To Memorize or to Document: A Survey of
Developers’ Views on Knowledge Availability

Jacob Kriigerl[0000_0002_0283_248X] and Regina Heb1g2 [0000—0002—1459—2081]
! Eindhoven University of Technology, The Netherlands; j.kruger@tue.nl
2 University of Rostock, Germany; regina.hebig@uni-rostock.de

Abstract. When developing, maintaining, or evolving a system, devel-
opers need different types of knowledge (e.g., domain, processes, architec-
ture). They may have memorized (but potentially not documented) the
knowledge they perceive important, while they need to recover knowledge
that they could not memorize. Previous research has focused on knowl-
edge recovery, but not on what knowledge developers consider important
to memorize or document. We address this gap by reporting a survey
among 37 participants in which we investigated developers’ perspectives
on different types of knowledge. Our results indicate that the developers
consider certain types of knowledge more important than others, partic-
ularly with respect to memorizing them—while all of them should be
documented, using specific means. Such insights help researchers and
practitioners understand developers’ knowledge and documentation needs
within processes, thereby guiding practices and new techniques.

Keywords: Human Memory - Forgetting - Knowledge - Documentation

1 Introduction

Developing, maintaining, and evolving a software system requires knowledge
regarding various of that system’s properties, such as its domain, used technolo-
gies, architecture, or development processes [2,9,17]|. Consequently, developers
need to learn, memorize, and recover knowledge about a system if needed, which
often leads to expensive program comprehension [15,20]. To facilitate this cog-
nitively challenging activity, researchers and practitioners are concerned with
various related concepts, for instance, onboarding practices [22], providing reliable
documentation [1], or reverse engineering information [8].

In this context, a particularly important problem is to understand what
knowledge developers need during their tasks and how they obtain it. Previously,
we [9] have reviewed 14 studies that elicited hundreds of questions developers
ask during their work, spanning different areas like the source code, architecture,
testing, collaborators, or processes. Despite some of the studies investigating how
important or challenging it is for developers to answer certain questions, these
studies are typically concerned with very context-specific questions (e.g., “What
are the implications of this change?” [14]). Similarly, research has been conducted
on understanding how developers memorize and forget knowledge [7,13,17].

2 Jacob Kriiger and Regina Hebig

Surprisingly, little research has aimed to connect the two areas, essentially
asking: What knowledge do developers consider important to memorize
or document? Addressing this question promises important insights for research
and practice alike. For instance, knowledge developers consider important to
remember may be documented well due to its importance, but based on empirical
findings [1,9,16] it seems more likely that developers do not document it properly
because they are certain to remember it. Since developers forget or may leave a
project, such tacit and undocumented knowledge can cause severe problems, and
recovering it is expensive. Regarding documentation, developers may trust or mis-
trust specific types, for example, because it is not maintained properly. So, there
is an important link between what knowledge developers aim to memorize, what
they document, and how much they trust their memory or the documentation.

In this paper, we shed light into this link by reporting the results of a
questionnaire survey with 37 participants. We asked our participants for five types
of knowledge whether they consider that knowledge important (to memorize),
how it should be documented, and how they recover it. Our results highlight
that developers consider various types of knowledge as important for their work.
However, they do not think that all of it should be memorized, and value available
information sources to recover knowledge very differently. In detail, we contribute:

— We present the results of our survey to describe what knowledge developers
consider important and how they recover it from what sources.
— We discuss our results to help practitioners deal with tacit knowledge in their
processes and about their systems, thereby sketching directions for research.
— We publish the anonymous responses to our survey in a persistent repository.3
Overall, we contribute to a better understanding of developers’ knowledge needs,
memory, and documentation preferences—helping practitioners and researchers
tackle the connected challenges.

2 Related Work and Motivation

For any task (e.g., fixing a bug) they perform on a system, developers require
knowledge regarding, for instance, the goal of the task, the source code they need
to change, and how their change may impact the remaining system. We [9] have
previously collected studies that identified questions that developers may have
during their tasks. Some of these and similar works aim to provide supportive
techniques that help developers recover the required knowledge. Particularly,
such techniques aim to reverse engineer information directly from a system to
provide reliable documentation [1,8|. Other researchers have proposed ways to
deal with knowledge-sharing processes, intending to improve the provisioning of
information in an organization and decreasing sharing barriers [2].

Still, developers primarily rely on program comprehension to recover knowledge
they are missing, which is the cognitively challenging activity of understanding
what a certain piece of code does and how it relates to the remaining system by

% https://doi.org/10.5281/zenodo.8391861

https://doi.org/10.5281/zenodo.8391861

To Memorize or to Document 3

reading through the actual code [15,19,20]. Developers focus on the code rather
than other documentation, because it is the most reliable piece of information
about the system: The code exactly specifies what the system does, while any
other documentation may be outdated or wrong [1,5,9,16]. While there are various
barriers when it comes to sharing and documenting knowledge, it is widely agreed
on that documenting a system beyond its source code is helpful and important.
Specifically, reliable documentation can help developers obtain or recover knowl-
edge faster, for instance, when they forgot it [7,10,13,17] or are onboarding [4, 6].
While such works are related to and motivate our study, we are focusing on
a complementary goal that links these areas: understanding what knowledge
developers aim to memorize or document in what forms. As a concrete example,
the onboarding of developers must be scoped based on the available documenta-
tion. If the developers of a system do not reliably document their system and
processes, but trust their knowledge instead, newcomers can only learn from
other developers. However, this takes time away from the experts, and thus the
additional effort of reliably documenting could have been worth the investment.
To research such directions and understand the link between what developers
aim to memorize or document, it is first necessary to understand developers’
perceptions of these two options. We aim to move into this direction and provide
a better understanding of what knowledge developers consider important to
memorize or document. So, we complement the related work with novel insights.

