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ABSTRACT
The source code of highly-configurable software is challenging to
comprehend, analyze, and test. In particular, it is hard to identify all
configurations that comprise a certain code location. We contribute
PCLocator, a tool suite that solves this problem by utilizing static
analysis tools for compile-time variability. Using BusyBox and the
Variability Bugs Database (VBDb), we evaluate the correctness and
performance of PCLocator. The results show that we are able to
analyze files in amatter of seconds and derive correct configurations
in 95% of all cases.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software configurationmanagement and version control sys-
tems; Software testing and debugging;
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1 INTRODUCTION
Software product lines are a systematic approach to manage and
reuse software artifacts [2]. For this purpose, software artifacts are
implemented with features that can be either present or absent in
a concrete product. Each product corresponds to a configuration
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that specifies options for the presence or absence of each feature.
If a configuration satisfies all feature dependencies (e.g., requires,
alternatives), it is valid and a product can be derived.

A high number of configuration options, which may be scattered
across different variability mechanisms, hampers the comprehen-
sion of source code, its analysis, and especially testing it. For exam-
ple, Linux comprises over 10,000 configuration options that allow
for millions of products [17]. Also, Linux’ configuration options
and their dependencies are implemented in a combination of the C
preprocessor and Kconfig files, which alone comprise more than
110,000 lines of code. In particular, it is important in such a context
to know which configurations comprise which code, resulting in
the challenge defined by Gazzillo et al. [8]:
“Given a specific program location in the source code, can you
apply automatic analysis techniques to find concrete configura-
tions that include the program location in question?”
Due to the complexity and large number of options in real-world

systems, the naive approach to check each single configuration
grows infeasible quickly.With this paper, we contribute the Presence
Condition Locator (PCLocator)1 tool suite, which solves the proposed
challenge with appropriate effort. We use static analysis based
on existing tools to analyze the program and its build system to
find a presence condition for the specified code location. Using a
variability model and a satisfiability problem solver, we can then
derive valid configurations.

2 APPROACH
The challenge is focused on three systems, axTLS, BusyBox, and
Linux. Each of these programs is implemented with C and is highly
configurable, comprising between 94 and 14,000 configuration op-
tions. To implement this variability, two common compile-time
mechanisms are used: The C preprocessor and build systems.
Analyzing Source Code Annotations. The C preprocessor is
even used for fine-grained variability, such as single statements
or literals [13]. Conditional directives (i.e., #ifdef) annotate the
source code that will be removed if the corresponding configuration
option is disabled. For boolean options, we can express this as a
propositional formula, the presence condition. A crucial step in our
approach is to extract presence conditions automatically for a given
program location by parsing the code.
1Sources, results, and information available at: https://github.com/ekuiter/PCLocator
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Conditional directives of the C preprocessor do not always align
with the underlying abstract syntax tree. Such usage of the C pre-
processor is referred to as undisciplined annotations [13] and com-
plicates the task of parsing variability. We use a combination of
existing tools that deal with this problem and enable parsing of
undisciplined annotations—namely, TypeChef [9, 10], SuperC [7],
and FeatureCoPP [11]—in order to receive an optimal result.
Analyzing the Build System. A build system addresses coarse-
grained variability by determining files that are included in a prod-
uct. Often, entire files are omitted if the corresponding configu-
ration option is disabled. Thus, similar to source code, files have
presence conditions as well, describing which configurations in-
clude them. We also extract the presence condition for each given
file from the build system to ensure that the variability of each code
location is completely represented.

For C/C++ programs, make and its corresponding makefiles are
widely used as build system. However, analyzing makefiles is not
trivial [4, 6]. In contrast, the given programs rely on Kbuild as build
system, which has been analyzed with Kmax [6]. Thus, we integrate
Kmax in our approach to extract a file’s presence condition.
Deriving Configurations. Using the described tools, PCLocator
is able to compute fairly accurate presence conditions for a code
location and its file. It then joins these extracted presence condi-
tions to create a single one for the code location. Next, it derives
configurations that satisfy this condition.

Not all possible configurations of a system that include the given
code location have to be valid. To address this issue, we require
a variability model [3] that defines the valid configuration space.
All example programs of the challenge rely on Kconfig, for which
we may utilize tools used in previous work (e.g., by She et al. [16]).
However, as this is not in the scope of the challenge, we assume
that a variability model is already available for the system at hand.

