
Non-Knowledge as a New Lens on Software Engineering
Jacob Krüger
j.kruger@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Harz University of Applied Sciences
Wernigerode, Germany

Xenia Marlene Zerweck
Sol Martinez Demarco

Alena Bleicher
Thomas Leich

smartinezdemarco@hs-harz.de
ableicher@hs-harz.de
tleich@hs-harz.de

Harz University of Applied Sciences
Wernigerode, Germany

Abstract
Software engineering is a knowledge-intensive process. Conse-
quently, researchers typically understand any lack of knowledge
as a problem that must be mitigated by improving, for instance,
program comprehension, reverse engineering, community collabo-
ration, or documentation. However, a lack of knowledge may not
always be a problem. In fact, research in the field of ignorance
studies has highlighted the diversity of ignorance phenomena and
emphasized their relevance in social interaction. We argue that
focusing on non-knowledge as one of these phenomena can also
be useful for software-engineering research. In this paper, we de-
velop and substantiate this claim by providing a brief overview
on the (social scientific) research on ignorance and by proposing
a working definition of non-knowledge for software-engineering
research. Then, we sketch how the perspective of non-knowledge
as a social phenomenon can benefit future research within software
engineering and propose three concrete directions to investigate.
We envision that non-knowledge contributes a new lens to manage
the complexity of intellectual capital and knowledge in modern
software engineering. With this paper, we hope to motivate and
guide future software-engineering research in this direction.

CCS Concepts
• Software and its engineering;

Keywords
Knowledge, Non-Knowledge, Ignorance, Cognition
ACM Reference Format:
Jacob Krüger, Xenia Marlene Zerweck, Sol Martinez Demarco, Alena Ble-
icher, and Thomas Leich. 2025. Non-Knowledge as a New Lens on Software
Engineering. In 33rd ACM International Conference on the Foundations of Soft-
ware Engineering (FSE Companion ’25), June 23–28, 2025, Trondheim, Norway.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3696630.3728503

1 Introduction
Software and its engineering are becoming increasingly complex,
involving large social communities of developers and users [4, 14],

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3728503

dependencies between various software and hardware systems [6,
9, 16], or different practices and routines [1, 15, 37]. Thus, a primary
goal of software engineering as a socio-technical and knowledge-
intensive process is to support humans in managing this increasing
complexity [32, 33, 38]. A particular challenge in this regard is to
deal with knowledge gaps, which are inherent in software develop-
ment and complex software systems.

Cross-cutting in nature, knowledge about software and its en-
gineering is difficult to document, as it is highly personal in nature,
related to experiences and skills of individuals (e.g., assumptions, in-
tentions), and is often scattered across artifacts and tools (e.g., issue
trackers, databases, social-coding platforms), which may also have
access constraints [5, 18–20, 33]. Also, even documented knowl-
edge is often not maintained if it does not immediately benefit
the developers involved (e.g., code comments [8, 25]). Thus, much
software-engineering knowledge remains tacit in practice, and can
easily be forgotten [19, 21, 27] or become outdated. In turn, software
engineers constantly face knowledge gaps in their daily work.

Research in software engineering typically understands knowl-
edge gaps as a problem that must be tackled by generating knowl-
edge, for instance, through program comprehension. However,
there are various causes for and forms of knowledge gaps. For in-
stance, there may be an unawareness about knowledge that already
exists, known knowledge gaps, unknowns that are not yet identi-
fied, or knowledge that is hidden from some people. Against this
background, Israilidis et al. [13] argue that knowledge management
should be seen as ignorance management. However, ignorance man-
agement as part of knowledgemanagement requires a more detailed
understanding of ignorance phenomena beyond non-knowledge
being solely a lack of knowledge. Research in the (social-scientific)
field of ignorance studies understands unknowns and knowledge
gaps as social phenomena and considers the absence of knowledge
not exclusively as a problem. Ignorance as a non-pejorative um-
brella term is employed to grasp many related phenomena, such
as secrets, strategic use of ignorance, intentional maintenance of
knowledge gaps in decision making, or asymmetrical knowledge
resulting from organizational structures.

