

Free text

Q14 In what use cases would the tool be more suited than your current strategy?

Free text

Q15 In what use cases would the tool be less suited than your current strategy?

Free text

6.2 Results and Discussion

In the following, we report and discuss the results of our evaluation. Namely, we analyze our
participants’ experiences with feature modeling, current strategies of collaborative feature
modeling, and the feedback on our tool.

6.2.1 Participants

Our 17 participants have been involved in several roles in general feature modeling (mul-
tiple selections were allowed), mainly as researchers (16), developers (11), and modelers

(2021) 26: 24Empir Software Eng24 Page 30 of 47

Fig. 7 Experiences of our participants with feature modeling in different roles. Larger circles indicate more
responses. The scale ranges from no experience (0) to expert (5)

(10). In Fig. 7, we show the experiences that our participants have with feature modeling in
different roles. We can see that all of them know feature modeling from the academic point
of view. Nonetheless, they also have experiences in other roles, most importantly in indus-
trial contexts. On average, our participants worked on smaller feature models with fewer
than 50 features (9). However, several have worked on models with 50–100 (5), 100–500
(2), or more than 500 (1) features.

In Fig. 8, we further show to what extent our participants worked with collaborative
feature modeling. As we can see, six of them did not work or experience collaboration
during feature modeling at all. In contrast, six of our participants personally collaborated
during feature modeling and four others observed such collaboration. One participant stated
to have second-hand experiences, for example, due to a colleague sharing their experiences.

Discussion Overall, we argue that our participants represent a reasonable sample for eval-
uating our tool. All of them have experiences with feature modeling in general in different
roles and contexts, including industry, and have worked with small to medium-sized feature
models. Unfortunately, not all of our participants have experiences with collaborative fea-
ture modeling. This may limit the insights that we can gain on currently employed strategies
for collaboration, but does not affect the feedback we can receive on our tool’s usability. As
aforementioned, we aimed to obtain feedback on our tool that could convince practitioners

Fig. 8 Our participants’ experiences with collaborative feature modeling

(2021) 26: 24Empir Software Eng Page 31 of 47 24

to use it. For this purpose, personal experiences and opinions are suitable to understand the
usability of our tool and provide convincing arguments.

6.2.2 Collaborative Feature Modeling

Before inquiring concrete strategies for collaborative feature modeling, we asked our par-
ticipants to exemplify potential use cases for such collaborations and how they work
collaboratively on feature models. Our participants stated, for instance, that collaborative
feature modeling is helpful for editing independent parts of a feature model (e.g., assigned to
different groups of modelers), brainstorming, step-wise refining a model, analyzing require-
ments, on-the-fly changes, customer support, configuring, teaching, and workshops with
domain experts. Essentially, most use cases involve several stakeholders that collaboratively
edit the model (e.g., step-wise refinement) or are on different levels of knowledge (e.g.,
teaching). Moreover, our participants stated that collaborative editing may not occur that
frequently (i.e., two responses on level 4 for Q6, two responses for level 3, and four for level
2), and involves up to 10 stakeholders.

Regarding strategies employed for collaboration prior to using our tool (Q8), we
identified the following:

– Face-to-Face: In this strategy, all collaborators must be at the same location. Besides
simple discussions or workshops with whiteboards, we found one particularly interest-
ing instance of this strategy: pair-modeling. In one of the live-sessions with a team from
industry, both participants explained that they would usually edit the feature model
while sitting next to each other, and discuss what they would do, analogous to pair-
programming (Williams and Kessler 2002). While the face-to-face strategy facilitates
communication and collaboration, it has also disadvantages, namely that the number
of participants is limited, data must be transferred between workplaces, and meetings
must be coordinated. This strategy is known as synchronous, co-located collaboration
in the classification of groupware (Baecker et al. 1995).

– Version-Control Systems: In this strategy, a version-control system (e.g., Git) is used to
collaborate and propagate edits of different stakeholders to the same model. This strat-
egy solves the problems of the face-to-face strategy, but comes with its own problems.
For instance, merge conflicts must be manually resolved and can cause severe trouble,
which is why parallel editing of the same model parts does not work properly. In the
classification of groupware, this strategy is considered a kind of asynchronous, remote
collaboration (Baecker et al. 1995).

Overall, these two strategies and their problems resemble those we expected to occur in
practice (cf. Section 1) and aimed to solve with our technique.

Discussion Overall, the results on current collaboration practices and strategies align with
our initial expectations and existing literature. For instance, our participants confirm that
only a small number of stakeholders (ideally) edits a feature model (Fogdal et al. 2016;
Berger et al. 2014; Nešić et al. 2019). Moreover, we did identify the strategies for collabo-
rative feature modeling we anticipated, particularly lacking the properties of synchronous,
remote collaboration we implemented in our tool (cf. Section 2). So, our tool provides a
reasonable addition to current practices by enabling a collaboration strategy that was not
available, yet.

