
DSDGen: Extracting Documentation to Comprehend Fork Merges
Jacob Krüger

Eindhoven University of Technology

Eindhoven, The Netherlands

j.kruger@tue.nl

Alex Mikulinski

Otto-von-Guericke University

Magdeburg, Germany

Sandro Schulze

Anhalt University of Applied Sciences

Köthen, Germany

sandro.schulze@hs-anhalt.de

Thomas Leich

Harz University of Applied Sciences

Wernigerode, Germany

tleich@hs-harz.de

Gunter Saake

Otto-von-Guericke University

Magdeburg, Germany

saake@ovgu.de

ABSTRACT
Developers use the forking mechanisms of modern social-coding

platforms to evolve and maintain their systems. Using such mecha-

nisms often leads to a larger number of independent variants with

individual features or bug fixes that the developers may want to

merge after a longer period of co-evolution. At this point, they may

have forgotten (or never had) knowledge about differences between

the variants. Tackling this problem, we built on the idea of on-

demand documentation to develop a technique that automatically

extracts and presents information for merging a class from two

forks. We implemented our technique as a prototype called DSD-

Gen and evaluated it through an experimental simulation with 10

students who should comprehend two real-world merge requests.

Using DSDGen instead of code diffs only, more of the students could

correctly comprehend the merges (6 / 10 versus 2 / 10) within a simi-

lar time. The students actively inspected the additional information

provided by DSDGen and used it to comprehend the differences be-

tween the forked classes. So, DSDGen can help developers recover

information for comprehending the differences caused by fork co-

evolution during merges, with our results indicating opportunities

for future research and improvements.

CCS CONCEPTS
• Software and its engineering→ Software version control;
Software evolution; Maintaining software.

KEYWORDS
program comprehension, software documentation, merging, fork

ecosystems, software evolution, variant-rich systems

ACM Reference Format:
Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter

Saake. 2023. DSDGen: Extracting Documentation to Comprehend Fork

Merges. In 27th ACM International Systems and Software Product Line Con-

ference - Volume B (SPLC ’23), August 28-September 1, 2023, Tokyo, Japan.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3579028.3609015

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0092-7/23/08.
https://doi.org/10.1145/3579028.3609015

1 INTRODUCTION
Most of today’s software systems are developed using version-

control systems, such as Git, and social-coding platforms, such as

GitHub [11, 44, 62]. Social-coding platforms extend the concepts of

distributed collaboration and revisions in version-control systems

by providing enhanced tooling and traceability, for instance, via

issues or forks with pull requests. Developers use particularly the

forking mechanisms (i.e., creating a copy of the system that an

independent group of developers can evolve) to structure their

development and manage its complexity. For instance, forks (or

branches) are used for developing individual features, testing a

system, or managing variant-rich systems [20, 24, 32, 35, 63, 76, 77].

After implementing their changes in a fork, the respective fork

developers can create a pull request to ask the main developers

to integrate these changes into the original system. While smaller

changes are often continuously integrated and deployed, there are

many use cases in which the integration becomes more challenging,

for instance, longer co-evolution causing divergence between the

main and forked system version [20, 22, 32, 39, 63, 65, 77]. Such

cases occur when an organization is unsure whether an innovative

product or feature fits its integrated platform and develops that

product independently, or when open-source developers customize

a fork to their needs. In such cases, the integration of a fork may

occur weeks or even years after it was forked from the main system.

Due to the long co-evolution of the main system and its fork, their

differences may be significant, particularly if changes have not been

properly communicated or cause side effects with other changes in

the main system, for instance, because of feature interactions.

For merging, it is key to comprehend the differences between

the main and forked system, which is an expensive and cognitively

challenging activity when only source code is available and knowl-

edge is missing [3, 12, 31, 33, 38–40, 45, 68, 72]. Unfortunately,

other sources of information may be unavailable (e.g., developer

who left [58]), hard to find (e.g., natural-language discussions in

an unknown issue [5]), or mistrusted (e.g., outdated code com-

ments [19, 50])—among many other issues [1]. This can easily cause

problems when merging forks. For instance, Brindescu et al. [7]

report that almost 20 % of the merges (≈6.5 % of 556,911 commits) in

143 open-source projects cause a conflict, with the respective code

being twice as likely to involve a bug. In more than 75% of these

cases, a developer needs to inspect the code and it becomes 26 times

more likely that a bug is involved. So, merging diverging versions

of a system (forks) can easily become expensive and cognitively

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-0283-248X
https://orcid.org/0009-0002-2281-4008
https://orcid.org/0000-0002-7198-7848
https://orcid.org/0000-0001-9580-7728
https://orcid.org/0000-0001-9576-8474
https://doi.org/10.1145/3579028.3609015
https://doi.org/10.1145/3579028.3609015
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579028.3609015&domain=pdf&date_stamp=2023-08-28


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter Saake

challenging [3, 12, 29, 31, 39]. Specifically, McKee et al. [45] have

found that program comprehension is the primary challenge for

developers during merges; with getting and displaying the right

information being two of the other top four challenges. This high-

lights the need for techniques that help developers collect, explore,

and compare information of the different forks involved in a merge.

Inspired by the idea of on-demand software documentation [54],

we have developed a technique to facilitate developers’ compre-

hension during fork merges by recovering and displaying such

information. We rely on different information sources (e.g., project

data, pull requests, commits) that developers use to discuss, report,

or document their changes. Using our prototype Dynamic Software

Documentation Generator (DSDGen), we performed an evaluation

based on an experimental simulation [64] with 10 student develop-

ers. The results indicate that DSDGen helped the students recover

important information to support their program comprehension

of the implemented changes, resulting in more students correctly

answering our questions within a comparable time.

In detail, we contribute the following in this paper:

• We introduce DSDGen, a prototype for generating documen-

tation to compare two forked variants of a class.

• We report an experimental simulation with which we evalu-

ated DSDGen’s impact on comprehending fork merges.

• We publish our prototype in an open-access repository.
1

Based on our results, we argue that DSDGen can help developers

(e.g., novices or those lacking knowledge about the forks), and pro-

vides a foundation for designing new techniques for creating on-

demand documentation and supporting program comprehension

when merging forks.

2 DSDGEN
In this section, we present our technique for extracting and display-

ing documentation about two forked files.We refer to base system as

the one a fork is merged into—but base may also be another fork in-

stead of the actual base system (e.g., to synchronize between forks).

2.1 Overview
Based on our motivation and existing research (cf. Section 1), we

defined five requirements (Req) for our technique:

Req1 Documentation on class/file level: We argue that a class has

the appropriate size, scope, and complexity to provide in-

formation on-demand without overwhelming a developer

compared to packages, modules, or subsystems.

