
Foundations of Collaborative, Real-Time Feature Modeling
Elias Kuiter

Otto-von-Guericke-University

Magdeburg, Germany

kuiter@ovgu.de

Sebastian Krieter

Harz University of Applied Sciences

Otto-von-Guericke-University

Wernigerode & Magdeburg, Germany

skrieter@hs-harz.de

Jacob Krüger

Otto-von-Guericke-University

Magdeburg, Germany

jkrueger@ovgu.de

Thomas Leich

Harz University of Applied Sciences

Wernigerode, Germany

tleich@hs-harz.de

Gunter Saake

Otto-von-Guericke-University

Magdeburg, Germany

saake@ovgu.de

ABSTRACT
Feature models are core artifacts in software-product-line engi-

neering to manage, maintain, and configure variability. Feature

modeling can be a cross-cutting concern that integrates technical

and business aspects of a software system. Consequently, for large

systems, a team of developers and other stakeholders may be in-

volved in the modeling process. In such scenarios, it can be useful

to utilize collaborative, real-time feature modeling, analogous to

collaborative text editing in Google Docs or Overleaf. However,

current techniques and tools only support a single developer to

work on a model at a time. Collaborative and simultaneous editing

of the same model is often achieved by using version control sys-

tems, which can cause merge conflicts and do not allow immediate

verification of a model, hampering real-time collaboration outside

of face-to-face meetings. In this paper, we describe the formal foun-

dations of collaborative, real-time feature modeling, focusing on

concurrency control by synchronizing multiple actions of collabo-

rators in a distributed network. We further report on preliminary

results, including an initial prototype. Our contribution provides

the basis for extending feature-modeling tools to enable advanced

collaborative feature modeling and integrate it with related tasks.

CCS CONCEPTS
• Software and its engineering → Feature interaction; Soft-
ware product lines; Programming teams.

KEYWORDS
Software Product Line, Groupware, Feature Modeling, Consistency

Maintenance, Collaboration

ACM Reference Format:
Elias Kuiter, Sebastian Krieter, Jacob Krüger, Thomas Leich, and Gunter

Saake. 2019. Foundations of Collaborative, Real-Time Feature Modeling. In

23rd International Systems and Software Product Line Conference - Volume A

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPLC ’19, September 9–13, 2019, Paris, France

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00

https://doi.org/10.1145/3336294.3336308

(SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3336294.3336308

1 INTRODUCTION
Variability modeling is a core activity for developing and managing

a Software Product Line (SPL) [3, 19, 42]. It does not only concern

implementation artifacts, but various other aspects of an SPL as

well [7, 18]. For instance, a variability model often incorporates

design decisions specific to an SPL’s domain, but also provides a

layer of abstraction that end users can comprehend. Thus, for large-

scale projects, multiple people must work corporately to create a

meaningful variability model [6, 38].

Numerous tools facilitate variability modeling with specialized

user interfaces and automated model analyses (e.g., FeatureIDE [35],

pure::variants [8], and Gears [28]). However, we are not aware of

a technique for variability modeling that supports collaborative,

real-time editing, similar to Google Docs or Overleaf, which ham-

pers efficient cooperation during the modeling process. To the best

of our knowledge, existing tools allow only a single user to edit a

variability model at a time. Using version control systems, such as

Git, developers can share and distribute variability models, but this

is neither in real-time nor does it support a semantically meaning-

ful resolution of conflicts. We see various potential use cases for

collaborative, real-time variability modeling, for example:

• Multiple domain engineers can work simultaneously on the

same variability model, either on different tasks (e.g., editing

existing constraints) or on a coordinated task (e.g., introduc-

ing a set of new features).

• Engineers can share and discuss the variability model with

domain experts, allowing to evolve it with real-time feedback

without requiring costly co-location of the participants.

• Lecturers can teach variability-modeling concepts in a col-

laborative manner and can more easily involve the audience

in hands-on exercises.

The most established form of variability models are feature models

and their visual representations, feature diagrams [7, 16, 19]—on

which we focus in this paper. Feature models capture the features

of an SPL and their interdependencies, thereby defining the user-

visible functionalities that are common or different for variants.

In this paper, we describe the conceptual foundations for our tech-

nique to achieve collaborative, real-time feature modeling. More

precisely, we define the requirements our technique needs to fulfill

https://doi.org/10.1145/3336294.3336308
https://doi.org/10.1145/3336294.3336308


SPLC ’19, September 9–13, 2019, Paris, France E. Kuiter et al.

and, based on these requirements, derive a formal description of

collaborative, real-time feature modeling that allows us to ensure

its correct behavior and guides the actual implementation. This in-

cludes defining a basic set of feature-modeling operations, a conflict

relation between these operations, and mechanisms for detecting

and resolving potential conflicts. For this purpose, we extend exist-

ing techniques for real-time collaboration to provide the basis for

our and future collaborative, real-time variability modeling tech-

niques, which may be integrated into existing tools. Although we

have implemented an initial prototype to demonstrate the feasibil-

ity of our technique, we do not elaborate on its technical details.

Overall, we make the following contributions:

• We identify and describe what requirements should be ful-

filled by a collaborative, real-time feature modeling tech-

nique and a corresponding editor.

• We define a concurrency control technique to allow for col-

laborative, real-time feature modeling. In particular, we in-

troduce strategies and mechanisms to detect and resolve

conflicts, thereby ensuring that the edited feature models

remain syntactically and semantically consistent.

• We briefly report on preliminary results of our technique

with regard to formal correctness and an initial prototype.