(2021) 26: 24Empir Software Eng24 Page 32 of 47

6.2.3 Feedback on our Tool

As we had established that our tool addresses an open gap, we were then concerned with
its usability and whether our participants considered it to be helpful. In Fig. 9, we compare
the satisfaction levels our participants stated for using our tool compared to their current
strategy. We remark that the question about satisfaction of the currently employed strategy
received fewer responses, as not all participants had experience with collaboration before.
Still, five participants were unsatisfied with their current strategy, while our tool received
only positive feedback for this evaluation.

Despite the positive feedback, we are aware that our tool is limited in several ways.
To assess these limitations, we asked our participants to elaborate on functionalities they
missed and on what scenarios our tool would perform better or worse compared to their
current strategies, in their opinion. Regarding technical aspects, our participants asked for
several convenience functionalities that we were aware of, but did not implement, yet—for
instance, highlighting the edits of others, drag and drop, a chat, undo/redo, and differ-
ent role-defined perspectives. Implementing these convenience functionalities can greatly
improve the usability and acceptance of variED. We aim to add these into our prototype,
or by integrating our technique into existing tools, such as FeatureIDE or pure::variants.
However, these functionalities are not concerned with our technique itself.

Considering suitable application scenarios for our tool or other strategies, our participants
argued in favor of our tool, for instance, for sketching a feature model, discussing changes,
remote work, distributed collaboration, structural refactoring, and training. In contrast, our
tool faces similar restrictions compared to Google Docs or Overleaf for text editing, mak-
ing it less suited for offline work, versioning, and edits on the same parts of the model.
Furthermore, variED currently allows any collaborator to change anything, which may not
be wanted and can be solved with a role model. One feature that is out of scope for our tool
for now, but has been requested several times, is to also support collaborative configuring.
We need to address these limitations to make our tool actually usable for practice. Still, the
limitations are not concerned with our actual technique, which we can adapt to accordingly
in the future, for instance, by submitting offline committed operations when a network is
accessible again.

Discussion Overall, our tool received overwhelmingly positive feedback, outperforming
current strategies for collaboration. Thus, we argue that our technique provides not only a
technical solution for an open problem, but also a valuable tool that can support practitioners
and researchers in their work. As we expected, the pros and cons of using our tool align with
those of other synchronous, real-time editors that rely on similar concepts. Interestingly,
we obtained feedback ranging from our tool can improve “almost all” to “unfortunately
few” use cases. In particular, one participant stated that our tool cannot replace face-to-face

Fig. 9 Participants’ feedback on the satisfaction level of using our tool or the currently employed strategy.
There are fewer responses on the current strategy, as not all participants had experiences on collaborative
feature modeling beforehand

(2021) 26: 24Empir Software Eng Page 33 of 47 24

meetings. However, this was never our goal and we argue that additional communication is
needed to properly use our tool. It seems more important to consider how collaboration on
feature models occurs in practice and scope the usage of our tool accordingly. Our prototype
is missing important convenience functionalities and support for different use cases, limiting
its practical usability at the moment. Most of these are extensions that can be build upon our
technique and current prototype, which we aim to do in future work.

6.3 Threats to Validity

In the following, we explain the internal and external threats to validity of our evaluation
according to Wohlin et al. (2012) and Siegmund et al. (2015).

6.3.1 Internal Validity

One threat to the internal validity of our evaluation is the selection of participants. We
personally invited researchers and practitioners who we knew are working on feature mod-
eling, and potentially collaborative feature modeling. So, we limited the number of subjects,
and more participants would potentially provide a more detailed and diverse perspective on
current collaboration practices for feature modeling and on our tool. However, we aimed
to involve interested volunteers to increase motivation and obtain reliable, qualitative data
to show the usability of our tool—while also ensuring that our participants were actually
experienced in feature modeling. Moreover, we described why we consider our sample
reasonable, focusing particularly on achieving saturation to mitigate this threat.

Another threat to the internal validity may be our study design and the questions we
asked. Potentially, some questions were misleading or some concepts not clearly explained.
To mitigate this threat, we performed a test run with a colleague to evaluate whether all
questions were clearly understandable. Furthermore, we first conducted two live sessions
(four participants) before deploying our survey, to see whether any formulations or tech-
nical limitations caused problems. We slightly extended our explanations accordingly to
provide a more helpful documentation, but the questions and tasks seemed to cause no prob-
lems. Furthermore, each participant could provide additional comments, also to indicate
any problems in understanding the survey or using the tool. However, we received no such
comments, indicating that this threat did not cause problems.

Finally, we did not conduct a controlled experiment. So, we did not focus on the internal
validity, which we did intentionally to investigate the practical usability of our tool (Sieg-
mund et al. 2015). As a result, we did not evaluate to what extent our tool may perform
better (e.g., in terms of task solution time, correctness) compared to other strategies. In con-
trast, we aimed to obtain qualitative insights and opinions that can convince practitioners
to use our tool (von Nostitz-Wallwitz et al. 2018). This may introduce the threat of overly
interpreting results that we cannot support with quantitative data. We mitigated this threat
by carefully analyzing our qualitative data and avoiding any assessment of its performance
compared to other strategies for collaborative feature modeling.