Based on a variability model and the extracted presence condi-
tion, PCLocator employs a satisfiability problem (SAT) solver to
compute a satisfying configuration. If there is at least one valid solu-
tion for the variability model in conjunction with the presence con-
dition, the solver provides a corresponding configuration. Thus, our
tool can derive multiple satisfying configurations by incrementally
calling the solver and excluding previously found configurations,
until it is stopped or has found all satisfying configurations.

3 TECHNIQUE AND IMPLEMENTATION
Our approach is to compose the results of the described static anal-
ysis tools for compile-time variability. This improves the reliability
of the results (i.e., if one tool fails, we fall back to another one).

3.1 Supported Programs
In general, PCLocator can be used on any system that fulfills the
following requirements, which includes the ones of the challenge:

(1) It is implemented in C.
(2) It uses the C preprocessor or Kbuild to implement variability.
(3) It uses the Kconfig language to model variability.
For evaluation, we focus on the provided C programs from the

variability bugs database [1] (easy) and BusyBox toolkit (hard),
according to the challenge. Although the axTLS web server uses

Kbuild, it is not supported by Kmax, our used analysis tool. Thus,
we dismiss it in favor of BusyBox. Similarly, we do not explicitly
support Linux, because analyzing such a large system poses new
implementation challenges regarding performance optimizations
and handling large variability models. Nevertheless, BusyBox is
a complex program with more than one thousand configuration
options that is able to demonstrate the capabilities of PCLocator.

3.2 Input and Output
Our tool may take the following input artifacts:

• A code location (i.e., a source file and a line number).
• A variability model as DIMACS file2.
• A Kmax presence condition file if analyzing Kbuild.
• Any additional options required for parsing a C file (e.g.,
include paths and platform headers).

Except for the program location, all other artifacts can be omitted
if they are not available. However, when analyzing code that uses
Kbuild, supplying a Kmax file increases the accuracy of the results.
In addition, a variability model is required if configurations (not
only presence conditions) shall be derived.

By default, PCLocator returns the presence condition for a given
line in a source file. Optionally, it can also provide the presence
conditions for all lines in the file. If a variability model is available,
our tool derives a concrete configuration in the form of flags that
can be passed to the compiler or as a configuration file (.config)
that can be used to build Kconfig-based projects. As mentioned,
incremental usage is possible to identify all valid configurations.

The accuracy of the results depends on the provided input. In
most cases, SuperC and TypeChef should yield more reliable results
than FeatureCoPP, as they consider included files and special cases,
such as #define and #undef annotations. However, in order to
work properly, SuperC and TypeChef require additional informa-
tion (e.g., headers). Similarly, the resulting presence condition is
more reliable if a Kmax presence condition file is provided and,
thus, the variability of the build system can be considered.

3.3 Processing a Source File
The execution of PCLocator can be divided into five major steps,
which we illustrate in Figure 1. First, the source file is parsed to com-
pute the preprocessor presence conditions associated with each line.
Second, the found presence conditions are refined to improve the
accuracy. Third, all presence conditions of each parser are merged
into a single presence condition. Fourth, the build system presence
condition is computed and combined with the merged one. Finally,
a configuration space is derived from the combined presence con-
dition and the variability model.
Parsing the File. Processing a program location starts with parsing
the file and locating presence conditions for each line. To this end,
we integrate different parsers: TypeChef [9, 10] and SuperC [7]
are variability-aware parsers that include nodes for conditional
directives (choice nodes) in the file’s abstract syntax tree (AST). Fea-
tureCoPP [11] is intended to physically separate annotated features,
but can also be used to analyze conditional directives and presence
conditions. For each of these parsers we implemented a locator,

2DIMACS files can be obtained for example with Kconfig Reader or LVAT [5].
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int main() {
#ifdef A
  a();
#endif
}
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Figure 1: Processing a source file: (1) Parsing, (2) refining, (3)merging, (4) build systemanalysis, (5) configuration space analysis.

wherefore they can be used individually to return presence condi-
tions for a file. Though, as we display in Figure 1, we recommend
to combine them in the merging step.

TypeChef and SuperC create an AST containing line informa-
tion for each node. PCLocator then builds a presence condition
by traversing up through the AST and processing all encountered
choice nodes, which represent a nested #ifdef. FeatureCoPP works
differently: It does not build an AST of the source code, but analyzes
only the structure of conditional blocks. Furthermore, #include,
#define, and #undef directives are excluded when using Feature-
CoPP. Both, TypeChef and SuperC provide a preprocessor-only
mode that yields a conditional token stream without building a
full AST. Using this mode, many parsing issues can be avoided,
resulting in improved correctness and performance.
Refining the Results. The yielded presence conditions are refined
based on the following steps:

(1) Header files, such as stdio.h, are mocked out, because, in
general, they do not contribute to software variability. This
speeds up the parsing step and decouples presence conditions
from system-specific header files.