Req2 Highlighting differences: Our technique extracts and displays

commonalities as well as differences to allow developers to

easily identify and understand these.

Req3 Multiple data sources: While source code is perceived the

most reliable specification of software [50, 56, 68], further

valuable sources of information exist in social-coding or other

platforms (e.g., Stack Overflow if the project is prominent

enough) [35, 37], which we integrate into our technique.

Req4 Dynamically extracted information: To reflect the most recent

state, we extract all pieces of information in an on-demand

fashion to minimize the risk of missing important details or

making wrong suggestions due to outdated information.

1
https://doi.org/10.5281/zenodo.8132214

repository
issues
commits
pull requests
list of forks
posts about project

base forkrepository
issues
commits
pull requests

DSDGen

parse data

extract information

developer

start DSDGen

analyze documentation

project details
class details
class code
class commits
class issues
class pull requests

base project details
class details
class code
class commits
class issues
class pull requests

fork

class Stack Overflow posts

code diff

crawl data

generate documentation

input information

GitHub login (optional)
forks to merge
classes to merge
Stack Overflow keywords

filter data

Figure 1: The overall workflow of DSDGen.

Req5 Graphical user interface: To provide the information in an

intuitive way, while also allowing a developer to explore it

easily (e.g., scrolling, searching), we use a simple graphical

user interface instead of a plain command line interface. For

our prototype, we create the user interface as a separate doc-

ument, but envision its integration into development tools

(e.g., into IDEs) with further improvements in the future.

Guided by these requirements, we designed DSDGen.

In Figure 1, we display the general workflow of DSDGen. A de-

veloper starts DSDGen to access its graphical user interface, and

inputs basic information, namely the base system, fork, and class

for which the documentation shall be generated. Optionally, infor-

mation for the filtering step can be provided (e.g., what information

is needed). After crawling the corresponding data (cf. Section 2.2),

our technique parses and filters the input to preprocess the raw

data (cf. Section 2.3). Based on the preprocessed data, our technique

extracts all information relevant for the class (cf. Section 2.4) and

subsequently presents it to the developer (cf. Section 2.5).

2.2 Data Sources
For DSDGen, we decided to limit our scope to GitHub (social-cod-

ing platform) and Stack Overflow (community-question answering

platform), since these two are the most popular for software devel-

opment. In detail, we collect the following pieces of data (Req3):

Commits are the most important data source besides the source

code itself. They reflect how code has changed over time, allowing

a developer to track, analyze, and compare the evolution in detail

or to identify whom to contact for more information. Commit mes-

sages can contain valuable information about changes, for instance,

whether a feature has been modified, added, or bug fixed [4, 35, 76].

Issues provide insights into the communication between develop-

ers [5, 35]. For instance, issues can involve bug reports or feature

requests, and keep a history of the involved developers’ discussion.

https://doi.org/10.5281/zenodo.8132214


DSDGen: Extracting Documentation to Comprehend Fork Merges SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Pull Requests are used to request that changes are merged from

a fork into the base system, and they may involve references to

external documentation [75]. Understanding what pull requests

have been submitted for and integrated into each fork allows de-

velopers to identify differences in the forks’ co-evolution (e.g., bug

fixes existing only in one of the two).

Forks are used to create a new variant of a software system, for

example, to implement a new feature, fix a bug, or manage inde-

pendent variants [15, 32, 63]. In parallel, forks can easily result in

duplicate or redundant development efforts [52], which is valuable

information for a developer.

Posts on community-question answering systems like Stack Over-

flow are used to discuss all types of questions on a topic [6, 28].

Some posts are related to prominent systems, and thus can be help-

ful for developers to better understand a change, for example, if it

fixes a bug discussed or even solved on Stack Overflow [42, 70].

2.3 Crawling, Parsing, and Filtering
Once a developer has specified which of the previous sources they

consider relevant, DSDGen downloads the respective data. After-

wards, DSDGen parses and filters the data, since we aim to present

the documentation on class and not on system level (Req1). For

forks, DSDGen asks the developer to specify the fork they want

to merge into their base system, if they did not provide this in-

formation in the beginning. Note that we support this scenario to

allow any developer to inspect and pick any forks of their system

even when there are no explicit merge requests. In contrast, this

information is already provided when merging dedicated forks dur-

ing a pull request. To support the former, we display a list of all

existing forks for the developer to select relevant ones. We ease

this inspection by allowing to filter out inactive forks or to filter

based on the forks’ descriptions (e.g., new feature, bug fix).

Then, DSDGen collects all commits of the base and fork sys-

tem. So, we obtain all information on the common and diverging

evolution of the two systems, together with what classes have been

affected in each commit. Next, we filter out commits from either

system that do not concern the specified class. DSDGen uses the

class name to further filter for relevant issues and pull requests.
Specifically, we collect all issues and pull requests that mention the

specified class in their description, title, or comments. Using this

filtering, we can enrich our documentation with additional informa-

tion provided by developers, if they (correctly) mention the class in

these fields. For instance, a bug fix reported in an issuemay be linked

to a different class, but the developers identified and discussed that

the consequent changes would also impact the specified class.

For filtering Stack Overflow posts, we rely on the fact that

popular systems have own tags on this platform to ensure the per-

formance of DSDGen (i.e., filtering all data would require too many

resources). Of course, this data source is limited to certain systems.

From all relevant (i.e., tagged) posts, we identify any that mention

the relevant class in their title or the discussion (i.e., questions, com-

ments). If the class name is contained, we store the respective post

together with a link to its discussion. However, this may lead to a

vast amount of posts (e.g., if the class relates to an API). To manage

this situation, DSDGen allows developers to further filter based on

keywords, such as “bug” to find discussions about a certain bug

or “example” to find code examples related to the class. Also, the

developer can filter based on whether a post is closed or open, is

answered or unanswered, and has a certain score.

2.4 Information Extraction
DSDGen extracts and displays (cf. Figure 2) the following informa-

tion as concise as possible to avoid overwhelming developers [71]:

Project Information.We extract meta information about the base

and fork system, namely links to their repositories, their descrip-

tions, and the number of “watchers” as an indicator of relevance.

Also, we collect the date each of the two systems has been created,

last pushed, and last updated to indicate activity.

Class Information. For the class itself, we extract the fully qual-

ified name and a description for the class, which is important to

understand the context in which changes have been employed [14].

We assume that the class description is provided in the first com-

ment at the top of the class (e.g., recommended by Oracle
2
and

Google
3
); if such a comment exists.

Class Information. For each commit, we extract the date it has

been committed (for sorting) as well as the message to help a devel-

oper understand the changes, and thus decide on the relevance of a

commit. We also collect the link to the original GitHub commit as

well as the name and email of the committer as specified.

