
Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring

Elias Kuiter
Otto-von-Guericke-University

Magdeburg, Germany
kuiter@ovgu.de

Jacob Krüger
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

jkrueger@ovgu.de

Sebastian Krieter
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

skrieter@hs-harz.de

Thomas Leich
Harz University of Applied Sciences

METOP GmbH
Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
gunter.saake@ovgu.de

ABSTRACT

Due to its fast and simple applicability, clone-and-own is widely
used in industry to develop software variants. In cooperation with
different companies for thermoelectric products, we implemented
multiple variants of a heat monitoring tool based on clone-and-own.
After encountering redundancy-related problems during develop-
ment and maintenance, we decided to migrate towards a software
product line. Within this paper, we describe this case study of mi-
grating cloned variants to a software product line based on the ex-
tractive approach. The resulting software product line encapsulates
variability on several levels, including the underlying hardware sys-
tems, interfaces, and use cases. Currently, we support monitoring
hardware from three different companies that use the same core sys-
tem and provide a configurable front-end. We share our experiences
and encountered problems with cloning and migration towards a
software product line—focusing on feature extraction and modeling
in particular. Furthermore, we provide a lightweight, web-based
tool for modeling, configuring, and implementing software product
lines, which we use to migrate and manage features. Besides this
experience report, we contribute most of the created artifacts as
open-source and freely available for the research community.

CCS CONCEPTS

• Software and its engineering → Software product lines;
Software configuration management and version control systems;
Software reverse engineering;

KEYWORDS

Software Product Line, Case Study, Feature Modeling, Extraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’18, September 10–14, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6464-5/18/09. . . $15.00
https://doi.org/10.1145/3233027.3233050

ACM Reference Format:

Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter
Saake. 2018. Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring. In SPLC ’18: 22nd International Systems
and Software Product Line Conference, September 10–14, 2018, Gothenburg,
Sweden.ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3233027.
3233050

1 INTRODUCTION

Software product lines are a systematic approach to reuse and man-
age software artifacts [2, 36]. These artifacts correspond to features
– user-visible functionalities of a set of variants – that are modeled
within variability models [15, 42] to define their dependencies. A
selection of features that fulfills all these dependencies is a valid con-
figuration. Based on such a configuration, a tool can automatically
instantiate a variant from the implemented artifacts.

Using software product lines promises several benefits, for in-
stance, reduced costs for development and maintenance, faster
time-to-market, and improved quality [2, 23, 47]. Nonetheless, de-
veloping a software product line requires higher initial investment
and careful investigation of whether it is suitable for the task at
hand [13, 28, 43]. Thus, many organizations start with a single sys-
tem instead, which is then cloned and adapted to new customer
requirements—the clone-and-own approach [16, 18]. As this ap-
proach creates separated software variants, it can quickly become
expensive to maintain, due to the necessary change propagation
for updates [16, 35]. For this reason, organizations often decide
later on to migrate these cloned variants towards a more systematic
approach; adopting, for example, software product lines [9, 36, 43]—
which is called extractive approach [26].

In this paper, we describe our experiences with implementing
a set of similar variants in the temperature monitoring domain.
We started to implement these variants to address personal needs,
but in the process attracted different organizations to adopt and
extend the variants for distributing them to their own customers.
Due to the resulting adaptations, the initially used clone-and-own
approach was not feasible anymore and we decided to extract a
software product line. To this end, we also implemented our own
tooling to facilitate development and maintenance for our purpose.
Consequently, with this paper we contribute the following:

https://doi.org/10.1145/3233027.3233050
https://doi.org/10.1145/3233027.3233050
https://doi.org/10.1145/3233027.3233050
a-jkrueger
Textfeld
This is the authors' version of this paper and posted here for personal use only. For any other use, please contact the ACM.doi: 10.1145/3233027.3233050

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden E. Kuiter et al.

• We describe our experiences of developing a set of variants
in the temperature monitoring domain. This includes the
development based on the clone-and-own approach (cf. Sec-
tion 2) and the problems we faced. Furthermore, we discuss
the benefits we hoped to achieve with a software product
line as well as the migration process (cf. Section 3).

• We describe and provide lightweight tooling especially for
web-based software-product-line engineering (cf. Section 5).
To this end, we briefly discuss the reasons for implement-
ing new tools instead of relying on existing ones, such as,
FeatureIDE [34], pure::variants [10], and Gears [27]. Our tool-
ing is inspired by FeatureIDE, which, despite its improved
reusability [25], did not align with our specific requirements.

• We provide most of the implemented artifacts, comprising
the tools and the software product line, to the research com-
munity. These artifacts are available in different repositories
containing the legacy systems and the extracted software
product line.1 As we cooperated with different organizations,
we cannot fully provide all details and omit implementation
details for some features. Thus, we ensure that the organi-
zations’ critical information are secure while still providing
almost full insights into the migration process and artifacts
to the research community. In particular, we provide a com-
plete, real-world featuremodel that wewill continue to refine
in the future.

Overall, our contributions provide insights into the extraction of
software product lines from cloned variants in an industrial domain.
To facilitate further analyses and allow for more detailed insights,
we provide most of the artifacts to the research community. Thus,
we hope to encourage the development of new approaches that
support the industrial application of software product lines.

2 PHASE 1: CLONING

Initially, we developed a single application to monitor heating de-
vices for private usage. Soon afterwards, we had several requests by
other users of such systems if they could also use our solution and
if we could implement slight customizations. This demand finally
resulted in several organizations asking us to implement solutions
based on their requirements and for their specific use cases. In this
section, we describe this initial phase during which we relied on
clone-and-own. To this end, we report details on two specific vari-
ants: Uvr2web and TempLog, their implementation, and practical
impact for users and the organizations. We briefly sketch some
further variants that we developed to show their commonalities
and differences.

2.1 Uvr2web

Industrial Background. The Austrian company Technische Alter-
native2 sells heating control systems (UVRs). Such control systems
are widely used in private households to manage solar plants as well
as wood and oil heating systems. During runtime, sensor data is
logged to verify correct behavior and can be transferred via SD card

1uvr2web: https://github.com/ekuiter/uvr2web
uvr2web SPL: https://github.com/ekuiter/uvr2web-spl/tree/master/spl/artifacts
2https://www.ta.co.at/

UVR1611

Arduino Board

Retrieve data
via DL bus

Web Interface

LAMP Stack

Uvr2web Application

MySQL Database Apache Server/Linux

Store data Running on

Transfer data
via Ethernet

Display graphs

Figure 1: Structure of the application uvr2web.

or CAN bus. This data is also interesting in different application
scenarios, for instance:

• To determine when to fuel a heating system with additional
wood or oil;

• To evaluate whether an installed solar plant pays off; and
• To debug heating control settings in complex environments.

