
1

A Meta-Study of Software-Change Intentions

JACOB KRÜGER, Eindhoven University of Technology, The Netherlands
YI LI, Nanyang Technological University, Singapore
KIRILL LOSSEV, University of Toronto, Canada
CHENGUANG ZHU, University of Texas at Austin, USA
MARSHA CHECHIK, University of Toronto, Canada
THORSTEN BERGER, Ruhr-University Bochum, Germany
JULIA RUBIN, University of British Columbia, Canada

Every software system undergoes changes, for example, to add new features, fix bugs, or refactor code. The
importance of understanding software changes has been widely recognized, resulting in various techniques
and studies, for instance, on change-impact analysis or classifying developers’ activities. Since changes are
triggered by developers’ intentions—something they plan or want to change in the system, many researchers
have studied intentions behind changes. While there appears to be a consensus among software-engineering
researchers and practitioners that knowing the intentions behind software changes is important, it is not clear
how developers can actually benefit from this knowledge. In fact, there is no consolidated, recent overview of
the state-of-the-art on software-change intentions (SCIs) and their relevance for software engineering. We
present a meta-study of 122 publications, which we used to derive a categorization of SCIs; and to discuss
motivations, evidence, and techniques relating to SCIs. Unfortunately, we found that individual pieces of
research are often disconnected from each other because a common understanding is missing. Similarly, some
publications showcase the potential of knowing SCIs, but more substantial research to understand the practical
benefits of knowing SCIs is needed. Our contributions can help researchers and practitioners improve their
understanding of SCIs and how SCIs can aid software engineering tasks.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering →
Software evolution;Maintaining software.
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1 INTRODUCTION
Software systems evolve rapidly, which is reflected in the many changes that developers apply to
the codebase of their systems [40, 112, 119]. For instance, developers add new features, fix bugs,
improve system performance, or optimize the structure of source code via refactorings. There
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seems to be consensus in software-engineering research that knowing such developer intentions
behind a software change is beneficial, for instance, for managing software projects (e.g., for
assigning resources to specific activities [102]), for creating training data (e.g., for automated
program repair [99]), or for improving change histories (e.g., to transplant specific changes [100]).
Still, developers’ software-change intentions (SCIs)—specifying what they want(ed) to change in
their system by modifying it—are rarely explicitly recorded. Consequently, many researchers rely
on techniques to automatically recover SCIs, for instance, from commits [37, 41, 50, 53, 159].
Unfortunately, it is challenging to identify the different SCIs that may also be tangled within

a single change, and to untangle them [11, 20, 33, 45, 52, 152, 159, 163, 170]. This task is cumber-
some and expensive, since the developers who implemented the changes typically use arbitrary
natural-language descriptions to document changes (e.g., commit messages). Moreover, whether a
description properly reflects on the change (e.g., a change described to fix a bug may also involve
refactoring) and which descriptions refer to which SCIs (e.g., “optimization” versus “performance
improvement”) is often unclear. When we investigated the existing body of research, we noted
that many publications referred to similar or even the same SCIs using different terms, operated
on different levels of granularity, (re-)defined SCIs as they saw fit, and combined or intermixed
orthogonal and overlapping categorizations of SCIs. This challenged our understanding of how
different pieces of research were connected, what the actual benefits of using or understanding
SCIs were, and how we could reuse or combine the existing research contributions.
So, despite extensive and very active research [5, 7, 37, 50, 80, 156], an important question

remains: what is a common ground for describing SCIs and what is the evidence that
knowing SCIs is useful in practice? Some researchers have classified different types and subsets
of SCIs to varying degrees of abstraction (e.g., as maintenance activities or specific refactorings) [13,
43, 62, 64, 148, 166]. Unfortunately, the more systematic attempts (e.g., those based on literature
surveys) of understanding SCIs are decades old, do not reflect on the benefits of knowing SCIs
(e.g., they only derive or define a taxonomy for the purpose of having one), do not discuss the
existing empirical evidence, and do not consider the problem of intermixed categories. Many
publications do not even mention the term “intention,” even though they are concerned with SCIs.
For instance, a typical scenario is researchers being concerned with identifying bug-fixing (i.e.,
corrective [148]) software changes from commits, which can then be used for designing program-
repair or fault-prediction techniques [71, 99, 140, 154]. The researchers typically refer to “bug fix”
or “repair” changes, but essentially identify software changes with a corrective SCI. Since none
of the previously proposed taxonomies has established itself as a common ground for describing
SCIs, researchers and practitioners are building on whatever definitions of SCIs are most feasible
for them. This, in turn, complicates building a common knowledge base, comparing research, and
collecting reliable evidence on the usefulness of SCIs.
In this article, we present a meta-study in which we identified and analyzed a large body of

research on SCIs to provide a detailed understanding of how knowledge on SCIs is used in research
and what the actual evidence for benefiting from this knowledge is. To tackle this gap, we defined
four research objectives (ROs) for our meta-study:
RO1 capturing the research on documenting, analyzing, and using SCIs;
RO2 deriving a systematic categorization for describing SCIs;
RO3 collecting empirical evidence on the usefulness of knowing SCIs; and
RO4 comparing techniques that use and recover SCIs.
To identify relevant publications, we conducted a systematic literature review [73]. Our analysis of
the resulting 122 publications is qualitative, investigating their actual content and contributions
rather than providing publication statistics only. We provide in-depth insights into the usefulness of
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Fig. 1. Overview of our methodology for identifying and analyzing relevant publications. The numbers
indicate the numbers of publications stemming from the previous step.

SCIs as a concept based on this extensive dataset of publications, which is available in a persistent
open-access repository.1
Most of the publications we identified focus on techniques (50) or empirical studies (48), and

use SCIs in a wide range of contexts (e.g., predicting maintenance activities, refactoring version
histories). Building on a sample of the publications, we derived a systematic categorization to
provide a structure for organizing SCIs. Unfortunately, we identified little evidence on the practical
benefits of knowing SCIs, even though they are used in various techniques. During our meta-study,
we experienced that understanding and structuring the existing research was challenging, a problem
our categorization helps to tackle.

Our contributions in this article can guide researchers and practitioners in advancing techniques
and studies on software evolution by providing a common ground on SCIs. More precisely, by
capturing the state-of-the-art (RO1), we contribute a concise body-of-knowledge of the area that
serves as a reference for others. Building on this body-of-knowledge, we derive a categorization for
describing the notions of SCIs used in the literature (RO2). This provides a single comprehensive
overview of the SCIs used, exemplifies these SCIs, and eases communication as well as knowledge
sharing. The empirical evidence (RO3) indicates the potential impact knowing SCIs can have—but
it also highlights the need for more in-depth studies. By comparing existing techniques (RO4), we
contribute an overview of how SCIs are used, and what researchers or practitioners can build upon
to advance software engineering in the future.
The remainder of this article is organized as follows: We describe the methodology of our

meta-study in Section 2. In Section 3, we present the results of our literature search to capture
the state-of-the-art on SCIs (RO1). Then, we address our three remaining research objectives in
Section 4 (RO2), Section 5 (RO3), and Section 6 (RO4), respectively. We discuss potential threats
to the validity of our meta-study in Section 7, and its implications in Section 8. In Section 9, we
summarize the related work before concluding this article in Section 10.

2 METHODOLOGY
In this section, we describe our methodology illustrated in Figure 1.
1https://doi.org/10.5281/zenodo.10977570
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Fig. 2. High-level overview of the role of intentions in software engineering. We are primarily concerned with
SCIs, which we highlight in green.

2.1 Initial Screening
Initially, we aimed to survey the literature to identify the current state-of-the-art on intentions
in software engineering in general. For this purpose, we performed an unstructured screening
building on our prior knowledge of the area as well as automated searches using relevant keywords
(e.g., “intent”) in different search engines (e.g., DBLP, Google Scholar). During this screening, we
organized the found publications into three categories:
(1) those that describe intention-related concepts in the broader context of software engineering

(e.g., developers’ knowledge of stakeholder intentions) [15, 60, 75, 85, 126, 127, 141, 143, 159];
(2) those that use intentions as a concept to support established use cases (e.g., generating commit

messages to specify SCIs) [9, 58, 59, 94, 97, 138, 139]; and
(3) those that report on or use classifications of intentions in software engineering (e.g., for

labeling commits) [21, 25, 47, 91, 101, 148].2
This initial screening allowed us to achieve a high-level understanding of different uses of intentions
in software-engineering publications.
Results. From our initial screening, we considered 22 publications and one website (referenced for
each category defined above) as relevant and investigated them in detail.We found that these sources
focus on one or more of four origins of intentions: those expressed by stakeholders of a system,
those implemented by the developers, those behind changes (i.e., SCIs), and those implemented in
the system. In Figure 2, we display these origins and their relations as a high-level overview.
Discussion. Intentions are a key notion in software engineering. Usually, intentions are defined by
a stakeholder of a systemwho uses that system for a specific purpose, with those intentions typically
being structured around requirements or features. A developer is then responsible for implementing
such intentions by considering the stakeholder’s descriptions and executing a corresponding change
(e.g., modifying an asset). Consequently, a software change represents the actual implementation
of the intention (correct or incorrect) in terms of modifications to the system. We can see that the
notion of intentions relates to each step relevant for evolving a software system, but intentions
are often expressed via different notations (e.g., requirements, features, assets, commits, revisions).
Unfortunately, while this high-level understanding of intentions describes software evolution
and provides a good intuition of the connections between the involved notations, it is far too
coarse-grained to actually support researchers or practitioners.
Based on this insight, we decided to refine our analysis through an extensive meta-study to

provide a foundation for our research vision [80]. To limit the scope of this meta-study and obtain a
more concise overview, we chose to focus on SCIs. We decided to focus on SCIs because a software
change represents the actual implementation of an intention in a system—regardless of whether
there have been miscommunication, mismatches, or errors in specifying this intention at any point.
For instance, a software change that is intended to fix a bug represents the actual implementation
2https://www.parkersoftware.com/blog/the-4-software-maintenance-categories-and-what-they-mean-for-your-users/
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of the developer’s solution in terms of modifications to the system, and the intention typically
originates from some stakeholder request (e.g., a bug report). However, the intended change may
not align with the actual change; for instance, the change may involve other intentions of the
developer (e.g., tangling refactoring) or may not fulfill its purpose (e.g., not fixing the bug). For
software engineering, it is arguably important to understand SCIs as well as potential mismatches to
their implementation, considering that they should represent stakeholder intentions. Consequently,
we argue that the actual software changes provide the best and most relevant understanding for
researchers and practitioners of the way (i.e., actual modifications to the source code) in which
intentions are implemented in a software system.

2.2 Literature Review
To systematically elicit relevant publications for our meta-study, we followed the methodology of
systematic literature reviews [73]. In the following, we report the individual steps of our method-
ology. We do not focus on providing statistics on the publications identified, but instead on an
in-depth meta-study of their actual content.
Selection Criteria. We defined selection criteria based on our insights from the initial screening.
While testing different search strings and exploring the results of our automated search (explained
shortly), we identified that these criteria were too broad, leading to the inclusion of many publica-
tions that were not relevant. We iteratively refined our selection criteria during discussions among
all authors until we finally defined three inclusion (IC) and five exclusion (EC) criteria. Specifically,
we included a publication if it satisfies either IC1 or IC2, and IC3:
IC1 The publication defines types of changes/intentions from the perspective of developers (e.g.,

a taxonomy of intentions or maintenance activities, empirical studies classifying commits).
IC2 The publication uses types of changes/intentions from the perspective of developers in its

actual contributions (e.g., not only to motivate a piece of work).
IC3 The publication is related to changes/intentions on source code; including other artifacts

only if they are directly mapped to source code.
Please note that we did not assess how “fundamental” SCIs are to the research reported within a
publication (e.g., identifying SCIs versus knowing a SCI to improve a technique). Consequently, we
cover publications that are concerned with SCIs and also those that weakly relate to them. This is
on purpose to provide a more complete overview of how different areas in software engineering
are related to SCIs—and thereby to each other.