6.3.2 External Validity

Considering the external validity, one threat is that we conducted two different types of
evaluations: (1) four live sessions with eight participants during which two authors were
present and (2) a survey for which we received nine responses. While both evaluations
comprised the same material, descriptions, and questions, only in the live sessions our
participants could ask questions to clarify issues. So, the results of both evaluations may not

(2021) 26: 24Empir Software Eng24 Page 34 of 47

align perfectly, but we aimed to mitigate this threat by letting all participants answer the survey
questions. Moreover, due to the sample size, we cannot generalize the results for all users
of collaborative feature modeling; despite ensuring that our participants are knowledgeable
in that domain. Due to these two issues, our external validity may be threatened.

Another threat to the external validity that we cannot fully control is the background
of our participants. Depending on various factors, such as their work position, feature-
modeling experiences, industry collaborations, and motivation, their responses may vary.
We aimed to mitigate this threat by inviting participants that have the required knowledge
and have different practical experiences with feature modeling (e.g., from industry collab-
orations). So, we planned to get insights from such different perspectives that allow us to
carefully generalize over different backgrounds.

7 RelatedWork

Closely related to our work is the CoFM environment that has been proposed by Yi et al.
(2010, 2012). With CoFM, stakeholders can construct a shared feature model and evaluate
each other’s work by selecting or denying model elements, resulting in a personal view
for every collaborator. Our technique differs, as we only consider a single feature model,
which is synchronized among all collaborators. Furthermore, we describe how to detect and
resolve conflicting operations, which is not considered in CoFM. In addition, we employ
optimistic replication to hide network latency, whereas CoFM uses a pessimistic approach.

Other works on feature-model-editing have mostly focused on single-user usage (Meinicke
et al. 2017; Beuche 2008; Krueger 2007; Mendonça et al. 2009; Acher et al. 2013). To
the best of our knowledge, none of the existing tools or techniques supports real-time col-
laboration. Rather, they allow asynchronous collaboration with version or variation control
systems, which is an alternative solution with its own pros and cons compared to our tool.

Linsbauer et al. (2017) classify variation control systems, highlighting a general lack of
collaboration support compared to regular version-control systems. In particular, Schwa-
ger and Westfechtel (2016, 2017) propose SuperMod, a variation control system for filtered
editing in model-driven SPLs that supports asynchronous multi-user collaboration. How-
ever, SuperMod does not allow real-time editing and does not address conflicts that arise
from the interaction of multiple collaborators.

Botterweck et al. (2010) introduce EvoFM, a technique for modeling variability over
time. Their catalog of evolution operators resembles the COs we presented in Section 3.1,
but they do not explicitly address collaboration. Similarly, Nieke et al. (2016, 2018) encode
the evolution of an SPL in a temporal feature model to guarantee valid configurations. With
their technique, inconsistencies and evolution paradoxes can be detected. However, they do
not address collaboration and provide no particular conflict resolution strategy. In general,
change impact analyses on feature models have been proposed to measure and evaluate
conflict potential for modeling decisions (Cho et al. 2011; Hajri et al. 2018; Mazoun et al.
2016; Paskevicius et al. 2012). These techniques do not explicitly address collaboration, but
may guide collaborators in their understanding and resolution of conflicts.

8 Conclusion

In this article, we presented a technique for collaborative, real-time feature modeling and
conducted an empirical user study to evaluate the usability and usefulness of our corre-

(2021) 26: 24Empir Software Eng Page 35 of 47 24

sponding tool, variED. First, we defined the requirements for collaborative, real-time feature
modeling, based on the use cases we aimed to support with our tool. To satisfy these
requirements, we utilized operation-based editing with a corresponding set of operations
and extended the concurrency-control technique MVMD of the graphics editing system
GRACE. We adapted the MVMD technique by introducing a conflict relation, a conflict-
detection algorithm, and a conflict-resolution strategy that are suitable for feature modeling.
In addition, we reasoned about the correctness of our technique according to the CCIs model
and showed its feasibility by implementing a prototype. The results of our empirical user
study show that our tool supports the defined use cases well and is a helpful means to extend
current collaboration strategies. More precisely, the results show that our tool facilitates
important use cases that are not covered by currently employed strategies and it received far
more positive feedback compared to these strategies, despite its technical limitations.

In future work, we want to address the question of how to raise awareness of collabora-
tors for potentially conflicting editing operations in order to avoid conflicts in the first place.
For instance, this could be achieved by facilitating communication between collaborators
when they are about to edit the same feature subtree. Besides user studies to evaluate our
technique, we also aim to extend our technique with un- and redo operations and more com-
plex COs in order to improve the user experience, incorporating the feedback we received
to improve our tool.

A Appendix

In the following, we provide additional details for our operational model, including
complete formal descriptions of our primitive and compound operations introduced in
Section 3.1, and a proof for Theorem 1 in Section 3.1.3.