3 Design of the Questionnaire

Research Questions. To achieve our goal, we conducted an exploratory survey.
Particularly, we designed a questionnaire in which developers rated the importance
of different types of knowledge as well as of memorizing or documenting it.
Through open questions on how they typically recover each type of knowledge,
we aimed to obtain in-depth insights into the connections between knowledge and
documentation. To guide our study, we defined four research questions (RQs):

RQ: What knowledge do developers consider important?

RQ2 What knowledge do they consider important to memorize or document?

RQs What information sources help recover knowledge?

RQ4 How do developers recover knowledge from the sources?
Answering these RQs contributes to understanding developers’ perceived value
of memorizing and documenting knowledge. This, in turn, guides future research
and practice in designing new techniques, recommendations, as well as studies
for managing knowledge in development processes and on systems.
Questionnaire Design. Using an exploratory questionnaire survey allowed us
to combine open-ended with closed questions that we could easily distribute
to developers. We started the design by analyzing related [7,17] and our own
previous work [9,11-13] on developers’ memory and knowledge needs. At first,
each author derived types of knowledge they considered most relevant based on
the related work. In three sessions (one hour each), we merged these types into a
single classification, derived questions we wanted to ask for our RQs, and defined

4 Jacob Kriiger and Regina Hebig

what background information we would need about the participants. Then, we
re-iterated twice through the questionnaire ourselves, merging and removing
questions or changing the answering options. For instance, we redesigned question
<K>; (cf. Thl. 1) into its final matrix structure—before this step, each entry
was an individual question. At this point, we focused on narrowing down the
questionnaire to the key questions and types of knowledge, aiming to limit the
time developers would need to answer them. We transferred the questionnaire
into the SUNET* instance hosted by the University of Gothenburg, and conducted
test runs ourselves as well as with colleagues. After fixing a few typos and

comprehension problems, we ended up with the questions in Thl. 1.

As we show in Thl. 1 (“sections on knowledge”), we ended up with five
(merged from nine) types of knowledge. We decided to focus on knowledge about
a developer’s system rather than its domain or technologies to shed light into
software development and maintenance processes. The five final types are:
General Code (GC) Knowledge is concerned with the intentions, rationales,

and features of the source code. So, this type of knowledge helps developers
understand what the code actually does on an abstract level (i.e., the features
implemented) and why it has been implemented. Examples: What is the purpose
of this code? Why was this code implemented this way? Why is this code needed?

Detailed Code (DC) Knowledge is concerned with the code details, such as
variables, methods, and other implementation details. So, this type of knowledge
is more detailed than the first one and helps developers understand a specific
part of the code. Examples: Where is this method defined? Is this library code?
How overloaded are the parameters to this function?

Quality and Testing (QT) Knowledge is concerned with bugs and design
flaws in the code, as well as the methods how to test, debug, and thus quality
assure the code (but not tools). Examples: Is this tested? Is this entity or feature
tested? What are hidden (correlated) code issues that may be affecting quality?

Static and Dynamic Structure (SD) Knowledge is concerned with the
general structure of a program, for example, in terms of class diagrams or flow
charts, relating to its design and dependencies. Examples: How does this code
interact with libraries? How is this functionality organized into layers? What
depends on this code or design decision?

Collboration (CO) Knowledge is concerned with understanding how the
program evolves and by whom. Examples: When has a file last been changed?
Who made a particular change and why? Who is working on similar issues?

These are the precise definitions we provided in our questionnaire, including the

example questions to improve the comprehensibility of each definition.

Questionnaire Structure. We started our questionnaire with a general in-

troduction into our research, the goal of the survey itself, and that it would

take approximately 20 min to complete (based on our test runs). Due to missing
funding and ethical concerns, we did not use incentives. Instead, we motivated
that our survey helps reflect on perceptions and practices, while also guiding
research intended to facilitate developers’ work. At the end of the welcome page,

4 https://www.sunet.se/services/samarbete/enkatverktyg

https://www.sunet.se/services/samarbete/enkatverktyg

To Memorize or to Document 5

Table 1. Questions and answering options in our questionnaire.

