
How Can I Contribute? AQualitative Analysis of
Community Websites of 25 Unix-Like Distributions
Jacob Krüger

Otto-von-Guericke University
Magdeburg, Germany

Sebastian Nielebock
Otto-von-Guericke University

Magdeburg, Germany

Robert Heumüller
Otto-von-Guericke University

Magdeburg, Germany

ABSTRACT
Developers collaboratively implement large-scale industrial and
open-source projects. Such projects pose several challenges for de-
velopers, as they require considerable knowledge about the project
and its development processes, for instance, to fix bugs or imple-
ment new features. Understanding what information developer
communities codify on how to contribute to their project is cru-
cial, for example, to onboard new developers or for researchers
to scope analysis techniques. In this paper, we report the results
of a qualitative analysis of 25 Unix-like distributions, focusing on
what information the communities codify publicly on contributing.
The results reveal no dedicated strategies to codify information on
contribution or development practices. Still, non-technical contribu-
tions are easy to identify, while information on the development is
hard to collect—and mostly concerned with versioning and bug re-
porting. Our insights help to understand information-provisioning
strategies, identify information sources, and scope analyses.

CCS CONCEPTS
• Software and its engineering→ Documentation.

KEYWORDS
Linux, Unix, Information provisioning, Development, Bug fixing
ACM Reference Format:
Jacob Krüger, Sebastian Nielebock, and Robert Heumüller. 2020. How Can I
Contribute? A Qualitative Analysis of Community Websites of 25 Unix-Like
Distributions. In Evaluation and Assessment in Software Engineering (EASE
2020), April 15–17, 2020, Trondheim, Norway. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3383219.3383256

1 INTRODUCTION
Most software is developed by a community of developers, is con-
stantly increasing in size, has a high level of complexity, and its
arguably impossible for a developer to know all of its parts [7, 13,
14, 16, 17]. Before working on such software, developers have to
understand how they can contribute to the project: What are the
rules and development practices? This knowledge is important to
onboard developers, evolve the project in a consistent way, under-
stand practices or scope analysis techniques [18, 28].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383256

We are not aware of an empirical study analyzing what informa-
tion communities codify and provide publicly, supporting especially
externals to understand their practices. For instance, a community
may use a Wiki, website or software-hosting platform (e.g., GitHub)
for this purpose. So, the question is whether communities employ
dedicated strategies, such as using a single place (e.g., a Wiki page)
to provide codified information? This is an important question, as
highlighted by Steinmacher et al. [28, 29], who identified a “Poor
How to Contribute” overview and related issues (e.g., outdated
documentation) as barriers for new developers. For researchers,
this information is important, for example, to verify findings, adopt
techniques, and select subject systems.

In this paper, we report a qualitative analysis of 25 Unix-like dis-
tributions. These distributions, are complex (e.g., the Linux Kernel
and packages), have large communities, are often long-living, and
are open-source—usually encouraging developers to contribute. For
instance, the following statement sketches the complexity of one
distribution, indicating various roles, practices, and packages:

“Arch developers and Trusted Users are responsible for compiling, pack-
aging, and distributing software from a wide range of sources.”

https://wiki.archlinux.org/index.php/Bug_reporting_guidelines

Arch

So, Unix-like distributions allow us to investigate the practices of
different developer communities that should aim to codify and pro-
vide information publicly. We conducted an extensive manual study
of the communities’ infrastructures based on a mix of qualitative
document analysis [5], open-card sorting [33], and open coding [9].
In detail, our contributions are:
• We identify how 25 communities codify and provide information
on how to contribute to their projects for externals.

• We describe and classify different types of contributions.
• We analyze feature-development and bug-reporting practices.
• We provide an open-access replication package.1
The results indicate that Unix-like distributions are highly diverse
in their information provisioning. This means that new developers—
and researchers—face severe challenges to familiarize with a distri-
bution and its community, particularly since many details seem to
be not codified or only available to selected developers.