Class Information.We extract the status of each issue and pull

request, which allows a developer to focus on current problems

and changes (i.e., the status is “open”). Additionally, we extract the

title, assuming that it is shorter than an issue’s or pull request’s

description, while still providing a valuable overview about what

is being addressed. We collect a link to every issue and pull request

on GitHub, enabling the developer to read the full description and

comments if needed. Finally, we extract the labels (e.g., bug report,

feature request) belonging to an issue, which typically provide more

information about the nature of an issue.

Stack Overflow Posts. For Stack Overflow posts, we extract the

date they have been posted to identify recency, their title as an in-

dicator for the topic discussed, and their score to highlight received

attention. To enable developers to inspect a post, we collect the link

to each post on Stack Overflow.

2.5 Presentation
In Figure 2, we show the layout of the documentation (Req5). Note

that we use a simple, clearly structured layout to avoid confusion

and clutter; and that we use a separate HTML document for our

prototype, which is why there is no integration into development

environments, yet. We decided to use a browser-based solution us-

ing HTML and JavaScript, as this does not require additional tooling

and allows developers to reuse certain browser capabilities, such as

searching. Moreover, we present the documentation about a class on

one page, so that developers can intuitively jump between different

pieces of information—similar to reading websites or books [53, 71].

The documentation involves three columns: On the left (①), we

display a typical menu that allows developers to observe the general

structure of the document and jump to dedicated sections. In the

2
www.oracle.com/technical-resources/articles/java/javadoc-tool.html#styleguide

3
https://google.github.io/styleguide/javaguide.html#s7-javadoc

www.oracle.com/technical-resources/articles/java/javadoc-tool.html#styleguide
https://google.github.io/styleguide/javaguide.html#s7-javadoc


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter Saake

Figure 2: Snapshot of the documentation generated by DSDGen for the CA example of our simulation (cf. Section 3).

center (②), we display the information on the base system. On the

right (③), we show the information on the fork. As we can see, we

display the same types of information in a side-by-side two-column

format (i.e., a developer compares ② with ③) to enable developers

to easily grasp the commonalities and differences between the two

system variants (Req2). This view is inspired by the typical side-by-

side diff view supported in development tools and on social-coding

platforms. However, we argue that it is less distracting to provide

all pieces of information together in one document. In each section,

we summarize the extracted information, structured in the same

fashion and order to facilitate their interpretation. For the section

class information, we also display the source code of the two system

variants individually and as a unified diff. Across all sections, we

provide hyperlinks to the original sources (e.g., commits, issues,

pull requests, Stack Overflow posts) to check details.

3 EXPERIMENTAL SIMULATION
We now report the design of our evaluation of DSDGen.

3.1 Research Questions
We evaluated whether the documentation by DSDGen helps com-

prehend forks and merges based on three research questions (RQs):

RQ1 Does DSDGen facilitate understanding a pull request?

We analyzed whether our participants could understand the

purpose of a pull request more easily using DSDGen compared

to a plain diff view. So, we evaluate to what extent developers

can become more effective in terms of correctly solved tasks.

RQ2 Does DSDGen facilitate analyzing a pull request?

We analyzed howmuch time our participants needed to under-

stand the purpose of a pull request. So, we evaluate their per-

formance in terms of the time required to solve tasks. Note that,

because our participants needed to familiarize with DSDGen

and to inspect the documentation, we would not necessarily

expect them to be faster compared to a diff view.

RQ3 Does DSDGen provide helpful information?

We elicited our participants’ perceptions regarding DSDGen

and inspected our session recordings to see whether they used

its additional information. So, we aimed to understand the

perceived usefulness and limitations of our technique.

To answer these questions, we conducted an experimental simula-

tion [64], combining quantitative (i.e., correctness for RQ1, time for

RQ2) and qualitative data (i.e., perceptions and actual usage for RQ3).

We refrain from hypothesis testing, since the goal of our experimen-

tal simulation is to shed light into the usefulness of our technique

and identify directions for improvements—not to verify explicit hy-

potheses. For this reason, we decided not to conduct a full-fledged

controlled experiment and have a smaller number of participants;

which does not allow us to perform statistical tests reliably.

3.2 Study Design
We used a between-subject design by half of our participants using

DSDGen and the other half using a plain (unified) diff view for one

of two examples. Between the examples, we switched the groups

to avoid learning biases, while also gaining within-subject insights.



DSDGen: Extracting Documentation to Comprehend Fork Merges SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Table 1: Overview of the systems from which we selected our examples.

id project fork link forks commits issues pull requests

CA Signal

base https://github.com/signalapp/Signal-Android 3,020 4,405 6,867 2,071

fork https://github.com/mcginty/TextSecure/tree/convo-ab-stateless 0 1,240 0 0

SLL Algorithms

base https://github.com/TheAlgorithms/Java 5,971 802 108 697

fork https://github.com/ojasiiitd/Java/tree/patch-2 0 741 0 0

Requirements for Examples.We aimed to use real-world pull re-

quests from different systems and of varying complexity. This way,

we intended to avoid biases, for instance, of participants becom-

ing familiar with a system from which two pull requests stemmed,

or too simplistic examples. To identify candidates, we analyzed

GitHub projects in Java (due to our participants’ background and

our prototypical implementation analyzing Java only) and identi-

fied accepted pull requests. An accepted pull request ensures that

the changes were deemed meaningful by the original developers,

and we could use the code as well as additional comments of the

merge for evaluating our participants’ correctness. Consequently,

we considered only pull requests that occurred in the past. During

our simulation, we ensured that DSDGen provided only informa-

tion that is older than the respective pull request to simulate the

real-world scenario. For this purpose, we reset the main repository

to the state of the pull request and considered only older informa-

tion, also checking dates on issues, the pull-request comments, as

well as potential Stack Overflow posts.

We defined six selection criteria for a pull request:

• The changes should not be too large in terms of lines of code

to limit the time our participants need to analyze them.

• The changes should be part of a single class, since our proto-

type focuses on comparing classes and to avoid that partici-

pants need to switch between documents.

• The changes should modify (e.g., fix a bug) an existing class

(i.e., not add a new one, remove one) so that it is necessary

to understand the changes and their context.

• The system is actively maintained and information is avail-

able through additional sources (e.g., tags on Stack Overflow,

issues) to exploit different sources.

• The system should have a larger number of forks (i.e., hun-

dreds), commits, issues, and pull requests related to the

changed class to ensure a larger data basis; simulating its

use case of analyzing and merging co-evolving forks.

• The changes must be comprehensible without knowing de-

tails of the systems for our participants to work on them.

One problem that limited the number of candidates for our simula-

tion was that the fork of the pull request had to still be available.

In practice, developers may delete forks after they have been suc-

cessfully merged, which does not allow us to use these forks. To

identify candidates, we manually searched through Java projects

on GitHub ordered by stars and the number of forks.