For these applications, amonitoring software is necessary to present
the sensor data in a comprehensible manner. Based on such a mon-
itoring solution, customers can analyze the aforementioned sce-
narios and make their decisions, for example, installing additional
solar plants or searching for faults.

As of 2013, there was only a single open-source software for
monitoring this type of heating control systems (UVR1611 Data
Logger Pro3), requiring expensive dedicated hardware. By now, Tech-
nische Alternative has developed an official solution, the Control
Monitoring Interface that also requires expensive hardware. Due
to these limitations, we started with developing an open-source
solution that does require little to no additional hardware.

Implementation. At first, we implemented a single monitoring
web-application that aimed to provide a cheap solution for private
users:Uvr2web4. This application only supports one type of control
systems, the UVR1611. To access the sensor data, we had the options
to use the CAN bus, which is also common in automotive systems,
or the company’s alternatively provided DL bus. We decided to use
the DL bus for uvr2web, due to its simplicity facilitating the design
of our application.

For retrieving the actual data, we opted for an Arduino-based
approach [4]. Arduino provides an open platform for physical com-
puting that comprises a micro-controller board and its accompany-
ing software. While the hardware is relatively affordable for private
households (around $20), it is still sufficient for our purpose. By
further providing our web-application as open-source, our solution
is cheaper and more accessible than the previous ones.

As we show in Figure 1, the Arduino board retrieves and decodes
the data from the DL bus. Then, it transfers the data via Ethernet
to a server. For the back-end software, we chose the popular and
3https://github.com/berwinter/uvr1611
4https://uvr2web.de/

https://github.com/ekuiter/uvr2web
https://github.com/ekuiter/uvr2web-spl/tree/master/spl/artifacts
https://www.ta.co.at/
https://github.com/berwinter/uvr1611
https://uvr2web.de/

Moving to a Software Product Line for Temperature Monitoring SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

widely used LAMP stack [31], comprising a Linux operating sys-
tem, Apache web server, MySQL database, and PHP programming
environment. Using the LAMP stack ensures that our solution is
compatible with typical web hosters. A PHP application processes
the arriving sensor data and inserts it into the MySQL database.
Then, users can access the data with a front-end web page that
visualizes the measured data. To further improve the monitoring
capabilities of our solution, we added other features, for example,
to view live data, to send e-mail notifications, and to summarize
the data flow. Overall, our solution comprises two main compo-
nents: Firstly, the Arduino (C++) code is used to decode DL bus
data and forward it to the PHP application. Secondly, the uvr2web
application manages the database and generates sensor data graphs.

Impact. Due to its open-source availability, we have no precise
data on our application’s usage. However, uvr2web had 34 unique
visitors from January 15th to January 28th 2018 and since its in-
ception in 2013, we have been contacted by more than 20 people
interested in or already using it. While running the software for
around 5 years on one personal system, we had no issues.

2.2 TempLog

Industrial Background. Also in 2013, the German cooler vendor
HCP-Technology5 approached us with another project on temper-
ature monitoring. This company focuses on coolers and different
temperature control solutions. In this regard, they asked for similar
requirements we described as useful before, namely checking the
temperature and monitoring it over time (e.g., based on a graph).
Up to this point, such capabilities were significantly limited.

Implementation. Again, we sketch a rough structure of the sys-
tem in Figure 2. In contrast to the heating control systems, the
considered coolers are equipped with sensors and Bluetooth trans-
mitters. Such a transmitter sends the measured temperature to a
nearby computer or smartphone—currently supporting Android
andWindows devices. The application can be used to quickly visual-
ize the data on the device as a graph. Optionally, the application can
send the data to a back-end server, which can store and also visual-
ize the data for online retrieval. In total, HCP TempLog6 comprises
four components (cf. Figure 2):

• A HCP module with BASCOM-AVR code that decodes tem-
perature data and transmits it via Bluetooth.

• An Android/Java application visualizes incoming tempera-
ture data on smartphones.

• A Windows (C#) application that does the same as the An-
droid version.

• An adapted PHP component manages customers as well as
the database and generates sensor data graphs.

For the last component, uvr2webwas the starting point fromwhich
we cloned and adapted the TempLog variant. Consequently, some
obsolete features have been removed – for example, reading data
from different sensors –while others have been added – for example,
customer management and regular database cleanup. From this
variant, we also created a second clone that we called Dometic

5http://hcp-technology.com/
6http://log.hcp-technology.com/

Send data via
Bluetooth

TempLog Smartphone TempLog Computer

HCP Module

Adapted uvr2web
LAMP Stack

Adapted uvr2web Web
Interface

Send data via
Wifi/Ethernet

Display graphs

Figure 2: Structure of the application HCP TempLog.

TempLog. We have released this clone for the Swedish appliance
manufacturer Dometic Group7.

Impact. Regarding the two variants of TempLog, we have more
detailed insights of their usage. Firstly, they have been requested by
two organizations (while uvr2web was initiated by us). Secondly,
both variants together have been installed 70 times for Android
and downloaded 250 times for Windows. Finally, 30 customers are
using the available online database.

2.3 Further Variants

As mentioned, the previous variants appeared to be quite success-
ful and to provide functionality requested by organizations and
customers alike. Over time, several people contacted us and asked
especially whether the uvr2web application was available for other
heating controls than the UVR1611. At this point, we did not start
with a software product line, yet—due to a lack of awareness for
variability management and no obvious problems with the clone-
and-own approach until then. Consequently, besides some adapta-
tions on our side, other developers implemented variants for the
Raspberry Pi8 or ESP82669 by forking our repository. Usually, these
variants are even more specific to the users’ requirements and there
has been no effort to consolidate and merge all these variants.

3 PHASE 2: TOWARDS A SOFTWARE

PRODUCT LINE

Over time, we faced several issues for which we decided to switch
to more systematic reuse, namely a software product line. In this
section, we report our experiences regarding encountered problems,
reasons for a software product line, and barriers of extracting features
that we addressed.

3.1 Encountered Problems

The first issue we noticed after some clones had been created, was
the problem of introducing new features. While cloning was
a fast approach to get an adapted variant working, it was rather
problematic in the long run. Due to the cloning, emerging variants
have already multiple features in common and, thus, high potential
for a software product line. Still, there was already some variability
7https://www.dometic.com/
8https://github.com/martinkropf/UVR31_RF24
9https://github.com/Buster01/UVR2MQTT

http://hcp-technology.com/
http://log.hcp-technology.com/
https://www.dometic.com/
https://github.com/martinkropf/UVR31_RF24
https://github.com/Buster01/UVR2MQTT

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden E. Kuiter et al.

implemented, for example, support for different devices (i.e., desk-
top computer and smartphone) and optional features that can be
activated at runtime (i.e., online database). Some of those features
provide unique functionality potentially useful for other variants
(e.g., mail notifications). Also, the TempLog variants already use
simple build-system like scripts to reuse code. Nonetheless, these
mechanisms were neither uniform nor managed in a systematic
way, causing problems when introducing the same feature in multi-
ple variants. For instance, we had to add glue code in each variant
and analyze if any unique dependencies may cause errors.