We excluded publications that fulfilled any of the following criteria:
EC1 Not written in English;
EC2 Not peer reviewed, such as dissertations, technical reports, or books;
EC3 Fewer than three pages (e.g., keynotes, posters);
EC4 Out of scope despite referring directly to intentions and software, for instance, the intention

to use software tools, intent automata, or intentions behind software piracy; or
EC5 Uses intention as a name for a concept unrelated to software changes (e.g., Android uses the

name “intent” for an inter-component messaging system3).
Note that we did not employ a quality assessment of the publications we selected, since our research
goal was broader than a comparison of empirical studies (the main purpose of a quality assessment)
and, therefore, involved completely different types of research (e.g., techniques, empirical studies,
methodologies) that can hardly be directly compared in terms of quality.
Automated Search. First, we performed an automated search. For this purpose, we built on
the keywords we used during our initial screening to derive a number of search strings. We

3https://developer.android.com/reference/android/content/Intent
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experimented with those search strings and explored the publications they returned (e.g., number,
relevance). Based on these trial runs, we added synonyms and tested different combinations of
operators (e.g., AND, OR). In the end, we decided to use two different search strings, which we
executed on the ACM Digital Library Guide to Computing Literature, SCOPUS, and DBLP. We used
these search engines because they cover a variety of publishers, are (or can be) limited to the field
of Computer Science, and allow bulk downloading of all returned publications. Specifically, our
search strings were as follows:
(1) intent* AND software for ACM and SCOPUS

intent + software for DBLP
(2) (change* OR commit*) AND (intent* OR maint* OR evol*) AND (classif* OR taxono* OR categor*

OR recov* OR extract* OR generat* OR activit* OR label* OR reason* OR trace* OR detect* OR
analy*) for ACM and SCOPUS

DBLP does not allow for complex queries, which is why we did not employ the second search
string on this engine. Furthermore, we limited SCOPUS to Computer Science, aiming to exclude
unrelated research areas. With the first search string, we aimed to capture publications that directly
refer to intentions in the context of software engineering. With the second search string, we built
on our insights from our initial screening and trial runs to derive terms that researchers used in the
context of SCIs. We employed the strings on titles, abstracts, and keywords for ACM and SCOPUS,
whereas DBLP allows searching only over standard bibliographic data (e.g., titles).
Results of the Automated Search. The first author executed the automated searches, which
returned 92 (DBLP), 153 (ACM), and 45 (SCOPUS) publications for the first search string as well as
192 (ACM) and 82 (SCOPUS) for the second one. Next, we consolidated the 564 results into a single
BIB file. Using this file, we removed duplicates with JabRef’s feature for importing new entries (460
results) and the feature for checking for duplicates of JabRef (459) and KBibTex (428). We put the
remaining 428 publications into a spreadsheet that was available to all authors.
For these 428 publications, we employed our initial set of selection criteria on titles, abstracts,

and then full texts if needed. Specifically, the first author checked every publication, while each
other author checked a subset (each publication was reviewed by two authors). During this step,
we determined that we could exclude a number of publications easily, but also had significant
disagreements about some of the remaining ones. We found that this was mainly caused by different
interpretations that we had about what exhibits a developer’s intention at the source-code level.
Some of the points of disagreement were: “Are transformations code? What about grammars
or models? Is implementing user intentions in the code in the scope of our study? What about
architectural changes, commit messages, and comments?” With these experiences, we refined our
selection criteria to derive the ones described above. Using these criteria, we re-iterated through
all publications we did not yet exclude (i.e., that we included or for which we disagreed) and
re-evaluated their scores. To resolve the remaining disagreements, one author who did not review
the corresponding publication before checked it and provided a reasoning for the final decision. We
repeatedly re-checked all publications during the snowballing and our data analysis (as explained
shortly, we removed five more publications) to ensure that they were actually in the scope of our
meta-study. In the end, we included 36 publications as relevant.
Snowballing.When investigating the 428 publications returned by the automated search, we found
that some publications we knew to be relevant from our initial screening were missing—even if they
matched our search strings. A prominent example for this case was the taxonomy of Swanson [148]
that was not part of the 428 publications. This has likely been caused by the strong focus of our
search strings and technical problems of search engines in the area of computer science [8, 79, 135].
We decided to perform backwards snowballing [167] on the 36 included publications to complement

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2024.



A Meta-Study of Software-Change Intentions 1:7

our automated search and mitigate such problems. Namely, we iterated through all 36 publications
and extracted their references, resulting in 1,095 additional publications in a second spreadsheet.
Results of the Snowballing. The first author began with reducing the number of publications
by removing duplicates (939) as well as those clearly not relevant (e.g., from the biology domain,
theses, fewer than three pages) based on the author’s expertise after analyzing the previous sample
of publications (213). Afterwards, the first author applied the selection criteria on each remaining
publication, indicating that 94 publications should be included. To verify that the exclusions and
inclusions were reasonable, three other authors independently cross-checked random samples of 20
different publications each (i.e., we cross-checked 60 of 213 decisions). We identified disagreements
in six cases, which we discussed among all authors. In the end, we found that only two of the
included publications should instead be excluded, resulting in 92 publications.
The discussion revealed that the first author was too inclusive in his selection of publications

during the snowballing. This insight enhances our confidence that the sample from the snowballing
does not miss important publications. We removed six more publications during our data extraction
and detailed analysis, resulting in 86 included publications.

During our analysis, we found that the additional publications confirmed our previous insights
(e.g., we could match them to our categorization of SCIs and characterization of techniques), but
did not reveal new major insights. We considered this as saturation and stopped after the first
iteration of snowballing, ending up with a total of 122 publications as the basis for our meta-study.
Data Extraction. The first author of this article extracted the data for each publication. Then, the
third author checked the extracted data to ensure its correctness. Both authors read through each
publication and extracted data relevant for the respective type of research. Moreover, the second
and fourth authors extracted additional data on the techniques we identified (RO4). All authors met
regularly to discuss and refine the extracted data (e.g., checking whether it was comprehensible,
adding or removing relevant data entries). For each publication, we elicited the following data:

• Bibliographic Data: A collection of standard data about a publication, namely author names,
title, publication year, and a link to the published version (typically based on a DOI).

• Goal: A one-sentence summary of the main research goal of the publication.
• Type of Contribution: The main contribution of the publication, representing one of
the following categories (note that we assigned the dominant type of contribution, e.g., a
publication proposing and empirically evaluating a technique is classified as technique):
– Dataset—the publication presents a dataset of changes, together with some type of SCIs.
– Empirical Study—the publication presents a study related to identifying SCIs or some
software-change phenomena where SCIs may be useful to know.

– Literature Review—the publication presents a literature review of software changes, in-
cluding some notion of SCIs (e.g., to classify research or derive a taxonomy).

– Methodology—the publication presents a methodology that incorporates SCIs.
– Taxonomy Proposal—the publication presents a taxonomy (not derived from the literature)
of changes or SCIs, which can refer to the problem space (e.g., perform maintenance) or to
the solution space (e.g., remove a class), which we also recorded.

– Technique—the publication presents a technique for identifying SCIs, or a technique that
relies on some notion of SCIs (e.g., for verifying program behavior).

• Benefits: A brief description of the benefits of knowing SCIs as motivated by the authors.
We were specifically interested in documented use cases for practitioners that go beyond just
understanding the nature of changes, which is only useful for researchers (e.g., for classifying
research that is related to the different types of changes).

• Evidence: A short note whether and what kind of evidence a publication provides on the
usefulness of knowing SCIs.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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• Technique: Provides further information about the intention-related technique, if one is
presented in the publication. Specifically, we recorded the aim of the technique, its input,
output, the underlying technologies (e.g., static analysis, machine learning), and how SCIs
are involved (e.g., to classify commits, as an intermediate entity).

• Taxonomy: A list of different SCIs or types of changes defined or used in the publication
(e.g., corrective, bug fix, addition).

We documented this data in a shared spreadsheet to which all authors had access.
Reliability of the Results.We continuously discussed our progress and results in weekly meet-
ings among all authors. Moreover, we employed multiple rounds of verification to ensure that the
elicited publications and data were reliable. First, during the automated search, each publication
was classified by two different authors, with the first author classifying all publications to obtain an
overview understanding. We discussed all discrepancies in the decisions among at least five authors.
Second, recall that we employed the snowballing because we found that several publications we
identified during the initial screening were missing in our dataset. During the snowballing, we
relied on the first author to classify the publications, but performed cross-checks on 60 randomly
selected publications.. We found that the first author was too inclusive for some publications, which
resulted in further exclusions during our analysis. In summary, we conducted an extensive literature
search with multiple rounds of verification, yielding 122 publications on various topics—which
we argue is a reliable dataset for our meta-study.

2.3 Data Analysis
Next, we report the process of analyzing our dataset of publications.
Classifying the State-of-the-Art (RO1) and Empirical Evidence (RO3).Weprovide an overview
of how SCIs have been used in the 122 publications (Section 3), and of the empirical evidence
knowing SCIs can have in practice (Section 5). To elicit such qualitative data, the first author iterated
through each publication and extracted relevant statements based on an open-coding-like process.
More specifically, the first author read through each publication to identify statements that relate to
the relevant data fields. For example, the usage of SCIs within a publication was typically described
in the introduction or methodology. The benefits and empirical evidence were typically part of
results or discussion sections, with summarizing statements reported in the abstract, introduction, or
conclusion. Lastly, taxonomies used within the publications were often described within tables and
methodologies, usually with an explanation of how they were created. For instance, a publication
may reuse an existing taxonomy (e.g., citing the one by Swanson [148]), elicit it from a dataset, or
define it ad hoc—which we assumed to be the case if no other explanation has been provided. By
iterating through each publication and focusing on the sections most related to each data entry, the
first author carefully extracted relevant statements (e.g., the taxonomy from a table). Afterwards, the
third author cross-checked the data. Since this process yielded too much detailed data, we performed
a data synthesis following an open-card-sorting-like method [175]. In this step, the first author
identified common themes and topics in the data, for instance, that several publications motivated
their work with predicting the efforts related to software changes. Then, the sixth author iterated
through the data to see whether it was understandable, and cross-checked for individual publications
whether the data was correct. Following this step, all authors agreed to the final structure and
level of detail of our dataset. The first author re-iterated through each publication to update the
dataset accordingly. During this step, he refined statements to be more descriptive, updated the
contributions (for which we decided to adapt the classification above), and re-checked the remaining
data. This also led to the inclusion of one more publication to the dataset, which we accidentally
missed during the snowballing (it may have been removed by the automatic duplicate detection).
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Deriving a Categorization of SCIs (RO2). Inspired by the qualitative data-analysis techniques
from grounded theory, namely, open and axial coding [145], the fifth and seventh authors inde-
pendently read 20 of the identified publications each (randomly chosen, distinct sets), looking for
SCIs (e.g., a category of activities), their definitions (i.e., of the category), and concrete examples for
these (i.e., indiidual activities). Then, the two authors met multiple times to discuss and unify the
SCIs, grouping them into five main categories, roughly corresponding to why and when a certain
action is performed; what objects it manipulates; and who will benefit from the action. As the final
outcome, the two authors defined five orthogonal categories: Goals, Actions, Object, Customer, and
Lifecycle phase. To validate that this categorization would avoid the issues of previous taxonomies
(e.g., overlapping categories, inconsistent terms), we discussed it among all authors and mapped
other SCI-related terms we extracted before to the categories (cf. Section 4). During this process,
we found that we could reassign most terms used in existing publications into one of our distinct
categories without overlaps. Note that we did not aim to provide a unified categorization (i.e., a
full-fledged taxonomy) that involves all terms from every publication, since this would involve many
categories not related to SCIs and result in various levels of granularity. For instance, we did not
map or integrate all sub-types of bugs (subsumed under corrective) or refactorings (subsumed under
preventive: improving maintainability) mentioned within the publications into our categorization
(cf. Figure 4) to avoid too many fine-grained types. Instead, we aimed to derive a categorization
that can be used to properly describe SCIs at one level of detail, separating common orthogonal
categories, allowing for extensions or refinements, and resulting in a comprehensive description of
SCIs. Via these means, we aimed to ensure that our categories are truly orthogonal, avoid the typical
problems we experienced, and expressed the most relevant aspects of an SCI. Lastly, we noticed
that our categories also cover the high-level intentions we identified from our initial screening of
the literature (cf. Figure 2). Specifically, developers executing an SCI are considered, together with
other stakeholders, as customers; the change itself is an action, the system is the object, and the
underlying intention is the goal. That our categories cover all of these high-level concepts related
to intentions improves our confidence that these are feasible for describing SCIs. We present our
resulting categorization with discussions and examples for each SCI in Section 4.
Classifying SCI-Related Techniques (RO4). The second and fourth authors reviewed all 50
publication noted as proposing a technique related to SCIs to identify each technique’s specific goal,
inputs, outputs, underlying approaches, and how SCIs are used in it. Both authors discussed and
compared their review results, until reaching consensus on how to describe and classify the tech-
niques based on this data. Most importantly, they found that the techniques either identify SCIs, use
them to improve an existing technique, or involve them as intermediate results. Also, the authors
could distinguish three primary underlying approaches, namely, static-analysis, dynamic-analysis,
and statistical (including classification and machine-learning) approaches. To extract the data and
classify the techniques into consistent categories, the authors relied on their expertise and the
descriptions of SCIs within the techniques, provided by the publications. Lastly, the categorizations
were reviewed by all of the authors. By comparing the insights and experiences of all analyses, we
aimed to avoid redundancies, obtain a concise overview about the publications, and validate all
our findings on SCIs. We present our discussion of techniques that involve SCIs in Section 6.