Selected Examples. We selected two examples based on our crite-

ria. In Table 1, we display an overview of the base systems and forks

from which these examples stem (at the point in time when we se-

lected them). As we can see, they have substantial sizes in terms of

commits, forks, issues, and pull requests, indicating active commu-

nities. Moreover, these systemsmatch our initial use case of support-

ing developers in merging long-living forks. Unfortunately, while

both systems are discussed on Stack Overflow, the classes involved

in our particular examples are not. Thus, DSDGen could not retrieve

information from this data source for our simulation. Nonetheless,

the two examples represent the fork-analysis and merging scenario

we envisioned, and are well-suited for our simulation.

First, we picked a bug-fixing pull request
4
from the Android

version of the Signal App. The merged bug fix involves 39 changed

lines in the method initializeTitleBar() that is part of the

class ConversationActivity, and is responsible for displaying the
correct conversation names (e.g., group chats). According to the pull

request, the title of the conversation would sometimes not adapt

according to the change of the conversation type. Besides fixing

this bug, the changes simplify and refactor the code to improve

readability. Consequently, the actual purpose of the pull request

(fixing the bug) is not apparent when looking only at the code,

and thus is complex to understand. DSDGen identified 22 relevant

issues, eight pull requests, and 161 commits for the class in the

base system (162 in the fork, due to the pull request). We assessed a

participant to correctly comprehend this example if they were able to

identify the fixed bug. In the following, we refer to this example via

its id “CA,” and consider it to be the more complicated one.

Second, we picked a code-improvement pull request
5
from the

Java algorithms collection. The collection provides various data

structures and algorithms. We picked a pull request that improves

the SinglyLinkedList implementation by removing a global vari-

able and introducing an alternative method to return the list’s size.

This change should reduce the error proneness of the code. More-

over, the pull request improves the performance of inserting or

removing an element at the beginning, removed an unneeded tem-

porary code element, and introduced a method for removing an

element at a certain position. While there are a few changes in this

pull request, they are rather simple and easy to identify, which is

why we consider this example to be the easier one. For the base

system, DSDGen identified two issues, six pull requests, and 13

commits (14 in the fork) that are connected to the class.We assessed

a participant to correctly comprehend this example if they were able

to identify that the size computation was changed for what reason,

the newly introduced method, and the performance improvement.

Consequently, a correct solution depends on three issues, which

compensates for the more simplistic code example. In the following,

we refer to this example via its id “SLL.”

Questions. During our simulation, we asked each participant the

18 questions we display in Table 2. To address RQ1, we defined three

questions aimed at measuring their program comprehension of each

example. With these questions, we checked whether a participant

understood the functionality of the changed class (C1), why the

pull request was created (C2), and the implemented change (C3).

4
https://github.com/signalapp/Signal-Android/pull/2297

5
https://github.com/TheAlgorithms/Java/pull/713

https://github.com/signalapp/Signal-Android
https://github.com/mcginty/TextSecure/tree/convo-ab-stateless
https://github.com/TheAlgorithms/Java
https://github.com/ojasiiitd/Java/tree/patch-2
https://github.com/signalapp/Signal-Android/pull/2297
https://github.com/TheAlgorithms/Java/pull/713


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter Saake

Table 2: Overview of the questions we used in our simulation.

id question answer

Regarding correctness (RQ1) and performance (RQ2) for each example

C1 What functionality has the changed class/method? free text

C2 What was the purpose of the pull request? free text

C3 What does the change implement? free text

Regarding the participants’ perceptions (RQ3)

P1 Did you have any comprehension problems during the experiment? 1 (no problems) – 10 (significant problems)

P2 What do you think about the concept of DSDGen? 1 (very good) – 10 (very bad)

P3 What do you think about the usability of DSDGen? 1 (very good) – 10 (very bad)

P4 How useful was the additional information? 1 (very useful) – 10 (not useful)

P5 What was your strategy to comprehend the code? free text

P6 What was (not) helpful about DSDGen? free text

P7 What information was missing? free text

P8 For what purposes would DSDGen be useful? free text

P9 Any other comments? free text

Regarding the participants’ background

B1 How do you rate your programming experience? 1 (experienced) – 10 (inexperienced)

B2 How do you rate your experience with Java? 1 (experienced) – 10 (inexperienced)

B3 How do you rate your experience of using a version-control system? 1 (experienced) – 10 (inexperienced)

B4 For how many years have you been programming? number

B5 For how many years have you been programming professionally? number

B6 What is your highest degree of education? free text

Answering these questions requires that a participant comprehends

the code itself as well as the diff, and can explain them in their own

words. For RQ2, we measured the time until a participant considered

their answers to these three questions complete.

After they worked on the two examples using DSDGen and

a standard diff view, we asked our participants about their per-

ceptions (RQ3). First, we checked whether they had any problems

understanding our simulation (P1) to check for threats to the va-

lidity of our results. Then, we asked them to rate the overall idea

(P2), usability (P3), and information provisioning (P4) of DSDGen.

Moreover, we asked each participant to elaborate on their strategy

for comprehending the examples (P5), the usefulness of DSDGen

(P6), missing information (P7), and relevant use cases (P8). Via these

questions, we aimed to identify whether our technique was helpful

and what potential improvements exist. In the end, we asked for

any other comments the participants may have had (P9).

In the end, we elicited background information for each partic-

ipant, following established guidelines [60]. Specifically, we first

asked our participants to self-evaluate their programming experi-

ence (B1), knowledge about Java (B2), and familiarity with version-

control systems (B3) to understand our participants’ composition in

terms of experience. Then, we asked for how many years they have

been programming in general (B4) and professionally, for instance,

in a company or on established open-source projects (B5). Lastly,

we asked for their highest degree of education (B6).

Audio Recording. To understand how the participants used DSD-

Gen (RQ3), we audio recorded each session. Note that we did not

have the equipment for screen or video recordings in a proper qual-

ity. We informed the participants when inviting them to a session

that these would be recorded (they could decline without any con-

sequences) and asked each one to think-aloud [59] while working

on the examples. The first author of this paper listened to each

recording and coded labels with time stamps. Via open coding and

open-card sorting to synthesize codes, we defined eight activities:

• Inspection of DSDGen itself (e.g., scrolling through it for

familiarizing, exploring general system data).

• Inspection of pull requests via DSDGen as well as the linked

information (e.g., description, comments, date).

• Inspection of issues via DSDGen (e.g., status, discussion).

• Inspection of commits via DSDGen (e.g., iterating through

the list, reading messages, dates).

• Inspection of code via DSDGen or the diff view (i.e., reading

the plain class code or the diff).