2 RELATEDWORK
Knowledge Sharing. Rodríguez et al. [25] found that collaborative
work enforces developers to share knowledge, and that the avail-
ability of information must also be shared or it will be lost. Hemets-
berger and Reinhardt [11] investigated how OSS-communities en-
able the re-experience of knowledge, which is based on code docu-
mentation and the repository. Analyzing the R community, Vasilescu
1https://doi.org/10.5281/zenodo.3665429

https://doi.org/10.1145/3383219.3383256
https://doi.org/10.1145/3383219.3383256
https://wiki.archlinux.org/index.php/Bug_reporting_guidelines
https://doi.org/10.5281/zenodo.3665429

EASE 2020, April 15–17, 2020, Trondheim, Norway Jacob Krüger, Sebastian Nielebock, and Robert Heumüller

et al. [32] identified that developers shift towards community ques-
tion answering systems [27], as they receive faster feedback com-
pared to mailing lists. In contrast to these works, we strove for a
broader view regarding how information is codified and provided.
OSS/FLOSS Communities. The main motivation for frequently
contributing to an OSS/FLOSS project is increased social capi-
tal [12, 23], such as identifying with the project, solidarity with
other developers, personal career, learning new technologies or
enjoyment. Roberts et al. [24] analyzed the relation among such
motivations, for example, getting paid as an extrinsic incentive
may negatively impact the intrinsic motivation to identify with
the project. Factors for disengagement in OSS/FLOSS projects are
gender biases [10, 20, 31], not accepting pull requests from exter-
nals [22], missing guidelines [6], problems setting up the develop-
ment environment as well as communication issues [20], insuffi-
cient mentoring [3], and personal changes [21]. We contribute a
complementary analysis of such problems (e.g., missing guidelines)
focusing on a problemmentioned, but not analyzed, by Steinmacher
et al. [28, 29]: a “Poor How To Contribute” section.
OSS/FLOSS Projects. Researchers use OSS/FLOSS projects as sub-
ject systems, for instance, to analyze differences in success crite-
ria [8], quality management [2], and development practices [18, 26]
compared to other projects. Particularly, the Linux Kernel is used
regularly to examine the characteristics of software systems. For
example, this includes variability analysis and bugs [1, 14], code
evolution [13, 19], and software aging [7]. In contrast to such works,
we focus on the information provisioning, with our findings sup-
porting researchers to scope and improve their analyses.

3 METHODOLOGY
Research Questions. Our goal was to capture what information
on contributing communities codify and provide publicly. To this
end, we defined four research questions:
RQ1 How do communities provide information?
RQ2 How can developers contribute to distributions?
RQ3 What feature-developmenmt practices are publicly codified?
RQ4 What bug-reporting practices are publicly codified?
Our analysis focuses on information that the communities make
publicly available. So, we did not register to websites, contact com-
munity members or try to gain developer status, meaning that there
may be additional information available. This represents the per-
spective of developers, users, and researchers who consider joining
or using a project and aim to get informed beforehand.
Subject Systems.We conducted our analysis on 25 Unix-like dis-
tributions. Mostly, these are Linux distributions that build on the
Linux Kernel—on its own one of the largest and most complex sys-
tems [13, 14, 30]—and extend it with own and foreign packages to
deliver an operating system. An established distribution is usually
developed by a larger community and the system’s complexity chal-
lenges development (e.g., resolving conflicts between packages).

To avoid subjectivity and sampling biases, we selected our sam-
ple from DistroWach, a website that collects data on Unix-like
distributions. We considered the highest ranked distributions as of
2018,2 the most recently completed year at the time of our analysis.
The “Hits Per Day” ranking that DistroWatch uses is not ideal, but

2https://www.distrowatch.com/index.php?dataspan=2018

Table 1: Overview of the 25 distributions we analyzed.

