
EXtracting Product Lines from vAriaNTs (EXPLANT)
Jacob Krüger

Otto-von-Guericke
University, Germany

Sebastian Krieter
Harz Unviersity &
Otto-von-Guericke
University, Germany

Gunter Saake
Otto-von-Guericke
University, Germany

Thomas Leich
Harz University, Germany

ABSTRACT
The project EXtracting Product Lines from vAriaNTs (EXPLANT)
funded by the German Research Foundation (DFG) is currently in
its second phase. In this project, we are concerned with the step-
wise migration of cloned variants into a software product line (i.e.,
the extractive approach of adopting systematic software reuse).
While the extractive approach is the most common one in practice,
many of its characteristics (e.g., processes, costs, best practices)
are still unclear and tool support is limited (e.g., for feature loca-
tion, refactoring, quality assurance). Within this extended abstract,
we report on a selection of results we achieved in EXPLANT so
far, and highlight our goals as well as opportunities for research
collaborations in the second phase.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering.

KEYWORDS
Software product line, Reverse engineering, Software evolution,
Extractive approach, Clone and own

ACM Reference Format:
Jacob Krüger, Sebastian Krieter, Gunter Saake, and Thomas Leich. 2020.
EXtracting Product Lines from vAriaNTs (EXPLANT). In Proceedings of the
14th International Working Conference on Variability Modelling of Software-
Intensive Systems (VaMoS ’20), February 5–7, 2020, Magdeburg, Germany.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3377024.3377046

1 INTRODUCTION
Software product lines enable developers to systematically man-
age and reuse software artifacts, which contribute to software fea-
tures, based on an integrated platform [1, 25]. Various techniques
(e.g., feature modeling [3, 24]) and tools (e.g., FeatureIDE [23]) have
emerged that enable developers to cope with the complexity of
software product lines. For instance, feature modeling enables de-
velopers to define a set of features and their interdependencies in
a feature model. Based on this model, a customer can configure a
customized software system that fulfills their specific requirements.
In an automated process, developers can then derive a software
product from the software platform and the given configuration.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VaMoS ’20, February 5–7, 2020, Magdeburg, Germany
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7501-6/20/02.
https://doi.org/10.1145/3377024.3377046

Despite the benefits of software product lines, such as reduced
development and maintenance costs [1, 25], they are rarely applied
from scratch. Instead, practitioners often reuse software in an ad
hoc style by cloning an existing system and adapting it to new re-
quirements (clone& own) [4]. With an increasing number of clones
(resulting in a variant-rich system), this reuse strategy becomes
expensive and error prone, mainly because changes must be prop-
agated between the individual clones [20, 26]. As a result, many
organizations decide to migrate towards a software product line by
extracting it from the cloned systems [7], which has become the
most common adoption strategy in practice [2, 9].

While being a common adoption strategy, the extractive ap-
proach still lacks advanced tooling and an empirical understanding
of its characteristics. To tackle these issues, we investigate the au-
tomated, incremental integration of cloned systems into a software
product line based on code-clone detection and refactorings. We
argued that an extraction into a composition-based—in contrast to
an annotation-based—software product line makes it immediately
usable in practice, improves maintainability due to physically sep-
arated features, and guarantees to preserve semantics. However,
we deviated from our initial plan, due to our findings contradicting
common believes in research and the benefits we argued to achieve.
In particular, our results show that an automatic extraction based on
code-clone detection does not result in meaningful features [5, 17].
Also, surprisingly, annotations do not seem to be as problematic as
often assumed in research [6, 13]. Consequently, we adapted our
plan during the first and for the second phase of EXPLANT. Within
the remaining paper, we summarize our key findings (cf. Section 2)
and our research goals for the remaining project (cf. Section 3).

2 PROGRESS & CONTRIBUTIONS
In the following, we exemplify some of our main findings.

Feature Location. Program comprehension and especially fea-
ture location are core problems of evolving any software system.
We aimed to understand how developers handle these problems
based on empirical and meta studies. For example, we conducted an
experiment on developers’ memory, which showed that especially
authoring and repeatedly editing code facilitate remembering [19].
Moreover, we performed a literature review on manual feature lo-
cation that highlights the importance of involving, supporting, and
understanding developers’ activities [12].

Automated Extraction. One of our goals was to automate the
extraction of a software product line from cloned systems. For this
purpose, we proposed a set of refactorings that employ code-clone
detection [5]. However, neither existing feature-location techniques
nor code-clone detection can fully automate the extraction process.
We conducted an additional case study that highlighted the differ-
ences between automated and manual feature location, indicating
that full automation does not result in reasonable features [17].

https://doi.org/10.1145/3377024.3377046
https://doi.org/10.1145/3377024.3377046


VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Jacob Krüger, Sebastian Krieter, Gunter Saake, and Thomas Leich

Separation of Features. Researchers often argue that anno-
tations are a poor design choice for managing variability (e.g.,
#ifdef-hell [22]). In contrast, we found that they do not impact
change proneness [6], are suitable for tracing features [13], and
are preferred by developers to avoid scattering of fine-grained fea-
tures [8, 15]. Due to these insights, we adapted our work plan to
focus less on composition-based variability mechanisms.