In this paper, we argue that understanding ignorance as a so-
cial phenomenon can provide an alternative lens for software-
engineering research to study knowledge gaps. To move in this
direction, we first provide an overview of research in the field
of ignorance studies that is relevant for studying software engi-
neering. Based on this review, we suggest a working definition of

581

https://orcid.org/0000-0002-0283-248X
https://orcid.org/0009-0001-1057-5989
https://orcid.org/0000-0003-3774-3599
https://orcid.org/0000-0002-9805-2620
https://orcid.org/0000-0001-9580-7728
https://doi.org/10.1145/3696630.3728503
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696630.3728503
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696630.3728503&domain=pdf&date_stamp=2025-07-28


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Jacob Krüger et al.

non-knowledge. We employ the term non-knowledge (instead of ig-
norance) to denote phenomena related to knowledge gaps to make
the relation to knowledgemore visible. Then, we exemplify phenom-
ena of non-knowledge in software and its engineering, discussing
a vision for novel research through the lens of non-knowledge. We
see the concept of non-knowledge as a highly valuable complement
to account for the socio-technical and knowledge-intensive nature
of software engineering—taking a perspective that has often been
neglected in the past.

2 The Study of Non-Knowledge
Non-knowledge is the flip side of knowledge; both are inherently
linked to each other [10]. Specifically, in the 1980s, Ravetz [28]
asserted that growing knowledge is accompanied by an even swifter
rise in what is not known. At this point, the discourse shifted
towards advocating themanagement of non-knowledge, rather than
assuming its continuous elimination through knowledge gain. In the
following, we summarize related findings from ignorance studies.
Our goal is not to be exhaustive, but rather to discuss the concepts
we consider most relevant in the context of software engineering.
We identified, sampled, and evaluated these concepts based on our
backgrounds in social sciences and software engineering.

2.1 Non-Knowledge as a Social Construct
The study of non-knowledge in social sciences is not new. For
example, Simmel [35] studied secrets in 1908, Moore and Tumin [24]
researched social functions of ignorance in 1949, and Smithson [36]
proposed a social theory of ignorance in 1985, just to name a few.
Most importantly, such research has revealed that non-knowledge
is socially constructed. This means that non-knowledge does not
just appear as an “accidental” byproduct of science, but is
generated in social interaction [42].

Over time, researchers studied social processes of producing or
maintaining non-knowledge, as well as its negotiation and con-
testation by different groups of actors [2, 11]. In social processes,
knowledge is sometimes intentionally hidden, and knowledge gaps
willingly maintained to serve specific purposes (e.g., protecting in-
tellectual property). Thus, actorsmake strategic and intentional
use of what is not known [12, 22].

Besides such intentional uses, knowledge gaps can also be created
unintentionally. For instance, Fleck [7] argued that non-knowledge
is produced as a byproduct of knowledge generation due to specific
epistemic practices, similar to what recently has been termed cat-
egorical blindness [17]. Also, knowledge asymmetries are related
to specific forms of non-knowledge, such as tacit knowledge. Tacit
knowledge refers to knowledge that a person possesses that cannot
be easily communicated to others [3]. Essentially, social-sciences
research has confirmed that there are various causes that lead
to unintentional non-knowledge.

2.2 Dynamics of Non-Knowledge
Knowledge and non-knowledge are in a dynamic relationship. For
instance, when answering open questions that are considered rele-
vant, they are replaced by knowledge. In turn, new questions arise
from that knowledge, producing non-knowledge. Simultaneously,
knowledge can be forgotten by individuals or organizations, which

results in new non-knowledge, too. Gross [10] has proposed a tax-
onomy to further grasp such dynamics by distinguishing between
active and passive non-knowledge. Active non-knowledge is con-
sidered relevant by actors for their actions and decision making.
This entails that actors deliberate on the limits of knowledge and
can actively deal with these limits to answer open questions (e.g.,
defining research questions). In contrast, the term passive non-
knowledge captures non-knowledge that is considered irrelevant
by actors. The actors do not deliberate and even disregard the lim-
its of knowledge in planning or decision making. Thus, although
unknowns may be identified, they are considered irrelevant and do
not generate further interest or attention and are not transformed
into knowledge. In essence, knowledge can be transformed into
non-knowledge, and vice versa; depending on the interest
of the actors involved in resolving the non-knowledge (i.e.,
active versus passive).