id questions & answering options

section on information sources (IS)
1S: How valuable do you consider the following information sources?
Likert scale <o not valuable at all o not valuable o neutral o valuable o very valuable> for each
e own knowledge knowledge of collaborators e source code e documentation e version control system e
analysis tools (e.g., debuggers)
free text for e Are we missing any information source you consider valuable or very valuable?
IS, How much do you agree with the following statement: It is important to remember where to search for
necessary information.
Likert scale <o strongly disagree o disagree o neutral o agree o strongly agree>

sections on knowledge (<K>), one for each:
general code (GC); detailed code (DC); quality and testing (QT); static and dynamic structure
(SD); collaboration (CO)
<K>; How much do you agree with the following statements:
single-choice selection <o strongly disagree o disagree o neutral o agree o strongly agree> for each
e [t is important to know about <K> knowledge out of memory.
e [t is important to have <K> knowledge available in some other form, e.g. within source code, via
supporting tools, or as documentation.
<K>2 According to your preference, information should be available in the following form:
single-choice selection <o yes o no> for each
e source code (e.g. code logic or identifier names) o additional information in source code (e.g. comments
or annotation) e documentation (e.g. manuals or models) e version control system (e.g. commit)
free text for e other
<K>3 How do you normally familiarize yourself with <K> knowledge regarding one of your programs?
free text

section on importance of knowledge
IK; How important do you consider the different types of knowledge compared to each other?
ranking from <1% — most important> to <5 — least important> for
e general code o detailed code o quality and testing e static and dynamic structure e collaboration

we informed each participant that their participation is voluntarily and asked for
their consent. We noted that they could withdraw at any point, that all responses
were anonymous (except what they revealed themselves and Bys), and that the
data would be used as well as published (in anonymous form) for research.

In the first actual section (IS; in Thl. 1), we asked two questions. First (IS;),
we elicited how valuable each participant perceives common information sources,
also providing an option to add important ones we did not list (RQs). Second
(IS2), we asked how much each developer agrees that it is important to know
where to find relevant knowledge (RQz2, RQ4). We asked these questions first
to avoid biases by participants reflecting on their knowledge and processes in
the following sections, aiming to elicit their unbiased opinions first. For both
questions, we used Likert scales as an intuitive means to indicate preferences. We
allowed participants to select a neutral state in case they do not have a strong
opinion about a statement or are not too familiar with the specific topic.

Then, we defined one section for each knowledge type (<K>; in Tbl. 1),
asking the exact same three questions for each. In this paper, we replace <K>
in the label of the questions with the abbreviation of the respective type of
knowledge (i.e., GC; refers to <K>; for general code knowledge). Through
the first question (<K>1), we compared the developers’ perceptions regarding
knowing or documenting knowledge (RQz). Then, we asked (<K>2) how the
respective knowledge should be available (RQg3) and (<K>j3) how the developer
typically recovers their knowledge (RQ4). We again used Likert scales and single-

6 Jacob Kriiger and Regina Hebig

choice selections to identify participants’ preferences in the first two questions. For
the last question, we used free text to allow for detailed descriptions of activities.

After a developer iterated through each type of knowledge, we asked (IKj)
them in the last section to rank the types according to importance (RQy). We
put this question last to allow each participant to understand the different types
first and to reflect on how they build on it during their daily work. In this case, we
anticipated that this comprehension is needed and that the reflection on the own
practices does not induce biases, but rather improves the trust in the rankings.

We asked 13 questions on the participants’ background (not in Thl. 1, but in
our repository?), building on guidelines for empirical studies [21] and recommenda-
tions by our universities for designing inclusive questions. Specifically, we asked for
the country participants work in (B1), their programming experiences (Bo_4), the
domains (Bs) and example projects (Bg) they have worked with, their mostly used
programming languages (B7), typical team (Bg) and system sizes (Bg), as well as
gender (Byg) and age (By1). Finally, we asked whether the participants wanted
to receive the results of the survey (Bi2) and for additional comments (Bj3).

Data Handling. The survey responses were automatically stored on internal
servers of the University of Gothenburg to ensure data security. We used a private
repository to share the data between both authors. For our analysis, we used
only complete responses and discarded dropouts, meaning that the participants
answered each question except for background questions they preferred not to
answer. However, there is one exception: One participant answered all questions,
but put only a single character for all versions of <K>3. We decided to include
this otherwise complete survey.

Inviting Developers. We aimed to target developers focusing on different
aspects of software engineering, such as programming, testing, or architecting,
and with varying backgrounds. It is challenging to define the size of this target
population and design an appropriate sampling, due to missing information.
Moreover, it is problematic to contact a larger number of potential candidates
without spamming them or causing other ethics concerns [3]. For these reasons,
we designed the following strategy to contact potential participants.

First, each author listed (open-source) projects that they knew and perceived
as having a strong connection to research (intending to increase the response
rate), such as the Linux Kernel, Mozilla, Debian, Apache, Rust, or Eclipse. We
merged these lists and investigated each project’s websites to identify details
on research collaborations or contact information for such inquiries. Then, we
drafted individual mails motivating why our research may be interesting for
them and asking whether there would be any option to invite developers of the
project to our questionnaire. In some cases, we received no response (we sent no
follow-up mails) or were informed that this would not be possible. In a few cases,
we were informed about alternative means (e.g., blog postings), which we tried
but were mostly rejected. Fortunately, several project managers were positive
about our survey and sent our invitation to developers or mailing lists they
deemed interested. Using this process, we aimed to get responses by experienced
developers of established systems, while not spamming uninterested developers.