3 UNDERSTANDING THE IDENTIFIED PUBLICATIONS (RO1)
We now briefly summarize the results of our literature search to discuss the state-of-the-art on
SCIs—which we detail in the next sections. To this end, we display overviews of all 122 included
publications in Table 1 (empirical studies), Table 2 (datasets, methodologies, literature reviews,
taxonomy proposals), and Table 3 (techniques). For each publication, we summarize its core
properties. These properties involve whether we identified the publication through the automated
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Table 1. Overview of the 48 publications classified as empirical study (ES) in our meta-study.
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S, S [1, 2] ES comprehension project monitoring practice [148]
S [10] ES predicting effort estimation — ❍

S [11] ES predicting bug prediction — ❍

S [12] ES predicting bug prediction — ❍

S [14] ES comprehension project monitoring — [148]
S [22] ES predicting measuring maintainability — [148]+
S [23] ES comprehension comprehend software evolution — ❍

S [35] ES comprehension comprehend software evolution — [148]+
S [36] ES labeling project monitoring — ❍

S [38] ES predicting bug prediction — ❍

S [42] ES comprehension comprehend software evolution — [148]+
S [46] ES predicting bug prediction — ❍

S [47] ES comprehension comprehend software evolution — [148]+
S [49] ES comprehension comprehend software evolution — ❍

S [51] ES labeling identifying misclassification — [148]+
S [52] ES untangling improve version history — ❍

S [63] ES predicting effort estimation — [148]+
S [67] ES predicting change prediction — ❍

S [69] ES comprehension comprehend software evolution — ❍

S [70] ES comprehension comprehend software evolution survey ❍

S [87] ES predicting effort estimation — [148]+
S [93] ES comprehension comprehend software evolution survey [148]
S [106] ES comprehension comprehend software evolution — ❍

A [104] ES visualization ensuring intention fulfillment — —
A [107] ES comprehension project monitoring — [148]+
S [108] ES predicting bug prediction practice ❍

S [109] ES comprehension comprehend software evolution — [148]+
S [110, 111] ES specification safe evolution templates — ❍

S [113] ES comprehension comprehend software evolution survey ❍

S [117] ES specification compare evolution patterns — ❍

S [114] ES comprehension comprehend software evolution — ❍

A [115] ES comprehension comprehend software evolution — ❍

S [116] ES comprehension comprehend software evolution — ❍

S [121] ES predicting maintenance activities — [148]+
S [122] ES predicting bug prediction — ❍

S [123] ES comprehension comprehend software evolution — [148]+
S [129] ES comprehension ensuring consistency between artifacts payoff ❍

A [132] ES comprehension comprehend software evolution — [148]+
S [134] ES comprehension compare research — [148]
S [140] ES comprehension bug prediction — ❍

S [142] ES comprehension comprehend software evolution survey [148]+
S [151] ES comprehension comprehend software evolution survey ❍

S [155] ES comprehension comprehend software evolution — ●

A [157] ES comprehension comprehend software evolution — ❍

S [158] ES comprehension comprehend software evolution — ❍

S [173] ES comprehension comprehend software evolution survey ❍

A: automated search, S: snowballing
[xx]+: extends reference, ❍: proposes own taxonomy, ●: synthesizes from multiple publications

search or snowballing (source), its reference (two references imply journal extensions), and the type
of contribution. Then, we display short descriptions of the goals, benefits, and evidence reported
in a publication, which we discuss in Section 5. In the column taxonomy (discussed in Section 4),
we specify whether a publication directly reuses, extends (e.g., with orthogonal categorizations or
by integrating additional terms), synthesizes (from the literature), or proposes (i.e., not explicitly
building on previous ones) a taxonomy. We considered a taxonomy within a publication to be
proposed by the authors themselves if they did not explicitly cite a publication from which it was
reused or derived. While we noticed that some publications used taxonomies similar or identical to
existing ones, particularly the one by Swanson [148], the missing citations made it impossible to
understand whether a taxonomy was reused from a specific publication or was an ad hoc proposal
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Table 2. Overview of the one dataset (DS), five methodology (ME), six literature review (LR), and 12 taxonomy
proposal (TP) publications in our meta-study.
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S [118] DS comprehension comprehend software evolution — ❍

S [19] ME comprehension comprehend software evolution practice [148]+
A [18] ME comprehension problem identification — [148]
S [68] ME comprehension comprehend software evolution — ❍

S [128] ME comprehension project monitoring practice [148]
A [136] ME comprehension problem identification — ❍

A [13] LR taxonomy defining change properties — ●

S [62] LR taxonomy comparing evolution research — ●

S [64] LR taxonomy comparing MSR research — ●

A [88] LR taxonomy comparing CIA research — ●

S [130] LR taxonomy formalizing maintenance — ●

S [166] LR taxonomy comparing research — ●

S [6] TP taxonomy problem identification — ❍

S [24] TP taxonomy comprehend software evolution — [148]+
S [29] TP taxonomy comprehend software evolution — [148]
A [43] TP taxonomy comprehend software evolution — ❍

S [54] TP taxonomy comprehend software evolution — [148]+
S [74] TP taxonomy comparing research — ❍

A [89] TP taxonomy improving CIA research — ❍

S [95] TP taxonomy refine taxonomy — [148]+
S [105] TP taxonomy comparing research — ❍

S [148] TP taxonomy comprehend software evolution — ❍

A [161] TP taxonomy effort estimation — ❍

S [162] TP taxonomy comparing research — [148]+

A: automated search, S: snowballing
[xx]+: extends reference, ❍: proposes own taxonomy, ●: synthesizes from multiple publications

based on knowledge obtained from somewhere else (e.g., a course or website). For techniques (cf.
Table 3), we also provide an indication on how SCIs and what underlying approaches are used
within each technique, which we discuss in more detail in Section 6.

In Figure 3, we provide a yearly overview of when the publications have been published, at
what venues (abbreviated labels), and what they contribute (colors and/or borders). We can see
that we included several rather old papers, such as the taxonomy proposed by Swanson in 1976.
However, most publications in our dataset have been published between 2003 and 2017, and we also
identified more recent publications. Considering our search strategy (i.e., automated search in 2021,
backwards snowballing), the distribution of publications is reasonable and covers a long period
of software-engineering research that relates to SCIs. Similarly, we can see that the publications
appeared at a range of venues similar to the other literature reviews on software changes that we
identified (cf. Section 9); with well established software engineering and evolution venues occurring
more frequently, for instance, the International Conference on Software Maintenance and Evolution
(ICSM / ICSME: 20, 1988–2016), International Conference on Mining Software Repositories (MSR: 9,
2005–2020), the International Conference on Software Engineering (ICSE: 8, 1976–2019), the Journal
of Systems and Software: Evolution and Process (8, 1990-2013), or the IEEE Transactions on Software
Engineering (6: 1995–2014). While the distribution over time indicates the continuous interest
in SCIs, the venues clearly highlight that SCIs are relevant to a broad range of research topics.
Lastly, we can see that publications aiming to synthesize or specify certain types of SCIs (literature
reviews, taxonomies) occur frequently throughout the years—but recent reviews are missing. This
highlights the continuous interest in research for constructing a common foundation for describing
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Table 3. Overview of the 50 publications classified as technique (TE) in our meta-study.
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S [17] TE predicting effort estimation correlations ▼ classification —
S [20] TE labeling comprehend software evolution — ◆ static ❍

A [26] TE predicting ensuring consistency between artifacts — ▲ static —
A [28] TE transplantation avoiding errors correctness ◆ static —
S, A [30, 31] TE labeling comprehend software evolution — ▲ static ❍

S [32] TE labeling comprehend software evolution — ◆ static + classification ❍

S [33] TE labeling project monitoring — ▲ classification [148]
A [34] TE labeling comprehend software evolution — ▲ static [32]
S [39] TE labeling comprehend software evolution — ◆ static ❍

A [41] TE comprehension comprehend software evolution — ▲ static + dynamic ❍

A [44] TE mining refine concern mining correctness ▲ static ❍

S [45] TE labeling project monitoring — ▲ classification ❍

S [48] TE untangling improve version histories — ◆ static —
A [53] TE labeling filter changes — ▲ classification [148]+
A [55] TE labeling project monitoring — ▲ classification [148]
A [56] TE verification ensuring intention fulfillment feedback ▼ static —
A [59] TE verification ensuring intention fulfillment — ▼ static —
S [61] TE visualization ensuring intention fulfillment — ◆ static —
S [66] TE labeling comprehend software evolution — ▲ static ❍

S [71] TE predicting bug prediction — ◆ static ❍

S [72] TE untangling improve version histories — ◆ static ❍

S [84] TE predicting improving CIA — ◆ static ❍

S [90] TE predicting maintenance activities — ▲ ML/statistics [148]
A [91] TE labeling project monitoring — ▲ classification [148]
A [94] TE transplantation operational intentions correctness ▼ static ❍

A [98] TE verification ensuring intention fulfillment — ▼ dynamic —
A [99] TE specification compare evolution patterns — ▼ static [117]
A [100] TE untangling improve version histories — ▼ static ❍

A [102] TE labeling project monitoring — ▲ classification [148]
A [103] TE visualization ensuring intention fulfillment — ▲ static —
S [124] TE verification ensuring intention fulfillment usability ▼ static —
A [125] TE labeling problem identification — ▲ static ❍

S [133] TE specification safe evolution templates — ◆ static ❍

A [137] TE predicting reducing effort correctness ▼ dynamic [148]
A [139] TE programming enabling domain experts — ▼ code generation —
S [144] TE predicting bug prediction — ◆ static + classification ❍

S [146] TE predicting improving CIA — ◆ static ❍

S [147] TE predicting improving CIA — ◆ static ❍

S [149] TE predicting breaking changes — ◆ static + classification ❍

S [152] TE untangling comprehend software evolution — ◆ static ❍

S [153] TE untangling comprehend software evolution — ▼ static ❍

S [154] TE labeling bug fix transplantation — ◆ ML/statistics ❍

S [159] TE labeling comprehend software evolution — ◆ static ❍

A, A [163, 164] TE labeling effort estimation correctness ◆ classification ❍

A [165] TE labeling comprehend software evolution — ◆ static ❍

S [168] TE labeling bug prediction — ◆ static ❍

S [170] TE labeling project monitoring — ▲ classification [148]
A [172] TE verification ensuring intention fulfillment understandability ▼ dynamic —

A: automated search, S: snowballing
[xx]+: extends reference, ❍: proposes own taxonomy, ●: synthesizes from multiple publications

▲: identify SCIs, ▼: use SCIs to improve other techniques, ◆: SCIs as an intermediate result

software changes and SCIs to build upon, which has not yet been achieved (cf. Section 9). Overall,
most publications either contribute a technique (50) or an empirical study (48) related to SCIs.
Furthermore, 12 publications propose a novel taxonomy of SCIs, six contribute a literature review,
five provide a methodology for analyzing software changes, and one presents a dataset.
Types of Contributions.We can see that researchers have been concerned with, or used, SCIs
to achieve various research contributions. Now, we exemplify some of these contributions. Herzig
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Fig. 3. Overview of the paper distribution in our dataset.

and Zeller [52] investigated five Java projects empirically to understand to what extent bug-fixing
commits involve tangled changes, and propose a predictor to help untangle them (cf. Table 1). We
classified their contribution to be primarily empirical and to have the motivated goal of untangling
SCIs, which can help improve version histories. Unfortunately, the publication does not provide
evidence of how useful it is to know the tangled SCIs or to untangle them (this was out of scope for
that publication). In terms of a taxonomy, Herzig and Zeller rely on the notion of bug-fixing SCIs
(corrective according to Swanson and our categorization). Going into another direction, Benestad
et al. [13] conducted a literature review on research that is concerned with understanding software
evolution by analyzing individual changes (cf. Table 2). The authors have the goal of understanding
and essentially providing a taxonomy of change attributes (which partially include SCIs) that have
been used in research; and this work is highly similar to our own research (we compare both
publications in more detail in Section 9). Since Benestad et al. contribute a literature review, they do
not provide own empirical evidence on the benefits of knowing SCIs, but synthesize their taxonomy
from the literature. Sun et al. [146] propose a technique for improving change-impact analysis
using a taxonomy of change types (cf. Table 3). While they evaluate their technique and show its
potential benefits, the evidence that the technique works is purely research-driven—in contrast to
the practical evidence regarding the benefits of knowing SCIs we are interested in. Sun et al. define
their own taxonomy of SCIs that is structured around adding, removing, or modifying different
entities in the source code. We argue that all of such publications build on the connecting concept
of SCIs. Not surprisingly for software engineering, SCIs are mostly considered when developing
or improving a technique and when conducting empirical studies.
Goals and Benefits. Next, we summarize the goals and benefits described in each publication. We
can see in the tables that these vary widely. For instance, some publications motivate the ability
to predict or label SCIs as a primary goal, which may help, for example, estimate maintenance
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efforts [10, 17], predict bugs [11, 12], or improve change-impact analysis [146, 147]. The broad range
of contributions results in a variety of different goals and presumed benefits. As a consequence, it
can be challenging to identify and synthesize commonalities between the publications, particularly
since they also build on different taxonomies. In Section 5, we give a more detailed analysis of the
publications’ goals, benefits, and empirical evidence—aiming to provide an overview that helps
clarify how SCIs have been used and how the different pieces of research are connected.
Taxonomies. Regarding the taxonomies related to SCIs that have been used in the publications,
we can see that these stem from different sources. Most researchers rely on the taxonomy of
maintenance activities proposed by Swanson, one of its extensions, or they extend it themselves. It
was sometimes unclear whether a taxonomywas directly based on Swanson’s work or stemmed from
the terms being common knowledge or phrases (e.g., researchers referring to corrective changes).