Second, we experienced that fixing bugs required significantly
increasing effort, as we needed to propagate updates and consider
side effects of different implementation details in each variant. For
example, we identified a security-related bug and fixed it in themain
branches of each variant. Despite fixing parts of it in some other
variants, the same bug still appeared in these, due to the diverging
source code. Consequently, while sharing common code to a large
extent, we had to apply fine-grained changes and extensions that
made it impossible to apply the same fix in each variant. Instead,
we had to identify potential side effects and customize the bug fixes
for all variants individually.

Third, each of the variants had potential to be extended and dis-
tributed to a broader market, but our approach of cloning seemed
to make it impossible to advance all variants simultaneously

and in a consistent way. More precisely, uvr2web implemented
a number of features using runtime variability and integrated these
in a fitting workflow. Still, this variability was not modeled explic-
itly in the source code, making it challenging to extend the variants
and potentially introducing unintended feature interactions. More-
over, using version control systems to branch versions seemed to
be a good way to quickly introduce new features. However, the
disadvantages of diverging branches – also including those of third-
party developers – pose new challenges. For instance, an additional
mail notification feature was developed in a branch that is by now
35 commits behind the master branch. At this point, it seems too
costly to merge these branches. Our final approach to rely on build
systems worked quite well for a subset of our variants with more
similarities. Here, the problem appeared that the build scripts grew
overly complex and that keeping the local executables in sync with
the server was error-prone.

Overall, we saw that a centralized system and implementation
technique to manage variability had been missing. As a result, we
were quite reluctant to improve and extend the software, basically
following the suggestion of if it ain’t broken don’t fix it. Still, as most
likely any developer experiences at some point, this did not work for
us anymore when we faced the aforementioned limitations, which
called for a more systematic approach to manage our software.

3.2 Why a Software Product Line?

To tackle the described problems, we thought that using a variability-
specific implementation technique to consolidate the variants may
be the best course of action. Thus, we investigated the extraction
from our legacy variants towards a software product line in more
detail. As we faced concrete problems, we did not perform a poten-
tial analysis [20], but defined concrete goals we wanted to fulfill.
Finally, we aimed to extract features from our variants to:

• Remove code duplication and, thus, facilitate maintenance
and extensibility;

• Derive a feature model as ground truth for the variability in
our applications;

• Avoid branching by using an implementation technique that
supports a variability mechanism;

• Improve our tooling to further automate the build process
for our variants; and

• Extend and simplify our capabilities to adopt variants to
different environments.

Fulfilling these goals would allow us to facilitate the development
of new variants and their adoption to user-specific requirements,
for instance, to support other kinds of temperature control units,
motherboards (e.g., Arduino, Raspberry Pi), and back-end servers
or components (e.g., Apache server, Emoncms10, MySQL).

3.3 Barriers of Feature Extraction

Considering the extraction of features, we faced some problems,
which we are summarizing in the following.
Deciding which behavior comprises a feature is a well-known
challenge in software-product-line engineering that we faced, too.
This problem arises, as developers have different notions of fea-
tures [8, 12, 29, 30], which challenges the introduction of a uniform
understanding of a system and hampers feature location tasks.
Nonetheless, it is necessary to solve this problem to decide which
features to extract from the variants. We addressed this by letting
the main developer of the variants decide how to decompose these
legacy systems into features.
There was amismatch between the intended and actual vari-

ability that we could implement by only extracting features [24, 32,
45]. We faced this problem, due to several components requiring
specific settings and, thus, imposing restrictions we did not intend
at the beginning. Thus, we needed to decide for such features if we
wanted to further restrict the variability or apply refactorings to
achieve the intended variability. This was decided on a case-by-case
basis, depending on the complexity of the required refactoring and
the gained variability.
Extracting variable feature code was the main challenge of mi-
grating the variants towards a software product line. At first, we
had to decide which variability mechanism we wanted to use for
C++ and PHP, the two primary languages of the applications. We
decided to rely on the C preprocessor [21] for C++ and a combi-
nation of runtime variability, plug-ins, and a build system for PHP.
Additionally, we had to refactor several code parts to make them
reusable as features and resolve code smells [19]. However, here we
sometimes had to decide which code should be refactored – poten-
tially risking the introduction of new bugs – and which should be
kept the way it was – potentially missing variability. In most cases,
we kept the existing code where variability was of no concern, only
fixing obvious bugs, because there was no systematic unit or inte-
gration testing in place. However, for some key features regarding
variability, larger refactorings had to be performed carefully (e.g.,
to support different heating controls).
Initializing configuration management and product deriva-

tionwasmainly concerned with deciding for the tooling wewanted
10https://emoncms.org/

https://emoncms.org/

Moving to a Software Product Line for Temperature Monitoring SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

to install. These tools should support a suitable configuration menu
and fully automatically provide the configured variant. Here, we
found that existing tools [10, 27, 34] – while supporting these func-
tionalities greatly – had some limitations that restricted their usage
for our use case. Thus, we decided to implement our own tooling
that also allows us to rely on different programming languages and
variability mechanisms at the same time. In Section 5, we further
discuss the reasons for this decision and briefly describe the tools
that we developed for the extraction process.
Managing the source code was a problem we were not aware of
beforehand, but that quickly arose when our cooperating organi-
zations asked for variants. In particular, our software product line
suddenly comprised open-source as well as closed-source features.
Consequently, we had to enforce a privacy policy for the extracted
features. To do this, we identified all features and code artifacts
which are private to the organizations. Due to the nature of our
tool, it is easy to separate these features into a private repository.
Still, the feature model is entirely open-source, because it does not
contain sensitive information.

4 PHASE 3: DESIGNING A FEATURE MODEL

Within this section, we describe the design of an appropriate feature
model that covers all existing variants, but also allows for new
combinations of features—increasing the possible configuration
space significantly. In particular, the feature model must ensure
that variants can only be instantiated if they fulfill the requirements
of the underlying hardware and must forbid unintended feature
interactions. Considering our extracted software product line, we
have to account for multiple different device types for capturing
(e.g., HCP module and DL bus) and representing (e.g., smartphones
and web interfaces) data, as well as varying data visualizations.