We aim to support uses cases that are based on three general

conditions. First, we assume that users need or want to work simul-

taneously on the same feature model, for instance, to coordinate

their efforts when performing independent or interacting tasks [33].

Thus, mechanisms for concurrency control are required. Second,

we assume that a rather small team (i.e., no more than ten develop-

ers) is maintaining a feature model, based on studies on real-world

SPLs [6, 24, 38]. For larger teams, managing collaborations and

automatically resolving conflicts becomes much harder. Finally, we

assume that not all developers work co-located, but are remotely

connected [33], for which we aim to support both peer-to-peer and

client-server architectures [44].

2 FORMAL FOUNDATIONS
Within this paper, we present a formal technique for collaborative,

real-time feature modeling. In the following, we briefly introduce

the notation of feature models and key concepts regarding consis-

tency maintenance in collaborative editing systems.

2.1 Feature Modeling
We consider feature models in the form of feature diagrams, which

specify the variability of SPLs using a hierarchy of features and

cross-tree constraints. Thus, we define a feature model as follows:

Definition 1. A feature model FM is a tuple (F , C) where F is a

finite set of features and C is a finite set of cross-tree constraints.
1

A feature F ∈ FM .F is a tuple (ID, parentID, optional, groupType, ab-

stract, name) where ID ∈ ID, parentID ∈ ID ∪ {⊥, †}, optional ∈

{true, false}, groupType ∈ {and, or, alternative}, abstract ∈ {true,

false}, and name is a string.

1
For easier readability, we use a dot notation to access a tuple’s elements (or attributes).

For instance, FM .F refers to the features in the feature model FM . Further, we interpret

F and C as functions to facilitate attribute lookup; e.g., FM .F(F ID) refers to the feature

(uniquely) identified by F ID
in FM .

A cross-tree constraint C ∈ FM .C is a tuple (ID,ϕ) where ID ∈ ID
and ϕ is a propositional formula with variables ranging over ID, i.e.,

Var(ϕ) ⊆ ID.

The set ID contains all Universally Unique Identifiers (UUIDs) that

can be used within a feature model. ⊥ denotes the parentID of the

root feature, while † denotes the parentID of an uninitialized feature.

To simplify our definitions, we declare the two sets F ID

FM
and CID

FM

for feature and constraint identifiers and the parent-child relation

between features descends from (⪯FM ) as follows:

Definition 2. Let FM be a feature model. Further, define

• F ID

FM
B {F .ID | F ∈ FM .F },

• CID
FM
B {C .ID | C ∈ FM .C}, and

• ⪯FM as the reflexive transitive closure of {(A.ID,BID ) |
A ∈ FM .F ,BID ∈ F ID

FM
∪ {⊥, †} ∧A.parentID = BID }.

Using our notation from Definition 1, we can formally describe

any feature model—using its feature diagram representation. How-

ever, this definition still allows that integral properties of feature

models are violated. These properties are important, as we intend

to manipulate feature models by means of operations. Thus, we also

define the following conditions to describe legal feature models:

Definition 3. A feature model FM is considered legal iff all of the

following conditions are true:

• Unique identifiers: |FM .F | =
��F ID

FM

�� ∧ |FM .C| = ��CID
FM

��
• Valid parents: ∀F ∈ FM .F : F .parentID ∈ F ID

FM
∪ {⊥, †}

• Valid constraints: ∀C ∈ FM .C : Var(C .ϕ) ⊆ F ID

FM

• Single root: ∃!F ∈ FM .F : F .parentID = ⊥

• Acyclic: ∀F ID ∈ F ID

FM
: F ID ⪯FM ⊥ ∨ F

ID ⪯FM †

We denote the set of all legal feature models as FM.

We utilize this formalization of feature models for defining our

operation model in Section 3.

2.2 Consistency Maintenance
Real-time, remote collaborative editing systems, usually rely on

operations to propagate changes among connected users [43]. An

operation is the description of an atomic manipulation of a doc-

ument with a distinct intention. It is applied to a document to

transform it from an old to a new (modified) state. We adopt this

operational concept and use the definitions of Sun et al. [53] to

formally describe concurrency and conflict.

Concurrency. Multiple users can create operations at different

sites at different times. However, the synchronization of these op-

erations between sites is affected by network latency, and thus not

instant. Consequently, the order of submitted operations cannot be

simply tracked based on physical time. Instead, we adapt a well-

known strict partial order [30, 34, 53] to determine the temporal

(and thus causal) relationships of operations and define the notion

of concurrency.

Definition 4 (Causally-Preceding Relation [53]). LetOa andOb be

two operations generated at sites i and j , respectively. Then,Oa→Ob
(Oa causally precedes Ob ) iff at least one of the following is true:

• i = j and Oa is generated before Ob



Foundations of Collaborative, Real-Time Feature Modeling SPLC ’19, September 9–13, 2019, Paris, France

• i , j and at site j, Oa is executed before Ob is generated

• ∃Ox : Oa →Ox ∧Ox →Ob
where before refers to a site’s local physical time. Further,Oa andOb
are said to be concurrent iff Oa ↛Ob and Ob ↛Oa .

Conflict. Several challenges hamper the maintenance of a con-

sistent document state in collaborative, real-time editors [51, 53].

Of particular interest is the intention violation problem, which is

concerned with conflicts. A conflict occurs if two or more concur-

rent operations violate each other’s intentions. For example, two

operations that set the name of the same feature to different values

are intention-violating (i.e., in conflict), as both override the other

operation’s effect. In Section 5, we describe how this problem may

be solved in the context of feature modeling.

3 OPERATION MODEL
A collaborative feature model editor must support a variety of op-

erations to achieve a similar user experience as single-user editors.