2.3 Categorizations of Non-Knowledge
Researchers have proposed many taxonomies to describe non-
knowledge phenomena, presenting varying and partially conflicting
classifications that are sometimes narrowed to the specific object
being researched. As one taxonomy relating to the concepts we dis-
cussed (but which is by no means a one-to-one mapping), Wehling
[42] suggests classifying non-knowledge along three dimensions:
Knowledge about Non-Knowledge (KNK, Section 2.1: social con-
struction) represents a spectrum ranging from known unknowns
(acknowledging that something is not known) to unknown un-
knowns (lack of awareness about not knowing), involving gradients
like vaguely suspected or only partially conscious (non-)knowledge.
Intentionality of Non-Knowledge (INK, Section 2.2: active ver-
sus passive) refers to the intention to know or not to know some-
thing and to whether it is possible to attribute non-knowledge to
(social) actors. It encompasses potentially deliberate avoidance of
knowledge, as well as “weaker” manifestations like a lack of interest
in acquiring knowledge or efforts to pursue knowledge that are
quickly abandoned.
Assumed Temporal Permanence of Non-Knowledge (ATPNK,
Section 2.2: transformation) covers possibilities and timing of trans-
forming non-knowledge into knowledge. This property features a
spectrum between the temporary state of “not-yet-knowing” to the
seemingly insurmountable condition of “never-knowing-ability.”
Gradients include prolonged, but not fundamentally unsolvable
states of not-knowing.

Using these dimensions instead of fixed categories, Wehling aims
to emphasize the diversity and complexity of non-knowledge, while
still covering the properties we discussed so far. Note that we use
the abbreviations in parentheses to refer to these dimensions of
non-knowledge in Section 3.2.

2.4 A Working Definition
As we exemplified in this section, non-knowledge has been ex-
tensively researched in social sciences. It encompasses various
interconnected dimensions that have been redefined over time. Re-
flecting on this overview and the aspects we introduced, we propose
the following working definition of non-knowledge:

582



Non-Knowledge as a New Lens on Software Engineering FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Non-knowledge refers to the absence of knowledge, which can
be produced unintentionally or maintained intentionally. It en-
compasses the spectrum between recognized knowledge gaps
and enduring unawareness, and is influenced by social factors
that impact its potential transformation.

Definition: Non-Knowledge

3 (Non-)Knowledge and Software
Modern software involves knowledge of various types about the
software’s design, development, and evolution (e.g., processes, peo-
ple, code, tooling, architecture, dependencies, configuring). Manag-
ing such complex knowledge is challenging for many reasons. For
example, even if developers can document knowledge to make it
explicit, it is typically scattered across various artifacts and tools
(e.g., models, code, comments, requirements, issue tracker, mailing
lists). Additionally, such documentation is often not maintained
and some knowledge may be restricted to certain people. Thus,
knowledge is distributed asymmetrically (cf. Section 2.1). For such
reasons, much software and software-engineering knowledge typi-
cally remains tacit and is forgotten, potentially contradicting other
(documented) knowledge at some point, for instance, regarding
changed processes, assumptions, intentions, or opinions. The fol-
lowing two examples are intended to illustrate the relevance of
different forms of non-knowledge in software engineering.

3.1 Example: Linux Kernel
As a high-level example, the Linux Kernel can showcase the re-
lation between complexity and non-knowledge. It is one of the
most successful and largest software systems, which also builds
the foundation for over 300 Linux distributions used in servers,
smartphones, or embedded systems. The Kernel allows its users to
configure (i.e., enable or disable) more than 14,000 unique function-
alities, involves roughly 20 million lines of code, and exists for more
than 30 years. Over this period, contributions to the Kernel have
been made by around 14,000 developers and 1,200 organizations. It
is evident that no developer can have full knowledge about more
than the specific piece(s) of such a software that they work on.