To Memorize or to Document 7

To expand the pool of candidates, we used two more channels to distribute
our survey. First, we posted a short invitation on feasible discussion platforms
for software developers, such as DanniWeb and Reddit. Second, we submitted
our survey to professional participant recruitment platforms, for instance, Sur-
veyCirlce and clickworker. We identified the respective platforms through an
unstructured search. In our questionnaire, we did not ask participants how they
got into contact with it, and thus we cannot specify how many participants
each channel resulted in. One of our participants commented to have found it on
DanniWeb, while the participant recruitment platforms indicated that we received
only one response—likely due to its members lacking the required background.
So, these two channels did unfortunately not really work out.

Participants. At least 83 individuals started our survey to the point that they
agreed to the consent statement. Of these, 37 (44.58 %) provided answers to all
questions, and are thus included in our analysis. These 37 participants worked in
different countries (Bj), specifically Germany (16), Sweden (4), UK (4), USA (2),
Switzerland (2), Poland, Russia, Norway, Austria, Mexico, Turkey, Ireland, Brazil,
and The Netherlands. Their programming experiences varied: None of the partici-
pants had less than a year of general programming experience (Bz), while eight had
1-5, four 6-10, and 25 more then ten years of experience. Regarding industry (Bs),
five participants had less than a year of experience, while 12 of them had 1-5, nine
6-10, and 11 more than 10 years of experience. The industrial experiences spanned
various domains (Bs), such as transportation, healthcare, robotics, finance, and
telecommunications. Nine participants indicated less than a year of experience
with open-source systems (By; 1-5: 8; 6-10: 6; >10: 14), for which mostly Debian
(13 times), but also Linux Kernel, Eclipse, Mozilla, and Apache projects were
mentioned (Bg). Consequently, the participants also worked with various program-
ming languages (B7), such as C/C++ (20), Python (20), Java (15), JavaScript
(11), and many others (e.g., Ruby, Rust, Perl, Bash). Similarly, the sizes of the
teams (Bg) they typically worked in (1: 3; 2—4: 13; 5-8: 16; 9-15: 2; >15: 3) and
of the systems (Bg) varied (<10,000 LoC: 10; <100,000 LoC: 10; <1,000,000 LoC:
12; >1,000,000 LoC: 5). Regarding their gender (B1g), 25 participants indicated
to be male, one to be female, and all others preferred not to tell. Finally, (Bi;)
17 participants were 36-45, four 18-25, three 46-55, and two 66-75 years old (the
rest preferred not to tell). Overall, this sample of participants spans a variety of
characteristics and backgrounds (except for gender, a typical problem in software
engineering), representing different experiences in developing software. So, we
argue that our participants are representative of typical software developers.

Data Analysis. We downloaded the data for all 37 responses as a spreadsheet.
Using R [18], we derived summarizing statistics and plots (e.g., Fig. 3) for all ques-
tions that had fixed answering options (i.e., Likert scales, single-choice selection,
ranking) to analyze the distribution of our data. For the free-text answers and
“other” options, we used methods for qualitative document analyses. Specifically,
we employed open coding to identify important information related to developers’
activities, documentation, and knowledge. Then, we employed open-card sort-
ing [23] to derive higher-order themes from our codes. We used the statistics,

8 Jacob Kriiger and Regina Hebig

[I - W

bC [12 a9

QT I 4 9 17 -

sD R 16 6 42

co 2 4
.

T T
30 20 10 0 10 20 30

I 1% - most important 2nd 31 4t W 5% - least important

N
=
-

Fig. 1. IK;: Ranking the types of knowledge.

plots, and insights from the “other” options to answer RQ;, RQ2, and RQ3s. By
reflecting on the statistics, plots, and free-text analysis, we answered RQy4.

4 Results and Discussion

Next, we report and discuss the results we obtained for each RQ.

4.1 RQ;: Important Knowledge

Results. In Fig. 1, we summarize our participants’ responses to IK;, how
important they would rank each type of knowledge. As we can see, the ranking of
the individual types is rather clear. GC knowledge is perceived as most important
with a majority of 24 participants ranking it in first place. The SD knowledge
follows in second place with nine participants ranking it first and 16 ranking
it second. For DC knowledge, the rankings are tending towards third place (12
responses), and it was ranked almost equally as more (12) and less important
(13). QT knowledge was most often put into fourth place (17), and rarely into
one of the first two places (5). Finally, the least important is the CO knowledge,
with 16 and 11 participants ranking it last and fourth, respectively.
Discussion. From our data, we can derive that our participants perceive more ab-
stract knowledge (GC, SD) about their system as more important. This finding is
in line with our other works [9,10], underpinning such findings and also improving
our trust in the results of our survey. For researchers as well as practitioners, this
implies that techniques and supportive means for documenting, maintaining, and
recovering more structural or conceptual knowledge about a system is important
to support developers, for instance, during their onboarding in a project.
Interestingly, QT and CO knowledge are perceived least important. The former
may rank lower because our participants perceive it as the task of others and not
themselves, to quote one of them: “QA’s job, not mine.” However, considering that
many participants mentioned test cases as artifacts they look into when recovering
knowledge (cf. Sec. 4.4), it seems unlikely that this is the primary cause. Similarly,
while CO knowledge is ranked last, collaborators and version-control data are reg-
ularly mentioned as means for recovering knowledge. So, we consider it more likely
for both types of knowledge that they are simply perceived as less important by
our participants compared to the other types. This aligns with our results for RQ2

To Memorize or to Document 9

GC: memory I 5 10 11

DC: memory - 16 9 6

DC: available 4 6 11

QT: memory . 15 9 10

QT: available 2 6 il

SD: memory I 4 9 20 .