• Inspection of unclear elements via DSDGen (two occasions

in which we could not reliable assign a category, due to

participants not speaking for a longer time while scrolling).

• Discussions with the experimenter (e.g., answering a ques-

tion about DSDGen or the experiment, feedback).

• Documenting solutions (e.g., typing answers to the questions

or comments, reading the questions).

Our activities abstract from highly specific instances, and were

quite good to identify. The first author relied on the participants’

think alouds (examples in parentheses) as well as other recorded

sounds to identify activities and switches (e.g., scrolling, longer typ-

ing). We argue that, while not fully detailed, the abstract activities

are useful and provide reliable insights into the use of DSDGen.

Assignment.We randomly assigned each of our ten participants

into one of two groups: The first group worked on the first example

(CA) using the plain diff and on the second example (SLL) using

DSDGen. The second group had the flipped setup, namely DSDGen

for the first and the diff for the second example. This design allowed

each participant to work with DSDGen and the diff view without

introducing bias due to learning or differences in the examples.

3.3 Conduct
We conducted individual sessions with each participant, supervised

by the second author to clarify any questions a participant may have

had. Following guidelines on experiments with human participants,



DSDGen: Extracting Documentation to Comprehend Fork Merges SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

we performed a short discussion on each participant’s performance

after a session [26]. In detail, we

(1) welcomed each participant (i.e., purpose of the simulation;

setup; DSDGen; how to navigate on a small toy example;

terminology; task; consent),

(2) conducted the session with both examples (i.e., we provided

the general context for each example; the participant in-

spected each example until they answered C1–3 in Table 2),

(3) asked our remaining survey questions (cf. Table 2), and

(4) performed the follow-up discussion.

Depending on the group and example, we displayed either the

respective pull request onGitHub or theHTML document generated

by DSDGen in a web browser. We allowed the participants to use

the browser’s search functionality and to inspect all links provided

by DSDGen or GitHub. On a second screen, they could see the

questions they had to answer and could enter their answers. Using

this design, we aimed to mitigate comprehension problems and

avoid that a participant may misunderstand something. We stopped

the required time for each example, but did not tell the participants

about this to not cause stress.

3.4 Participants
We recruited ten volunteering computer-science students with prac-

tice experience via personal contacts of the second author (conve-

nience sample). Instead of professional developers, we relied on

students due to availability and because they are feasible partici-

pants in software engineering [18, 23, 55, 66]. Also, students mimic

our target audience: Developers that are new to a system (or fork)

or even novices in software development, and thus may benefit

more from additional documentation.

Our participants (cf. Table 3) had an average of 7.9 years of pro-

gramming experience, with 2 years of professional programming

knowledge. Two students were undergraduates, six had a Bachelor

degree, and two a Master degree. The students rated their experi-

ence with Java at around 4.2 and with version-control at around

4.1. They indicated only little comprehension problems. When dis-

cussing these problems, we found that they were mainly related

to the subject source code, not the study design. Reflecting upon

their experience, we argue that our participants represent a reliable

sample, seeing their extensive programming experience.

4 RESULTS AND DISCUSSION
Next, we report the results of our simulation and discuss their impli-

cations. We display visualizations of the recordings of each session

in Figure 3 (first example) and Figure 4 (second example). In these,

we highlight the different activities and the periods they cover in

the recordings (each pixel represents one second). At the end of

each bar, we show whether the respective participant could answer

the comprehension questions correctly (C1–3 in Table 2), and how

much time they needed. We can already see that our assumption of

the first example (CA) being more complicated than the second one

(SLL) is represented in the results: Fewer participants have been

able to correctly understand the pull request (2 versus 6), and they

used more time (2:15mins on average). Moreover, we can see that

the individual participant’s performance changed between the ex-

amples, indicating that any changes we can see are likely caused by

Table 3: Our participants’ self-assessments (B1–3) and experi-
ences (B4–5) based on the questions in Table 2.

question

part. B1 B2 B3 B4 B5
(prog. L) (Java L) (VCSs L) (prog. Y) (prof. Y)

1 6 4 7 5 0

2 2 2 4 10 5

3 6 4 4 5 0

4 3 4 4 6 3

5 4 7 2 5 0

6 1 1 1 10 4

7 3 2 3 12 3

8 5 7 5 15 0

9 5 3 3 6 3

10 7 8 8 5 2

mean 4.2 4.2 4.1 7.9 2

participant, programming experience, professional experience
Likert scale, Years

the treatment (i.e., DSDGen or diff) rather than the participant’s ex-

perience. So, we argue that we designed a feasible setup to study the

impact of DSDGen on our participants’ program comprehension.

RQ1: Correctness.We can see for both examples that more par-

ticipants have been able to comprehend the differences between

the two forks using DSDGen. In the first, more complex, example

(cf. Figure 3), none of the participants could correctly comprehend

the differences using the diff view only. However, using DSDGen,

two of the participants were able to provide correct answers. In

the second example (cf. Figure 4), the number of correct solutions

increased from two (diff) to four (DSDGen). This supports that our

technique can help developers when comprehending the differences

between forks, and thus can facilitate fork merges.

Using DSDGen, more of our participants could comprehend the

two examples correctly (i.e., 6 / 10 versus 2 / 10).

RQ1: Correctness

RQ2: Performance.We can see that the participants using DSD-

Gen took on average ≈2:21mins more to solve their tasks. During

the sessions, we found that this additional time is a result of getting

used to DSDGen (i.e., yellow coloring in Figure 3 and Figure 4), in-

specting the additional information and tool views (blue, green, and

black), and a more careful analysis. So, some of the time differences

may be caused by additional attention and effort of the participants

rather than DSDGen itself. As noted, these were the particular rea-

sons for which we did not necessarily expect faster solutions from

our participants. Arguably, by getting more used to DSDGen, the ad-

ditional time required will reduce. Since the time differences are not

large, and DSDGen leads to correct solutions more often than the

diff view, we do not perceive the worse performance as a negative re-

sult. Still, we clearly see potential to improve DSDGen, particularly

to facilitate its use and decrease the time needed to familiarize.

Our participants needed more time for the examples using DSD-

Gen (2:21mins), due to getting familiar with the documentation.

RQ2: Performance

RQ3: Perception.When asking for qualitative feedback (P1–9 in

Table 2), most of our participants liked the concept of DSDGen, with



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter Saake
DS

DG
en

pa
rti

cip
an

t

1 13:53

17:08
05:37

14:21
22:16

3
5
7
9

di
ff

2
4

14:52
13:50

07:38
13:03

14:01

6
8

10

inspection of: commits
code
unclearissues

DSDGen
pull requests other elements: incorrect solution (with time in mins)

correct solution (with time in mins)discussion
documenting

Figure 3: Results and coded recordings for the example CA in our simulation.

di
ff

10:51
14:56

06:28
08:33

09:31

1
3
5
7
9

DS
DG

en
pa

rti
cip

an
t

14:28
14:16

13:27
14:20

07:19

2
4
6
8

10

inspection of: commits
code
unclearissues

DSDGen
pull requests other elements: incorrect solution (with time in mins)

correct solution (with time in mins)discussion
documenting

Figure 4: Results and coded recordings for the example SLL in our simulation.

an average scoring of 1.3 on a scale of 1 (very good) to 10 (very bad).