(2) For conditional directives, such as #ifdef A, we consider
its outer scope as presence condition (i.e., true if #ifdef
A is at top-level). However, the parsers return inconsistent
results for directives (i.e., some parsers would consider A
to be the directive’s presence condition). Thus, we ignore
presence conditions of conditional directives.

(3) Currently, the parser step does not locate presence conditions
for all lines in a file, because some lines (e.g., empty ones)
do not contain any tokens that appear in an AST or token
stream. There is a simple way to deduce presence conditions
for such lines though: In a block of non-conditional lines
enclosed by conditional directives, there is only one distinct
presence condition. Assuming we already know the presence
condition for one line from the parser, we can deduce all
other presence conditions in the block. Thus, we can also
deduce presence conditions for conditional directives (which
were ignored before) from surrounding lines. Also, every
line not nested in any conditional block has the presence
condition true. We can extend this deduction algorithm to
nested conditionals by using a stack to track the presence
conditions for nested blocks.

After this step, we still have three sets of presence conditions.
Merging the Results. The question arises, whether these results
can be combined to produce a presence condition that has higher
accuracy. A simple way to merge presence conditions, implemented

in our tool suite, is to choose the “most appropriate” presence
condition for each line. We choose an appropriate presence condition
based on the following rules:

• Results from TypeChef and SuperC are preferable to results
from FeatureCoPP, because the former consider included
files and all preprocessor directives. FeatureCoPP only does
a lexical analysis to determine the result and does not parse
the actual C code, which makes it a very reliable fall-back.

• If two parsers locate presence conditions A and B for the
same line and A implies B (i.e., A is a specialization of B), we
argue that A is preferable to B whenever we are interested
in deriving a configuration that includes the line with high
confidence. Note that this way we trade accuracy of the
presence condition for a more reliable configuration.

• If no presence condition implies another one, there is no
easy way of determining a good result and chances are high
that the results of TypeChef and SuperC are not accurate.
Thus, we fall-back to FeatureCoPP, if possible.

Overall, if TypeChef and SuperC compute equivalent presence
conditions, the result is likely to be correct.
Analyzing the Build System. In this step, PCLocator analyzes
the Kbuild-system variability using the Kmax tool to compute the
presence condition for the entire file. If no build system is used
or only one file is considered (e.g., in VBDb), this step is skipped.
Afterwards, our tool combines the results of Kmax with the previ-
ously obtained preprocessor presence conditions. Thus, both types
of variability are captured and the resulting presence condition rep-
resents all configurations that include the particular code location,
assuming the chosen parser and Kmax produced correct results.
Deriving a Configuration Space. Finally, PCLocator derives con-
crete configurations from the combined presence conditions if a
variability model is provided. For TypeChef and SuperC, we em-
ploy the SAT solver Sat4j [12], which is integrated in TypeChef. As
FeatureCoPP can derive values for non-boolean configuration op-
tions, we use the constraint satisfaction problem solver Choco [15].
Both solvers return a set of configuration options that satisfies the
presence condition and variability model. By repeatedly calling a
solver we can obtain more configurations.

4 EVALUATION
In this section, we present a first evaluation of PCLocator. To this
end, we rely on two data sets: First, we use the 56 code locations
provided by the challenge [8] for the variability bugs database
(VBDb) [1]. Second, we use BusyBox, for which we sample 120
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Table 1: Performance and correctness for using PCLocator.

Merge TypeChef SuperC FeatureCoPP

VBDb: 56 given locations

Time (s) 40.01 42.53 44.62 36.52
Median 0.71 0.76 0.80 0.66
Min 0.62 0.63 0.25 0.10
Max 0.83 0.87 0.90 0.77

Correctness 96% 96% 96% 98%
Precision 96% 98% 96% 98%
Recall 100% 98% 100% 100%

BusyBox: 120 random locations

Time (s) 277.95 244.60 173.12 110.46
Median 2.35 2.07 1.43 0.90
Min 1.28 1.26 1.00 0.78
Max 3.37 2.81 2.11 1.25