However, supporting various operations can lead to more inter-

actions between operations, which makes consistency checking

and resolving of conflicts more complex. Furthermore, it hampers

reasoning about the editor’s correctness. To address this issue, we

use a two-layered operation architecture [54], in which we separate

two kinds of operations: low-level Primitive Operations (POs) and

high-level Compound Operations (COs). POs represent fine-grained

edits to feature models and are suitable to use in concurrency con-

trol techniques, as they are simple and composable. A CO is an

ordered sequence of POs and exposes an actual feature-modeling

operation to the application.

Using this two-layer architecture, instead of one large set of

operations, has several advantages: When detecting conflicts be-

tween operations, we can focus on POs and do not need to analyze

any high-level COs, as they are PO sequences. Also, to extend an

editor with additional operations, we only need to implement new

COs, without making major changes to the conflict detection. In

the following, we exemplify POs and COs.

Primitive Operations. Single-user feature modeling tools allow

creating, removing, and modifying features and cross-tree con-

straints in various ways. We present two exemplary POs that serve

as building blocks for such COs. For each PO, we provide formal

semantics in the form of pre- and postconditions, where FM and

FM
′
refer to the feature model before and after applying the PO,

respectively. By convention, no PO shall have any other side effects

than those specified in the postconditions.

createFeaturePO(F ID): Creates a feature with a globally unique

identifier and default attributes, not yet inserted to the feature tree.

pre: F ID ∈ ID
F ID < F ID

FM

post: (F ID, †, true, and, false, NewFeature) ∈ FM ′.F

updateFeaturePO(F ID , attr , oldVal, newVal): Updates an attribute
attr of a feature F ID to a new value newVal. The old attribute value

is included as well to facilitate conflict detection. Dom refers to

an attribute’s domain (cf. Definition 1). Further, FM .F (F ID).[attr]
refers to a particular feature attribute value as specified by attr .

pre: F ID ∈ F ID

FM

attr ∈ {parentID, optional, groupType, abstract, name}

oldVal = FM .F (F ID).[attr]
newVal ∈ Dom(attr)

post: FM
′.F (F ID).[attr] = newVal

For cross-tree constraints, we define analogous POs.

Compound Operations. To allow for high-level modeling opera-

tions, we employ COs. Each CO consists of a sequence of atomically

applied POs. Further, each CO has associated preconditions and an

algorithm that generates the CO’s PO sequence, which must fulfill

the preconditions of each comprised PO. Whenever a user requests

to execute a CO, we have to check the preconditions against the

current feature model FM , and then invoke the CO’s algorithm

with FM and any required arguments (e.g., a feature parent FP).

We then apply the generated CO locally and propagate it to other

collaborators. For the sake of brevity, we only show one exemplary

CO, which creates a feature below another feature:

function createFeatureBelow(FM , F ID , FP ID)
Require: F ID ∈ ID, F ID < F ID

FM
, FP

ID ∈ F ID

FM

return [createFeaturePO(F ID),
updateFeaturePO(F ID, parentID, †, FP ID)]

end function
We defined additional operations, such as (re)moving features and

cross-tree constraints [29], and more can be designed in the future.

Operation Application. As POs and COs are only descriptions of

manipulations on a feature model, we further need to define how

to apply them to produce a new (modified) feature model.

Definition 5. Let FM ∈ FM. Further, let PO and CO be a primitive

and a compound operation whose preconditions are satisfied with

regard to FM . Then, FM
′ = applyPO(FM, PO) denotes the feature

model FM
′
that results from applying PO to FM . Further, we define

applyCO(FM,CO) as the subsequent application of all primitive op-

erations contained in CO to FM with applyPO.

We assume the tool to provide applyPO, which ensures all postcon-

ditions of primitive operations. Note that applyCO does treat every

compound operation equally, which facilitates conflict detection

and future extensions. Further, we can already derive that applyCO

always preserves the legality of feature models (cf. Definition 3) in

a single-user scenario [29].

4 REQUIREMENTS ANALYSIS
Before developing a technique for collaborative, real-time feature

modeling, we need to define the requirements that such a technique

must fulfill according to the general conditions of our considered

use cases. We then discuss a concurrency control technique for

collaborative editing which fits our requirements.

4.1 Requirements
To allow users to work on the same feature model simultaneously,

we define four requirements (Req) based on the general conditions

we described in Section 1. This list is not complete, but focuses on

formal requirements that enable our technique and its integration.

Req1: Concurrency. The most important requirement for enabling

collaborative, real-time feature modeling is that our technique must



SPLC ’19, September 9–13, 2019, Paris, France E. Kuiter et al.

site A site B

set to alternative
set to mandatory

 

   

 

   

 

   
 

   

 

   

 

   

 

   

 

   

Figure 1: TheMVMD technique applied to featuremodeling.

allow multiple users to concurrently access and edit a model [22, 23,

26]. Consequently, our technique must incorporate a concurrency

control technique to manage concurrent operations. Without such

a technique, concurrency can lead to inconsistency and confusion.

Req2: Intention Preservation. A crucial requirement for model-

ing and specification activities is that an editor accurately reflects

an operation’s expected behavior [13, 26, 51, 53]. This means that

collaborators submit an operation and expect the system to apply

and retain the intended change. To this end, our technique must

ensure that the result is consistent in itself, but also to the issued

operation with respect to multiple, potentially conflicting opera-

tions that are issued by various collaborators. For our technique, we

require a method that prevents unexpected results, such as masked,

overridden, and inconsistent operations.