When extracting the data, we checked whether the authors directly referred to their taxonomy
as stemming from another work (e.g., Swanson), for instance, by stating so in the text, or by
putting a reference in the respective table. So, some other taxonomies may have been based on
a previous taxonomy without the authors being aware of it. Still, the overall picture of most
publications extending or proposing a taxonomy as needed remains. This is also caused by the
various contributions and goals of the publications, which are often concerned with more fine-
grained SCIs (e.g., specific refactorings [159]) or require different categorizations. For instance,
Hindle et al. [54] are concerned with empirically analyzing large commits (cf. Table 2). They extend
Swanson’s taxonomy, add a more fine-grained layer on the commit level (thereby mixing different
levels of abstraction, e.g., bug fix on SCI level versus module add on implementation level), and
further classifying commits based on size (i.e., “large”).

Unfortunately, even the literature reviews that derive their taxonomies from various publications
do not provide a feasible unification of SCIs (cf. Section 9). Primarily, these publications elicit
different categorizations for changes that involve SCIs to some extent, but they do not tackle the
problem of separating different categories of SCIs. When analyzing the publications, the missing
consensus based on which we could understand SCIs and map them to different concepts made
it challenging to compare the publications or identify their connections—leading to confusion and
multiple iterations within ourmethodology (e.g., when deciding what is still in scope or to ensure the
data quality). We address this problem by providing a systematically derived categorization of SCIs
that clearly distinguishes different SCIs. So, our categorization in Section 4 provides a foundation
to facilitate the understanding, unify the description, and clarify connections of research on SCIs.

RO1: State-of-the-Art on SCIs
To provide an overview of how SCIs are used and studied in software-engineering research, we
systematically selected 122 relevant publications. Our analysis of the publications indicates that:

• Most of these publications contribute either a technique (50) or an empirical study (48), with
the rest contributing taxonomy proposals, literature reviews, methodologies, or a dataset.

• SCIs are used for a broad range of goals (e.g., comprehending software evolution, predicting
maintenance activities, verifying the correctness of changes) aiming to achieve many
benefits (e.g., improving automated analysis techniques, facilitating project monitoring).

• The taxonomies used to describe SCIs are often adapted as required, resulting in intermixing
of synonymous, overlapping, or orthogonal categories.

4 MOVING TOWARDS A TAXONOMY (RO2)
Most researchers build on their own definitions or taxonomies of SCIs, sometimes being inspired
by or extending other works. In particular, the taxonomy of Swanson [148] is regularly reused and
extended. However, the actual problem is that the extensions are often arbitrary and non-systematic.
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Fig. 4. Our categorization of SCIs.

Some publications simply add categories as they see fit, resulting in incoherent, vague, and overlap-
ping SCIs that act on different levels of granularity (e.g., high-level developer intentions versus code
modifications versus specific activity types such as refactorings). There have been several previous
attempts at describing SCIs more systematically by synthesizing categories through literature
reviews [13, 62, 64, 88, 130, 166]. Unfortunately, as we discuss in Section 9, these works do not
focus on the SCIs themselves, but on related techniques (e.g., change-impact analysis) or various
change attributes—which do not lead to a coherent understanding of SCIs. As a result, it was often
challenging during our analysis to understand the relations between different taxonomies and
identify which SCIs are related, highlighting the absence of a common understanding of SCIs.

4.1 Categorizing SCIs
During our analysis (cf. Section 2.3), we discovered that many of the SCIs were overlapping and that
their aspects were named inconsistently. To move towards a language and taxonomy for specifying
the key properties of an SCI, we separated overlapping SCIs while applying a uniform naming. We
display our resulting categorization of SCIs in Figure 4, with solid boxes indicating the higher-level
categories and dashed boxes exemplifying terms that are part of these categories andmay yield more
fine-grained categorizations (e.g., sub-categories of bug fix or refactoring SCIs). Our categorization
contains five top-level categories: goals, actions, objects, customer, and lifecycle phase, which we
describe in more detail in the following. Together, they specify and formalize a change by defining
when (lifecycle phase), what (objects) parts of a system have been changed, how (actions), for what
purpose (goal) of a specific actor (customer); and can be thought of as a language for specifying
the key properties of an SCI. While in practice, developers and researchers may use a subset of
these categories to describe the parts of a change that are relevant for them, missing information
may lead to misuses, such as causing misunderstandings regarding the goals of a change or the
customers for which it was implemented. Note again that our categorization in Figure 4 is not
intended to be complete. Instead, as we argue in Section 4.2, by focusing on the most important
properties of an SCI, we produce an extensible foundation for describing and comparing research.
Goals. This category is most commonly discussed in existing publications, building directly on the
taxonomy by Swanson [148]. It describes the purpose for which developers perform a change. We
divide goals into four sub-categories:

• Perfective changes (a.k.a. enhancements) focus on the evolution of requirements and features
that exist in a software system. Such changes include, for instance, adding new functionality
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requested by the users, improving the usability or security of a system, or implementing new
quality of service (QOS) requirements.

• Adaptive changes are important when the environment of a system changes, which can
be caused by changes to, for example, the operating system, hardware, or dependencies.
Adaptive changes can also include changes reflected by organizational policies and rules.

• Corrective changes address errors and faults in a system. These changes usually originate from
bug reports that were created by users or from internal reviews done within an organization.

• Preventive changes help developers improve their system and prevent its deterioration, so that
it can function for a longer period of time. These changes include, for instance, improving
software understandability and maintainability, addressing the accumulated technical debt,
eliminating performance bottlenecks, or making parts of the system reusable.

Using these four categories, we can distinguish the different goals a SCI can have.
Actions. This category describes the concrete activities developers perform to achieve their goals.
We further split actions into two sub-categories:

• Simple actions include adding, deleting, and inspecting an element of a system (e.g., lines of
code, modules, interfaces, classes).

• Compound actions are higher-level operations performed by combining multiple simple
actions, such as changing, moving, or renaming a set of elements (i.e., deleting and adding);
merging, splitting, or swapping multiple elements (i.e., inspecting, deleting, adding); or
performing a refactoring using a combination of these actions.

These two categories are well-established for specifying actions and operations, and serve the same
purpose in our taxonomy.
Objects. This category describes the elements that are manipulated by an action. Due to the
complexity of modern software systems, the objects include a wide range of software artifact, such
as interfaces, classes, methods, and exceptions; GUI elements; requirements, features, and tests;
source and non-source files; documentation; or source control systems and patch/pull requests. Due
to this wide range, it is challenging to define a useful sub-categorization that would be applicable
for every type of research on SCIs.
Customer. With this category, we cover the individual or entity due to which an SCI has been
initiated. Essentially, we can distinguish between internal (i.e., development team) or external (e.g.,
end user, legal body) customers. Still, a more fine-grained categorization of customers may be
needed for some research on SCIs.
Lifecycle Phase. Our last category specifies at what time an SCI is performed. In the literature,
we identified different examples that relate to this category, for instance, SCIs that occur at design
time or at runtime—and which may be anticipated or not [161]. So, this category provides an
understanding of the relation of an SCI to the lifecycle of its respective system.
Example for Categorizing Changes. We argue that these five categories are well-suited to
describe the most important properties of SCIs that cannot be easily covered by metrics. As an
example of using the categories for describing changes, let us assume a stakeholder finds and reports
a bug in a system that a developer is trying to fix—connecting to the concepts related to high-level
intentions we sketch in Figure 2. Now, the developer implements a change, for instance, in a
separate fork of the system, and creates a pull request. Following our categories, they could specify
within the pull request that they implemented a corrective change (goal) due to the stakeholder’s
request (customer), modifying a conditional statement (compound action) to a code file (object) while
the system is already operational (lifecycle phase). In a second pull request (or within the same
one), the developer may add new (simple action) test cases (object) to ensure that other developers
(customer) can ensure the system’s future operation (lifecycle) through preventive maintenance
(goal). Of course, the developers of the system have to agree on what level of granularity they
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Table 4. Overview of the taxonomies we identified as extending the one of Swanson [148] (i.e., those marked
as “[148]+” in previous tables). A line starting with a bullet (•) indicates a taxonomy used in the respective
publication; for instance, Hattori and Lanza [47] distinguish between maintenance activities (e.g., “corrective”)
and change size (e.g., “tiny”). SCIs in parentheses are sub-categories of the SCI directly before the parentheses;
for instance, Lee and Jefferson [87] summarize “adaptive,” “perfective,” and “preventive” as “enhancive.”

ref contr taxonomy

Swanson [148] TP • adaptive; corrective; perfective
[22] ES • adaptive; corrective; perfective; preventive
[35] ES • adaptive; corrective; new application
[42] ES • adaptive; corrective; perfective; preventive

[47] ES • corrective; forward; management; re-engineering
• tiny; small; medium; large

[51] ES • adaptive; corrective; documentation; perfective; refactoring; other

[63] ES • adaptive; corrective; perfective; preventive
• introduction/deletion of module; change of interface, control flow, data declarations, data, or assignment statement

[87] ES • corrective; enhancive (adaptive, perfective, preventive)
[107] ES • adaptive; corrective; inspection; perfective
[109] ES • adaptive; perfective (functional; quality attributes); preventive
[121] ES • adaptive; non-urgent corrective; perfective; preventive; urgent-corrective

[123] ES • adaptive; corrective; inspection; perfective
• delete; insert; modify

[132] ES • adaptive; corrective; enhancement; perfective; preventive

[142] ES • adaptive; corrective; perfective; preventive
• small; medium; large

[19] ME • adapative; corrective; enhancement; preventive
[24] TP • adaptive; corrective; enhancive; groomative; performance; preventive; reductive

[54] TP

• adaptive; corrective; implementation; non-functional; perfective
• branch; bug fix; build; clean up; cross; data; debug; documentation; external; feature add; indentation; initialization;
internationalization; legal; maintenance; merge; module add, move, remove; platform specific; source control;
refactoring; rename; testing; token replace; versioning

[95] TP • adaptive; corrective; documentation; pretty printing; retrenchment; retrieving
[162] TP • adaptive; code leverage; corrective; perfective; reuse

[53] TE
• adaptive; corrective; feature addition; non-functional; perfective
• feature addition; legal; maintenance; meta-program; module management; non-functional source code changes;
SCS management

document this information, what details they cover, and whether they want to document all of
these categories. However, we argue that these five categories cover the most relevant pieces of
information for describing an SCI, which can help document these more reliably and consistently,
thereby also allowing to design new techniques to support developers.

4.2 Comparison to Existing Taxonomies
Our categorization is not a synthesis of all taxonomies we identified in the 122 publications. Instead,
we aimed to define a concise categorization for specifying SCIs, providing an extensible (e.g., more
fine-grained sub-categories) foundation for describing and comparing research. We argue that such
a concise overview is much more helpful than a more detailed, but still incomplete, taxonomy that
involves too many fine-grained levels. Moreover, our categorization represents the most important
properties of an SCI, and thereby covers the relevant properties of existing taxonomies.

To further exemplify our categorization, we summarize the 19 publications that extend or adapt
the taxonomy of Swanson [148] in Table 4. Please note that Swanson’s taxonomy itself is subsumed
by the category goal in our categorization. In Table 4, each bullet refers to a taxonomy defined
in the respective publication, for instance, Hindle et al. [53] extend Swanson’s taxonomy with
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“feature addition” as well as “non-functional” SCIs, and complement it with another taxonomy for
large changes that involves SCIs, such as “legal,” “module management,” and “maintenance.” This
is an example for the inconsistencies of taxonomies that are used within and between different
publications. Concretely, the extension of “non-functional” in the first taxonomy overlaps and
is inconsistent with the other four SCIs: It covers legal aspects (e.g., copyright), source control
system management (e.g., branching, tagging), and code clean-up. While the former two are not
related to actual code changes, code clean-up is covered as the goal of an SCI (i.e., preventive). The
second taxonomy keeps some of the SCIs (e.g., “feature addition”), while also summarizing (e.g.,
“maintenance”) and splitting (e.g., “legal”) others. As a consequence, it was challenging for us to
understand the relations between SCIs within and between publications.
We argue that our categorization can help researchers improve the comprehensibility and

comparability of their research. Particularly, note that even though the taxonomies in Table 4 are
all based on the one of Swanson, almost each one adds a highly individual naming for different
SCIs, ignores some SCIs, or introduces concepts unrelated to SCIs. Our categorization can help
resolve such inconsistencies since its high-level categories provide a common ground for specifying
the context and coverage of SCIs in a publication. For instance, “enhancement” [132], “feature
addition” [53], and “feature add” [54] all refer to extending a system with novel functionality, and
thus are covered by the categories goal (i.e., perfective: adding new functionality), action (i.e., simple:
add), and objects (i.e., feature). Furthermore, our categorization resolves inconsistencies, such as
that concepts (e.g., “branch,” “bug fix,” “module add” [54]) are part of the same taxonomy—even
though they are not describing the same abstractions or do not relate to SCIs. For example, we
removed “branch,” since it does not relate to a change of the source code, and separated “bug
fix” (goal) from “module add” (action and object). Consequently, we removed concepts, such as
size measures [47, 142], “inspection” [123], “branch” [53, 54], or “urgent” [121] since these do not
describe SCIs (e.g., changes to the actual source code). Overall, our categorization covers the most
important properties to specify SCIs, which helps distinguish SCIs and make the corresponding
research more comparable.