We display the resulting feature model in Figure 3. For the fea-
ture model’s hierarchy structure, we decided to use a functional
separation of concerns. Thus, below the root feature uvr2web, we
divided the feature model into three mandatory subtrees, data cap-
ture, data transfer, and data visualization. All features within the
data-capture subtree are related to retrieving (i.e., capturing) data
from a device. The data-transfer subtree refers to all features that
are related to physically transferring the captured data within the
system. Lastly, the features within the data-visualization subtree
are related to processing, storing, and visualizing the captured data.
As these subtrees already indicate, the features in our model reflect
the sequential data flow of the variants, as we depict in Figure 1
and Figure 2. This facilitates the configuration process, as the same
order appears there and follows the user-visible data-flow.

As the principle tyranny of the dominant decomposition indicates,
we cannot represent all dependencies between features within a
feature tree [44]. For instance, our focus on a functional tree hierar-
chy makes it harder to express that some existing software artifacts,
such as, the Android and Windows applications, only work under
specific circumstances (e.g., when data is transferred via Bluetooth).
To represent these dependencies within our feature model, we ad-
ditionally introduced cross-tree constraints to scope the number
of valid variants to those that are actually useful. Alternatively,
we could have refactored the existing artifacts to make them more
general. However, because of the very specific nature of the local

visualization by the Android and Windows applications, a refactor-
ing is beyond the scope of this paper and also not needed for the
canonical use case (i.e., logging UVR sensor data).

In the following we describe each of the relevant subtrees –
data capture, data transfer, and data visualization – in more detail.
Precisely, we reason about their necessity and provide some imple-
mentation details. Finally, we describe the branding and database
features as part of the data visualization subtree – which are critical
for the cooperating companies – and explain why specific cross-tree
constraints have been introduced.

Data Capture. Within the subtree data capture, we support two
different types of devices that are used within different variants.
First, variants supporting devices from the UVR product line by
Technische Alternative (TA) use the features within the subtree TA.
The child features below TA implement a variety of different data
types (e.g., sensors, outputs, heat meters, and speed steps) and are
represented as an alternative group within the feature tree (i.e.,
exactly one device must be chosen). Note that of the UVR controls
present in the feature model, only the UVR1611 feature is actually
implemented in the original uvr2web variant (cf. Figure 1). The
other controls have been implemented after migrating towards the
software product line.

Second, the feature HCP module is used by variants supporting
Bluetooth devices fromHCP-Technology. This affects the use case for
HCP-Technology and Dometic Group, as we describe in Section 2.2.
The featureHCPmodule exposes exactly one temperature value and,
thus, has no other features below itself. However, only a single tem-
perature value is captured in the corresponding use cases—which is
already implemented in other features (i.e., Bluetooth and single sen-
sor) that are required, due to cross-tree constraints. Consequently,
HCP module comprises no implementation and is abstract, only
facilitating the configuration process and avoiding faulty variants.

The Arduino feature provides the base code for capturing UVR
control data. Still, there are some functionalities which may need to
be customized according to the user’s needs, such as, the server to
upload sensor data or a password to secure the access. These func-
tionalities are added as mandatory and optional features, depending
on their necessity. Some of the setting features aremandatory, mean-
ing that they do not provide additional variability on the surface,
but, in fact, they do broaden the number of possible variants: They
hold a string value that configures their behavior, instead of being
only selected or not—resembling attributed features in extended
feature models [2, 7]. These features allow the developer to pass
further configuration options. As examples, we can specify the
data pin that connects the Arduino board with the UVR control
and define the connection to the web server to which the data is
uploaded. In contrast to the traditional toggling of Boolean features,
this allows us to reduce the size and complexity of the feature model
without losing too much information on first glance.

Data Transfer. We introduced the subtree data transfer and both
of its child features, Bluetooth and Internet, to further structure the
software product line. The subtree mainly serves two purposes:
Simplifying cross-tree constraints related to Bluetooth devices and
helping users to understand how their decisions in the other two
subtrees influence the data transfer within the system. Currently,
there is no implementation for these transfer channels, as we rely

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden E. Kuiter et al.

data visualization

application

branding

Internet

UVR1611

uvr2web

data capture data transfer

data sourcesArduino

TA HCP module

UVR31 UVR42 UVR64HZR65 TFM66

data pin setting interrupt setting additional bits settingweb settingsusing PC setting

mac address settingserver setting script setting password setting upload interval setting

Bluetooth

localserver

Windows Androidwebsite server application

database

data type demo mode HTTPS mode devices API admin

compoundsingle sensor sensoroutput heat meter speed step language backup uninstallnotifications user management

German English Frenchbackup notification no upload notification trigger notification

HCP Dometic personal

HCP database HCP website HCP Android HCP Windows Dometic database Dometic website Dometic Android Dometic Windows

Optional

Or

Alternative

Abstract

Concrete

Mandatory

Legend

HCP ∧ database ⇒ sinдle sensor TA ∧ database ⇒ (compound ∧ sensor ∧ output)
TA ⇒ Internet sinдle sensor ⇒ (sensor ∧ ¬output ∧ ¬heat meter ∧ ¬speedstep)

UVR1611 ∧ database ⇒ (heat meter ∧ speedstep) TA ⇔ Arduino
uninstall ⇒ backup backup noti f ication ⇒ backup
local ⇒ HCP module HCP module ⇔ (HCP ∨ Dometic)

database ⇔ (personal ∨ HCP database ∨ Dometic database) Android ⇔ (HCP Android ∨ Dometic Android)
Windows ⇔ (HCP Windows ∨ Dometic W indows) website ⇔ (HCP website ∨ Dometic website)

website ⇒ (HCP module ∧ database ∧Android ∧Windows)

HCP module ⇒ (Bluetooth ∧ ¬demo mode ∧ ¬user manaдement ∧ ¬backup ∧ ¬uninstall ∧ ¬API)
(UVR31 ∨UVR42 ∨UVR64 ∨ HZR65 ∨TFM66) ∧ database ⇒ (¬heat meter ∧ ¬speedstep)

Figure 3: Feature diagram of the software product line uvr2web.

on them through the hardware and their APIs. Consequently, we
do not require implementation for these features for now and, thus,
all of them are abstract. The resulting structure facilitates further
evolution of the software product line to provide more options for
data transfer (e.g., radio transmission).

Data Visualization. Each variant of the software product line
supports one or both of the currently existing two visualization
approaches. First, local visualization refers to applications that
retrieve sensor data via Bluetooth. Their job is to provide a first
impression of the data (e.g., drawing a graph on a smartphone) and,
optionally, forward it to a server application. The user may select
the Android application as well as the Windows application, both
provide the same insights into the captured data. In contrast to
the feature combination of Arduino and database (the uvr2web
use case in Section 2), the local visualization cannot be customized
further, because it is only used within HCP-Technology’s use case

(cf. page 3). Thus, the customizations for visualizations of these
variants are defined by the company.