Name HPD UA GI D QA
DP FD FR BR RP TP

1 Manjaro 3778 ● ● ● ● ●

2 Mint 2495 ● ● ● ● ● ● ●

3 elementary 1708 ● ● ● ● ● ●

4 MX Linux 1694 ● ● ●

5 Ubuntu 1506 ● ● ● ● ●

6 Debian 1259 ● ● ● ● ● ● ●

7 Solus 916 ● ● ● ● ● ●

8 Fedora 900 ● ● ● ● ● ● ● ●

9 OpenSUSE 768 ● ● ● ● ● ● ●

10 ZorinOS 642 ●

12 CentOS 596 ● ● ● ● ● ● ●

13 Arch 580 ● ● ● ● ● ●

14 ReactOS 547 ● ● ● ●

15 Kali 514 ● ● ● ● ● ●

16 antiX 501 ●

17 KDE neon 499 ● ● ● ● ● ● ● ●

18 TrueOS 497 ● ● ● ●

19 Lite 488 ● ● ●

20 Lubuntu 412 ● ● ● ● ●

21 deepin 401 ● ● ● ● ●

22 PCLinuxOS 394
23 Peppermint 368 ● ● ●

24 Endless 365 ● ● ●

25 FreeBSD 357 ● ● ● ● ● ● ● ●

26 SmartOS 352 ● ● ● ● ● ●

Σ 13 15 15 21 14 23 9 14
UA: Unrestricted Accessibility; GI: Gathered Information

D: Development; QA: Quality Assurance; DP: Deployment Practices
FD: Feature Development and Versioning; FR: Feature Requests
BR: Bug Reporting; RP: Review Practices; TP: Testing Practices

reflects the interest of the site’s visitors in different distributions
based on how often the corresponding entries were visited. HPD
is rather objective compared to an authors’ sample and more in-
teresting for developers than a random sample. As we show in
Table 1, we included major (e.g., Ubuntu) and specialized (e.g., Kali)
distributions. We also summarize the ranking of each distribution
and the results of our analysis, excluding one distribution that was
not listed as active anymore (i.e., #11: Antergos).
Identifying Information. The community of each distribution
maintains a website, providing information codified in natural lan-
guage. Analyzing natural language is a laborious task that requires
manual analysis. For this reason, we conducted a qualitative study
following the recommendations of Bowen [5]. Initially, the first au-
thor manually inspected each DistroWatch entry and the websites
linked there to identify inactive distributions and relevant content
based on keywords, such as “Get Involved”, “Join” or “Contribute”.
We then documented whether the information was gathered at a
single place, whether it was accessible (i.e., RQ1), and how devel-
opers could contribute (i.e., RQ2). To classify different contribution
options, the second author employed an iterative open-card sort-
ing [33] based on textual summaries.

Afterwards, we read the descriptions of the two most common
technical contribution practices—feature development and version-
ing (i.e., RQ3) as well as bug reporting (i.e., RQ4)—in more detail
to identify what information on what level of detail the commu-
nities codified publicly. First, we analyzed what information each
distribution provided regarding these practices, and also checked
our previous results. As we dealt with unstructured and scattered
information, we split the task among all authors, each analyzing

https://www.distrowatch.com/index.php?dataspan=2018

How Can I Contribute? EASE 2020, April 15–17, 2020, Trondheim, Norway

Table 2: Development and quality-assurance practices.
Practice Information on ...

D Deployment (DP) how to create binaries and distribute a new
version (e.g., continuous integration).

D Feature Development
and Versioning (FD)

how to write code and use the version control
system (e.g., branching strategies).

D Feature Requests (FR) how to propose new features and how features
are selected (e.g., new packages).