RO2: Categorization of SCIs
To define a categorization of SCIs, we performed open and axial coding on 40 publications, which
we randomly selected from our sample. The main benefits of the resulting categorization are:

• It provides a systematic view of concepts related to SCIs, defining five orthogonal categories
(goals, actions, objects, customer, lifecycle phase).

• It includes examples of concepts in each category, easing communication and facilitating a
shared understanding of SCIs.

• It defines a common level of abstraction and allows extensions with more orthogonal
categories and/or more fine-grained levels.

5 ASSESSING THE BENEFITS (RO3)
The 122 publications we reviewed had different goals and benefits. Not surprisingly, the overarching
theme of all of these is to support or facilitate software evolution, which is why there are various
overlaps and strong connections between the publications. In contrast, we can see in Table 1,
Table 2, and Table 3 that only a small number of the publications (20) provide any form of real-
world evidence on the claimed benefits of knowing SCIs. We remark again that this does not mean
that the contributions in the publications have not been evaluated by some other means (e.g.,
comparisons against other techniques or a dataset). Still, a transfer into practice, for instance, as a
field experiment, case study, tool, or any other practical evaluation, to study the benefits for actual
software engineers has rarely been reported. In this section, we first discuss the goals and benefits
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claimed in the reviewed publications before summarizing the available evidence to support these
claimed benefits of knowing SCIs.

5.1 Goals and Benefits
The most frequently mentioned goals of researching SCIs in the publications are: comprehending
software evolution (29), labeling changes with SCIs (22), predicting some software-evolution
phenomenon (e.g., bugs) (20), and providing a taxonomy for understanding software changes (18).
Moreover, SCIs have been considered in more specific, highly interesting research directions, such
as verifying software (5), transplanting code (2), or even programming (1). In the following, we
discuss the individual goals and benefits the authors claim knowing or using SCIs could have
with respect to such goals. Since the general idea (i.e., knowing SCIs) and overarching goal (i.e.,
supporting software evolution) are identical, there are many similarities between the publications.
Comprehension (29). This goal assumes that knowing SCIs helps developers comprehend changes
more easily. In contrast to understanding low-level code changes (i.e., program comprehension),
a developer comprehends the higher-level SCI (e.g., what is the purpose of the change and what
are the underlying assumptions)—with research showing that developers consider such more
abstract knowledge as more important [77, 78, 131]. For example, Greevy et al. [41] propose a
technique that allows to analyze the evolution of a system to help developers identify feature
changes and refactorings more easily. However, this goal also involves many publications that
are concerned with fundamental research questions only; helping researchers provide a better
comprehension of software evolution without direct practical impact. For instance, Hattori and
Lanza [47] investigated 72,351 commits from nine projects to comprehend what constitutes small
or large commits, which of these involve most developer activities, and whether large commits are
concerned with code management. To address particularly the second question, the authors adapted
the classification of Swanson [148] to comprehend different developer activities. Overall, the main
benefits claimed for this goal are: improving the comprehension of software evolution, monitoring
projects (e.g., analyzing workload distributions [1]), predicting bugs (e.g., comprehending which
changes before a corrective one introduced the bug [140]), comparing research (e.g., comparing
efforts for different SCIs [134]), and identifying software-evolution problems (e.g., checking whether
quality attributes are still fulfilled [136]). Note that how these benefits are achieved also depends
on the type of contribution of a publication. For instance, methodologies propose how developers
can comprehend software changes, empirical studies provide data for this purpose, and techniques
present supportive tools. Lastly, we want to remark that this goal of comprehending evolution is
very broad, spanning very different research directions. We decided not to split this goal further
because: (1) The boundaries between more fine-grained goals were often vague; and (2) the authors
of the papers themselves regularly mentioned this high-level goal with respect to knowing SCIs.
Please note that the goal and benefits of the actual work, which may only build on SCIs, are often
involving additional goals. By not splitting up this goal further, we aimed to contribute a concise
overview that does not involve many overlapping and interconnected sub-goals.
Labeling (23). This goal builds on the same assumption as the previous one, namely, that knowing
SCIs is helpful. However, research on this goal is only concerned with labeling changes accord-
ing to some taxonomy of SCIs, but the results are not directly used for any other purpose (e.g.,
for comprehending software evolution). The results of such a labeling can help researchers or
practitioners achieve the other goals. It is not surprising that most publications related to this
goal propose techniques (19). For instance, Tian et al. [154] propose a technique for identifying
bug-fixing (i.e., goal: corrective) changes and compare their technique against other such labeling
techniques. There is no follow up use of the SCI labels in the publication itself, but it is motivated
to help with transplanting corrective changes into other code locations or even projects (e.g., for
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code transplantation and automatic program repair). To motivate the labeling of software changes,
several benefits are discussed that strongly relate to other goals and their benefits. For example,
labeling changes with SCIs can help researchers and practitioners improve project monitoring (e.g.,
allowing to add missing labels to changes [45] or identify mislabeled changes [51]), comprehending
software evolution, filtering changes based on their SCIs to facilitate analyses [53], transplanting
bug fixes, estimating maintenance efforts (e.g., identifying changes causing large efforts during
reviews [163]), or predicting bugs (e.g., linking changes and bug reports [168]).
Predicting (22). Various researchers have aimed to use SCIs to enable or improve predictions
on evolving software, which is sometimes closely related to labeling. Typically, such works aim
to use SCIs to improve an existing analysis (e.g., change-impact analysis [146]) or build on a
set of changes labeled with SCIs to predict occurrences of a phenomenon or the same SCI (e.g.,
corrective changes are used to identify bug-introducing changes to then predict future bugs [71]).
For instance, Tang et al. [149] proposed a machine-learning-based technique that allows to predict
whether a corrective change may break regression testing. Dagenais and Robillard [26] designed a
technique that aims to keep software documentation in sync with source code changes by predicting
whether documentation must be updated after a change. Most of the mentioned benefits of knowing
SCIs for predictions are highly intuitive, such as predicting types of changes and their economic
impact on projects [10], predicting bugs to prevent these [46], predicting (breaking) changes to
identify problems [67], predicting updates to other artifacts (e.g., documentation), or predicting
software quality to ensure the system’s maintainability [22]. Please note that the goals of labeling
and predicting are closely connected and interrelated, for instance, SCIs may be labeled with
a technique and then used for some prediction. We refer to labeling if the primary focus of a
publication is to identify (or “predict”) SCIs, whereas our goal of predicting typically refers to
publications that use such labels to predict some other phenomenon. For the previous example,
this goal would typically be predicting and not labeling (e.g., because an existing technique was
reused to label SCIs and these were the underlying idea for the prediction).
Taxonomy (18). Several publications have been concerned with deriving a taxonomy or similar
classification of software evolution that involves SCIs (cf. Section 9 for a detailed comparison
to our own meta-study). Such publications are primarily focused on researchers, indicating that
understanding the properties and SCIs of changes can help them to study a certain problem
domain. For instance, the researchers argue that using their taxonomies, and thus SCIs, can help
compare research (e.g., on software evolution [62], mining software repositories [64], or change
impact analysis [88]) and formalize software evolution (e.g., defining an ontology of software
maintenance [130]). Other benefits mentioned are closely related to these two, and to the benefits of
other goals, such as identifying problems, comprehending software evolution, improving techniques,
or supporting effort estimations.
Untangling (6). Several researchers experienced that changes can involve multiple, tangled SCIs,
complicating automated analyses and program comprehension. This resulted in the research goal of
untangling different SCIs that are part of a single change, aiming to improve version histories and
support the comprehension of software evolution. For instance, Kirinuki et al. [72] propose to derive
templates of changes (i.e., specifying SCIs) from past changes to warn developers if they commit
tangled SCIs. In a similar direction, Matsuda et al. [100] propose a technique to automatically
separate refactoring SCIs (i.e., goal: perfective) and Hayashi et al. [48] propose refactorings to
enable developers to untangle and reorder changes based on their SCIs.
Specification (5), Verification (5), and Visualization (3).We describe these three goals together,
because they build on the same underlying benefits: analyzing evolution patterns and ensuring
that software evolution is save. For instance, Sampaio et al. [133] propose and formalize evolution
templates for product lines, which represent different SCIs developers may have. Ensuring these
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templates during the evolution of a product line would allow to guarantee that products not affected
by the changed code keep their behavior. Among others, Hou and Hoover [56] build on the same
idea and essentially propose to use the Structural Constraint Language (SCL) to specify constraints
of the code as conditions—particularly non-functional design intentions that should always be
fulfilled. During software evolution, it can be checked whether a software change still fulfills these
conditions. Such research essentially adopts the concept of SCIs in the context of software verifica-
tion. Similarly, other researchers proposed visualizations, primarily to check whether changes still
fulfill underlying intentions of the code. For instance, Jackson and Ladd [61] proposed Semantic
Diff as a tool to summarize SCIs and allow a developer to compare these against their original SCI
(e.g., whether a change identified as corrective was intended to be corrective).
Mining (1), Programming (1), and Transplantation (2).While these three goals are strongly
connected to some of the previous ones, they are different and highly interesting in terms of the
research proposed. Specifically, they rely on the concept of SCIs for implementing or improving
a concrete technique. Hashimoto and Mori [44] propose a concrete technical improvement for
concern mining by considering SCIs. Dhaliwal et al. [28], propose to group changes with the same
SCI (e.g., a specific goal, such as corrective or perfective) to transplant them safely and Lillack
et al. [94] define SCIs as operational concepts for transplanting changes. In both cases, avoiding
errors is the claimed main benefit. Finally, Simonyi et al. [139] propose to use intentions as the
primary concern for implementing software systems to enable domain experts to design software.
So, we argue that these techniques are taking more concrete steps of integrating SCIs into the
actual engineering and evolution of software than most other publications we identified.
Discussion. Overall, we can see that the different goals and benefits are, not surprisingly, closely
related. However, most of the contributions are more intended to support researchers instead of
practitioners. For instance, labeling changes with SCIs and taxonomies of SCIs are used to compare
research and enable certain analyses. The claimed benefits for practitioners are rarely supported
by actual practical evidence. In contrast, few publications are investigating how to incorporate
SCIs into software engineering to directly benefit practitioners, for instance, by improving code
transplantation or program verification. Note that this does not mean that these publications do not
have practical applicability, but their concrete usability seems more abstract and is rarely shown.
One recurring problem in this regard are the completely different paths, notations, and levels of
detail at which researchers consider SCIs. For example, some explicitly refer to SCIs while others
refer to various sub-categories; and the same terms in two publications can refer to different SCIs.
We relied heavily on our understanding of the research area as well as our classification to classify
and structure the goals and benefits. For instance, for labeling changes, our classification provides a
common understanding of what is labeled (e.g., goals) or what may be relevant to fully describe an
SCI (i.e., what goal is fulfilled by what actions on what objects for what customer in what lifecycle
phase). In fact, our classification directly addresses the most often mentioned goals and benefits by
improving our comprehension of software evolution (research). So, we consider our classification
as a helpful means for researching, communicating, and using SCIs—thereby avoiding confusion
and illustrating connections between individual works.

5.2 Evidence
As discussed, we identified various intuitive goals and benefits claimed to motivate the use of SCIs
in software engineering. However, many of these goals are only substantiated by showing that a
technique works as intended, by improving such a technique compared to other techniques, or by
sketching how a problem could be tackled with the consequent knowledge of SCIs. What is often
missing is an actual transfer into practice to study whether these goals and benefits are relevant to
practitioners. In the following, we summarize and discuss the 20 pieces of practical evidence we
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found on the benefits of knowing SCIs in software engineering. Note that these pieces of evidence
are often either highly specific or too vague, which is why we can only provide a general intuition
on the benefits of knowing SCIs.
Practices (5). Some publications report on case studies conducted in companies or describe
a company using categorizations of SCIs for project monitoring, change management, or effort
estimations [1, 2, 19]. Unfortunately, the researchers do not provide insights on the concrete benefits
of having this particular knowledge. Similarly, Mockus and Weiss [108] report that a methodology
involving SCIs to assess the risks of software changes is applied in a company to inform developers
about risks, but actual empirical data is missing. Rombach et al. [128] report on using SCIs for
measuring maintenance activities at Software Engineering Laboratory (SEL)—a joint venture of
NASA, University of Maryland, Computer Sciences Corporation—including a concrete template
for specifying SCIs based on the taxonomy of Swanson [148]. The authors use this information to
understand the effort distributions within the company, and express that such information helped
the SEL comprehend its software development and maintenance. While missing actual data, we
argue that the companies must have seen a benefit in knowing SCIs to implement such practices.
Surveys (6) and Correlations (1). Several researchers conducted surveys to understand specific
types of SCIs. Yet, we were unable to identify any that directly investigated the benefits of know-
ing different SCIs. However, the following surveys indicate that certain SCIs impact developers’
perceptions, so knowing SCIs would have practical benefits (e.g., supporting developers’ program
comprehension, debiasing misconceptions, providing tools for untangling SCIs in one change).