Since we implemented only a prototype, DSDGen currently is not a

polished or user-friendly tool. This is reflected by the more varying

scores regarding the usability of DSDGen, which is on average 2.9

on the same scale. For the usefulness of the information DSDGen

provides in comparison to the plain diff, our participants provided

an average rating of 2.2. Note that the few participants who mostly

ignored the additional information (i.e., participants 8 and 10, see

Figure 4), graded this question based on their retrospective of the

problems they faced, and potential benefits the information would

have had to resolve these problems.

As additional information (for DSDGen, but also in general)

that would have been useful, our participants mentioned: (1) line

numbers for every code excerpt, (2) displaying omitted lines of

code in all diff views, (3) the time when a pull request was created,

(4) links between issues and corresponding pull requests, (5) dis-

playing the Git history, and (6) visualizing when the forks started

to differ (e.g., highlighting the information). Most of these requests

are simple extensions and rather an engineering than a scientific

problem, but we plan to implement them in the future. As particu-

larly useful information provided in DSDGen, our participants

mentioned: (1) links to the GitHub repositories, (2) additional meta

information, (3) visualization on a single page, (4) an interactive

user interface, (5) displaying multiple forks next to each other, and

(6) the visuals of the prototype itself. This feedback improves our

confidence that DSDGen is a helpful technique for developers and

that we tackled our requirements (cf. Section 2.1). As use cases
in which DSDGen would be useful, our participants mentioned

various scenarios in the context of fork merging: (1) analyzing

systems with many pull requests, (2) support for handling poor

project management or missing documentation, (3) getting a better

overview over many commits and additional pieces of information,

and (4) analyzing a class and its commit history.

DSDGen received mainly positive feedback and was perceived

helpful for fork merging, with most issues relating to extensions

that can be added easily.

RQ3: Perception

Discussion. In Figure 3 and Figure 4, we can see that most partici-

pants inspected the additional information provided by DSDGen.

By analyzing the recordings, we found that they often inspected a

certain piece of information, matched it to the code, and thereby

improved their comprehension. Of course, any difference could be

understood through the code if needed, but our participants often

found relevant information much easier in DSDGen. As an extreme

example, participant 9 basically used DSDGen only when inspect-

ing our example CA (cf. Figure 3). They immediately identified

that the documentation provided and linked to the information

needed to comprehend the differences, and only skimmed the code

for confirmation—leading to the shortest analysis time overall and

a correct solution.

Our participants inspected the systems’ issues in the greatest

detail, followed by pull requests, and occasionally commits. Two par-

ticipants did not use any of this information when analyzing the sec-

ond example with DSDGen (participants 8 and 10 in Figure 4)—one



DSDGen: Extracting Documentation to Comprehend Fork Merges SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

of them being the only participant using DSDGen and not answer-

ing our questions correctly for this example. Seeing the results and

reflecting upon our participants’ perceptions, it seems that particu-

larly the high-level change summaries in issues and pull requests are

helpful to facilitate fork comprehension. Nonetheless, we can also

see that our participants generally tended to focus on comprehend-

ing the source code; potentially because they mistrust other pieces

of (potentially not maintained [19, 50]) information. Overall, we

argue that DSDGen is helpful for developers despite such concerns.

Threats to Validity. Since we are concerned with program com-

prehension, we cannot control all variables related to the individual

characteristics of our participants [48, 61]. For instance, developers

in the real world rely on various tools that may infer with DSDGen

and some cognitive biases may not manifest in a laboratory setting.

Instead, we aimed to avoid control and confounding variables by

defining a controlled setup, and thus to improve our confidence

that any observed differences are caused by our intervention (i.e.,

DSDGen). However, this also means that our simulation is not fully

representative of the real world, for instance, because our examples

did not involve added/deleted or changes to multiple classes.

We relied on student participants, who are typically considered

to perform similar to developers in practice [18, 23, 55, 66]. Still,

practitioners with more experience about the programming lan-

guage, version-control systems (particularly diffs), and the actual

subject system may have yielded different results. Moreover, the

students have been personal contacts of the second author, which

may mean that their perceptions of DSDGen (e.g., P2, P3) could be

more positive. We mitigated this threat by involving more qualita-

tive questions and measuring the participants’ actual performance,

which hint in the same direction as their responses. While both

threats regarding our participants remain, we could clearly show

that DSDGen helped the students understand the subject source

code, and similar improvements are likely for less experienced or

novice developers (e.g., during on-boarding).

5 RELATEDWORK
There is extensive research showing how forks (co-)evolve and that

it can take a lot of time until they are merged [32, 63, 65, 76, 77].

Moreover, different researchers have focused on the challenges de-

velopers face when merging forks [21, 22], particularly merge con-

flicts [7, 8, 45]. These studies highlight the comprehension problems

fork merges can cause, and motivate the need for our technique.

The idea of on-demand documentation has been proposed by Ro-

billard et al. [54], and there have been many proposals for it. Most

of these focus on a single class and analyzing its source code or evo-

lution [2, 13, 41, 49, 67]. Closely related, researchers have worked

on integrated software documentation [10, 25, 47]. Finally, visu-

alizations for the differences between complete software variants

have been proposed in product-line engineering [9, 16, 36, 43, 46].

None of such techniques is concerned with our use case, and thus

we contribute a complementary technique.

Similarly, reverse-engineering techniques have been proposed,

but they typically go beyond recovering documentation and aim

to create new artifacts instead, for instance, in the form of class

diagrams or API usage summaries [17, 27, 30, 51, 57, 69, 73, 74].

Most of these techniques employ static or dynamic program anal-

ysis to create novel documentation artifacts. We complement the

existing works by providing a means for recovering and displaying

documentation that can be further expanded with such techniques.

6 CONCLUSION
Analyzing and merging forks is a challenging process. We built on

the idea of on-demand documentation to design DSDGen, which

extracts information from various sources and provides a compar-

ative overview to support developers when understanding fork

differences. Our results show that more participants could compre-

hend two different fork merges (6 / 10 versus 2 / 10) using DSDGen,

but they required more time (2:21mins on average) due to familiar-

izing with the additional documentation. The overall feedback on

DSDGen was positive and indicates that it is a helpful technique,

which we plan to extend based on that feedback in future work.