A.1 Primitive Operations

(2021) 26: 24Empir Software Eng24 Page 36 of 47

(2021) 26: 24Empir Software Eng Page 37 of 47 24

A.2 Compound Operations

(2021) 26: 24Empir Software Eng24 Page 38 of 47

(2021) 26: 24Empir Software Eng Page 39 of 47 24

A.3 Proof of Theorem 1

Theorem 1 Let FM ∈ FM be a legal feature model. Further, let CO be a com-
pound operation whose preconditions are satisfied with regard to FM. Then, FM’ =
applyCO(FM,CO) ∈ FM, that is, FM’ is again a legal feature model.

Proof First, FM’ still has unique identifiers for features and cross-tree constraints: Only
compound operations that include create POs can affect FID

FM’ and CID
FM’. For these COs,

preconditions such as F ID /∈ FID
FM ensure that the created feature or cross-tree constraint has

a new unique ID.
Second, FM’ still contains valid parents (i.e., all referenced parentIDs are valid feature

IDs, cf. Definition 3): Because FM is legal and therefore has valid parents, the only opera-
tions that might change this have to create a feature or update a parentID. Creating a feature
sets its parentID to †, which is valid according to Definition 3. As for updating a parentID,
it can be shown for each compound operation above that the updated parentID is still valid.
For example, createFeatureAbove sets the newly created feature’s parentID to FPID, which
is a valid feature ID as per precondition FPID ∈ FID

FM. (The proof is similar for the other
operations.)

Third, FM’ still has valid constraints (i.e., all feature IDs referenced in cross-tree con-
straints are valid): Because FM already has valid constraints and no features are ever deleted,
i.e., FID

FM ⊆ FID
FM’, we only have to consider createConstraint and setConstraint, both of

which ensure valid constraints as per precondition Var(φ) ⊆ FID
FM.

Next, the root feature condition can only be violated when removing the root feature.
We forbid this with preconditions on removeFeatureSubtree and removeFeature, except for
when the root has exactly one child feature. In that case the single root condition is ensured
by making that child feature the new root feature.

Finally, FM’ is still acyclic (i.e., all feature IDs descend from ⊥ or † in FM’): This is
simple to show for all compound operations but moveFeatureSubtree, where we make use of
the precondition that FPID (the move target) must not descend from F ID (the move source).

Because FM is acyclic, both FPID and F ID descend from ⊥ or †. As FPID does not
descend from F ID as per precondition, the latter does not appear in the former’s path to
the root feature. In that case, moving the subtree rooted at F ID below FPID does not affect
FPID’s path to the root feature. Thus, looking at FM’, F ID now descends from FPID which
in turn still descends from ⊥ or †. By transitivity, F ID also descends from ⊥ or †, therefore
FM’ is still acyclic.

(2021) 26: 24Empir Software Eng24 Page 40 of 47

Acknowledgments The work of Elias Kuiter, Sebastian Krieter, and Jacob Krüger has been supported by
a pure-systems Go SPLC 2019 Challenge project. Jacob Krüger’s work has also been supported by an IFI
fellowship of the German Academic Exchange Service (DAAD). This research has further been supported by
the German Research Foundation (DFG) project EXPLANT (LE 3382/2-3, SA 465/49-3). We would like to
thank all of our interview and survey participants for their valuable feedback, and David Broneske for testing
our survey.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Acher M, Collet P, Lahire P, France RB (2013) FAMILIAR: A Domain-Specific Language for Large Scale
Management of Feature Models. Sci Comput Program 78(6):657–681

Aho AV, Garey MR, Ullman JD (1972) The Transitive Reduction of a Directed Graph. SIAM J Comput
1(2):131–137

Alves Pereira J, Constantino K, Figueiredo E (2014) A Systematic Literature Review of Software Product
Line Management Tools. In: ICSR. Springer, pp 73–89

Apel S, Batory D, Kästner C, Saake G (2013a) Feature-Oriented Software Product Lines. Springer
Apel S, Rhein A, Wendler P, Grösslinger A, Beyer D (2013b) Strategies for Product-Line Verification: Case

Studies and Experiments. In: ICSE. IEEE, pp 482–491
Baecker RM, Grudin J, Buxton WAS, Greenberg S (1995) Human-Computer Interaction: Toward the Year

2000. MorganKaufmann
Batory D (2005) Feature Models, Grammars, and Propositional Formulas. In: SPLC. Springer, pp 7–20
Benavides D, Segura S, Ruiz-Cortés A (2010) Automated Analysis of Feature Models 20 Years Later: A

Literature Review. Inf Syst 35(6):615–636
Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wa̧sowski A (2013) A Survey of Variability

Modeling in Industrial Practice. In: VAMOS. ACM, pp 7:1–7:8
Berger T, Nair D, Rublack R, Atlee JM, Czarnecki K, Wasowski A (2014) Three Cases Of Feature-Based