Kim et al. [70] performed a survey with Microsoft developers, asking them for their definitions
and perceptions of what constitutes a refactoring. The findings indicate that the developers had
various definitions of refactoring that are not in line with the original one (i.e., that refactoring SCIs
are often tangled with other goals, namely, corrective or perfective ones). Moreover, the developers
argue that refactorings are associated with various risks (e.g., breaking changes, merge conflicts)
and benefits (e.g., improved readability, fewer bugs) that only partly correspond to this SCI. This
indicates that developers could benefit from more clearly separating between different SCIs when
committing changes, thereby mitigating risks (e.g., refactorings should not cause breaking changes).
Researchers can build on these insights to study whether knowing the SCI of a change mitigates
the risks identified or makes developers more aware of their actual causes.

Tao et al. [151] report a survey with interviews involving 180 Microsoft developers to research
the importance of comprehending software changes. Their results indicate that the question of
the rationale behind a code change (i.e., the SCI) is perceived to be the most important piece of
information—but also the one that is easy to recover. However, the difficulty rating builds on the
assumption that the description of the change (e.g., commit message) is available. Some issues the
participants mention to challenge the comprehension of SCIs involve low quality of the description,
tangled changes, and missing links to additional meta data.

Lientz et al. [93] conducted a survey to study software maintenance and enhancement, for which
they received responses from 69 organizations. They built on the taxonomy of Swanson to elicit how
often each type of maintenance activity occurs in practice. The findings of Lientz et al. support the
assumption that software maintenance is the most expensive activity for organizations. Moreover,
organizations seem to be aware of the different goals of SCIs and particularly perfective SCIs
(new functionalities) seem to cause most management problems. Consequently, knowing specific
SCIs could, in fact, support organizations in improving their project management by adapting
their processes accordingly (e.g., identifying and solving concrete problems associated with an
SCI). Similarly, Nosek and Palvia [113] replicated a previous survey on software maintenance and
obtained essentially the same results, indicating, for instance, that demands for perfective SCIs,
software changes, and management support cause problems. A direct analysis of the relations of
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SCIs and consequent problems in software projects (i.e., technical and management) could provide
more detailed insights and practical evidence. Other surveys [142, 173] in this direction focus on
studying the costs or activities of software maintenance based on taxonomies of SCIs, indicating
that the distinction of SCIs may help practitioners improve their comprehension. Similarly, Briand
and Basili [17] aim to predict the effort of software changes by using correlations to show that
the SCI is an indicator for such efforts—thus, together with the previous surveys, indicating that
knowing SCIs may benefit effort estimations.
Correctness (5). Dhaliwal et al. [28] use metrics to find changes that belong together (i.e., rep-
resenting one SCI) to facilitate code transplantation in product lines. They conduct a study with
automatic and developer-guided transplantations, yielding 76 % and 94 % fewer failures, respectively.
In the same direction, Lillack et al. [94] define six SCIs as concrete operators that automate the
integration of code changes between different variants of a product line. Conducting a user study
with 12 developers, they show that the operational SCIs result in fewer integration errors (e.g.,
seven compared to 17.5 for a standard merge tool). Hashimoto and Mori [44] propose a technique
for locating concerns in version histories, relating changes and considering SCIs to improve their
technique. The authors conduct a simulation study that indicates a precision from 53.3% to 71.9%.
Silva et al. [137] describe a technique for identifying code locations where perfective software
changes should be executed. Evaluating their technique on four case studies, Silva et al. find that
the precision of suggesting locations for perfective changes ranges from 77% to 100%. Lastly, Wang
et al. [163, 164] report on using SCIs to identify changes that require large reviewing efforts. They
evaluate their technique based on four projects, with the results indicating that considering SCIs
improves the technique’s performance by up to 19% (7.4% on average). These findings represent
arguably the most interesting and most reliable empirical evidence in our dataset. More precisely,
it seems that knowing what changes belong to the same SCI or even operationalizing SCIs can
reduce the number of bugs, and thus costs, of integrating or transplanting code changes.
Payoff (1). Rostkowycz et al. [129] describe experiences of re-documenting a software system in
an organization. Any iteration of re-documentation was triggered by a number of components
of the system having been changed and reaching an “error free” status of the system. The doc-
umentation included the intentions of the software components and of the individual software
changes. While the precise impact of knowing SCIs is not reported, this knowledge was still part
of the documentation and the authors report that the re-documentation payed off after 1.5 years.
Replicating such a study with a focus on SCIs only would help understand the actual benefits of
knowing SCIs; for instance, by introducing explicit documentation for SCIs based on our taxonomy
or studying projects that have a related taxonomy of SCIs for issues.
Feedback (1), Usability (1), and Understandability (1). Hou and Hoover [56] collaborated
with industrial developers to evaluate their technique for specifying constraints for changes as
intentions. Unfortunately, the authors do not report an empirical study with these developers, they
only state that their collaborators perceived the technique as helpful. Qi et al. [124] build on the
same idea, defining software-change contracts to ensure that the SCI behind a change is fulfilled.
The authors asked two students to write different contracts and report primarily on the usability of
the tool from the students’ perspectives, indicating that both were quite successful in using the
corresponding tool (i.e., they could write 52 contracts for 57 changes). Finally, Yi et al. [172] extend
the previous paper, reporting a user study of 16 students who had to modify, comprehend, and write
change contracts. Overall, the results indicate that the students could easily understand change
contracts (86–100% correct responses). The results of the first two studies are only anecdotal, but
hint in the same direction as the user study reported in the third publication: specifying SCIs to
verify changes seems to be an interesting and intuitive way of checking software changes.
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Fig. 5. Our classification of SCI-based techniques.

(a) Identify developers’ SCIs. (b) Use SCIs to improve other techniques.

Discussion. In summary, these pieces of evidence are not providing a good understanding of
whether knowing SCIs really helps practitioners. Consequently, our impression remains that much
of the existing research in this area is oriented towards other researchers. We argue that more
empirical studies are required that investigate the impact and potential benefits that knowing
SCIs can have for practitioners. For instance, consider the idea of untangling SCIs. While it is
intuitive that tangled SCIs could be refactored, for example, to facilitate cherry-picking and improve
other techniques, the actual benefits of these techniques for practitioners have not been explicitly
investigated. Unfortunately, it is challenging to collect reliable empirical evidence on the benefits
of knowing SCIs in practice, particularly since there has been no common understanding of their
properties. Our meta-study and classification can help researchers design empirical studies more
systematically to improve our confidence that knowing (certain categories of) SCIs is relevant
for practice. Moreover, our classification helped us structure our comparison of the publications’
insights, providing guidance for analyzing their different perspectives and levels of abstractions.
Still, further research to investigate whether our classification provides a common ground that
helps researchers and practitioners in their work is needed.

RO3: Reported Benefits and Evidence
To understand the usefulness of knowing SCIs, we analyzed the reported benefits and the supporting
evidence provided in our sample of 122 publications. Our insights are:

• A primary benefit of knowing SCIs is being able to comprehend, classify, and compare
software-evolution research.

• Collecting empirical evidence on the benefits of knowing SCIs in practice is difficult.
• Comparing between the publications and composing empirical evidence reported in them is
challenging, since they are defined at different levels of abstraction.

6 ANALYZING THE TECHNIQUES (RO4)
Recall that we have classified 50 publications as techniques concerned with SCIs in Table 3, which
identify SCIs (▲), use SCIs to improve other techniques (▼), or have SCIs as an intermediate result
(◆). Next, we describe the first two types of techniques in more detail. In Figure 5, we illustrate our
classification of the techniques according to their input and output artifacts, underlying approach,
as well as the way SCIs are used. Specifically, these techniques build on the concept of SCIs in two
ways: i) identifying developers’ SCIs from software development artifacts (cf. Figure 5a) or ii) using
SCIs to improve the effectiveness of other techniques (cf. Figure 5b).

Techniques of the former type rely on various software development artifacts as inputs to deter-
mine developers’ SCIs, for instance, commit messages [53, 107, 132], source code changes [34, 41, 91],
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source code density [55], or documentation [26]. The outputs of these techniques are SCIs repre-
sented using natural language labels [41, 53, 91, 132], structured labels (e.g., based on the category
goals from our categorization) [55, 107], change types as well as change significance [34], and
documentation edits [26]. Most commonly, the underlying approaches build on static analysis [99]
or statistical analysis (including data mining and machine learning), such as clustering [107],
classification [163, 164], and keyword frequency analysis [132].

Techniques of the second type use SCIs as inputs. There, SCIs are typically represented in the form
of user-specified change patterns [99], user-specified aspects in an aspect-oriented languages [98],
intentional trees defined using domain-specific languages [139], or user-declared integration SCIs
for forked product variants [94]. These SCIs are then used to (re-)structure source code changes,
for example, producing more fine-grained changes [100] or refactoring code changes to be feature-
oriented [30]. SCI specifications can also be used to detect unanticipated code interferences between
different aspects [98], to automatically generate executable code [139], and to reverse engineer
product variants into configurable software product lines [94].

In the following, we walk through some representative SCI-based techniques according to their
underlying approaches. Specifically, the second and fourth authors picked these examples based
on their overview understanding of which and how many techniques rely on which underlying
approaches. We provide an overview of the mapping between techniques and approaches in Table 3.

6.1 Statistical Analysis and Machine Learning
Approaches related to statistical analyses, especially machine learning, are typically used to identify
SCIs. The inputs to these techniques are software artifacts, such as commit messages, commit
metadata (e.g., source code density [55]), and source code changes. The outputs are the identified
SCIs, usually in the form of natural language labels or structured labels.
For example, Wang et al. [163, 164] applied machine learning-based classification techniques,

including Alternating Decision Tree, Logistic Regression, Naive Bayes, Support Vector Machine,
and Random Forest, to classify changes according to their SCIs. The ultimate goal of this work
was to label commits according to their estimated review efforts—large-review-effort (LRE) changes
typically take more time, more reviewers, and more iterations to resolve all suggestions made by
reviewers. The authors found a strong correlation between the SCI with the review effort of the
changes, meaning that changes with certain SCIs are more likely to take more review iterations.
Therefore, they proposed to identify SCIs as an intermediate result, which is then used to facilitate
the identification of LRE changes. In Figure 6b, we illustrate the workflow of the technique byWang
et al.. The input to the machine learning models is the change metadata, such as the revision history
of a file, committers’ experiences, and the SCIs identified through an intent analysis. The trained
machine learning models are then used to classify commits into either LRE or non-LRE changes.

The intent analysis heuristically identifies SCIs by searching for keywords in commit messages
(e.g., “fix,” “refactor,” “feature”). We summarize the nine types of SCIs, their descriptions, and
the heuristics used to automate the classification process in Figure 6a. For example, the commit
messages of changes related to “Test” usually contain a keyword “test,” and the changed files
contain only test files or resource files. These heuristics were initially summarized manually and
subsequently refined using a feedback-driven technique. If the accuracy of some heuristics is lower
than 80 % on a test sample, then they are refined by adding new heuristics or adjusting existing ones.
One interesting finding from this study is that software changes are unevenly distributed regarding
SCIs. Changes with some SCIs, such as “Feature” and “Refactor,” have a higher probability of being
LRE changes. Through extensive experimentation using different machine learning models, the
authors found that among the examined classifiers, Logistic Regression and Random Forest achieve
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SCI description heuristics

Bug Fix Changes are made to fix bugs 1. The commit message contains keywords: “bug” or “fix” AND
2. The commit message does not contain keywords: “test case” or “unit test”

Resource Changes are made to update
non-source code resources, config-
urations, or documents

1. The commit message contains keywords: “conf” or “license” or “legal” OR
2. If no keyword is matched in step 1, the changed files do not involve any
source/test files

Feature Changes are made to implement
new or update existing features

1. The commit message contains keywords: “update” or “add” or “new” or
“create” or “add” or “implement feature” OR
2. Changes in the ‘Other’ category that contain keywords: “enable” or “add” or
“update” or “implement” or “improve”

Test Changes are made to add new or
update existing test cases

1. The commit message contains the keyword: “test” OR
2. The changed files contain only test files or resource files

Refactor Changes are made to refactor
existing code

The commit message contains the keyword: “refactor”

Merge Changes are made to merge
branches

The commit message contains keywords: “merge” or “merging” or “integrate”
or “integrated” or “integrated”

Deprecate Changes are made to remove
deprecated code

The commit message contains keywords: “deprecat” or “delete” or “clean up”

Auto Changes that are committed by
automated accounts or bots

The change is submitted by automated accounts or bots

Others Changes that are not in any of the
above categories

-

(a) Heuristics for categorizing SCI.

Change Intent

Revision History

Owner Experience

Word2Vec Features

Process Features

Metadata

ADTree

Logistic

NB

SVM

RF

Software Repository Data ML Models

Classification

LRE Change

Non-LRE Change

Train

Test

(b) The overview of the LRE change classification.

Fig. 6. An example of the machine-learning technique proposed by Wang et al. [164].

good AUC scores [16], which confirms the feasibility of identifying LRE changes by using machine
learning algorithms and SCIs.
Other works of this type follow similar ideas, and many of them produce SCIs as their outputs.