ACKNOWLEDGMENTS
The research reported in this paper has been partially supported

by the German Research Foundation (DFG) project EXPLANT (LE

3382/2-3, SA 465/49-3) [34].

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C. Shepherd. 2020. Software Documentation:

The Practitioners’ Perspective. In ICSE. ACM.

[2] Alireza Aghamohammadi, Maliheh Izadi, and Abbas Heydarnoori. 2020. Gen-

erating Summaries for Methods of Event-Driven Programs: An Android Case

Study. Journal of Systems and Software 170 (2020).

[3] Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger. 2019.

Migrating the Android Apo-Games into an Annotation-Based Software Product

Line. In SPLC. ACM.

[4] Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the Rationale of

Code Commits: The Software Developer’s Perspective. In ESEC/FSE. ACM.

[5] Deeksha Arya, Wenting Wang, Jin L. C. Guo, and Jinghui Cheng. 2019. Analysis

and Detection of Information Types of Open Source Software Issue Discussions.

In ICSE. IEEE.

[6] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are

Developers Talking About? An Analysis of Topics and Trends in Stack Overflow.

Empirical Software Engineering 19, 3 (2014).

[7] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020. An

Empirical Investigation intoMerge Conflicts and Their Effect on Software Quality.

Empirical Software Engineering 25, 1 (2020).

[8] Caius Brindescu, Yenifer Ramirez, Anita Sarma, and Carlos Jensen. 2020. Lifting

the Curtain on Merge Conflict Resolution: A Sensemaking Perspective. In ICSME.

IEEE.

[9] Siyue Chen, Loek Cleophas, and Jacob Krüger. 2023. A Comparison of Visu-

alization Concepts and Tools for Variant-Rich System Engineering. In SPLC.

ACM.

[10] Sridhar Chimalakonda and Akhila S. M. Venigalla. 2020. Software Documentation

and Augmented Reality: Love or Arranged Marriage?. In ESEC/FSE. ACM.

[11] Valerio Cosentino, Javier Luis, and Jordi Cabot. 2016. Findings from GitHub:

Methods, Datasets and Limitations. In MSR. ACM.

[12] Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. 2019. Migrat-

ing Java-Based Apo-Games into a Composition-Based Software Product Line. In

SPLC. ACM.

[13] Michael J. Decker, Christian D. Newman, Michael L. Collard, Drew T. Guarnera,

and Jonathan I. Maletic. 2018. A Timeline Summarization of Code Changes. In

DySDoc. IEEE.

[14] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and Answering Ques-

tions about Unfamiliar APIs: An Exploratory Study. In ICSE. IEEE.

[15] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,

and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial

Software Product Lines. In CSMR. IEEE.

[16] Slawomir Duszynski. 2010. Visualizing and Analyzing Software Variability with

Bar Diagrams and Occurrence Matrices. In SPLC. Springer.

[17] Sascha El-Sharkawy, Saura J. Dhar, Adam Krafczyk, Slawomir Duszynski, Tobias

Beichter, and Klaus Schmid. 2018. Reverse Engineering Variability in an Industrial

Product Line: Observations and Lessons Learned. In SPLC. ACM.



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter Saake

[18] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,

Andreas Jedlitschka, and Markku Oivo. 2017. Empirical Software Engineering

Experts on the Use of Students and Professionals in Experiments. Empirical

Software Engineering 23, 1 (2017).

[19] Beat Fluri, Michael Würsch, and Harald C. Gall. 2007. Do Code and Comments

Co-Evolve? On the Relation between Source Code and Comment Changes. In

WCRE. IEEE.

[20] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory

Study of the Pull-Based Software Development Model. In ICSE. ACM.

[21] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work Prac-

tices and Challenges in Pull-Based Development: The Contributor’s Perspective.

In ICSE. ACM.

[22] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen.

2015. Work Practices and Challenges in Pull-Based Development: The Integrator’s

Perspective. In ICSE. IEEE.

[23] MartinHöst, Björn Regnell, and ClaesWohlin. 2000. Using Students as Subjects—A

Comparative Study of Students and Professionals in Lead-Time Impact Assess-

ment. Empirical Software Engineering 5, 3 (2000).

[24] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet S. Kochhar, and Li Zhang.

2017. Why and How Developers Fork What from Whom in GitHub. Empirical

Software Engineering 22, 1 (2017).

[25] Rodi Jolak, Maxime Savary-Leblanc, Manuela Dalibor, Andreas Wortmann,

Regina Hebig, Juraj Vincur, Ivan Polasek, Xavier Le Pallec, Sébastien Gérard,

and Michel R. V. Chaudron. 2020. Software Engineering Whispers: The Effect of

Textual vs. Graphical Software Design Descriptions on Software Design Commu-

nication. Empirical Software Engineering 25, 6 (2020).

[26] Amy J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A Practical

Guide to Controlled Experiments of Software Engineering Tools with Human

Participants. Empirical Software Engineering 20, 1 (2015).

[27] Sebastian Krieter, Jacob Krüger, Thomas Leich, and Gunter Saake. 2023. Vari-

antInc: Automatically Pruning and Integrating Versioned Software Variants. In

SPLC. ACM.

[28] Jacob Krüger. 2019. Are You Talking about Software Product Lines? An Analysis

of Developer Communities. In VaMoS. ACM.

[29] Jacob Krüger. 2021. Understanding the Re-Engineering of Variant-Rich Systems:

An Empirical Work on Economics, Knowledge, Traceability, and Practices. Ph. D.

Dissertation. Otto-von-Guericke University Magdeburg.

[30] Jacob Krüger, Mustafa Al-Hajjaji, Sandro Schulze, Gunter Saake, and Thomas

Leich. 2018. Towards Automated Test Refactoring for Software Product Lines. In

SPLC. ACM.

[31] Jacob Krüger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering

Cloned Variants Into an Integrated Platform. In VaMoS. ACM.

[32] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs of

Clone- and Platform-Oriented Software Reuse. In ESEC/FSE. ACM.

[33] Jacob Krüger and Regina Hebig. 2020. What Developers (Care to) Recall: An

Interview Survey on Smaller Systems. In ICSME. IEEE.

[34] Jacob Krüger, Sebastian Krieter, Gunter Saake, and Thomas Leich. 2020. EXtract-

ing Product Lines from vAriaNTs (EXPLANT). In VaMoS. ACM.

[35] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and

Thorsten Berger. 2019. Where is My Feature and What is it About? A Case Study

on Recovering Feature Facets. Journal of Systems and Software 152 (2019).

[36] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.

Finding Lost Features in Cloned Systems. In SPLC. ACM.

[37] Jacob Krüger, Sebastian Nielebock, and Robert Heumüller. 2020. How Can I

Contribute? A Qualitative Analysis of Community Websites of 25 Unix-Like

Distributions. In EASE. ACM.