SD: available 2 6 14

co: memory | NG 16 9 4
CO: available 16 13 | 2|

T T T T T T T
30 20 10 0 10 20 30

I strongly disagree disagree neutral agree [strongly agree

Fig. 2. <K>1: How much do you agree that it is important to know <K> out of
memory and to have <K> available in some other form?

(cf. Sec. 4.2): On average, all types of knowledge receive strong agreement that
respective information should be available, while the more important ones should
also be memorized. This also matches with DC knowledge ranking third. It can be
recovered during program comprehension and is mostly relevant for a specific task,
during which it can be recovered and does not need to be memorized. This im-
plies that, while perceived as less important, supporting developers with relevant
information about QT, CO, and DC knowledge can still facilitate their tasks.

(RQ1: Important Knowledge]

Developers perceive more abstract knowledge (GC, SD) as more important.

4.2 RQ2: Memorizing and Documenting

Results. In Fig. 2, we display the agreement of our participants with question
<K>; regarding to what extent they consider it important to memorize knowledge
or to have it available. We can see that a majority perceives it important to have
information available across all types of knowledge. This is further underpinned
by the answers to ISq, with 20 participants strongly agreeing and 13 agreeing
that it is important to remember where to search for information. Only three
responses to ISy are neutral and one disagrees with the statement.

Contrary to the availability, we can see a clear difference in Fig. 2 when
considering memory, which aligns to our previous results for RQy: The two
more abstract types of GC and SD knowledge are rated more important to
memorize. In contrast, the other three types are less often considered important
to memorize. More specifically, only four, six, and ten participants consider it
somewhat important to memorize CO, DC, and QT knowledge, respectively.
Discussion. Developers consider it more important to memorize abstract (GC,
SD) knowledge about their system, which helps them obtain an overarching
understanding of a system. Based on this knowledge, they would be capable of

10 Jacob Kriiger and Regina Hebig

knowledge of collaborators 8 16 _
source code 3 wo s
documentation 1 6 19 _
version control system 6 18 _
analysis tools 18 10 _
T T T T T
10 0 10 20 30
not valuable neutral valuable | very valuable

Fig. 3. IS;: How valuable are these information sources?

narrowing down what parts of a system are relevant for a task. In our previous
research, we have hypothesized that developers may focus on remembering more
abstract knowledge and recover details during program comprehension [9, 13].
Our new results provide supportive evidence that this is indeed the case. For
researchers, this insight can help design techniques for reverse engineering informa-
tion and guiding system explorations. A particular challenge for researchers and
practitioners is to document tacit knowledge of developers to make it available
to others and identify the experts for a specific piece of a system.

It is not surprising that a majority of our participants perceives it important
to have information available across all types of knowledge. We argue that this
reflects that any type of knowledge can become important for a task or process.
For any task in which knowledge may not be available and must be recovered,
additional, reliable information about it can facilitate the developers’ work. Also,
we argue that the responses show that important knowledge developers aim to
memorize should still be documented in case it is forgotten, and that detailed
knowledge that is not considered important to memorize is more challenging to
recover. In either case, having information available is helpful for the developers.

RQ2: Memorizing and Documenting

Developers consider it more important to memorize abstract knowledge (GC,
SD) about a system, but prefer to have information for any type available.

4.3 RQg3: Information Sources

Results. In Fig. 3, we display how valuable our participants consider different
information sources. We can see that especially own knowledge, knowledge of
collaborators (despite the low ranking of CO knowledge), and source code are
perceived as highly valuable, with each receiving 34 valuable or highly valuable
scores. Documentation and the version control system are also perceived valuable,
but to a slightly lesser extent. Interestingly, 18 of our participants consider analysis
tools neutrally, while 19 think these are (very) valuable information sources.

In addition to the information sources we listed, our participants mentioned
several others as important. Via our open coding (codes and multiple occurrences
in parentheses) and card sorting (bold label), we derived seven categories:
Online resources (discussion forums: 3; Q&A sites: 2; web search: 2; blog posts;

video tutorials) have been mentioned repeatedly. Typically, such resources

To Memorize or to Document 11

Table 2. <K>5: In what form should information be available? We use colors to
highlight cases in which at least 80 % of the participants agreed (i.e., at least 30).

<K> code add. docu. ves others (open coding)
yes no yes no yes no yes 1o
GC 30 /7 25 /12 25/12 18 /19 collaborator, homepage, architecture diagrams, readme, tickets

DC 34 /3 23 /14 9 /28 16 /21 test cases, coding tools, tickets

QT 21 /16 15/22 19/18 11 /26 test cases, tools, test reports

SD 28 /9 23 /14 32/5 4 /33 | collaborator, tools

CcO 4 /133 1 /136 9/28 37/0 tickets, collaborator, communication, tools

provide examples or discuss concrete problems of a system. This is valuable
information, but does only exist for more prominent systems.

Stakeholders (product owner; users) can provide valuable information, particu-
larly on the intended use of a system and its requirements.

Test cases (test case: 2) have been mentioned as a specific piece of source code
with particular value. Specifically, test cases (ideally) serve as descriptions of
the code’s intended use, and provide examples of how to use the code.