Second, server visualization refers to applications running on the
server that retrieves sensor data via Internet. The original uvr2web
variant already provides a complete, but complex, database appli-
cation. In contrast to local visualization applications, the database
has to be customizable to a great extent. This is because the data-
base may be part of every variant (i.e., for every supported UVR
control as well as the single-sensor Bluetooth device)—each re-
quiring customizations to the used data formats. Similar to the
additional UVR controls, an evolution of the software product line
may support other server visualization applications as well, for
example, Emoncms or openHAB. These may not be as tailored as
the included database application, but they are very well-suited and
popular for smart-home monitoring and home automation. Finally,
for HCP-Technology’s use case, the website feature comprises an
installation of the database for each customer as well as a web

Moving to a Software Product Line for Temperature Monitoring SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

portal. For personal use, this is not needed and we therefore disable
this combination with cross-tree constraints.

Branding. To clarify the corporate branding of a variant, we
added an additional branding feature. This way, we are able to
customize and distinguish variants generated for HCP-Technology,
Dometic Group, and personal use. As these are the most critical
features of the software product line, we omit their parts of the im-
plementation in the repository, but will explain some details in the
following. In particular, we describe how we achieve the branding
of different features and illustrate the problems we faced with fea-
ture interactions and granularity, which we resolved by combining
design-time (i.e., C preprocessor, build system) and runtime (i.e.,
plug-ins) variability mechanisms.

Regarding branding, we encountered a problem: The features
Windows, Android, website, and database need to be branded indi-
vidually, meaning that for each of these features there are some
artifacts specific to HCP-Technology, Dometic Group, and other cus-
tomers. Which of these artifacts we have to include depends on the
selected branding. Thus, only when both,Windows and HCP, are se-
lected, the HCP-specific Windows artifacts are delivered, otherwise
they are not. This requirement gives rise to a number of feature in-
teractions and glue-code between the aforementioned features and
the features HCP and Dometic. We decided to resolve these feature
interactions by extracting them into their own features (i.e., HCP
database, HCP website, and so on). These features are added below
HCP and Dometic and connected through cross-tree constraints to
the platform features (e.g., Windows).

Database. At last, the database feature defines the primary visu-
alization software for the captured data. Depending on the device
in the data capture subtree, either compound or single sensor are
selected automatically to enable some use-case specific adjustments
inside the database. The demo mode and HTTPS mode features im-
plement minor and fine-grained adjustments of the database using
runtime variability, whereas the API feature – a larger feature im-
plementing a JSON-based API – makes use of a build system for its
coarse-grained refinements.

Just as the data type subtree, the devices subtree is directly tied
to the selected device features. Every device exposes at least one
sensor, so sensor is mandatory, while the other features in this
subtree depend on the device. We implemented these features by
using a combination of a build system with a plug-in loader at
runtime—with the build system deciding which artifacts to copy
and, at runtime, the database loading all available artifacts.

The admin subtree contains various optional features for admin-
istrative usage, the only exception being the language feature. This
feature determines which languages can be chosen at runtime. To
guarantee that at least one language is available, language is an
or-group. Similarly, the notifications subtree is an or-group that de-
termines the e-mail notifications selectable at runtime. The backup
notification requires the backup feature to be selected, which is
modeled with a cross-tree constraint. We employ a similar imple-
mentation strategy as before, using a plug-in loader. Extracting all
these optional features in the admin subtree was necessary because
the HCP-Technology use case limits the access to administrative
functions. Consequently, features like backup and uninstall are not
available in these configurations.

Cross-Tree Constraints. Most cross-tree constraints originate from
the legacy use cases and their separated hardware and software
solutions (cf. Section 2). Consequently, the constraints resemble
a separation between the corresponding features, but also map
dependencies within the legacy systems. Considering the legacy
uvr2web variant, the approach for capturing data is by connecting
an Arduino board to the UVR control and to the Internet. Thus,
selecting an UVR control feature automatically selects the Arduino
and Internet features in the extracted software product line.

In contrast, the HCP-Technology hardware requires a Bluetooth
connection and only exposes a single sensor value. Thus, the Blue-
tooth and single sensor features have to be selected for HCP. Because
the Bluetooth device is already flashed with a fixed software, no
further variability is needed for the device and the HCP module
feature is abstract. Moreover, the HCP module and Arduino features
are mutually exclusive, which currently does not allow merging
the two legacy variants at this point.

5 PHASE 4: DEVELOPING THE TOOLING

Within this section, we explain why we implemented new tools for
managing our software product line. Afterwards, we introduce our
tools and their concepts in more detail.

While considering existing tools for managing software product
lines [10, 27, 34], we had some additional requirements: For in-
stance, because uvr2web is mostly an open-source project anyone
can participate in, its tooling should also be free and open-source
to facilitate contribution. This rules out pure::variants and Gears
because they are commercial products.

Additionally, for encouraging contribution, setting up the tool-
ing should be easy and familiar for new developers (i.e., running a
single command). Finally, our goal was to set up a simple web envi-
ronment where end-users may configure and generate a product
tailored to their needs. Using this environment should not require
any understanding of software-product-line engineering, making
it more user-friendly than other tools. While FeatureIDE is open-
source, it is also tightly coupled to the Eclipse platform and does
not provide a web interface yet, which was our main reason for not
using FeatureIDE. Thus, we decided to implement new tooling that
specifically addresses the above requirements.

In order to manage our software product line, we provide several
specialized tools for certain tasks such as visualization, configura-
tion, and analysis. We describe our tools based on their role in the
software-product-line engineering process [2, 36] that we depict
in Figure 4. Here, the activities we support with our tools are framed
with dashed boxes. Each name within a box refers to one tool that
we explain in the following.

As one of our main goals was to make the software product
line easily accessible to its potential users, we decided to (1) use
a common format for feature models (i.e., the XML format of the
open-source tool FeatureIDE) and (2) develop a web-based API for
each tool. This further facilitates accessibility by:

• Making tooling and source code of a software product line
available via regular Internet connection;

• Requiring no additional installations or advanced knowledge
about software product lines; and

• Supporting multiple kinds of devices.

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden E. Kuiter et al.

Domain engineering

Application engineering

Domain
analysis

Domain
design

Domain
implementation

Model Platform

Requirements
analysis

Program
configuration

Features Integration and
test

Variant

Feature model New features Instantiation

Visualization

Configuration

Generator

Figure 4: Software-product-line engineering activities

(based on Krüger et al. [28]). Activities supported by our

tools are framed with dashed boxes.