[38] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.

2018. Do You Remember This Source Code?. In ICSE. ACM.

[39] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.

2018. Getting Rid of Clone-And-Own: Moving to a Software Product Line for

Temperature Monitoring. In SPLC. ACM.

[40] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental

Models: A Study of Developer Work Habits. In ICSE. ACM.

[41] Mingwei Liu, Xin Peng, Xiujie Meng, Huanjun Xu, Shuangshuang Xing, Xin

Wang, Yang Liu, and Gang Lv. 2020. Source Code based On-Demand Class

Documentation Generation. In ICSME. IEEE.

[42] Xuliang Liu and Hao Zhong. 2018. Mining StackOverflow for Program Repair. In

SANER. IEEE.

[43] Roberto E. Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2016. Visual-

ization for Software Product Lines: A Systematic Mapping Study. In VISSOFT.

IEEE.

[44] Panagiotis Louridas. 2006. Version Control. IEEE Software 23, 1 (2006).

[45] Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. 2017. Software

Practitioner Perspectives on Merge Conflicts and Resolutions. In ICSME. IEEE.

[46] Raul Medeiros, Jabier Martinez, Oscar Díaz, and Jean-Rémy Falleri. 2022. Visual-

izations for the Evolution of Variant-Rich Systems: A Systematic Mapping Study.

Information and Software Technology (2022).

[47] Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. 2019. Active Documen-

tation: Helping Developers Follow Design Decisions. In VL/HCC. IEEE.

[48] Rahul Mohanani, Iflaah Salman, Burak Turhan, Pilar Rodriguez, and D. Paul

Ralph. 2020. Cognitive Biases in Software Engineering: A Systematic Mapping

Study. IEEE Transactions on Software Engineering (2020).

[49] Kevin Moran, Cody Watson, John Hoskins, George Purnell, and Denys Poshy-

vanyk. 2018. Detecting and Summarizing GUI Changes in Evolving Mobile Apps.

In ASE. ACM.

[50] Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger, Thomas Leich, and Frank

Ortmeier. 2019. Commenting Source Code: Is It Worth It for Small Programming

Tasks? Empirical Software Engineering 24, 3 (2019).

[51] Kristian Nybom, Adnan Ashraf, and Ivan Porres. 2018. A Systematic Mapping

Study on API Documentation Generation Approaches. In SEAA. IEEE.

[52] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej Wąsowski. 2019. Identi-

fying Redundancies in Fork-Based Development. In SANER. IEEE.

[53] Martin P. Robillard and Robert DeLine. 2011. A Field Study of API Learning

Obstacles. Empirical Software Engineering 16, 6 (2011).

[54] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar

Chaparro, Neil A. Ernst, Marco A. Gerosa, Michael Godfrey, Michele Lanza, Mario

Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund

Wong. 2017. On-Demand Developer Documentation. In ICSME. IEEE.

[55] Per Runeson. 2003. Using Students as Experiment Subjects – An Analysis on

Graduate and Freshmen Student Data. In EASE.

[56] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-

prehending Studies on Program Comprehension. In ICPC. IEEE.

[57] Sandro Schulze, Jacob Krüger, and Johannes Wünsche. 2022. Towards Developer

Support for Merging Forked Test Cases. In SPLC. ACM.

[58] Todd Sedano, D. Paul Ralph, and Cécile Péraire. 2017. Software Development

Waste. In ICSE. IEEE.

[59] Forrest Shull, Janice Singer, and Dag I. K. Sjøberg (Eds.). 2008. Guide to Advanced

Empirical Software Engineering. Springer.

[60] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.

2014. Measuring and Modeling Programming Experience. Empirical Software

Engineering 19, 5 (2014).

[61] Janet Siegmund and Jana Schumann. 2015. Confounding Parameters on Program

Comprehension: A Literature Survey. Empirical Software Engineering 20, 4 (2015).

[62] Diomidis Spinellis. 2005. Version Control Systems. IEEE Software 22, 5 (2005).

[63] S, tefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and

Integrated Variants in an Open-Source Firmware Project. In ICSME. IEEE.

[64] Klaas-Jan Stol and Brian Fitzgerald. 2020. Guidelines for Conducting Software En-

gineering Research. In Contemporary Empirical Methods in Software Engineering.

Springer.

[65] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-

bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Bench-

marking the Techniques for the Evolution of Variant-Rich Systems. In SPLC.

ACM.

[66] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. 2008. Using Students as

Subjects – An Empirical Evaluation. In ESEM. ACM.

[67] Ahmed Tamrawi, Sharwan Ram, Payas Awadhutkar, Benjamin Holland, Ganesh R.

Santhanam, and Suresh Kothari. 2018. DynaDoc: Automated On-Demand

Context-Specific Documentation. In DySDoc. IEEE.

[68] Rebecca Tiarks. 2011. What Maintenance Programmers Really Do: An Observa-

tional Study. In WSR. University of Siegen.

[69] Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. 2007. Empirical

Studies in Reverse Engineering: State of the Art and Future Trends. Empirical

Software Engineering 12, 5 (2007).

[70] Christoph Treude and Martin P. Robillard. 2016. Augmenting API Documentation

with Insights from Stack Overflow. In ICSE. ACM.

[71] Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE

Software 32, 4 (2015).

[72] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program Comprehension

During Software Maintenance and Evolution. Computer 28, 8 (1995).

[73] Xiaomin Wu, Adam Murray, Margaret-Anne Storey, and Rob Lintern. 2004. A Re-

verse Engineering Approach to Support Software Maintenance: Version Control

Knowledge Extraction. In WCRE. IEEE.

[74] Yijun Yu, Yiqiao Wang, John Mylopoulos, Sotirios Liaskos, Alexei Lapouchnian,

and Julio C. S. do Prado Leite. 2005. Reverse Engineering Goal Models from

Legacy Code. In RE. IEEE.

[75] Fiorella Zampetti, Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano

Di Penta, and Michele Lanza. 2017. How Developers Document Pull Requests

with External References. In ICPC. IEEE.

[76] Shurui Zhou, S, tefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wą-

sowski, and Christian Kästner. 2018. Identifying Features in Forks. In ICSE.

ACM.

[77] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2020. How Has Forking

Changed in the Last 20 Years? A Study of Hard Forks on GitHub. In ICSE. ACM.


	Abstract
	1 Introduction
	2 DSDGen
	2.1 Overview
	2.2 Data Sources
	2.3 Crawling, Parsing, and Filtering
	2.4 Information Extraction
	2.5 Presentation

	3 Experimental Simulation
	3.1 Research Questions
	3.2 Study Design
	3.3 Conduct
	3.4 Participants

	4 Results and Discussion
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