Specifications (use case, standard, formal specification) are helpful means to
understand what a piece of software has to fulfill.

Packages (dependencies, library authors) are structural elements as well as
reusable components within a system. Their dependencies can help understand
the structure of a system, while their authors are experts to ask for help.

Issues (tickets, issue histories) provide insights into what requirements a system
should fulfill, and their history reveals how this changed over time.

Monitoring data (monitoring data) can provide insights into the actual behav-
ior of the system at runtime.

Note that we consider some of the codes to overlap with the sources we listed. For

instance, we would expect specifications to be part of or being referenced in doc-

umentation and stakeholders involved in a system to be considered collaborators.
In Tbl. 2, we summarize our participants’ opinions on how information for each
type of knowledge should be available. We highlight large majorities (i.e., at least

80 % / 30 responses) with green (agreement) and red (disagreement) background.

In the last column, we list the additional information sources we derived via

our open coding. As we can see, most combinations of type of knowledge and

information source are somewhat balanced, with several developers considering
it relevant while others do not. In contrast, a majority of our participants agrees
that GC and DC knowledge should be documented directly in the source code,
for instance, following clean-code principles. A majority of our participants does
not agree that CO knowledge should be available in the source code or additional
code elements (e.g., author tag in comments), but all of them agree that the
version-control system (ves) should be used for that. Regarding SD knowledge,
particularly documentation is perceived as a relevant information source whereas
the version-control system is not. Note that these ratings align to the results of

our open coding for RQy in Sec. 4.4 (cf. Tbl. 3).

Discussion. The differences in how important our participants’ perceive a certain

information source (Fig. 3) for a type of knowledge (Tbl. 2) is likely caused by

their individual experiences. Consequently, we expected the outcome that many
different sources exist and will be mentioned, and that our abstracted sources

12 Jacob Kriiger and Regina Hebig

will mostly receive mixed ratings. However, the strong tendencies in Tbl. 2 in
which at least 80 % of our participants agree, highlight clear preferences.

It is not surprising that developers value their own and collaborators’ knowl-
edge as well as source code the most. The former two build the cognitive un-
derstanding of the system, while the latter is exactly representing the system’s
behavior. Similarly, we are not surprised that the developers see value in the
version control system, since it documents all changes automatically and provides
additional information by collaborators (e.g., commit messages, issues). In con-
trast, we are surprised by how valuable our participants perceive documentation,
since it is often considered unreliable and outdated (cf. Sec. 4.4). Also, the even
split between neutral and (very) valuable for analysis tools is interesting, which
we take as an indicator that such tools are sparsely used by our participants.
Reflecting on the perceived value of information sources, we argue that further
research is needed to understand the reliability of developers’ knowledge.

Considering Tbl. 2, it is intuitive that our participants agree that particularly
GC and DC knowledge should be available directly in the source code. Inter-
estingly, and aligning to our previous discussion, documentation is perceived
particularly important to make SD structure knowledge available. Arguably, it is
more challenging to recover such structural information from the source code,
and documentation can severely reduce the effort. We are a bit surprised that
almost all participants agree that neither source code nor code additions (e.g.,
annotations, comments) should be used to make CO knowledge available, since
author and contributor tags are often used in code comments. Finally, the version
control system itself is unsurprisingly not considered for making SD knowledge
available, but all participants agree that it is the primary source for CO knowl-
edge. Considering the other forms in which knowledge should be made available,
these align with our previous categorization, including collaborators, test cases,
tools, or tickets. Overall, we can see from these results that our participants seem
to perceive different strength and weaknesses regarding individual information
sources. For researchers and practitioners, it is important to reflect on these
perceptions to design useful techniques and management strategies.

RQ3s: Information Sources

Developers’ knowledge and source code are perceived as most valuable source,
but other sources (e.g., documentation) should not be neglected.

4.4 RQ4: Recovering Knowledge

Results. For <K>j3, our participants provided highly varying levels of details.
Some explained in great detail the processes of how they recover what type of
knowledge. In a few cases, they left individual descriptions empty or listed only
a few information sources they typically look at. To answer RQy4, we read the
descriptions and coded the mentioned information sources, which we summarize
in Thl. 3. We can see how often each (card sorted) source is mentioned for
each type of knowledge, and the sum of all mentions in the last column. In the
following, we report the participants’ descriptions and Tbl. 3 in more detail.

To Memorize or to Document 13

Table 3. Codes we extracted from the responses to <K>3s.

occurrences for

code GC DC QT SD CO Y,
code 23 27 10 18 78
documentation 20 9 5 19 4 57
ves 4 8 1 1 34 48
colleagues 10 7 2 8 9 36
execution 6 5 4 T — 22
test cases 1 1 19 1 22
tools 6 7 7 2 22
comments 9 7 3 2 — 21
test reports — — 4 — — 4
search engine 2 1 - - — 3
directory structure 2 — — 2 — 2
change logs 1 1 2
examples 1 - - = — 1
bug injection — — 1 1 — 1
logging messages _ = — — 1