Req3: Optimism. A collaborative, real-time editor may process

operations using a pessimistic or optimistic strategy [26, 43, 53].

Pessimistic strategies require all sites to acknowledge a change

before it is carried out. Thus, such strategies include additional

transmissions, which block the local user interface for that time. In

contrast, optimistic strategies immediately apply changes locally,

then propagate them to all other sites [9, 22, 26, 43]; relying on the

users to resolve all occurring conflicts afterwards—assuming that

conflicts occur only sparsely [13, 20, 23, 49]. With an optimistic

strategy, the local system is always responsive and allows uncon-

strained collaboration as long as no conflict emerges. As we aim for

a small team of remotely connected collaborators, we assume that

during the editing process there is noticeable network latency, but

only few conflicts. Thus, an optimistic strategy seems more suited

for our technique, as it most likely improves editing experience

compared to pessimistic strategies.

4.2 Multi-Version Multi-Display Technique
In the context of feature modeling, we argue that collaborators

should be involved in resolving conflicts (similar to merging in

version control systems) to preserve the intentions of all conflict-

ing operations. To this end, we use a multi-versioning concurrency

control technique [14, 49, 55]. In contrast to other techniques, multi-

versioning techniques keep different versions of objects on which

conflicting operations have been performed (similar to parent com-

mits that are merged in version control systems). In particular, we

focus on the Multi-Version Multi-Display (MVMD) technique [15,

50, 51], which lets users decide which new document version should

be used in case of a conflict. In Figure 1, we show how this tech-

nique allocates two conflicting update operations on a featuremodel

to two different versions, preserving intentions and allowing for

subsequent manual conflict resolution. This technique encourages

communication between collaborators and improves the confidence

in the correctness of the resulting document. AsMVMD fulfills all of

our requirements, we use it as basis for our collaborative, real-time

feature modeling technique and adapt it where necessary.

At the center of this technique is an application-specific conflict

relation, which is used to determine algorithmically whether two

operations are in conflict.

Definition 6 (Conflict Relation [51, 56]). A conflict relation ⊗ is

a binary, irreflexive, and symmetric relation that indicates whether

two given operations are in conflict. If two operations Oa and Ob are

not in conflict with each other, i.e., Oa ̸⊗ Ob , they are compatible.

Only concurrent operations may conflict, that is, for any operations

Oa and Ob , Oa ∦Ob ⇒ Oa ̸⊗ Ob .

Utilizing such a conflict relation, MVMD groups operations in suit-

able versions according to whether they are conflicting or com-

patible, as we show in Figure 1. We omit the details of how those

versions may be constructed algorithmically and refer to the origi-

nal paper [51]. In the following, we focus on our adaptations for

feature modeling, which includes introducing a conflict relation

(Section 5) as well as a conflict resolution process (Section 6) suitable

for collaborative, real-time feature modeling.

5 CONFLICT DETECTION
In this section, we describe how we extended the MVMD technique

with conflict relations for feature modeling to allow for the detec-

tion of conflicting operations. To this end, we briefly motivate and

describe several required strategies and mechanisms.

5.1 Causal Directed Acyclic Graph
In Section 2.2, we introduced a causal ordering for tracking op-

erations’ concurrency relationships in the system. However, the

outer and inner conflict relations for collaborative feature modeling

(introduced below) require further information about causality rela-

tionships. To this end, we utilize that the causally-preceding relation

is a strict partial order, and thus corresponds to a directed acyclic

graph [34, 47]. Using such a Causal Directed Acyclic Graph (CDAG),

we define the sets of Causally Preceding (CP) and Causally Imme-

diately Preceding (CIP) operations for a given operation as follows:

Definition 7. Let GO be a group of operations. The causal directed

acyclic graph for GO is the graph G = (V , E) where V = GO is the

set of vertices and E = {(Oa,Ob ) | Oa,Ob ∈ GO ∧Oa →Ob } is the

set of edges. Then, the set of causally preceding operations for an

O ∈ GO is defined as CPG (O) B {Oa | (Oa,O) ∈ E}.
Now, let (V , E ′) be the transitive reduction of (V , E). Then, the set of
causally immediately preceding operations for anO ∈ GO is defined

as CIPG (O) B {Oa | (Oa,O) ∈ E
′}.

The transitive reduction of a graph removes all edges that only

represent transitive dependencies [2]. Therefore, an operation Oa
causally immediately precedes another operation Ob when there is

no operationOx such thatOa→Ox →Ob . Each collaborating site



Foundations of Collaborative, Real-Time Feature Modeling SPLC ’19, September 9–13, 2019, Paris, France

has a copy of the current CDAG, which is incrementally constructed

and includes all previously generated and received operations.

5.2 Outer Conflict Relation
In its original context, the MVMD technique solely uses the op-

erations’ metadata to determine conflicts. However, no complex

syntactic or semantic conflicts can be detected this way, because

the underlying document is not available for conflict detection. In

contrast, we propose that a conflict relation for feature modeling

should not only consider an operation’s metadata, but also the

feature model. Such a conflict relation may inspect the involved

operations and apply them to a suitable feature model to check

whether their application introduces any inconsistencies.

In order to guarantee that such a suitable feature model exists for

two given operations, all of their causally preceding operationsmust

be compatible. Otherwise, the intention preservation property may

be violated, so that the conflict relation would rely on potentially

inconsistent and unexpected feature models.