Variability Modeling In Industry. In: MODELS. Springer, pp 302–319
Berger T, Lettner D, Rubin J, Grünbacher P, Silva A, Becker M, Chechik M, Czarnecki K (2015) What

is a Feature?: A Qualitative Study of Features in Industrial Software Product Lines. In: SPLC. ACM,
pp 16–25

Berlage T, Genau A (1993) A Framework for Shared Applications with a Replicated Architecture. In: UIST.
ACM, pp 249–257

Beuche D (2008) Modeling and Building Software Product Lines with Pure::Variants. In: SPLC. IEEE,
pp 358–358

Bierman G, Abadi M, Torgersen M (2014) Understanding TypeScript. In: ECOOP. Springer, pp 257–281
Botterweck G, Pleuss A, Dhungana D, Polzer A, Kowalewski S (2010) EvoFM: Feature-Driven Planning of

Product-Line Evolution. In: Proceedings of the International Workshop on Product Line Approaches in
Software Engineering. ACM, pp 24–31

Bowen TF, Dworack FS, Chow CH, Griffeth N, Herman GE, Lin Y-J (1989) The Feature Interaction
Problem in Telecommunications Systems. In: Proceedings of the International Conference on Software
Engineering for Telecommunication Switching Systems. IET, pp 59–62

Calder M, Kolberg M, Magill EH, Reiff-Marganiec S (2003) Feature Interaction: A Critical Review and
Considered Forecast. Comput Netw 41(1):115–141

Carstensen PH, Schmidt K (1999) Computer Supported Cooperative Work: New Challenges to Systems
Design. In: Itoh K (ed) Handbook of Human Factors, pp 619–636

(2021) 26: 24Empir Software Eng Page 41 of 47 24

http://creativecommonshorg/licenses/by/4.0/

Chen D (2001a) Consistency Maintenance in Collaborative Graphics Editing Systems. Ph.D. Thesis, Griffith
University

Chen D, Sun C (2001b) Optional Instant Locking in Distributed Collaborative Graphics Editing Systems. In:
Proceedings of the International Conference on Parallel and Distributed Systems. IEEE, pp 109–116

Chen D, Sun C (2001c) Undoing Any Operation in Collaborative Graphics Editing Systems. In: Proceedings
of the International Conference on Supporting Group Work. ACM, pp 197–206

Chen L, Babar MA (2011) A Systematic Review of Evaluation of Variability Management Approaches in
Software Product Lines. Inf Softw Technol 53(4):344–362

Cho H, Gray J, Cai Y, Wong S, Xie T (2011) Model-Driven Impact Analysis of Software Product Lines. In:
Osis J, Asnina E (eds) Model-Driven Domain Analysis and Software Development: Architectures and
Functions. IGI Global, pp 275–303

Cormack GV (1995) A Counterexample to the Distributed Operational Transform and a Corrected Algorithm
for Point-to-Point Communication. Technical Report CS-95-08

Czarnecki K (2013) Variability in Software: State of the Art and Future Directions. In: FASE. Springer,
pp 1–5

Czarnecki K, Grnbacher P, Rabiser R, Schmid K, Wa̧sowski A (2012) Cool Features and Tough Decisions:
A Comparison of Variability Modeling Approaches. In: VAMOS. ACM, pp 173–182

Dennis AR, Pootheri SK, Natarajan VL (1998) Lessons from the Early Adopters of Web Groupware. J Manag
Inf Syst 14(4):65–86

Dewan P (1999) Architectures for Collaborative Applications. Comput Supported Coop Work 7:169–193
Durán A, Benavides D, Segura S, Trinidad P, Ruiz-Cortés A (2017) FLAME: A Formal Framework for the

Automated Analysis of Software Product Lines Validated by Automated Specification Testing. Softw
Syste Model 16(4):1049–1082

Ellis C, Gibbs S (1989) Concurrency Control in Groupware Systems. In: Proceedings of the International
Conference on Management of Data. ACM, pp 399–407

Ellis C, Gibbs S, Rein G (1991) Groupware: Some Issues and Experiences. CACM 34(1):39–58
Elmasri R, Navathe S (2010) Fundamentals of Database Systems. AddisonWesley
Felfernig A, Benavides D, Galindo JA, Reinfrank F (2013) Towards Anomaly Explanation in Feature Models.

In: Proceedings of the International Configuration Workshop, pp 117–124
Fidge CJ (1988) Timestamps in Message-Passing Systems that Preserve the Partial Ordering. Austral Comput

Sci Commun 10(1):56–66
Fogdal T, Scherrebeck H, Kuusela J, Becker M, Zhang B (2016) Ten Years of Product Line Engineering at

Danfoss: Lessons Learned and Way Ahead. In: SPLC. ACM, pp 252–261
Gibbs S (1989) LIZA: An Extensible Groupware Toolkit. In: Proceedings of the Conference on Human

Factors in Computing Systems. ACM, pp 29–35
Greenberg S (1991) Personalizable Groupware: Accommodating Individual Roles and Group Differences.