Domain Analysis. Specifying the relevant features of a software
product line and defining their dependencies in a feature model is
usually one of the first steps in software-product-line engineering.
While fully-fledged IDEs, such as FeatureIDE, provide a powerful
feature model editor, we focus only on lightweight feature model
visualizations inside a web browser to:

(1) Quickly assess a feature model without installing additional
and unnecessary tools;

(2) Discuss and collaborate on the feature model’s design; and
(3) Display a configuration of selected and deselected features.
Our visualization tool11 takes a feature model as input and dis-

plays it as a graph (cf. Figure 3). While it currently only shows
feature models (i.e., read-only), we see potential for collaborative
editing (e.g., enabling domain experts to simultaneously work on
the same featuremodel over theweb). Asmentioned, the tool is com-
pletely web-based and can be accessed via most modern browsers.
The implementation uses the GraphViz library to generate an SVG
image, which is embedded into the web document.

Requirements Analysis. Configuring a software product line (i.e.,
selecting and deselecting features to specify a variant) is a cen-
tral process in software-product-line engineering. We support this
process with our web-based configuration tool12 that:

(1) Provides an intuitive, lightweight user-interface for selecting
features defined in the provided model; and

(2) Applies decision propagation to automatically select implied
features according to the underlying feature model.

Our configuration tool is based on JavaScript and provides a
user interface based on tri-state checkboxes (i.e., selected, deselected,
and indeterminate states). In Figure 5, we show the user interface,
which provides a tree-structured view corresponding to the feature
model. For decision propagation, it uses a satisfiability solver and
the algorithm outlined by Apel et al. [2].

Domain Implementation & Product Derivation. Deriving a variant
from a valid configuration and the corresponding software artifacts
is the main step in software-product-line engineering. For us, us-
ing established tools such as FeatureHouse or AHEAD [5] was
not an option, as due to technical limitations it is not possible to

11https://github.com/ekuiter/feature-model-viz
12https://github.com/ekuiter/feature-configurator

Figure 5: Web-based configuration interface.

run these tools on shared hosting servers. In addition, our server
infrastructure regarding uvr2web and HCP-Technology has lim-
ited capabilities. Thus, we developed a lightweight generator tool
with modest server requirements serving our needs. Our generator
tool13 can be used to:

(1) Analyze and validate feature models and configurations;
(2) Implement and trace features using various variability mech-

anisms at the same time; and
(3) Generate products and export them.
In our uvr2web software product line, features are implemented

with different variability mechanisms, mainly runtime variability, a
build system, and a preprocessor. Thus, our generator tool supports
all of these variability mechanisms in parallel. Additionally, it pro-
vides experimental support for feature-oriented programming [37]
and aspect-oriented programming [22]. Similar to our other tools,
the generator tool is web-based. The implementation is based on
PHP and requires a PHP environment, which should be available
on most shared hosting services.

Summary. Though we developed the tools with our particular
use case in mind, we focused on accessibility and generalizability
in the tool’s APIs. Thus, we claim that each of them can be used
independently and for arbitrary feature models and software prod-
uct lines. For example, our configuration interface may be coupled
with a dedicated build server running established software product
line tooling. This way, existing software product lines can become
web-ready without much additional development effort.

6 PHASE 5: THE SOFTWARE PRODUCT LINE

Finally, we implemented the features we show in the feature model
in Figure 3 with the described tooling. Most of our source code
is open source and available on GitHub1, excluding few features
that are critical for the companies we cooperated with. In this
section, we discuss the benefits of the extracted variability from an
implementation perspective.

13https://github.com/ekuiter/feature-php

https://github.com/ekuiter/feature-model-viz
https://github.com/ekuiter/feature-configurator
https://github.com/ekuiter/feature-php

Moving to a Software Product Line for Temperature Monitoring SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

Table 1: Code metrics before feature extraction.

Variant

SLOC per component

SLOCC++ Android Windows PHP

uvr2web 736 0 0 4,412 5,148
TempLog 0 1,662 1,563 3,612 6,837

Total 11,985

While reviewing the variability we modeled in the feature model,
we see an expected general division into two types of valid variants:
First, those that monitor UVR controls (including TA, Arduino, com-
pound, and Internet). Such variants closely resemble the original
uvr2web variant. Second, those for monitoring Bluetooth devices
(including HCP Module, single sensor, Bluetooth, and local). These
variants correspond to the TempLog use cases. We aimed to have
such a clear separation of variability that resembles the previous
variants to facilitate the migration process by allowing us to focus
on variants that are demanded by the companies. Thus, we intro-
duced several cross-tree constraints that may be superfluous, but
would require an unfeasible amount of additional effort to resolve.
Consequently, we would require more time for development and
testing, slowing down time-to-market. Nonetheless, instead of hav-
ing maybe a dozen cloned variants, we can now instantiate 4,017
variants, a significant increase in diversity but also complexity.

As we are just in the beginning of using this software product
line, four questions arise for us:

(1) Is all of the modeled variability useful?
(2) Can all modeled feature interactions be instantiated?
(3) Should the software product line be split to reflect the origin

and use cases of features?
(4) Will the software product line be beneficial in the future?

Usefulness of Variability. Concerning the first question, we argue
that the introduced variability is useful, despite increasing the com-
plexity for three reasons. First, as described, we added constraints
to facilitate the feature extraction which may be removed in the
future to allow for new variants. The main benefit in our eyes is
that we may reduce the variability and number of variants, but we
resemble the original systems more closely. As these are currently
in our and the companies’ focus, this is a clear advantage over
allowing all potential variability.

Second, the database subtree increases the variability quite a
lot and could, to some extent, simply be represented as a single
database feature. However, this feature and its children are used
by all variants to store data, requiring some adaptations in the
stored data types, APIs, and user management. Consequently, we
decided to add the full subtree, even if the variability is increased,
to model more fine-grained features we have implemented and aim
to introduce—and for which a single feature is too coarse.

Finally, the main purpose of introducing a software product line
was to unify the code-base and provide a simple configuration
process, not a large solution space. In our assessment, we achieved
this by limiting the variability with constraints to resemble the
legacy systems. By now, these have a more unified code and we
can use our software product line to instantiate them.

Table 2: Code metrics after feature extraction.

Feature SLOC

Windows 1,533
Android 1,478
website 1,013
database 890
devices 659
Arduino 623
Other features 4,388

Total 10,584

Feature Interactions. Feature interactions are a well-known issue
in software-product-line engineering, especially for testing [2, 6, 11,
38, 46]. Concerning the extraction of features from legacy systems,
we experienced some issues that require a more detailed analysis
from our side. In particular, we are currently unaware whether
there exist any feature interactions that may change the behavior
of any variants in an unintended way. Furthermore, testing all
possible variants and feature interactions is unfeasible for us, due
to our focus on a subset of the available solution space. Thus, we
may encounter problems with valid configurations of our software
product line, due to feature interactions we are unaware of. Our
current testing strategy consists of testing each variant on its own
when we instantiate it. However, we plan to run larger tests on the
whole software product line in the future.