Incremental Integration.We conducted case studies on ana-
lyzing legacy systems [16], extracting software product lines [17,
20], and combining variability mechanisms [18]. A particular result
of these studies are defined processes for developing features and
migrating source code. Our findings indicate that the initially in-
tended horizontal extraction (extracting the most common parts
into features) is not suitable, as clones and differences do not nec-
essarily represent reasonable features. Consequently, we argued in
favor of, and employed, a vertical extraction (incrementally inte-
grating new variants into a common code base) [17].

3 GOALS FOR THE SECOND PHASE
In this section, we exemplify our new research goals.

We aim to tackle the automated migration and evolution
of test suites to assure the quality and to facilitate testing
of a software product line [10]. Besides the actual source code,
most software projects comprise various additional artifacts, for
example, models, documentation, and test suites. To facilitate the
extraction and evolution of a software product line, automated
analyses and syntheses of such artifacts are highly valuable, too.
While some techniques have been proposed, for example, natural
language processing of requirements documentation [21], they are
often in an initial state and require more research to be applicable
in practice. Particular problems that occur for the extraction are
the matching of artifacts to each other and the mapping of artifacts
during the migration process.

We aim to conduct and synthesize empirical studies, in-
cluding analyses of version control systems (VCSs), to mea-
sure activities and assess their impact on costs [11]. It is im-
portant to understand the costs related to extracting a software
product line [14]. Only with reliable empirical insights, we can ini-
tiate collaborations and show organizations that an extraction is
valuable, and not an unprofitable investment. Currently, we started
with empirical studies and collaborations with practitioners to gain
insights into these costs, but further analyses are needed.

We aim to adapt analysis techniques for VCSs, including
feature location, variability analysis, and architecture syn-
thesis.VCSs (e.g., Git) and software-hosting platforms (e.g., GitHub)
are becoming the major tools to implement and manage cloned sys-
tems. Consequently, further analyzing such systems and adapting
our current techniques to their specifics is an important research
goal. In contrast to completely separated clones, clones of VCSs are
often lightly connected (e.g., through linked forks) and comprise
additional information sources (e.g., commit messages, timestamps,
diffs, and pull requests) [16].

4 CONCLUSION
The extraction and evolution of variant-rich systems, and especially
software product lines, are challenging tasks. Consequently, they

provide various research opportunities of which we address some
within the EXPLANT project. In this extended abstract, we exem-
plified core contributions that we achieved in the first phase of this
project, and highlighted some of our new research goals for the
second phase.
Acknowledgments. This research is supported by the DFG project
EXPLANT (LE 3382/2-3, SA 465/49-3). We thank all our past and
current collaborators for their contributions to this research project.

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2016. Feature-

Oriented Software Product Lines. Springer.
[2] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M Atlee, Martin Becker,

Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In VaMoS.

[3] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In VaMoS.

[4] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In CSMR.

[5] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to a
Product Line. In SANER.

[6] Wolfram Fenske, Sandro Schulze, and Gunter Saake. 2017. How Preprocessor
Annotations (do not) Affect Maintainability: A Case Study on Change-Proneness.
In GPCE.

[7] Charles Krueger. 2001. Easing the Transition to Software Mass Customization.
In PFE.

[8] Jacob Krüger. 2018. Separation of Concerns: Experiences of the Crowd. In SAC.
[9] Jacob Krüger. 2019. Are You Talking about Software Product Lines? An Analysis

of Developer Communities. In VaMoS.
[10] Jacob Krüger, Mustafa Al-Hajjaji, Sandro Schulze, Gunter Saake, and Thomas

Leich. 2018. Towards Automated Test Refactoring for Software Product Lines. In
SPLC.

[11] Jacob Krüger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants into an Integrated Platform. In VaMoS. Accepted.

[12] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2019. Features and How to
Find Them: A Survey of Manual Feature Location. In SEVIS.

[13] Jacob Krüger, Gül Çalikli, Thorsten Berger, Thomas Leich, and Gunter Saake.
2019. Effects of Explicit Feature Traceability on Program Comprehension. In
ESEC/FSE.

[14] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In SPLC.

[15] Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich. 2018.
Physical Separation of Features: A Survey with CPP Developers. In SAC.

[16] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case Study
on Recovering Feature Facets. J Syst Softw 152 (2019).

[17] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In SPLC.

[18] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher Kruczek, Fabian
Benduhn, Thomas Leich, and Gunter Saake. 2018. Composing Annotations
Without Regret? Practical Experiences Using FeatureC. Softw Pract Exper 48, 3
(2018).

[19] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2018. Do you Remember this Source Code?. In ICSE.

[20] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
2018. Getting Rid of Clone-and-Own: Moving to a Software Product Line for
Temperature Monitoring. In SPLC.

[21] Yang Li, Sandro Schulze, and Gunter Saake. 2017. Reverse Engineering Variability
from Natural Language Documents: A Systematic Literature Review. In SPLC.

[22] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. 2006. A Quantitative Analysis of Aspects in the eCos Kernel.
In EuroSys.

[23] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[24] Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In ESEC/FSE.

[25] Frank Van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer.

[26] Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. 2006. Assessing
Merge Potential of Existing Engine Control Systems into a Product Line. In SEAS.


	Abstract
	1 Introduction
	2 Progress & Contributions
	3 Goals for the Second Phase
	4 Conclusion
	References