3.2 Example: Marlin 3D Printer
As a more concrete example, we inspected pull request 93791 from
the Marlin 3D-printer firmware to identify forms of non-knowledge.
Marlin sharesmany commonalities with the Linux Kernel (e.g., same
programming language, large community, open source). The pull
request involves 162 comments, and our manual analysis revealed
various types of non-knowledge and a diversity of strategies that
developers relied on to deal with it. To showcase a few examples, we
display an anonymized excerpt with respective numbers in Figure 1
(we refer to the categories by Wehling [42] that we introduced in
Section 2.3 using bold labels):
① Irrelevant Non-Knowledge: In this comment, we can see that

the developers are aware of their non-knowledge (i.e., are
further tests needed?; KNK), but are unsure whether it is
relevant for them or not (i.e., if the precision is good enough;

1https://github.com/MarlinFirmware/Marlin/pull/9379

2

3

Figure 1: Anonymized examples of non-knowledge in Marlin
pull request 9379.1

INK). They may decide that there is no need to deal with ex-
isting unknowns (i.e., maybe the precision is good enough).
This type of non-knowledge often becomes visible when
developers gather potentially relevant knowledge, but it re-
mains unclear to them what information is actually relevant
or how it relates to their problem.

② Known Non-Knowledge: In this example, the developer ex-
plains why knowledge (data) cannot be created at that mo-
ment (ATPNK). The developer indicates that their expecta-
tionswere notmet and instead something different happened.
Thus, they are aware of their non-knowledge as well as the
means needed to find answers (i.e., empirical data to derive a
formula;KNK). The preferred strategy to deal with (this type
of) non-knowledge is to acquire knowledge. However, in this
case, it became clear that technical equipment was required
to do so; otherwise, the knowledge gaps would probably
remain (INK). This example also hints at the relevance orga-
nizational structures (i.e., availability of tools for developers)
can have for knowledge–non-knowledge dynamics.

③ Unknown Non-Knowledge: The category of unknown non-
knowledge can only be identified in retrospect. In the exam-
ple at hand, the developer reporting that they were surprised
by the behavior of the software (“not 100 %”) indicates that
they were not aware about this non-knowledge beforehand

583

https://github.com/MarlinFirmware/Marlin/pull/9379
https://github.com/MarlinFirmware/Marlin/pull/9379
https://github.com/MarlinFirmware/Marlin/pull/9379


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Jacob Krüger et al.

(KNK). Specifically, the developer did not know what spe-
cific knowledge they lacked to identify the reasons for the
reboots. Surprises often allow to pose new questions for
specifying non-knowledge and subsequently generating the
respective knowledge (ATPNK).

These are only first glimpses on types of non-knowledge that oc-
cur in software engineering. We argue that we need systematic
in-depth analyses to identify and understand types of non-
knowledge (e.g., related to code, documentation, decisions, require-
ments; relevant to what stakeholders; critical or confidential knowl-
edge) to expand on temporary knowledge management; thereby
moving towards ignorance management.

3.3 Temporary Knowledge Management
So far, research in software engineering typically understands non-
knowledge as a problem that has to be tackled by generating knowl-
edge. This understanding stems from research on program compre-
hension, which is developers’ most frequent and expensive activ-
ity [39, 41]. Program comprehension is a complex activity in which
a developer aims to understand a system’s behavior and structure,
primarily by reading the source code, but also by considering, for
example, documentation, models, comments, or analysis tools [34].
This way, developers aim to tackle their non-knowledge by acquir-
ing knowledge. Researchers in software engineering try to deal
with non-knowledge by applying (semi-)automated techniques that
help reverse engineer a specific type of information from certain
artifacts [40]. For instance, different techniques exist to identify
experts for a piece of code [23], locate features in source code [31],
or provide on-demand documentation as soon as developers require
knowledge [30] In general, research in software engineering so
far understands non-knowledge primarily as something that
can and should be tackled by making knowledge available.