The outer conflict relation (termed ⊗O ) serves to guarantee this

property. It may be computed with outerConflicting, a recursive

algorithm that uses the CDAG to propagate detected conflicts to

all causally succeeding operations:

function outerConflicting(G, COa , COb )

Require: G is the CDAG for a group of operations GO,

COa,COb ∈ GO

if COa ∦ COb ∨ COa = COb then return false

if ∃CIPOa ∈ CIPG (COa ),CIPOb ∈ CIPG (COb ) :

outerConflicting(G,CIPOa,CIPOb )

∨ ∃CIPOb ∈ CIPG (COb ) : outerConflicting(G,COa,CIPOb )

∨ ∃CIPOa ∈ CIPG (COa ) : outerConflicting(G,CIPOa,COb )

then return true

return COa ⊗I COb
end function
In the basic case, outerConflicting defers the conflict detection

to the inner conflict relation (⊗I ). The other cases ensure that there

is a well-defined feature model for subsequent conflict detection,

which enables us to check arbitrary consistency properties; with

the disadvantage that few operations may falsely be flagged as con-

flicting. Using outerConflicting, we can compute ⊗O as follows:

Definition 8. Two compound operations COa and COb are in outer

conflict, i.e., COa ⊗O COb , iff outerConflicting(G,COa,COb ) =

true, where G is the current CDAG at the site that executes outer-

Conflicting.

5.3 Topological Sorting Strategy
The outer conflict relation ⊗O ensures the existence of a suitable

feature model. To actually produce such a feature model, we use

applyCOs(G, FM,COs) B reduce(applyCO, FM, topsort(COs,G))

where topsort corresponds to a topological sorting of operations ac-

cording to their causality relationships specified inG , which reduce

then applies one by one in that order to FM . We use applyCOs to ap-

ply (unordered) sets of mutually compatible operations to a feature

model. Because the application order of operations is important for

producing a correct result, our topological sorting strategy ensures

that all causal relationships captured in the CDAG are respected.

5.4 Inner Conflict Relation
The inner conflict relation ⊗I detects conflicts that are specific to

feature modeling. We introduce innerConflicting to determine

⊗I for two given compound operations:

function innerConflicting(G, FM , COa , COb )

Require: G is the CDAG for a group of operations GO,

FM is the initial feature model for G, COa,COb ∈ GO

if COa ∦ COb ∨ COa = COb then return false

if syntacticallyConflicting(G, FM,COa,COb )

∨ syntacticallyConflicting(G, FM,COb ,COa )

then return true

FM ← applyCOs(G, FM,CPG (COa )∪CPG (COb )∪{COa,COb })

return ∃SP ∈ SP : SP(FM) = true

end function
This algorithmmakes use of syntacticallyConflicting, which

determines whether two COs have a syntactic conflict that concerns

basic syntactic properties of feature models. syntacticallyCon-

flicting does so by applying both operations to a suitable feature

model derived with applyCOs from the initial feature model. The

second operation is applied step-wise, so we can inspect the cur-

rent feature model for potential consistency problems using a set

of conflict detection rules specific to feature modeling. These rules

preserve the legality of feature models (cf. Definition 3) by detect-

ing several problems, such as cycle-introducing operations and

more [29].

To ensure the symmetry of ⊗I , as required by Definition 6, in-

nerConflicting uses syntacticallyConflicting to check for

syntactic conflicts in both directions. Finally, innerConflicting

may check additional arbitrary semantic properties on a feature

model that includes the effects of COa and COb . A semantic prop-

erty SP ∈ SP is a deterministic function SP : FM → {true, false}

that returns whether a given legal feature model includes a seman-

tic inconsistency. For instance, collaborators may want to ensure

that the modeled SPL always has at least one product and does

not include dead, false-optional features or any redundant cross-tree

constraints [3, 5]. Note that the MVMD technique allows only pair-

wise conflict detection of operations, as interactions of higher order

are hard to detect [4, 11, 12]. Using innerConflicting, we can

compute ⊗I as follows:

Definition 9. Two compound operations COa and COb are in inner

conflict, i.e., COa ⊗I COb , iff innerConflicting(G, FM,COa,

COb ) = true , where G and FM are the current CDAG and initial

feature model at the site that executes innerConflicting.

Our conflict detection technique can now be implemented by using

⊗O as conflict relation in the MVMD technique [29, 51].

6 CONFLICT RESOLUTION
Our extension of the MVMD technique fully automates the detec-

tion of conflicts and allocation of feature-model versions. However,

MVMD does not offer functionality for actually resolving conflicts.

Thus, we propose a manual conflict resolution process (cf. Figure 2)

during which collaborators examine alternative feature model ver-

sions and negotiate a specific version [49, 55]. To this end, we allow

collaborators to cast votes for their preferred feature model versions,

which allows for fair and flexible conflict resolution [21, 25, 37].



SPLC ’19, September 9–13, 2019, Paris, France E. Kuiter et al.

Conflict

No Conflict
Feature

Modeling Phase

Resolution Synchronize
Site

Compute
Elected Model

No Resolution

Compute Set
of Voters

Voting Phase

Figure 2: Conflict resolution process.

In our process, a site forbids any further editing (i.e., freeze site)

when a conflict is detected. This forces collaborators to address the

conflict, avoiding any further divergence. The freeze also ensures

the correctness of our technique, as the MVMD technique has only

been proven correct for this use case [51, 56]. After freezing, the

system synchronizes all sites so that all collaborators are aware of

all versions before starting the voting process, which is the only

synchronization period our technique needs. Next, each site may

flexibly compute a set of voters (i.e., collaborators that are eligible

to vote) based on the collaborators’ preferences. For example, a

subset could contain only collaborators involved in the conflict or

those with elevated rights. To start the voting, we initialize a set of

vote results as an empty set. In the voting phase, every voter may

cast a vote on a single feature model version, which is added to the

local vote result set and propagated to all other sites. Once cast, a

vote is final and cannot be taken back, thus the vote results are a

grow-only set that does not require any synchronization [48]. After

a vote is processed at a site, a resolution criterion decides whether

the voting phase is complete. For instance, such a criterion may

involve plurality, majority or a consensus among all collaborators.