In: ECSCW. Springer, pp 17–31
Greenberg S, Marwood D (1994) Real Time Groupware as a Distributed System: Concurrency Control and

itss Effect on the Interface. In: CSCW. ACM, pp 207–217
Grudin J (1994) Computer-Supported Cooperative Work: History and Focus. CACM 27(5):19–26
Hajri I, Goknil A, Briand LC, Stephany T (2018) Change Impact Analysis for Evolving Configuration

Decisions in Product Line Use Case Models. J Syst Softw 139:211–237
Hickey R (2008) The Clojure Programming Language. In: DLS. ACM, pp 1
Horcas J-M, Pinto M, Fuentes L (2019) Software Product Line Engineering: A Practical Experience. In:

SPLC. ACM, pp 164–176
Hunter J, Crawford W (2001) Java Servlet Programming: Help for Server Side Java Developers. OReilly
Imine A, Rusinowitch M, Oster G, Molli P (2006) Formal Design and Verification of Operational

Transformation Algorithms for Copies Convergence. Theor Comput Sci 351(2):167–183
Johansen R (1991) Groupware: Future Directions and Wild Cards. J Organ Comput 1(2):219–227
Kahn AB (1962) Topological Sorting of Large Networks. CACM 5(11):558–562
Kowal M, Ananieva S, Thüm T (2016) Explaining Anomalies in Feature Models. In: GPCE. ACM, pp 132–

143
Krüger J, Mahmood W, Berger T (2020) Promote-pl: A Round-Trip Engineering Process Model for Adopting

and Evolving Product Lines. In: SPLC. ACM, pp 2:1–2:12
Krueger CW (2007) BigLever Software Gears and the 3-Tiered SPL Methodology. In: OOPSLA. ACM, pp

844–845
Kuiter E (2019a) Consistency Maintenance for Collaborative Real-Time Feature Modeling. Bachelor Thesis,

University of Magdeburg
Kuiter E, Krieter S, Krüger J, Leich T, Saake G (2019b) Foundations of Collaborative, Real-Time Feature

Modeling. In: SPLC. ACM, pp 257–264

(2021) 26: 24Empir Software Eng24 Page 42 of 47

Lamport L (1978) Time, Clocks, and the Ordering of Events in a Distributed System. CACM 21(7):558–
565

Lethbridge TC, Lyon S, Perry P (2008) The Management of University–Industry Collaborations Involving
Empirical Studies of Software Enginee. In: Shull F, Singer J, Sjøberg DIK (eds) Guide to Advanced
Empirical Software Engineering. Springer, pp 257–281

Linsbauer L, Berger T, Grünbacher P (2017) A Classification of Variation Control Systems. In: GPCE. ACM,
pp 49–62

Macefield R (2009) How to Specify the Participant Group Size for Usability Studies: A Practitioners Guide.
J Usability Stud 5(1):34–45

Manz C, Stupperich M, Reichert M (2013) Towards Integrated Variant Management In Global Software
Engineering: An Experience Report. In: ICGSE. IEEE, pp 168–172

Mattern F (1988) Virtual Time and Global States of Distributed Systems. In: Proceedings of the International
Workshop on Parallel and Distributed Algorithms. North Holland, pp 215–226

Mazoun J, Bouassida N, Ben-Abdallah H (2016) Change Impact Analysis for Software Product Lines. J King
Saud Univ Comput Inf Sci 28(4):364–380

McGranaghan M (2011) ClojureScript: Functional Programming for JavaScript Platforms. IEEE Internet
Computing 15(6):97–102

Meinicke J, Thüm T, Schröter R, Benduhn F, Leich T, Saake G (2017) Mastering Software Variability with
FeatureIDE. Springer

Mendonça M, Branco M, Cowan D (2009) S.P.L.O.T.: Software Product Lines Online Tools. In: OOPSLA.
ACM, pp 761–762

Morris MR, Ryall K, Shen C, Forlines C, Vernier F (2004) Beyond “Social Protocols”: Multi-user
Coordination Policies for Co-Located Groupware. In: CSCW. ACM, pp 262–265

Molich R (2010) A Critique of “How to Specify the Participant Group Size for Usability Studies: A
Practitioner’s Guide”. J Usability Stud 5(3):124–128

Nešić D, Krüger J, Stanciulescu S, Berger T (2019) Principles of Feature Modeling. In: ESECFSE. ACM,
pp 62–73

Nieke M, Seidl C, Schuster S (2016) Guaranteeing Configuration Validity in Evolving Software Product
Lines. In: VAMOS. ACM, pp 73–80

Nieke M, Seidl C, Thüm T (2018) Back to the Future: Avoiding Paradoxes in Feature-Model Evolution. In:
SPLC. ACM, pp 48–51

Oster G, Molli P, Urso P, Imine A (2006) Tombstone Transformation Functions for Ensuring Consistency
in Collaborative Editing Systems. In: Proceedings of the International Conference on Collaborative
Computing. IEEE, pp 1–10

Paskevicius P, Damasevicius R, Łtuikys V (2012) Change Impact Analysis of Feature Models. In: Procee-
dings of the International Conference on Information and Software Technologies. Springer, pp 108–122