Correctness 95% 89% 95% 94%
Precision 95% 96% 95% 94%
Recall 100% 93% 100% 100%

random code locations. For BusyBox, we use an existing variability
model from prior work [14]. We run PCLocator for each parser
individually and in merge mode, which we refer to asMerge (cf. Fig-
ure 1), to get a single configuration for each location. Regarding
correctness, we analyze all code locations in VBDb and all loca-
tions in our BusyBox sample that do not have the trivial presence
condition true (i.e., 100 of 120). We manually check whether a
given program location is included in the derived configuration to
evaluate the correctness. We measure the computation time of our
tool using a quad-core 2.3 GHz computer with 12GB of RAM.
Time. The given program locations in the VBDb can be analyzed
in a matter of seconds using the merge parser. Similarly, analyzing
a random BusyBox code location with the merge parser takes about
2 seconds (median and mean). Analysis time differs somewhat
for the different parsers: As TypeChef’s implementation is not
optimized for performance, it is 0.6 seconds slower than SuperC.
Also, FeatureCoPP has the shortest analysis time because it only
considers conditional directives on a lexical level. The merge parser
executes all three tools in parallel; thus its analysis time roughly
equals the time of the slowest individual parser.
Correctness. For correctness, we calculated precision and recall
as defined in the challenge: Precision refers to how many of all suc-
cessfully identified configurations include the given code location,
while recall denotes how many of all files could be successfully
parsed. For VBDb, we find that all measures have similar values
(96%–98%), which—given the small sample size—is hard to compare.
Most importantly, we find that none of the parsers can identify
configurations flawlessly, which seems to justify our merging ap-
proach. For BusyBox, we find that our merge parser and SuperC
performed best (95%), while TypeChef failed to parse multiple files,
resulting in lower recall (93%) and therefore correctness (89%). In

particular, FeatureCoPP performed reasonably well—considering
that it ignores #include, #define, and #undef directives.
Mode of Operation. As mentioned in Section 3.3, TypeChef and
SuperC have two major modes of operation: Initially, PCLocator
was running these parsers using their default mode (building a
variability-aware AST of the source file). For many static code anal-
yses, an AST is desirable, but for the given challenge a token stream
(annotated with presence conditions and code locations) suffices.
Using this second mode of operation should have a positive impact
on performance and correctness, because building a variability-
aware AST for C code is time-consuming and error-prone. We
updated PCLocator accordingly, and the results we show in Table 1
have already been obtained using the conditional token stream.
For comparison, we also ran SuperC and TypeChef in their default
mode using the same experimental setup: As expected, we found
that, for BusyBox, analysis time rises to a median of 7 seconds (10
seconds mean, 87 seconds maximum) using the merge parser. In
addition, TypeChef and SuperC regularly fail to build an AST at
all in this mode due to unrecognized syntax and unresolved types
(79% recall). These results confirm that, for this challenge, the token
stream approach is superior to building ASTs.
Summary. The results show that all parsers perform similarly on
the given data sets when run in token stream mode, with minor
differences in time and correctness. No parser identifies config-
urations perfectly, which follows from the mutual strengths and
weaknesses of the parsers: TypeChef and SuperC can handle more
conditional directives than FeatureCoPP, while FeatureCoPP can
derive configurations including non-boolean configuration options.
In particular, our merge approach does not perform much better
or worse than the comprised parsers. Nonetheless, it is useful to
derive a configuration in the presence of parser failures and does
not add much overhead to the required execution time. In addition,
it can be used to assess the confidence of a presence condition: For
BusyBox, we find that TypeChef and SuperC located equivalent
presence conditions in 88% and disagreed only in 3% of all cases.
We therefore regard the merge parser as the safest choice in terms
of presence condition accuracy.

5 CONCLUSION
In this paper, we introduced PCLocator, a tool suite to identify
configurations that comprise a given code location. To this end, we
use three different parsers and refine their results with build system
information and a variability model. Our evaluation shows that the
different parsers perform similar despite their differing analysis
approaches. In particular, our merge approach returns quite correct
results within a reasonable time. Considering the correctness and
performance of PCLocator, we are optimistic that it can solve the
defined challenge.

We see the current version of PCLocator as a first step to provide
a correct analysis of presence conditions. In future work, we aim
to improve and extend it by adding possibilities for further input
types. Especially, we want to further increase its correctness and
performance. To this end, we may rely on additional tooling and
implement analysis strategies ourselves.
Acknowledgments. Supported by DFG grants LE 3382/2-1, LE
3382/3-1, SA 465/49-1, and Volkswagen Financial Services AG.
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