When the voting phase is complete and there is a resolution, we

compute the elected version from the vote result set and unfreeze

the site, concluding the conflict resolution process. Otherwise, if

voting is complete, but no resolution was achieved, the voting phase

is restarted.

7 PRELIMINARY RESULTS
Although we have yet to evaluate our technique, we can already

report preliminary results. Regarding the formal correctness of our

technique, we can show that our technique complies with the CCI

model, which is an established consistency model in literature [52,

53]. By reasoning about formal correctness, we are confident that

our system allows highly-responsive, unconstrained collaboration,

while still ensuring basic consistency properties.

Further, as a proof-of-concept, we have implemented our tech-

nique for collaborative, real-time feature modeling in the open-

source prototype variED.
2
This web-based feature-modeling tool

allows for real-time collaboration in a web browser and may serve

as a basis for future user studies.

2
Sources, demonstration, and information: https://github.com/ekuiter/variED

8 RELATEDWORK
Closely related to our work is the CoFM environment that has

been proposed by Yi et al. [57, 58]. With CoFM, stakeholders can

construct a shared feature model and evaluate each other’s work

by selecting or denying model elements, resulting in a personal

view for every collaborator. Our technique differs in that we only

consider a single feature model, which is synchronized among all

collaborators. Furthermore, we describe how to detect and resolve

conflicting operations, which are not considered by CoFM. In ad-

dition, we employ optimistic replication to hide network latency,

whereas CoFM uses a pessimistic approach.

Other works on feature-model editing have mostly focused on

the single-user case [1, 8, 28, 35, 36]. To the best of our knowledge,

none of these tools or techniques supports real-time collaboration.

Rather, they allow asynchronous collaboration with version or

variation control systems.

Linsbauer et al. [31] classify variation control systems, in which

they notice a general lack of collaboration support compared to

regular version control systems. In particular, Schwägerl and West-

fechtel [45, 46] propose SuperMod, a variation control system for

filtered editing in model-driven SPLs that supports asynchronous

multi-user collaboration. However, SuperMod does not allow real-

time editing and does not address conflicts that arise from the

interaction of multiple collaborators.

Botterweck et al. [10] introduce EvoFM, a technique for modeling

variability over time. Their catalog of evolution operators resem-

bles the COs we presented in Section 3, but they do not explicitly

address collaboration. Similarly, Nieke et al. [39, 40] encode the

evolution of an SPL in a temporal feature model to guarantee valid

configurations. With their technique, inconsistencies and evolution

paradoxes can be detected. However, they do not address collabora-

tion and provide no particular conflict resolution strategy. Change

impact analyses on feature models have been proposed to identify

and evaluate conflict potential of modeling decisions [17, 27, 32, 41].

These techniques do not explicitly address collaboration, but may

guide collaborators in understanding and resolving conflicts.

9 CONCLUSION
In this paper, we presented a technique for collaborative, real-time

feature modeling. Based on the general conditions of our considered

use case scenarios, we defined requirements that such a technique

should fulfill. Further, we described a technique for collaborative,

real-time feature modeling that relies on operation-based editing

and introduced primitive and compound operations. We extended

the MVMD technique by introducing suitable conflict relations and

a conflict resolution strategy that are suitable for feature modeling.

In addition, we reported some preliminary experiences, showing

the feasibility of our technique by implementing a prototype.

In future work, we want to conduct user studies to evaluate our

technique. We also aim to address the question how to raise aware-

ness of collaborators for potentially-conflicting editing operations

in order to avoid conflicts in the first place.

ACKNOWLEDGMENTS
The work of Elias Kuiter, Sebastian Krieter, and Jacob Krüger has

been supported by the pure-systems Go SPLC 2019 Challenge.

https://github.com/ekuiter/variED


Foundations of Collaborative, Real-Time Feature Modeling SPLC ’19, September 9–13, 2019, Paris, France

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.

FAMILIAR: A Domain-Specific Language for Large Scale Management of Feature

Models. Science of Computer Programming 78, 6 (2013), 657–681.

[2] A. V. Aho, M. R. Garey, and J. D. Ullman. 1972. The Transitive Reduction of a

Directed Graph. SIAM J. Comput. 1, 2 (1972), 131–137.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines. Springer.

[4] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Grösslinger, and Dirk

Beyer. 2013. Strategies for Product-Line Verification: Case Studies and Exper-

iments. In Proceedings of the International Conference on Software Engineering.

IEEE, 482–491.

[5] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated

Analysis of Feature Models 20 Years Later: A Literature Review. Information

Systems 35, 6 (2010), 615–636.

[6] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof Czarnecki,

and Andrzej Wasowski. 2014. Three Cases Of Feature-based Variability Model-

ing In Industry. In Proceedings of the International Conference on Model Driven

Engineering Languages and Systems. Springer, 302–319.

[7] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,

Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability

Modeling in Industrial Practice. In Proceedings of the International Workshop on

Variability Modelling of Software-Intensive Systems. ACM, 7:1–7:8.

[8] Danilo Beuche. 2008. Modeling and Building Software Product Lines with

Pure::Variants. In Proceedings of the International Software Product Line Con-

ference. IEEE, 358–358.