Pohl K, Böckle G, van der Linden F (2005) Software Product Line Engineering: Foundations, Principles and
Techniques. Springer

Prakash A (1999) Group Editors. In: Beaudouin-Lafon M (ed) Computer Supported Co-Operative Work.
Wiley, pp 103–134

Randolph A, Boucheneb H, Imine A, Quintero A (2013) On Consistency of Operational Transformation
Approach. Electron Proc Theor Comput Sci 107:45–59

Schobbens P-Y, Heymans P, Trigaux J-C (2006) Feature Diagrams: A Survey and a Formal Semantics. In:
Proceedings of the International Requirements Engineering Conference. IEEE, pp 139–148

Schobbens P-Y, Heymans P, Trigaux J-C, Bontemps Y (2007) Generic Semantics of Feature Diagrams.
Comput Netw 51(2):456–479

Schollmeier R (2001) A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Archi-
tectures and Applications. In: Proceedings of the International Conference on Peer-to-Peer Computing.
IEEE, pp 101–102

Schwarz R, Mattern F (1994) Detecting Causal Relationships in Distributed Computations: In Search of the
Holy Grail. Distrib Comput 7(3):149–174

Schwägerl F, Westfechtel B (2016) Collaborative and Distributed Management of Versioned Model-Driven
Software Product Lines. In: Proceedings of the International Joint Conference on Software Technologies.
SciTePress, pp 83–94

Schwägerl F, Westfechtel B (2017) Maintaining Workspace Consistency in Filtered Editing of Dynamically
Evolving Model-Driven Software Product Lines. In: Proceedings of the International Conference on
Model-Driven Engineering and Software Development. SciTePress, pp 15–28

Shapiro M, Preguia N, Baquero C, Zawirski M (2011) Conflict-Free Replicated Data Types. In: Stabilization,
Safety, and Security of Distributed Systems. Springer, pp 386–400

(2021) 26: 24Empir Software Eng Page 43 of 47 24

Siegmund J, Siegmund N, Apel S (2015) Views on Internal and External Validity in Empirical Software
Engineering. In: ICSE. IEEE, pp 9–19

Stefik M, Foster G, Bobrow DG, Kahn K, Lanning S, Suchman L (1987) Beyond the Chalkboard: Computer
Support for Collaboration and Problem Solving in Meetings. CACM 30(1):32–47

Sun C, Ellis C (1998) Operational Transformation in Real-Time Group Editors: Issues, Algorithms, and
Achievements. In: CSCW. ACM, pp 59–68

Sun C, Jia X, Zhang Y, Yang Y, Chen D (1998) Achieving Convergence, Causality Preservation, and
Intention Preservation in Real-Time Cooperative Editing Systems. TOCHI 5(1):63–108

Sun C, Sosič R (1999) Consistency Maintenance in Web-Based Real-Time Group Editors. In: Proceedings of
the International Conference on Distributed Computing Systems Workshops on Electronic Commerce
and Web-Based Applications. IEEE, pp 15–22

Sun C, Chen D (2000) A Multi-Version Approach to Conflict Resolution in Distributed Groupware Systems.
In: Proceedings of the International Conference on Distributed Computing Systems. IEEE, pp 316–325

Sun C, Chen D (2002) Consistency Maintenance in Real-Time Collaborative Graphics Editing Systems.
TOCHI 9(1):1–41

Sun D, Xia S, Sun C, Chen D (2004) Operational Transformation for Collaborative Word Processing. In:
CSCW. ACM, pp 437–446

Sun C, Xia S, Sun D, Chen D, Shen H, Cai W (2006) Transparent Adaptation of Single-User Applications
for Multi-User Real-Time Collaboration. TOCHI 13(4):531–582

Sun C, Yang Y, Zhang Y, Chen D (1996) A Consistency Model and Supporting Schemes for Real-Time
Cooperative Editing Systems. In: Proceedings of the Australian Computer Science Conference, pp 582–
591

Sun C, Xu Y, Agustina A (2014) Exhaustive Search of Puzzles in Operational Transformation. In: CSCW.
ACM, pp 519–529

von Nostitz-Wallwitz I, Krüger J, Siegmund J, Leich T (2018) Knowledge Transfer from Research to
Industry: A Survey on Program Comprehension. In: ICSEC. IEEE, pp 300–301

Williams L, Kessler R (2002) Pair Programming Illuminated. Addison Wesley
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in Software

Engineering. Springer
Wulf V (1995) Negotiability: A Metafunction to Tailor Access to Data in Groupware. Behav Inf Technol

14(3):143–151
Xue L, Orgun M, Zhang K (2003) A Multi-Versioning Algorithm for Intention Preservation in Distributed

Real-Time Group Editors. In: Proceedings of the Australasian Computer Science Conference. ACS,
pp 19–28

Yi L, Zhang W, Zhao H, Jin Z, Mei H (2010) CoFM: A Web-Based Collaborative Feature Modeling System
for Internetware Requirements’ Gathering and Continual Evolution. In: Proceedings of the Asia-Pacific
Symposium on Internetware. ACM, pp 23:1–23:4