Splitting the Software Product Line. After creating an initial ver-
sion of the feature model, we thought about dividing the software
product line into a multi product line [39, 40]. The main reason for
this are the numerous cross-tree constraints and the architecture
of the model—already structuring it into subtrees for capturing,
transferring, and visualizing data. In addition, the database subtree
is rather independent of the remaining features. Thus, it seemed
that dividing our software product line into a multi product line
could be a good approach.

Despite such reasons, we decided to keep and improve the feature
model, mainly for two reasons: First, we would not be able to use
the implemented configuration process without further significant
adaptations. Second, splitting the features would re-introduce some
of the problems we aimed to resolve by moving from clone-and-
own to a software product line, for example: No unified model, code
duplication, complicated configuration, and nonuniform evolution.
Thus, we decided that keeping all features in a single model and
code-base – improving the structure and scoping in the future –
would be the best course of action.

Future Benefits. Because of the now unified code-base, there are
several perspectives for evolving the software product line:

• Already, we implemented several additional heating con-
trols other than the original UVR1611 control. Using our
tooling, we can provide a simplified configuration interface
for quickly instantiating predefined variants. More heating
controls are planned and simple to implement, due to the
new software-product-line approach.

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden E. Kuiter et al.

• For the uvr2web use case, we plan to implement additional
server application, such as Emoncms, to improve smart home
integration. This is only a matter of adding features to the
server application subtree in the feature model. Previously,
we would have had to create additional cloned variants.

• HCP-Technology plans to introduce a new way to transfer
data from the HCP module to the online database, not involv-
ing Bluetooth. Using the extracted software product line, this
may be achieved by adjusting some cross-tree constraints
and a few implementation details.

Due to the already described benefits we aimed for and have
achieved, these extensions should be easier to implement than in
the legacy clone-and-own approach. Besides facilitated processes
for updating, adding, and fixing features, we also experienced that
managing variability has become far easier. In particular, we do not
need to implement every feature multiple times for each variant
and identify which may be the best to start with for a new customer.
Thus, despite the necessity for more glue-code, the software product
line requires approximately 88.3% of the legacy systems source
code. We show the corresponding values before and after extraction
in Table 1 and Table 2, respectively. Overall, we see several benefits
of the software product line approach for our variants, especially
concerning its future evolution.

7 RELATEDWORK

Extractive adoption of software product lines is the most common
approach in practice [9, 36, 43]. Consequently, there has been a lot of
research on this topic, for instance, on feature location approaches
for extracting features [3, 30]. Martinez et al. [33] collect case studies
with different scopes, settings, and approaches, providing a detailed
overview on scientific and practice reports on similar works. In
the following, we discuss a set of papers we are aware of and that
describe industrial pros and cons of migrating towards a software
product line or the process itself.

Dubinsky et al. [16] empirically investigate how cloning of soft-
ware is used in industrial settings. To this end, they analyze six
software families that are based on different cloning granularities,
reaching from single methods to complete products. Some of the
pros and cons reported in the interviews resemble those that we
describe, namely, time and cost savings of cloning, problematic
change propagation, and issues with introducing new adaptations.
However, this study has been conducted in the context of already
used software product lines. Our development and report differs
greatly in several details: We provide additional insights into the
reasoning of using a sole clone-and-own approach and the alter
extraction process. Thus, we describe also other issues from a differ-
ent perspective, complementing this empirical study. Furthermore,
we contribute most artifacts of our industrial systems.

Yoshimura et al. [48] describe a case study with a company that
aimed to merge multiple clones into a software product line. Here,
the focus is on assessing the potential for this extraction based
on code-clone detection [41]. While the focus of this work is on
predicting costs and benefits, several discussed steps and tasks are
similar or even identical to those we performed. Still, we provide
detailed insights into the actual process and, thus, complement such
case studies that solely focus on estimating costs in advance.

Couto et al. [14] extract a preprocessor-based software product
line of the ArgoUML system and provide it as open-source. While
this closely resembles our case study, it also differs heavily in multi-
ple points. First, ArgoUML may be larger than our systems, but did
not originate from industry. Second, ArgoUML has been a single
product with multiple components and not a set of clones that
share, but also differ, in their features. Third, the feature model is
small and not nearly as complex as ours. Finally, we discuss the
actual extraction process in detail, including pros and cons. Thus,
we argue that ArgoUML is a valid and well-designed case study,
but our contributions complement this significantly by providing a
real-world software product line.

Ebert and Smouts [17] report their experiences with extracting
software product lines from existing variants at a company. As
for aforementioned works, some of the reported pros and cons
are similar to ours. However, the focus of this paper lies more on
business aspects and management decisions to sell and coordinate
the software product line. This has not been our focus, as we only
distribute variants to customers on their request and have not
a large development team. While we focus less on this part, we
describe the actual extraction process in great detail, which is out
of scope of the work of Ebert and Smouts [17].

Alves et al. [1] describe a case study during which they combined
the extractive and reactive approach to adopt an aspect-oriented
software product line. They explain the corresponding refactorings
and their method in great detail. In contrast to our work, the authors
do not describe the pros and cons of extracting a software product
line for their use case. Additionally, it seems unclear if the used
subject systems have been developed in an industrial context and if
the artifacts are available. Thus, our work significantly differs from
this one by Alves et al. [1].

8 CONCLUSION

In this paper, we described a migration process from cloned systems
towards a software product line in an industrial setting. We pro-
vided a holistic view, starting from the development of clones, over
the migration process, to software-product-line engineering and
also include tooling and reasoning for each step. Furthermore, we
contribute almost all details of the study and tools as open-source
artifacts to the research community. Additionally, we discussed
pros and cons of the different steps we performed and approaches
we used, showing some potential for improvement in the future.

For future work, we will continue to develop the software prod-
uct line described in this paper as well as our tooling. The open-
source nature of our artifacts allows other researchers to also an-
alyze the systems and to potentially support or extend our work.
A particular focus for us is the improvement of the feature model
and the extracted features. This poses the chance to investigate
necessary refactorings, testing, evolution, and quality assurance of
the extractive approach in detail.

ACKNOWLEDGMENTS

This work is supported by the German Research Foundation (DFG)
under grants LE 3382/2-1, LE 3382/3-1, and SA 465/49-1, and Volks-
wagen Financial Services AG.

Moving to a Software Product Line for Temperature Monitoring SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

REFERENCES

[1] Vander Alves, Pedro Matos, Leonardo Cole, Paulo Borba, and Geber Ramalho.
2005. Extracting and Evolving Mobile Games Product Lines. In International
Systems and Software Product Line Conference (SPLC). Springer, 70–81.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[3] Wesley Klewerton Guez Assunção and Silvia Regina Vergilio. 2014. Feature
Location for Software Product Line Migration: A Mapping Study. In International
Systems and Software Product Line Conference (SPLC). ACM, 52–59.