4 Non-Knowledge as a New Lens
We propose to complement the current understanding of knowl-
edge management in software engineering through the lens of
non-knowledge. As we exemplified, non-knowledge in software
engineering is diverse, including developers lacking knowledge
about code (e.g., during on-boarding), forgetting knowledge (e.g.,
when a piece of code has not been maintained or when developers
leave a project), having no reliable documentation (e.g., outdated),
having (intentionally) no access to knowledge (e.g., information
hiding), or missing tacit knowledge that is difficult to communi-
cate [18–21, 26, 29]. Being able to understand, acknowledge the
boundaries, and manage non-knowledge can expand developers’
abilities to deal with software projects. For this purpose, we sketch
three general directions for future software-engineering research.

Obtain a better understanding of the phenomenon of non-
knowledge and its relevance (e.g., sustaining or transforming
it). It is important to understand what types of non-knowledge
exist in software engineering to identify causes of knowledge gaps
and to address them in appropriate ways. Such research will allow,
for example, to derive a more nuanced understanding of the phe-
nomenon of tacit knowledge in the context of software engineering.
Furthermore, for managing software projects, it will enable us to

clearly specify knowledge gaps that are considered, for instance,
relevant, irrelevant, intentional, or unintentional.

Derive nuanced insights into how knowledge is produced
or is prevented from being produced. On the one hand, it is
important to understand what strategies and means developers use
to control the flow of knowledge, and what structures prevent the
creation of knowledge. Since the relevance of non-knowledge is
socially negotiated, it is important to understand to what extent
and for what reasons different individuals (developers) consider
non-knowledge as relevant or irrelevant; what strategies they use
to deal with non-knowledge; as well as how their understanding
and applied strategies are grounded in their social identities, values,
or epistemic perspectives (e.g., developers employed by companies
versus developers who contribute in their free time). On the other
hand, it is relevant to understand factors that intervene and shape
these processes; for example, group dynamics or organizational
and cultural structures of a project (e.g., how groups share non-
knowledge, hierarchies in projects).

Develop strategies for dealing with non-knowledge. Using
the previous insights will allow us to improve the management
of knowledge and non-knowledge in software projects. For in-
stance, tackling knowledge gaps may reveal (non-)knowledge that
was intended to be kept secret. Through a better understanding of
knowledge–non-knowledge dynamics, appropriate strategies for
dealing with knowledge gaps and managing non-knowledge within
a project can be developed.

5 Conclusion
In this vision paper, we provided an overview of non-knowledge
as a social phenomenon. As we have exemplified, non-knowledge
is a recurring and diverse issue in software engineering. We are
convinced that understanding and raising the awareness for non-
knowledge can benefit software-engineering research and practice
as well. To the best of our knowledge, current research does not
reflect on the fact that non-knowledge is inherent to any complex
software project, and may even be intended. Aiming to contribute
to a new lens on software engineering, we have proposed three
directions for future research.

By tackling these directions, we aim to advance software-engi-
neering research and practice by working on a foundational un-
derstanding of non-knowledge and its related concepts. In essence,
our take-away message for this vision paper is:

Developers constantly face non-knowledge about many pos-
sible aspects of their work, sometimes intentionally produced
and sometimes not. We are convinced that in addition to un-
derstanding what we know (i.e., knowledge management), it is
also important in software-engineering practice and research
to reflect on what we do not know and for what reasons (i.e.,
non-knowledge) to enable ignorance management.

Non-Knowledge in Software Engineering

Acknowledgments
This research is supported by the German Research Foundation
through project INKleSS (536290508).

584



Non-Knowledge as a New Lens on Software Engineering FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

References
[1] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When

and How to Make Breaking Changes: Policies and Practices in 18 Open Source
Software Ecosystems. ACMTransactions on Software Engineering andMethodology
30, 4 (2021).