[9] Sumeer Bhola, Guruduth Banavar, and Mustaque Ahamad. 1998. Responsive-

ness and Consistency Tradeoffs in Interactive Groupware. In Proceedings of the

Conference on Computer-Supported Cooperative Work. ACM, 79–88.

[10] Goetz Botterweck, Andreas Pleuss, Deepak Dhungana, Andreas Polzer, and Stefan

Kowalewski. 2010. EvoFM: Feature-Driven Planning of Product-Line Evolution. In

Proceedings of the International Workshop on Product Line Approaches in Software

Engineering. ACM, 24–31.

[11] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. E. Herman, and Y.-J.

Lin. 1989. The Feature Interaction Problem in Telecommunications Systems. In

Proceedings of the International Conference on Software Engineering for Telecom-

munication Switching Systems. IET, 59–62.

[12] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.

2003. Feature Interaction: A Critical Review and Considered Forecast. Computer

Networks 41, 1 (2003), 115–141.

[13] Jeffrey Dennis Campbell. 2000. Consistency Maintenance for Real-Time Collabora-

tive Diagram Development. Ph.D. Dissertation. University of Pittsburgh.

[14] David Chen. 2001. Consistency Maintenance in Collaborative Graphics Editing

Systems. Ph.D. Dissertation. Griffith University.

[15] David Chen and Chengzheng Sun. 2001. Optional Instant Locking in Distributed

Collaborative Graphics Editing Systems. In Proceedings of the International Con-

ference on Parallel and Distributed Systems. IEEE, 109–116.

[16] Lianping Chen and Muhammad Ali Babar. 2011. A Systematic Review of Evalua-

tion of Variability Management Approaches in Software Product Lines. Informa-

tion and Software Technology 53, 4 (2011), 344–362.

[17] Hyun Cho, Jeff Gray, Yuanfang Cai, Sonny Wong, and Tao Xie. 2011. Model-

Driven Impact Analysis of Software Product Lines. In Model-Driven Domain

Analysis and Software Development: Architectures and Functions, Janis Osis and

Erika Asnina (Ed.). IGI Global, Chapter 13, 275–303.

[18] Krzysztof Czarnecki. 2013. Variability in Software: State of the Art and Future

Directions. In Fundamental Approaches to Software Engineering (FASE). Springer,

1–5.

[19] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej

Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability

Modeling Approaches. In Proceedings of the International Workshop on Variability

Modelling of Software-Intensive Systems. ACM, 173–182.

[20] Gabriele D’Angelo, Angelo Di Iorio, and Stefano Zacchiroli. 2018. Spacetime

Characterization of Real-Time Collaborative Editing. Proceedings of the ACM on

Human-Computer Interaction 2, CSCW (2018), 41:1–41:19.

[21] Alan R. Dennis, Sridar K. Pootheri, and Vijaya L. Natarajan. 1998. Lessons from

the Early Adopters of Web Groupware. Journal of Management Information

Systems 14, 4 (1998), 65–86.

[22] Prasun Dewan, Rajiv Choudhary, and Honghai Shen. 1994. An Editing-Based

Characterization of the Design Space of Collaborative Applications. Journal of

Organizational Computing 4, 3 (1994), 219–239.

[23] Clarence Ellis, Simon Gibbs, and Gail Rein. 1991. Groupware: Some Issues and

Experiences. Commun. ACM 34, 1 (1991), 39–58.

[24] Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo Zhang.

2016. Ten Years of Product Line Engineering at Danfoss: Lessons Learned and

Way Ahead. In Proceedings of the International Software Product Line Conference

(SPLC). ACM, 252–261.

[25] Simon Gibbs. 1989. LIZA: An Extensible Groupware Toolkit. In Proceedings of

the Conference on Human Factors in Computing Systems. ACM, 29–35.

[26] Saul Greenberg and David Marwood. 1994. Real Time Groupware as a Distributed

System: Concurrency Control and itss Effect on the Interface. In Proceedings of

the Conference on Computer-Supported Cooperative Work. ACM, 207–217.

[27] Ines Hajri, Arda Goknil, Lionel C. Briand, and Thierry Stephany. 2018. Change

Impact Analysis for Evolving Configuration Decisions in Product Line Use Case

Models. Journal of Systems and Software 139 (2018), 211–237.

[28] Charles W. Krueger. 2007. BigLever Software Gears and the 3-Tiered SPL Method-

ology. In Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages and Applications. ACM, 844–845.

[29] Elias Kuiter. 2019. Consistency Maintenance for Collaborative Real-Time Feature

Modeling. Bachelor Thesis. University of Magdeburg.

[30] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558–565.

[31] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification

of Variation Control Systems. In Proceedings of the International Conference on

Generative Programming and Component Engineering. ACM, 49–62.

[32] Jihen Maâzoun, Nadia Bouassida, and Hanêne Ben-Abdallah. 2016. Change

Impact Analysis for Software Product Lines. Journal of King Saud University —

Computer and Information Sciences 28, 4 (2016), 364–380.

[33] Christian Manz, Michael Stupperich, and Manfred Reichert. 2013. Towards

Integrated Variant Management In Global Software Engineering: An Experience

Report. In International Conference on Global Software Engineering. IEEE, 168–172.

[34] FriedemannMattern. 1988. Virtual Time and Global States of Distributed Systems.

In Proceedings of the InternationalWorkshop on Parallel and Distributed Algorithms.

North Holland, 215–226.

[35] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,

and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[36] Marcilio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software

Product Lines Online Tools. In Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages and Applications. ACM, 761–762.