Hindle et al. [53] proposed a machine learning technique that automatically classifies commits
into SCIs based on the commit messages and author identities. The training set was built on the
commit history data of nine open source projects. The features used for classification include word
distribution, author identity, and module/file types. Multiple machine learning algorithms were
used, including Nearest Neighbor, Naive Bayes, Support Vector Machine, tree-based learners, and
rule-based learners. Levin and Yehudai [91] proposed a technique that automatically classifies
commits into SCIs using source code changes and commit messages. The training set was built
on top of the version histories of a set of popular Java repositories on GitHub. The classification
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1 #ifdef ULTIPANEL

2 uint8_t lastEncoderBits;

3 uint32_t encoderPosition;

4 #if PIN_EXISTS

5 uint32_t blocking_enc;

6 #endif

7 uint8_t lcd_sd_status;

8 #endif // ULTIPANEL

9 menu_t cM = lcd_status_scrn;

10 bool ignor_click = false;

1 #ifdef ULTIPANEL

2 uint8_t lastEncoderBits;

3 int8_t encoderDiff

4 uint32_t encoderPosition;

5 #if (SDCARDDETECT > 0)

6 uint32_t blocking_enc;

7 #endif

8 bool lcd_oldcardstatus;

9 #endif // ULTIPANEL

10 menu_t cM = lcd_status_scrn;

11 bool ignore_click = false;

1 #ifdef ULTIPANEL

2 uint8_t lastEncoderBits;

3 #ifdef NEWPANEL

4 int8_t encoderDiff

5 #endif

6 uint32_t encoderPosition;

7 #if PIN_EXISTS

8 uint32_t blocking_enc;

9 #endif

10 #ifdef NEWPANEL

11 bool lcd_oldcardstatus;

12 #else

13 uint8_t lcd_sd_status;

14 #endif

15 #endif // ULTIPANEL

16 menu_t cM = lcd_status_scrn;

17 bool ignore_click = false;

Mainline

Fork

Integration Goal

Legend KeepAsFeature 
Intention

Keep 
Intention

Exclusive 
Intention

Remove 
Intention

Fig. 7. Software variant integration with developer specified SCIs [94].

was based on keyword frequency, with the goal of creating a model of high accuracy and Kappa
value. The machine learning models used include Random Forest, Gradient Boosting Machine, and
J48. Hönel et al. [55] proposed an automatic commit classification technique based on source code
density measure. The training set was built using 359K commits, where 1,149 commits had SCI
labels (i.e., adaptive, corrective, and perfective). The features used for classification included code
change-related features, such as the number of added and deleted files in a commit or code density.

6.2 Static Analysis
Static analysis approaches are generally used to identify developers’ SCIs, elicit change types, and
refine existing techniques with the help of SCIs. The input to these techniques includes source
code changes, binary file changes, user-specified change patterns, and forked product variants.
The output includes the identified code changes, change types, and program entities affected by
changes, depending on the goal of the technique.
For example, Lillack et al. [94] proposed to leverage user-provided integration intentions to

alleviate the challenges in integrating software variants. Software variant integration is the process
of building a configurable software product line [81, 120] from a number of software variants created
through cloning—copying existing code and adapting it to new requirements by implementing new
or modifying existing features. Variant integration is a challenging task, which requires a good
understanding of all the variants, their differences as well as how they are aligned, and making
design decisions on what to keep and what to remove [3, 27, 76, 82, 83, 94].

In Figure 7, we show an example that illustrates the variant integration technique called INCLINE.
The inputs are two software variants shown on the left-hand side, namely, “Mainline” and “Fork,”
and the desired output is on the right-hand side, namely “Integration Goal.” Each code excerpt
offers some configuration options implemented with preprocessor directives, such as #if or #ifdef.
Normally, to derive the integrated version, developers have to explore different edit options, undo
and redo changes, and iterate through this process several times. INCLINE semi-automates this
process by allowing developers to specify their high-level integration decisions as SCIs, which
frees them from low-level error-prone editing work. The integration SCIs used in Figure 7 include:
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(1) KeepAsFeature, which specifies that Line 4 of “Fork” should be kept in the integrated code as a
feature (Line 6); (2) Keep, which specifies that Lines 4–5 of “Mainline” should be kept; (3) Exclusive,
which specifies that Line 7 of “Mainline” and Line 8 of “Fork” should be kept mutually exclusive
and configurable by an #if-#else-#endif structure; and (4) Remove, which specifies that Line 10
of “Mainline” should be removed (due to a typo). With INCLINE, developers can easily experiment
with different integration SCIs and the low-level editing work is carried out automatically. The
generation of variant integration is supported by an automated transformation of the abstraction
syntax trees (ASTs). Specifically, each user-defined integration SCI corresponds to a partial functions
transforming ASTs. These functions are applied on the ASTs following a certain order to properly
handle interactions between SCIs.
Martinez et al. [99] proposed an AST-based technique that automatically finds change pattern

instances (i.e., SCIs) in a codebase given a user-written change pattern specification. The technique
represents versioning changes of a commit and change patterns at the AST level. It accepts as
input a commit and a list of user-provided change patterns (e.g., a change of an if-condition
expression, an addition of a method declaration), parses the AST difference in the commit, and
determines whether the difference matches any pattern. Rayside et al. [125] proposed a change
impact analysis technique that detects which part of a Java code base is affected by a change of JDK
or third-party libraries—focusing on adaptive SCIs. The technique detects changes by analyzing
the difference of bytecode before and after the change, and then identifies the affected code entities
by building a dependency graph and analyzing the propagation path of the changes. Dintzner
et al. [31] proposed FEVER, a heuristic-based technique to extract changes in variability models,
assets, and mappings. It accepts as input a set of commits and outputs an instance of its change
model covering the given commit range. From the initial set of commits, it first analyzes every
commit, identifies the changed code entities and the changes, and creates the relationships between
the entities and the changes. Finally, it consolidates the change relationship information over
time by keeping track of relationships spreading beyond single commits (i.e., an SCI). Matsuda
et al. [100] proposed a technique to reorder and regroup changes, based on a commit policy (i.e.,
fine-grained or coarse-grained). It reorganizes commit histories to better conform to a specified
policy regarding specific SCIs. For example, for a fine-grained policy, different types of refactoring
changes should be committed separately while for a coarse-grained policy, refactoring should be
separate from behavior-changing changes. Dagenais and Robillard [26] proposed AdDoc, which
mines code patterns based on a set of rules and templates. Using code changes, AdDoc generates
documentation of the SCI and recommends the documentation update to developers. It also reports
violations of the patterns as the code and the documentation evolve.

6.3 Dynamic Analysis
Dynamic analysis techniques are generally applied to identify developers’ SCIs, which are then
used to improve other techniques. The inputs to these techniques include source code changes and
sometimes user-provided specifications.
For example, Yi et al. [172] proposed a change contract language to formally describe intended

behavioral as well as structural changes across program versions (i.e., goals and actions in our
taxonomy). The formal semantics of the change contract language are based on the Java Modeling
Language (JML) [86], and the language focuses on capturing the intended behavioral changes and
their semantic effects. Essentially, a change contract specifies how the post-conditions of the same
method in two consecutive versions should relate to each other under certain preconditions. The
authors also developed tool support for the language, which enables both test generation to witness
contract violation, and automated repair of certain tests that are broken due to program changes.
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Bug 51668 - <junitreport> broken on JDK 7 when a SecurityManager is set
Fails with: "Use of the extension element 'redirect' is not allowed when the secure

processing feature is set to true."
It turns out to apply to any environment in which there is a system security manager

set.
JDK 7's TransformerFactoryImpl constructor introduced:

if (System.getSecurityManager() != null) {
_isSecureMode = true; _isNotSecureProcessing = false;

}
which conflicts with <redirect:write>.

(a) A Bugzilla report for software Ant.
1 // file: XMLResultAggregator.jml

2 package org.apache.tools.ant.taskdefs.optional.junit;

3 public class XMLResultAggregator extends Task implements XMLConstants {

4 /*@ changed_behavior

5 @ requires System.getSecurityManager() != null &&

6 @ System.getProperty("java.runtime.version").startsWith("1.7") &&

7 @ getDestinationFile().exists() == false;

8 @ when_signaled (BuildException e) e.getMessage().contains(

9 @ "Use of the extension element 'redirect' is not allowed " +

10 @ "when the secure processing feature is set to true." );

11 @ signals (BuildException e) false;

12 @ ensures getDestinationFile ().exists();

13 @*/

14 public void execute() throws BuildException;

15 }

(b) A change contract corresponding to the bug report in Figure 8a.

Fig. 8. An example for the dynamic analysis technique by Yi et al. [172].

In Figure 8b, we display an example of a change contract written for the execute method of
Apache Ant. Lines 4–13 are JML-style annotationswith extra keywords, such as “change_behavior,”
“requires,” and “when_signaled.” The change contract in Figure 8b pragmatically expresses the
verbal description given in the bug report in Figure 8a. On the high level, the change contract
captures both the observed symptom (i.e., failing with an error message, “Use of the extension
element [...]”) and the necessary condition to reproduce the symptom (i.e., “broken on JDK 7 when
a SecurityManager is set”).
Such a contract is useful for dynamically validating code changes against developer’s SCIs. To

perform contract validation, random test generation techniques are used to first generate a set of
relevant tests, which execute the target method and satisfy the precondition given in the contract.
Then, the tests are executed on both the old and the updated versions, instrumented with proper
checking code. If a violation is found during the test run, it is reported to the developer as evidence.
Greevy et al. [41] proposed a technique for Smalltalk programs that summarizes changes to

determine whether software entities (e.g., classes) that participate in the implementation of a feature
become obsolete, whether new entities are added to the implementation of a feature, and whether
code is refactored. It takes multiple versions of a system as input and uses dynamic analysis to
extract traces by executing a feature for each version. By comparing and analyzing traces of different
versions, the technique captures and summarizes the evolution of a system as SCIs. Marot and
Wuyts [98] proposed a technique that detects aspect interference in aspect-oriented programs. To
use the technique, developers first semantically annotate the advices, called compositional intentions,
with their intended compositions. Then, during runtime, if a compositional SCI is violated, an error
is triggered with an explanation of the violation, with the goal of giving feedback to the developers
that the program execution is in conflict with their SCI.
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6.4 Emerging Techniques and LLMs
Emerging AI technologies based on Large Language Models (LLMs) [174] have significantly im-
pacted numerous domains, including software engineering [57, 96]. Many early attempts have been
made to “reinvent” analyses and tools with LLMs for software-engineering tasks, such as code
generation [160], test generation [150], fault localization [65], and program repair [169]. LLM-based
techniques emerge as multifaceted and versatile tools to better support software developers based
on their access to a vast collection of natural language and code data. But, to date, we are not aware
of any peer-reviewed publication on identifying SCIs based on LLMs. Therefore, we exclude such
techniques from this analysis.

Nevertheless, LLM-based techniques have the potential to simplify existing SCI-based software
analysis techniques. For example, for effort estimation, instead of identifying SCIs first [163], new
techniques have been proposed to rely on context-aware language models, such as BERT, to estimate
efforts required for software maintenance tasks [4]. This type of techniques can potentially provide
an end-to-end solution to many SCI-related software analysis tasks. Yet, recent studies [57, 96]
also pointed out that LLM-based techniques, in their current state, have limitations, which may
hinder their adoption in some software-engineering scenarios. For example, while LLMs are trained
on massive amounts of data, their generalizability across different tasks remains a big challenge.
When applied on domains that are outside the scope of training, LLM-based techniques may not
perform consistently well. Moreover, the lack of interpretability makes the understanding of the
decision-making process of LLM-based techniques difficult. Many studies [92, 171] have shown
that it is possible to manipulate model decisions with malicious attacks. Therefore, we believe
that identifying SCIs still holds merit even with the presence of LLMs, because an orthogonal
angle towards developers’ intentions may enhance the interpretability and trustworthiness of the
LLM-generated results, leading to better adoption of LLM-based techniques.

RO4: Techniques Related to SCIs
To understand how techniques build on SCIs, we analyzed the 50 publications from our sample
that used or proposed them. From the analysis, we learned:

• The goals of the techniques are either identifying SCIs or using them as a concept to improve
analysis results.

• The techniques rely on three underlying concepts: machine learning, static analysis, and
dynamic analysis.

• Yet, the range of the techniques is surprisingly large because they are based on different
levels of abstractions of SCIs (e.g., “bug fix” versus “keep” versus contracts).

7 THREATS TO VALIDITY
Internal Validity. The internal validity is concerned with how we conducted our meta-study and
potential biases we may have introduced. Since we had to extract and interpret natural-language
descriptions of other authors, it is possible that we misinterpreted their statements. Consequently,
we may have extracted data incorrectly, which may have biased our data analysis. To mitigate
this problem, we iteratively refined our analysis process and extracted data based on numerous
discussions with all authors of this article. Moreover, we cross-checked the extracted data repeatedly,
for instance, when reading on details in individual publications to address our research objectives.
To categorize our data, we relied on open-card-sorting-like methods and agreement between the
authors to mitigate misinterpretations. Based on this process, the agreement within our dataset, and
the affirmation of all authors involved, we argue that threats to the internal validity are mitigated.
External Validity. The external validity is concerned with how well we can apply our findings in
the broader context, and thus their general reliability. Since our meta-study synthesizes from 122
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publications, we argue that we considered a relevant set of publications to ensure the reliability of
our results. We combined an automated with a snowballing search to mitigate potential problems
with search engines and to improve the completeness of our dateset. As stop criterion, we used
saturation, which means that the new publications we found during the snowballing did not provide
fundamentally new insights. Still, since the area of software evolution and maintenance is enormous,
it is simply not possible to cover all relevant publications. To tackle this problem, we considered
only peer-reviewed publications. So, we may have missed some relevant data for our meta-study,
but based on the comparison to related reviews and surveys (cf. Section 9) as well as our expertise
in the area, we argue that this threat is limited. Additionally, we publish our data in a persistent
open-access repository1 to allow other researchers to validate, replicate, and extend our study.