For GC knowledge, most of our participants analyze the source code (23)
and documentation (20)—with some explicitly mentioning comments in the
code (9), too. Interestingly, most participants indicate to actually start with
looking for documentation (e.g., on APIs, readme files) and only afterwards
they (may) look at the source code. Investigating the source code typically
means that the developers move from a higher level (e.g., classes, header files)
down to code details if necessary. Specifically, one participant mentions that “the
high level should be explained in the documentation,” and another one that the
documentation should be the right point to start: “I start with the documentation
looking for overall information like architecture, design patterns etc. (which is
usually missing, outdated or incorrect).” Due to documentation being apparently
often unreliable, our participants typically move towards analyzing the source
code, but also ask colleagues (10) and execute the system (6), for instance, using
debuggers. However, while “code is always more accurate and up to date than
docs, [it is] usually harder to get an overview from [it],” which is why two of our
participants consider “the code [only] if there is nothing else.” There are some
other information sources that developers use when recovering GC knowledge,
including test cases, online search engines, directory structures, change logs, or
examples. Some developers investigate the version control system to understand
why and how code evolved, for instance, by reading commit messages.

For DC knowledge, it is not surprising that this type is almost exclusively
recovered from the source code itself (27). Specifically, aligning to existing research
and the responses above, one participant stated that “the code is the ground truth,
everything else is outdated by definition.” Consequently, it is logical that none of
the other information sources is considered particularly often when investigating
details of the source code. However, we found two interesting strategies for
recovering DC knowledge in those. First, one participant stated that pair sessions
are helpful, arguably because the two developers involved explain the code to
each other to improve their comprehension. Second, another participant mentions
to actually execute test cases to see how the source code behaves.

For QT knowledge, we can see that the source code receives less attention
(10). Instead, our participants explain to focus on reading and running test cases

14 Jacob Kriiger and Regina Hebig

(19) and looking at (historical) test reports (4), which is not surprising. Note
that we list test cases despite the overlap with code and execution because these
have been explicitly mentioned various times. Some other information sources are
used to enrich knowledge recovery, but none sticks out in terms of occurrences—
even though some a very interesting. For instance, one participant stated to
essentially inject bugs into the system to actually understand the quality of the
tests (i.e., mutation testing). Some others mention to investigate particularly
tools, scripts, and test cases in continuous integration pipelines, bug trackers,
and documented testing instructions. Moreover, one participant highlights that
“l...] testing knowledge often needs a synchronization between developers, testers
and the business. This knowledge should be shared somewhere [...].” We consider
this a very important reflection that puts the statement we refer to in Sec. 4.1
into context: Even if it is not the responsibility of the developers, testing and
quality assuring is a collaborative effort and to facilitate the tasks of everyone
involved, a place to share, manage, and maintain knowledge is essential.

For SD knowledge, our participants primarily investigate documentation
(19) and match it to the source code (18). This aligns with our previous insights
for RQ3s that documentation is perceived particularly helpful to document a
general architecture and overview of the system, for instance, using diagrams.
One developers states that “this is either part of the project documentation and/or
usually presented as part of the project onboarding.” Again, some other information
sources are used somewhat, such as asking colleagues, executing the system, or
analysis tools (especially dependency analyses). Again, one participant each
stated to use bug injections and to check logs to understand the program flow.

For CO knowledge, our investigation into how our participants’ recover it
clearly shows that they are investigating almost exclusively the version control
system (34). Particularly, one participant described: “Whenever I'm curious about
a certain code change (e.g. it looks wrong), I almost always use git blame to see
why a certain line was changed.” In fact, we found that typical version control
systems seem to provide all means needed to recover CO knowledge, such as
issue trackers and commit logs. Some other information sources, such as asking
colleagues (9) or consulting documentation (4) and change logs (1), seem to rather
be used to gain a general understanding of collaboration practices: “/...] Almost all
interesting result[s| of such interaction will be recorded in the git repository graph
as contributed work and can be easily queried, but hints about non-documented
design choices can still sometimes be learned from studying the code review inter-
action, as well as learning about what the project maintainers’ care about in terms
of code quality and architecture.” So, while a version control system is the most
relevant source, it still seems reasonable to extend it with further documentation.

Discussion. Our participants indicated different processes and preferred infor-
mation sources for recovering certain types of knowledge. The mapping between
source and consequent knowledge is intuitive, but we identified some interesting
practices. In fact, we believe that in most cases the full potential for documenting
and recovering knowledge is not exploited, yet. Also, how to combine the different
information sources to recover a reliable knowledge base remains an open issue.

To Memorize or to Document 15

So, our results imply various important research directions to facilitate developers’
tasks by providing new techniques—or by improving the adoption of existing ones.

Again, it is clear that source code is the most reliable information source.
Still, other sources are used extensively across various (e.g., documentation) or
for specific (i.e., test cases) types of knowledge. Seeing how many developers rely
on documentation and consider it important (RQs), we argue that the problem
of outdated documentation may rather be a self-fulfilling prophecy today. So,
it is an important challenge to improve the management and maintenance of
information sources; and to convince developers to engage with these. Finally, we
identified interesting practices for recovering knowledge that are not explored in
research (e.g., bug injection) or lack practical value at the moment (e.g., tools).

RQ4: Recovering Knowledge

While source code represents the ground truth, developers actually perceive
many other information sources as valuable for recovering knowledge.