[37] Meredith Ringel Morris, Kathy Ryall, Chia Shen, Clifton Forlines, and Frederic

Vernier. 2004. Beyond "Social Protocols": Multi-user Coordination Policies for

Co-Located Groupware. In Proceedings of the Conference on Computer-Supported

Cooperative Work. ACM, 262–265.

[38] Damir Nešić, Jacob Krüger, Stefan Stănciulescu, and Thorsten Berger. 2019. Prin-

ciples of Feature Modeling. In Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM.

[39] Michael Nieke, Christoph Seidl, and Sven Schuster. 2016. Guaranteeing Con-

figuration Validity in Evolving Software Product Lines. In Proceedings of the

International Workshop on Variability Modelling of Software-Intensive Systems.

ACM, 73–80.

[40] Michael Nieke, Christoph Seidl, and Thomas Thüm. 2018. Back to the Future:

Avoiding Paradoxes in Feature-Model Evolution. In Proceedings of the Interna-

tional Software Product Line Conference. ACM, 48–51.

[41] Paulius Paskevicius, Robertas Damasevicius, and Vytautas Štuikys. 2012. Change

Impact Analysis of Feature Models. In Proceedings of the International Conference

on Information and Software Technologies. Springer, 108–122.

[42] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product

Line Engineering: Foundations, Principles and Techniques. Springer.

[43] Atul Prakash. 1999. Group Editors. In Computer Supported Co-Operative Work,

Michel Beaudouin-Lafon (Ed.). Wiley, Chapter 5, 103–134.

[44] Rüdiger Schollmeier. 2001. A Definition of Peer-to-Peer Networking for the

Classification of Peer-to-Peer Architectures and Applications. In Proceedings of

the International Conference on Peer-to-Peer Computing. IEEE, 101–102.

[45] Felix Schwägerl and Bernhard Westfechtel. 2016. Collaborative and Distributed

Management of Versioned Model-Driven Software Product Lines. In International

Joint Conference on Software Technologies. SciTePress, 83–94.

[46] Felix Schwägerl and Bernhard Westfechtel. 2017. Maintaining Workspace Con-

sistency in Filtered Editing of Dynamically Evolving Model-Driven Software

Product Lines. In Proceedings of the International Conference on Model-Driven

Engineering and Software Development. SciTePress, 15–28.

[47] Reinhard Schwarz and FriedemannMattern. 1994. Detecting Causal Relationships

in Distributed Computations: In Search of the Holy Grail. Distributed Computing

7, 3 (1994), 149–174.

[48] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A

Comprehensive Study of Convergent and Commutative Replicated Data Types.

Research Report RR-7506. Inria – Centre Paris-Rocquencourt.

[49] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning, and

Lucy Suchman. 1987. Beyond the Chalkboard: Computer Support for Collabora-

tion and Problem Solving in Meetings. Commun. ACM 30, 1 (1987), 32–47.

[50] Chengzheng Sun and David Chen. 2000. A Multi-Version Approach to Conflict

Resolution in Distributed Groupware Systems. In Proceedings of the International

Conference on Distributed Computing Systems. IEEE, 316–325.

[51] Chengzheng Sun and David Chen. 2002. Consistency Maintenance in Real-Time

Collaborative Graphics Editing Systems. ACM Transactions on Computer-Human

Interaction 9, 1 (2002), 1–41.

[52] Chengzheng Sun and Clarence Ellis. 1998. Operational Transformation in Real-

Time Group Editors: Issues, Algorithms, and Achievements. In Proceedings of the



SPLC ’19, September 9–13, 2019, Paris, France E. Kuiter et al.

Conference on Computer-Supported Cooperative Work. ACM, 59–68.

[53] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. 1998.

Achieving Convergence, Causality Preservation, and Intention Preservation in

Real-Time Cooperative Editing Systems. ACM Transactions on Computer-Human

Interaction 5, 1 (1998), 63–108.

[54] Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen, andWentong

Cai. 2006. Transparent Adaptation of Single-User Applications for Multi-User

Real-Time Collaboration. ACM Transactions on Computer-Human Interaction 13,

4 (2006), 531–582.

[55] Volker Wulf. 1995. Negotiability: A Metafunction to Tailor Access to Data in

Groupware. Behaviour & Information Technology 14, 3 (1995), 143–151.

[56] Liyin Xue, Mehmet Orgun, and Kang Zhang. 2003. A Multi-Versioning Algorithm

for Intention Preservation in Distributed Real-Time Group Editors. In Proceedings

of the Australasian Computer Science Conference. ACS, 19–28.

[57] Li Yi, Wei Zhang, Haiyan Zhao, Zhi Jin, and Hong Mei. 2010. CoFM: A Web-

Based Collaborative Feature Modeling System for Internetware Requirements’

Gathering and Continual Evolution. In Proceedings of the Asia-Pacific Symposium

on Internetware. ACM, 23:1–23:4.

[58] Li Yi, Haiyan Zhao, Wei Zhang, and Zhi Jin. 2012. CoFM: An Environment for

Collaborative Feature Modeling. In Proceedings of the International Requirements

Engineering Conference. IEEE, 317–318.


	Abstract
	1 Introduction
	2 Formal Foundations
	2.1 Feature Modeling
	2.2 Consistency Maintenance

	3 Operation Model
	4 Requirements Analysis
	4.1 Requirements
	4.2 Multi-Version Multi-Display Technique

	5 Conflict Detection
	5.1 Causal Directed Acyclic Graph
	5.2 Outer Conflict Relation
	5.3 Topological Sorting Strategy
	5.4 Inner Conflict Relation

	6 Conflict Resolution
	7 Preliminary Results
	8 Related Work
	9 Conclusion
	References