Yi L, Zhao H, Zhang W, Jin Z (2012) CoFM: An Environment for Collaborative Feature Modeling. In:
Proceedings of the International Requirements Engineering Conference. IEEE, pp 317–318

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

(2021) 26: 24Empir Software Eng24 Page 44 of 47

Elias Kuiter is a Master student at the Otto-von-Guericke University Magdeburg. He received his B.Sc. degree
in Computer Science at the Otto-von-Guericke University in 2019 and has been working as a research assis-
tant at the Databases and Software Engineering work group. His current research focuses on the application
of formal methods to software product lines, and collaborative feature modeling in particular.

Sebastian Krieter is a PhD student at the Otto-von-Guericke University Magdeburg and associated
researcher at the Harz University of Applied Sciences. In 2015 he received his M.Sc. degree in Informatics
at the Otto-von-Guericke University and has since been working as research associate at the Otto-von-
Guericke University Magdeburg, Germany and later at the Harz University of Applied Sciences Wernigerode,
Germany. In his research he investigates techniques and analyses for variability modeling, configuration
management, and software product line testing.

(2021) 26: 24Empir Software Eng Page 45 of 47 24

Jacob Krüger is a PhD student and associated researcher at the Databases and Software Engineering work
group of the Otto-von-Guericke University Magdeburg. He received his M.Sc. degree in Business Informatics
at the Otto-von-Guericke University in 2016, has been working as research associate at the Harz University
of Applied Sciences Wernigerode, and visited Chalmers — University of Gothenburg in Sweden as well as
the University of Toronto in Canada. His research addresses feature-oriented software development, with
particular focus on software evolution, program comprehension, and human factors.

Gunter Saake received his diploma and PhD in Computer Science from the Technical University of Braun-
schweig, F.R.G., in 1985 and 1988, respectively. From 1988 to 1989, he was a visiting scientist at the IBM
Heidelberg Scientific Center, where he joined the Advanced Information Management project and worked
on language features and algorithms for sorting and duplicate elimination in nested relational database struc-
tures. In January 1993, he received the Habilitation degree (venia legendi) for Computer Science from the
Technical University of Braunschweig. Since May 1994, Gunter Saake is a fulltime professor for Databases
and Information Systems at the Otto-von-Guericke University, Magdeburg. His research interests include
database integration, tailor-made data management, object-oriented information systems, and information
fusion.

(2021) 26: 24Empir Software Eng24 Page 46 of 47

Thomas Leich is Professor for Requirements Engineering at Harz University of Applied Sciences in Wer-
nigerode, Germany. He is also executive director of METOP GmbH, an affiliate institute to the University
of Magdeburg. Since 2001, he worked for several DAX 30 companies as consultant and software architect.
In 2004, he initiated FeatureIDE as a part of the FeatureC++ project at the University of Magdeburg. Until
today, he is responsible for industrial extensions and consulting of FeatureIDE.

Affiliations

Elias Kuiter1 · Sebastian Krieter1,2 · Jacob Krüger1,3 ·Gunter Saake1 ·
Thomas Leich2

Elias Kuiter
kuiter@ovgu.de

Jacob Krüger
jkrueger@ovgu.de

Gunter Saake
saake@ovgu.de

Thomas Leich
tleich@hs-harz.de

1 Otto-von-Guericke University Magdeburg, Magdeburg, Germany
2 Harz University of Applied Sciences Wernigerode, Wernigerode, Germany
3 University of Toronto, Toronto, ON, Canada

(2021) 26: 24Empir Software Eng Page 47 of 47 24

http://orcid.org/0000-0001-7077-7091
mailto: kuiter@ovgu.de
mailto: jkrueger@ovgu.de
mailto: saake@ovgu.de
mailto: tleich@hs-harz.de

	variED: an editor for collaborative, real-time feature modeling
	Abstract
	Introduction
	Foundations
	Feature Modeling
	Collaborative, Real-Time Editing
	Operation-Based Editing
	Concurrency and Conflicts
	Consistency
	Multi-Version Multi-Display Technique

	Designing a Collaborative, Real-Time Feature Model Editor
	Operation Model
	Primitive Operations
	Compound Operations
	Applying Operations

	Conflict Detection
	Globally Targeted Object Strategy
	Causal Directed Acyclic Graph
	Outer Conflict Relation
	Topological Sorting Strategy
	Inner Conflict Relation
	Feature-Modeling Loop

	Conflict Resolution

	Correctness
	Causality Preservation
	Convergence
	Intention Preservation

	Implementation
	Evaluation
	Study Design
	Results and Discussion
	Participants
	Discussion

	Collaborative Feature Modeling
	Discussion

	Feedback on our Tool
	Discussion

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion
	Appendix A Appendix
	A.1 Primitive Operations
	A.2 Compound Operations
	A.3 Proof of Theorem 1
	References
	Affiliations