4.5 Threats to Validity

Our questionnaire design (e.g., wording, length) may have caused misunderstand-
ings, not motivated participation enough, or biased participants. To mitigate
such threats, we discussed the order and phrasing of questions; and conducted
test runs with colleagues to identify and resolve confusions. Second, our sample
of participants may have introduced bias, for instance, because they were more
connected to open-source systems or because we did not perform demographic
analyses. Still, our participants’ backgrounds varied, they have also industrial
experiences, and their answers mostly hint in the same directions—which is why
we argue that this threat is minimal. Finally, our data analysis (e.g., open coding)
may have introduced bias due to our interpretation. This is an inherent threat,
but we contribute our data to allow others to replicate and validate our study.?

5 Conclusion

In this paper, we reported a questionnaire survey with 37 developers regarding the
availability, memorization, and documentation of knowledge. Overall, we learned:
— Developers consider abstract knowledge the most important (Sec. 4.1).
— Developers consider it important to have all types of knowledge available,
and aim to memorize abstract knowledge (Sec. 4.2).
— Developers consider their own knowledge and source code as the most impor-
tant information sources, but other sources are also valuable (Sec. 4.3).
— Developers use various information sources as complements; particularly
documentation even though its quality is typically poor (Sec. 4.4).
Our findings link different research areas and provide empirical insights that guide
future work, for instance, on recording, maintaining, and sharing knowledge.

References

1. Aghajani, E., Nagy, C., Linares-Vasquez, M., Moreno, L., Bavota, G., Lanza, M.,
Shepherd, D.C.: Software Documentation: The Practitioners’ Perspective. In: ICSE.
ACM (2020)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Jacob Kriiger and Regina Hebig

. Anquetil, N., de Oliveira, K.M., de Sousa, K.D., Batista Dias, M.G.: Software

Maintenance Seen as a Knowledge Management Issue. Inf Softw Technol (2007)
Baltes, S., Diehl, S.: Worse Than Spam: Issues In Sampling Software Developers.
In: ESEM. ACM (2016)

Dominic, J., Ritter, C., Rodeghero, P.: Onboarding Bot for Newcomers to Software
Engineering. In: ICSSP. ACM (2020)

Fluri, B., Wiirsch, M., Gall, H.C.: Do Code and Comments Co-Evolve? On the
Relation between Source Code and Comment Changes. In: WCRE. IEEE (2007)
Ju, A., Sajnani, H., Kelly, S., Herzig, K.: A Case Study of Onboarding in Software
Teams: Tasks and Strategies. In: ICSE. IEEE (2021)

Kang, K., Hahn, J.: Learning and Forgetting Curves in Software Development:
Does Type of Knowledge Matter? In: ICIS. AIS (2009)

Koschke, R.: Architecture Reconstruction: Tutorial on Reverse Engineering to the
Architectural Level. In: ISSSE. Springer (2009)

Kriger, J., Hebig, R.: What Developers (Care to) Recall: An Interview Survey on
Smaller Systems. In: ICSME. IEEE (2020)

Kriiger, J., Hebig, R.: What Data Scientists (Care to) Recall. In: PROFES. Springer
(2023)

Kriiger, J., Mukelabai, M., Gu, W., Shen, H., Hebig, R., Berger, T.: Where is My
Feature and What is it About? A Case Study on Recovering Feature Facets. J Syst
Softw (2019)

Kriiger, J., Nielebock, S., Heumiiller, R.: How Can I Contribute? A Qualitative
Analysis of Community Websites of 25 Unix-Like Distributions. In: EASE. ACM
(2020)

Kriiger, J., Wiemann, J., Fenske, W., Saake, G., Leich, T.: Do You Remember This
Source Code? In: ICSE. ACM (2018)

LaToza, T.D., Myers, B.A.: Developers Ask Reachability Questions. In: ICSE. ACM
(2010)

von Mayrhauser, A., Vans, A.M.: Program Comprehension During Software Main-
tenance and Evolution. Computer (1995)

Nielebock, S., Krolikowski, D., Kriiger, J., Leich, T., Ortmeier, F.: Commenting
Source Code: Is It Worth It for Small Programming Tasks? Empir Softw Eng (2019)
Parnin, C., Rugaber, S.: Programmer Information Needs after Memory Failure. In:
ICPC. IEEE (2012)

R Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing (2023), https://www.R-project.org
Roehm, T., Tiarks, R., Koschke, R., Maalej, W.: How do Professional Developers
Comprehend Software? In: ICSE. IEEE (2012)

Schréter, 1., Kriiger, J., Siegmund, J., Leich, T.: Comprehending Studies on Program
Comprehension. In: ICPC. IEEE (2017)

Siegmund, J., Késtner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring and
Modeling Programming Experience. Empir Softw Eng (2014)

Steinmacher, I.F., Graciotto Silva, M.A., Gerosa, M.A., Redmiles, D.F.: A Sys-
tematic Literature Review on the Barriers Faced by Newcomers to Open Source
Software Projects. Inf Softw Technol (2015)

Zimmermann, T.: Card-Sorting: From Text to Themes. In: Perspectives on Data
Science for Software Engineering. Elsevier (2016)

https://www.R-project.org

	To Memorize or to Document: A Survey of Developers' Views on Knowledge Availability