[4] Massimo Banzi and Michael Shiloh. 2014. Getting Started with Arduino: The Open
Source Electronics Prototyping Platform. Maker Media.

[5] Don Batory. 2004. Feature-Oriented Programming and the AHEAD Tool Suite.
In International Conference on Software Engineering (ICSE). IEEE, 702–703.

[6] Don Batory, Peter Höfner, Bernhard Möller, and Andreas Zeland. 2013. Features,
Modularity, and Variation Points. In International Workshop on Feature-Oriented
Software Development (FOSD). ACM, 9–16.

[7] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–636.

[8] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In
International Conference on Software Product Line (SPLC). ACM, 16–25.

[9] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wa̧sowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In InternationalWorkshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 1–8.

[10] Danilo Beuche. 2008. Modeling and Building Software Product Lines with
Pure::Variants. In International Systems and Software Product Line Conference
(SPLC). IEEE, 358–358.

[11] Muffy Calder, Mario Kolberg, Evan H Magill, and Stephan Reiff-Marganiec. 2003.
Feature Interaction: A Critical Review and Considered Forecast. Computer Net-
works 41, 1 (2003), 115–141.

[12] Andreas Classen, Patrick Heymans, and Pierre-yves Schobbens. 2008. What’s in
a Feature: A Requirements Engineering Perspective. In International Conference
on Fundamental Approaches to Software Engineering (FASE). Springer, 16–30.

[13] Paul C. Clements and Charles W. Krueger. 2002. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE Software 19, 4 (2002),
28–30.

[14] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. 2011.
Extracting Software Product Lines: A Case Study Using Conditional Compilation.
In European Conference on Software Maintenance and Reengineering (CSMR). IEEE,
191–200.

[15] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wa̧sowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS). ACM, 173–182.

[16] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 25–34.

[17] Christof Ebert and Michel Smouts. 2003. Tricks and Traps of Initiating a Prod-
uct Line Concept in Existing Products. In International Conference on Software
Engineering (ICSE). IEEE, 520–525.

[18] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Develop-
ing Software Variants. In International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 391–400.

[19] Martin Fowler and Kent Beck. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley.

[20] Claudia Fritsch and Ralf Hahn. 2004. Product Line Potential Analysis. In Interna-
tional Systems and Software Product Line Conference (SPLC). Springer, 228–237.

[21] Brian W. Kernighan and Dennis M. Ritchie. 1978. The C Programming Language.
Prentice-Hall.

[22] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-Oriented Programming. In
European Conference on Object-Oriented Programming (ECOOP). Springer, 220–
242.

[23] Peter Knauber, Jesus Bermejo, Günter Böckle, Julio Cesar Sampaio Do Prado
Leite, Frank van der Linden, Linda M. Northrop, Michael Stark, and David M.
Weiss. 2002. Quantifying Product Line Benefits. In International Workshop on
Product-Family Engineering (PFE). Springer, 155–163.

[24] Sebastian Krieter, Jacob Krüger, and Thomas Leich. 2018. Don’t Worry About
it: Managing Variability On-The-Fly. In International Workshop on Variability

Modelling of Software-Intensive Systems (VaMoS). ACM, 19–26.
[25] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christopher

Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. 2017. FeatureIDE: Em-
powering Third-Party Developers. In International Systems and Software Product
Line Conference (SPLC). ACM, 42–45.

[26] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In International Workshop on Software Product-Family Engineering (PFE). Springer,
282–293.

[27] Charles W. Krueger. 2007. BigLever Software Gears and the 3-Tiered SPL Method-
ology. In ACM SIGPLAN Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA). ACM, 844–845.

[28] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference (SPLC). ACM, 354–
361.

[29] Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS). ACM, 105–112.

[30] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In International Systems and Software
Product Line Conference (SPLC). ACM, 65–72.

[31] George Lawton. 2005. LAMP Lights Enterprise Development Efforts. Computer
38, 9 (2005), 18–20.

[32] Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. 2013. Validating
Consistency Between a Feature Model and Its Implementation. In International
Conference on Software Reuse (ICSR). Springer, 1–16.

[33] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In International Systems and
Software Product Line Conference (SPLC). ACM, 38–41.

[34] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[35] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with VariantSync. In International Systems
and Software Product Line Conference (SPLC). ACM, 329–332.

[36] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer.

[37] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In European Conference on Object-Oriented Programming (ECOOP). Springer, 419–
443.

[38] Iran Rodrigues, Márcio Ribeiro, Flávio Medeiros, Paulo Borba, Baldoino Fon-
seca, and Rohit Gheyi. 2016. Assessing Fine-Grained Feature Dependencies.
Information and Software Technology 78 (2016), 27–52.

[39] Marko Rosenmüller and Norbert Siegmund. 2010. Automating the Configura-
tion of Multi Software Product Lines. In International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS). 123–130.

[40] Marko Rosenmüller, Norbert Siegmund, Christian Kästner, and Syed Saif ur
Rahman. 2008. Modeling Dependent Software Product Lines. In Workshop on
Modularization, Composition and Generative Techniques for Product Line Engineer-
ing (McGPLE). 13–18.

[41] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A Qualitative Ap-
proach. Science of Computer Programming 74, 7 (2009), 470–495.

[42] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz
Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software
Diversity: State of the Art and Perspectives. International Journal on Software
Tools for Technology Transfer 14, 5 (2012), 477–495.

[43] Klaus Schmid and Martin Verlage. 2002. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software 19, 4 (2002), 50–57.

[44] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton Jr. 1999.
N Degrees of Separation: Multi-Dimensional Separation of Concerns. In Interna-
tional Conference on Software Engineering (ICSE). 107–119.

[45] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time–Configurable System
Software. In International Conference on Computer Systems (EuroSys). ACM, 47–
60.

[46] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Computing Surveys 47, 1 (2014), 1–45.

[47] Frank van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action. Springer.

[48] Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. 2006. Defining a
Strategy to Introduce a Software Product Line Using Existing Embedded Systems.
In International Conference on Embedded Software (EMSOFT). ACM, 63–72.

	Abstract
	1 Introduction
	2 Phase 1: Cloning
	2.1 Uvr2web
	2.2 TempLog
	2.3 Further Variants

	3 Phase 2: Towards a Software Product Line
	3.1 Encountered Problems
	3.2 Why a Software Product Line?
	3.3 Barriers of Feature Extraction

	4 Phase 3: Designing a Feature Model
	5 Phase 4: Developing the Tooling
	6 Phase 5: The Software Product Line
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