[2] Stefan Böschen and Peter Wehling. 2010. Introduction: Ambiguous Progress –
Advisory and Regulatory Science between Uncertainty, Normative Disagreement
and Policy-Making. Science, Technology & Innovation Studies 6, 2 (2010).

[3] Harry Collins. 2019. Tacit and Explicit Knowledge. University of Chicago.
[4] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding

in GitHub: Transparency and Collaboration in an Open Software Repository. In
Conference on Computer Supported Cooperative Work (CSCW). ACM.

[5] Wei Ding, Peng Liang, Antony Tang, and Hans Van Vliet. 2014. Knowledge-
Based Approaches in Software Documentation: A Systematic Literature Review.
Information and Software Technology 56, 6 (2014).

[6] Christof Ebert. 2008. Open Source Software in Industry. IEEE Software 25, 3
(2008).

[7] Ludwik Fleck. 1981. Genesis and Development of a Scientific Fact. University of
Chicago Press.

[8] Beat Fluri, Michael Würsch, and Harald C. Gall. 2007. Do Code and Comments
Co-Evolve? On the Relation between Source Code and Comment Changes. In
Working Conference on Reverse Engineering (WCRE). IEEE.

[9] TomGroot, Lina Ochoa Venegas, Bogdan Lazăr, and Jacob Krüger. 2024. A Catalog
of Unintended Software Dependencies in Multi-Lingual Systems at ASML. In
International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP). ACM.

[10] Matthias Gross. 2019. The Paradox of the Unexpected: Normal Surprises and
Living with Nonknowledge. Environment: Science and Policy for Sustainable
Development 61, 3 (2019).

[11] Stephen Hilgartner. 2001. Election 2000 and the Production of the Unknowable.
Social Studies of Science 31, 3 (2001).

[12] Stephen Hilgartner. 2012. Selective Flows of Knowledge in Technoscientific
Interaction: Information Control in Genome Research. The British Journal for the
History of Science 45, 2 (2012).

[13] John Israilidis, Lock Russell, and Louise Cooke. 2013. Ignorance Management.
Management Dynamics in the Knowledge Economy 1, 1 (2013).

[14] Eirini Kalliamvakou, Christian Bird, Thomas Zimmermann, Andrew Begel, Robert
DeLine, and Daniel M. German. 2019. What Makes a Great Manager of Software
Engineers? IEEE Transactions on Software Engineering 45, 1 (2019).

[15] Rashidah Kasauli, Eric Knauss, Jennifer Horkoff, Grischa Liebel, and Francisco G.
de Oliveira Neto. 2021. Requirements Engineering Challenges and Practices in
Large-Scale Agile System Development. Journal of Systems and Software 172
(2021).

[16] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure
and Evolution of Package Dependency Networks. In International Coference on
Mining Software Repositories (MSR). IEEE.

[17] Morten Knudsen. 2011. Forms of Inattentiveness: The Production of Blindness
in the Development of a Technology for the Observation of Quality in Health
Services. Organization Studies 32, 7 (2011).

[18] Jacob Krüger and Regina Hebig. 2020. What Developers (Care to) Recall: An
Interview Survey on Smaller Systems. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE.

[19] Jacob Krüger and Regina Hebig. 2023. To Memorize or to Document: A Survey
of Developers’ Views on Knowledge Availability. In International Conference on
Product Focused Software Process Improvement (PROFES). Springer.

[20] Jacob Krüger, Sebastian Nielebock, and Robert Heumüller. 2020. How Can I
Contribute? A Qualitative Analysis of Community Websites of 25 Unix-Like Dis-
tributions. In International Conference on Evaluation and Assessment in Software

Engineering (EASE). ACM.
[21] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.

2018. Do You Remember This Source Code?. In International Conference on
Software Engineering (ICSE). ACM.

[22] Linsey McGoey. 2007. On the Will to Ignorance in Bureaucracy. Economy and
Society 36, 2 (2007).