8 IMPLICATIONS
After summarizing the key insights with respect to each of our research objectives, we now briefly
discuss the consequent implications that researchers and practitioners can derive from our meta-
study. Specifically, we consider the following five important implications:
SCIs are an underlying concept of software engineering. Ourmeta-study revealed thatmany

different research directions are concerned with or at least related to SCIs. While some con-
nections are rather loose, we argue that almost all software-engineering research is at some
point connecting to changes of a software system, and thus SCIs. More specifically, software
changes are what results in a new system and its modifications, which is why we can consider
them key within software-engineering research and practice. For this reason, we argue that
SCIs are an important concept to connect different research directions and practices, which
are often reported disjointedly despite their connections. So, we think that SCIs may serve as a
common connector between research areas in software engineering and can guide techniques
as well as practices that combine and integrate such areas [80].

Using a unified classification helps comprehend and compare research. During our meta
study, we found it challenging to fully understand all pieces of research and their connections
due to the varying terminologies used. We argue that the lack of a unified terminology makes
it very challenging for researchers and practitioners to fully grasp relationships between
areas. Consequently, we hope that our classification is a helpful means and stepping stone for
overcoming this challenge. In particular, we would recommend that researchers concerned
with software changes try to use a common classification or explain why this is not possible.
By referring to or extending an existing terminology, they can help others understand the
context of their work and its connections to other areas.

The practical evidence on the usefulness of SCIs is limited. We see a continuous interest in
(documenting) SCIs in research and practice. Despite this interest, there is limited empirical
evidence whether knowing SCIs is helpful in practice. Among others, this lack of evidence
makes it challenging to identify the right levels of abstraction for documenting SCIs and how
to document them. For this reason, we argue that future studies are needed to elicit more
evidence and provide an in-depth understanding of the usefulness of SCIs. The evidence and
insights collected via our meta-study are a helpful means for this purpose, and already hint
at the relevance of SCIs for research and practice.

Documenting the most important properties of SCIs can help developers. While the empir-
ical evidence is scarce, we argue that it helps developers to agree on a common documentation
template for their changes—building on the concept of SCIs to document particularly im-
portant and more abstract information. In fact, when sketching our vision of using SCIs in
software engineering [80], we found that there are templates on GitHub that cover some of
our SCI categories, particularly the goal. Combined with the existing evidence and argued
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practical benefits, we consider it helpful for developers to document SCIs. Of course, our
categorization can support designing a template covering the most important aspects, but
the developers have to agree on what details are important to them and how to ensure that
the documentation is correct as well as maintained.

Developers and researchers can build on various techniques to work with SCIs. We iden-
tified techniques for achieving different goals via three underlying approaches. These insights
highlight what has been studied in the past and what are potential new research directions.
Even more importantly, researchers and practitioners who want to study or adopt SCIs do
not have to start from scratch. Instead, they can build on an extensive body of research and
technologies on SCIs. For example, practitioners may want to reuse a technique to automati-
cally label changes according to the involved SCIs, which can warn them about potentially
violated SCIs.

We hope that these implications help practitioners and researchers reflect on SCIs, and thereby
scope new research as well as practical improvements in the future.

9 RELATEDWORK
Next, we provide an overview of the related work. For this purpose, we focus on discussing and
comparing the literature reviews we identified during our search (cf. Table 2), since these represent
the closest research to our own. We provide a synthesized overview of all six reviews in Table 5. As
we can see, the overlap of our meta-study with these reviews is rather low. However, this is not
very surprising, since the reviews focus on different research goals (e.g., change-impact analysis,
architecture evolution) that inherently lead to other papers being relevant. We also noticed that
we often included publications by the same authors in our meta-study in which these focused
more on SCIs, such as the journal extension of Germán [36] whose original conference paper was
included in the review by Kagdi et al. [64]. Also, our literature search covered over 10 more recent
years, which logically leads to many more recent publications in our study. Note that we assume
that we cover the most relevant data from the reviews’ primary studies because we analyzed the
reviews themselves. Lastly, the distribution of venues (e.g., most publications being published at
the International Conference on Software Maintenance and Evolution) between our meta-study
aligns very well with the reviews, like the one by Williams and Carver [166]. All of this improves
our confidence in our selection of publications, even though none of the previous reviews has
attempted to address our research objectives.

Benestad et al. [13] report a literature review on change-based studies. Their goal is to summarize
the state-of-the-art and identify future challenges for researchers. For this purpose, the authors
summarized the goals of the included studies and identified 43 change attributes that they mapped
into a conceptual model. Since their goals and extracted data partly overlap with ours, this literature
review is arguably the closest one to our own meta-study. Unfortunately, the literature review of
Benestad et al. has the same limitations of unclear categories and missing evidence we described as
a limitation for understanding SCIs in the beginning of this article. Concretely, while Benestad et al.
elicit change attributes, they also intermix categories. For instance, they define attributes, such as
activity (partially mapping to goals in our taxonomy), maintenance type (again, partially mapping
to goals in our taxonomy), change size (partially mapping to actions in our taxonomy), change
interval, code quality, developer ID, status, or tool use. These attributes can be used to describe a
change, but there is no common connection between them (e.g., they are related to SCIs, statistical
metrics, meta-data), and the benefits of knowing them are unclear. We improved considerably on
this work by (1) focusing on a concrete and related set of change attributes (i.e., those related to
SCIs instead of statistics of changes); (2) synthesizing these SCIs into distinct categories to clarify
their scope; (3) discussing the actual empirical evidence on the use of knowing SCIs (i.e., not only
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Table 5. Comparison of the literature reviews from Table 2 to our meta-study (122 publications). The overlap
specifies how many papers of each literature review we cover, too.

authors period publications covered research goal commonalities differences
# # overlap % we cover

Benestad et al. [13] 1993–2007 34 15 44.12 identify measurement
goals and attributes used
in change-based studies

some attributes partly
overlap with SCIs

attributes also span data
and metrics; no analy-
sis of SCIs, evidence, or
techniques

Jamshidi et al. [62] 1995–2011 60 0 0.00 identify types of archi-
tecture evolution with
respective formalisms,
reasonings, run-time
aspects, and tools

types of evolution partly
overlap with SCIs

focus on architecture
changes and automation;
no analysis of evidence,
goals, or benefits of SCIs

Kagdi et al. [64] 1996–2006 80 4 5.00 identify the repositories
used in, purpose of,
methodologies for, and
evaluations used in
mining papers

software changes that
partly overlap with SCIs
as a subset of the pro-
posed taxonomy

no deeper analysis of
software changes; no
analysis of techniques,
evidence, or benefits of
knowing SCIs

Lehnert [88] 1991–2011 160 N/A N/A identify techniques for
change-impact analysis
classifying the artifacts
analyzed, inputs used,
changes supported, and
algorithms

classification of software
changes is a subset of the
category actions in our
work

no abstraction of SCIs or
analysis of their benefits,
evidence, and techniques

Ruiz et al. [130] 1998–2002 13 1 7.69 formalize an ontology of
software maintenance

some SCIs are partly rep-
resented in the ontology

no analysis of SCIs

Williams and Carver [166] 1976–2008 130 14 10.77 identify attributes of soft-
ware change taxonomies
as part of studying archi-
tecture evolution and im-
pact analysis

subsets of SCIs partly
included in change tax-
onomies

no analysis of SCIs

N/A: paper states 160 included publications, but the online list linked in the paper is not available anymore

their goals); (4) analyzing the techniques used in the context of SCIs (not covered by Benestad et al.);
and (5) considering more recent work (i.e., more than a decade of new research). Consequently,
our contributions and insights extend and complement those of Benestad et al., providing a more
focused and recent understanding of SCIs for researchers and practitioners.

The other literature reviews and surveys focus on a specific type of change or certain techniques,
which are partially related to or can involve SCIs. For this reason, we included them into our analyses,
while they have only few relations to our own meta-study. Concretely, Jamshidi et al. [62] studied 60
publications to provide a taxonomy for classifying architecture-centric software evolution research.
Their sub-categories “need for evolution” (e.g., corrective) and “means of evolution” (e.g., refactoring)
intermix different SCIs that relate to goals in our taxonomy—whereas their other categories are
not fitting for SCIs (e.g., “UML specification”). The remainder of the review focuses on formalizing,
reasoning about, and tools for architectural changes, constructing a framework that specifies the
relations between these points, requirements, system models, and the system’s execution. We
have not been concerned with these points in our meta-study. For instance, we actively decided
to include models only if they have been directly connected to code changes (cf. Section 2.2).
Kagdi et al. [64] surveyed 80 publications to evaluate how well their proposed taxonomy helps

classify research on mining software repositories. Software changes are only a subset in this
taxonomy and do match only to the category actions in our categorization of SCIs. The remaining
review focuses on aspects, such as the repositories covered, mining methodologies and their
evaluations, or goals of the studies. None of these have been objectives of our meta-study. Similarly,
Lehnert [88] reviewed 160 publications to provide a taxonomy for describing research on change-
impact analysis. For this purpose, Lehnert summarized properties like the techniques proposed,
their required input, or algorithms used. As we found while comparing this review to our meta-
study, change-impact analysis rarely considers SCIs, but focuses primarily on identifying whether
one arbitrary change causes other changes. Consequently, some categories in the taxonomy fit
the category actions of our categorization, but deeper insights or actual SCIs are missing from the
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review by Lehnert. Ruiz et al. [130] proposed an ontology of software maintenance by surveying
13 publications and industry standards. However, this ontology focuses on a high-level conceptual
model of software maintenance (involving, e.g., “resource,” “process management,” “support”), and
thus scratches only a marginal part of SCIs. Also, Ruiz et al. did not aim to provide an overview
of the research area, but picked a known selection of publications that were feasible for their
own work. Lastly, Williams and Carver [166] reviewed 130 publications to provide a taxonomy
for characterizing architectural changes, with similar differences to our work as the review by
Jamshidi et al. Specifically, Williams and Carver did not analyze SCIs beyond eliciting a subset of
categories that partly overlap with our categorization. In contrast to all these works, we focus on
actual software changes, the SCIs behind them, other research objectives (e.g., empirical evidence),
and provide a more recent overview of the research area.

10 CONCLUSION
In this article, we have reported the results of an extensive meta-study in which we analyzed 122
publications related to SCIs. We elicited these publications based on the methodology of systematic
literature reviews [73], combining an automated and a snowballing search. Using open-coding-like,
open-card-sorting-like, and axial-coding methods, we extracted and analyzed data from these
publications to (RO1) capture the research on SCIs, (RO2) derive a classification of SCIs, (RO3),
collect empirical evidence on the benefits of knowing SCIs, and (RO4) comparing techniques related
to SCIs. Our key contributions with respect to these research objectives are:
RO1 We found that most publications on SCIs contribute techniques (50) and empirical studies (48),

employing SCIs in a wide range of contexts (e.g., predicting maintenance activities, verifying
changes) for various goals (e.g., improving techniques, monitoring projects), and often define
or adapt taxonomies non-systematically (i.e., as needed).

RO2 We propose a classification that provides a concise overview of SCIs by defining five orthog-
onal categories (i.e., goals, actions, objects, customer, lifecycle phase) and including concrete
examples from existing publications—serving as a common ground for communicating,
understanding, and extending research on SCIs.

RO3 We identified that knowing SCIs can serve several benefits (e.g., comparing research), but
eliciting reliable empirical evidence on these benefits for practitioners is challenging; and
comparing this evidence between publications is hampered by the different understandings
that are established, and which we aimed to align with our classification.

RO4 We provide an overview of techniques related to SCIs, which indicates that these techniques
either aim to identify SCIs or use them to improve an established analysis, build on three
underlying technologies (i.e., machine learning, static analysis, dynamic analysis), and span
a variety of abstractions of SCIs—with our classification and overview serving as a common
ground to understand and extend such techniques.

Our insights underpin the value of having a concise classification of SCIs that enables researchers
and practitioners to understand the existing body-of-knowledge of software evolution research.
Particularly, our overview of the existing publications highlights the potential knowing SCIs could
have, and the need for eliciting empirical evidence that this is the case. Such empirical evidence
is a consequent next step for future work, in which we also want to explore how to compare and
integrate different techniques to facilitate research on software evolution and SCIs. Our insights
into the goals, benefits, and evidence of using SCIs have motivated us to define a research agenda
on using SCIs to move towards controlled software evolution that can help developers avoid errors
and improve the comprehensibility of software changes [80].
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