[23] Audris Mockus and James D. Herbsleb. 2002. Expertise Browser: A Quantita-
tive Approach to Identifying Expertise. In International Conference on Software
Engineering (ICSE). ACM.

[24] Wilbert E. Moore andMelvinM. Tumin. 1949. Some Social Functions of Ignorance.
American Sociological Review 14, 6 (1949).

[25] Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger, Thomas Leich, and Frank
Ortmeier. 2019. Commenting Source Code: Is It Worth It for Small Programming
Tasks? Empirical Software Engineering 24, 3 (2019).

[26] Chris Parnin. 2010. A Cognitive Neuroscience Perspective on Memory for Pro-
gramming Tasks. In Annual Workshop of the Psychology of Programming Interest
Group (WPPIG). PPIG.

[27] Chris Parnin and Spencer Rugaber. 2012. Programmer Information Needs after
Memory Failure. In International Conference on Program Comprehension (ICPC).
IEEE.

[28] Jerome R Ravetz. 1987. Usable Knowledge, Usable Ignorance: Incomplete Science
with Policy Implications. Knowledge 9, 1 (1987).

[29] Andreas Riege. 2005. Three-Dozen Knowledge-Sharing Barriers Managers Must
Consider. Journal of Knowledge Management 9, 3 (2005).

[30] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil A. Ernst, Marco A. Gerosa, Michael Godfrey, Michele Lanza, Mario
Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund
Wong. 2017. On-Demand Developer Documentation. In International Conference
on Software Maintenance and Evolution (ICSME). IEEE.

[31] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering, Iris Reinhartz-Berger, Arnon Sturm, Tony Clark, Sholom
Cohen, and Jorn Bettin (Eds.). Springer.

[32] Ioana Rus, Mikael Lindvall, and S Sinha. 2002. Knowledge Management in
Software Engineering. IEEE Software 19, 3 (2002).

[33] Kurt Schneider. 2009. Experience and Knowledge Management in Software Engi-
neering. Springer.

[34] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-
prehending Studies on Program Comprehension. In International Conference on
Program Comprehension (ICPC). IEEE.

[35] Georg Simmel. 1908. Soziologie: Untersuchungen über die Formen der Verge-
sellschaftung. Duncker & Humblot. In German.

[36] Michael Smithson. 1985. Toward a Social Theory of Ignorance. Journal for the
Theory of Social Behaviour 15, 2 (1985).

[37] Vanessa Sochat. 2021. The 10 Best Practices for Remote Software Engineering.
Communications of the ACM 64, 5 (2021).

[38] Margaret-Anne Storey, Neil A. Ernst, CourtneyWilliams, and Eirini Kalliamvakou.
2020. TheWho, What, How of Software Engineering Research: A Socio-Technical
Framework. Empirical Software Engineering 25, 5 (2020).

[39] Rebecca Tiarks. 2011. What Maintenance Programmers Really Do: An Observa-
tional Study. InWorkshop on Software Reengineering (WSR). University of Siegen.

[40] Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. 2007. Empirical
Studies in Reverse Engineering: State of the Art and Future Trends. Empirical
Software Engineering 12, 5 (2007).

[41] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program Comprehension
During Software Maintenance and Evolution. Computer 28, 8 (1995).

[42] Peter Wehling. 2024. Nichtwissen – ein ungewöhnlicher Schlüsselbegriff der
Umweltsoziologie. In Handbuch Umweltsoziologie, Marco Sonnberger, Alena
Bleicher, and Matthias Groß (Eds.). Springer. In German.

585


	Abstract
	1 Introduction
	2 The Study of Non-Knowledge
	2.1 Non-Knowledge as a Social Construct
	2.2 Dynamics of Non-Knowledge
	2.3 Categorizations of Non-Knowledge
	2.4 A Working Definition

	3 (Non-)Knowledge and Software
	3.1 Example: Linux Kernel
	3.2 Example: Marlin 3D Printer
	3.3 Temporary Knowledge Management

	4 Non-Knowledge as a New Lens
	5 Conclusion
	Acknowledgments
	References