QA Bug Reporting (BR) how to report bugs (e.g., in an issue tracker).
QA Review (RP) how code is reviewed (e.g., by core developers).
QA Testing (TP) how the distribution is tested (e.g., manual).

eight to nine distributions. We iterated through the links provided
on each distribution’s website to identify relevant information. This
process was cross-checked by one other author for each distribution
to check the results. Second, to answer RQ3 and RQ4, the first two
authors employed open coding on the resulting data. Afterwards,
we used open-card sorting to define themes based on the identi-
fied codes. We documented each website that comprised valuable
information and provide copies in our replication package.1

4 RQ1: INFORMATION PROVISIONING
Results. For accessibility, we found that several communities

employ access restrictions on their information. In some cases, de-
velopers have to fill in contact forms (e.g., MX Linux) or apply (e.g.,
Arch) to become a member. These access restrictions vary between
communities and contribution types, for example, in most cases any
user may report bugs, while few communities are completely open
for developers to suggest any change, and some ask developers
to contribute to another (base) distribution (e.g., antiX, Endless).
These variations make a quantitative assessment problematic, but
we found access restrictions of apparently existing information for
nine distributions, while we seemed to have unrestricted access to
all pieces of information for 13 distributions (i.e., UA in Table 1).

For gathering information, we found 15 communities that col-
lect links at a dedicated place (CI in Table 1), referring to tools
and guides, such as Bugzilla. Mostly, these centralized places are
a website or Wiki page that is highlighted on the main page with
keywords, such as “Get Involved”. Seven distributions have only
scattered information (e.g., information is on Wiki pages and dis-
cussion boards without links) and three apparently do not gather
information publicly (i.e., ZorinOS, antiX, and Endless).

Discussion. Most communities employ their own information-
provisioning strategy, ranging from openly publishing to com-
pletely hiding information. Clearly, some strategies can hamper the
onboarding of new developers and the understanding of practices
employed. While the information may be available after becoming
part of a core development team, this is a high threshold and takes
a lot of effort. Similarly, many communities do not have a dedicated
place that explains how to contribute to a distribution.

Based on what we identified during our study, we hypothesize
that most communities have good reasons for employing their prac-
tices. First, distributions emerge over time and their communities
focus on implementing the distribution itself. So, they spend less
time on codifying information. This may only happen if a distribu-
tion gains more traction or needs new developers, for example:

“The TrueOS Project has existed for over ten years. Until now, there
was no formally defined process for interested individuals [...] to earn
contributor status [...]. The current core TrueOS developers [...] wish to
formalize the process [...]”

https://www.trueos.org/contribute/

TrueOS

Second, communities with specialized distributions (e.g., Kali fo-
cuses on forensics) apparently aim to keep control over their distri-
bution, having a dedicated team that decides about new features.
This is highlighted by some communities’ practices:

“[...] the core developers review the commit logs, removing elements
that break the Project or deviate too far from its intended purpose.”

https://www.trueos.org/contribute/

TrueOS

Third, larger communities seem to aim to ensure quality by en-
forcing processes and restricting developers’ access. For example,
Debian and Arch have restrictive onboarding processes (e.g., assess-
ing contributions to community projects). Finally, few distributions
(e.g., ZorinOS) are developed by companies, selling some variants
and restricting the access to detailed information.

We did not identify dedicated strategies to codify and provide
information publicly, but varying degrees of accessibility and
gathering of information.

RQ1: How do communities provide information?

5 RQ2: HOW TO CONTRIBUTE
Results. Most communities combine various tools (e.g., discus-

sion boards, community-question-answering systems [4, 15, 27],
and social media) and exemplify various options to contribute (e.g.,
reporting bugs, maintainingWikis, and donating). During our open-
card sorting, we identified three options for how and what develop-
ers can contribute. Due to the aforementioned limitations (RQ1), we
cannot quantify precisely how many communities employ what op-
tion. We again found variations regarding the information on what
tools are used (e.g., GitLab, GitHub, and own versioning systems,
such as OSC of OpenSUSE) for what option.
Non-Technical Contributions.We found several options to con-
tribute without getting involved in development, mostly donating
money (also called sponsoring/funding). Quite regularly, we found
documenting, translating, and promoting a distribution; contribut-
ing to discussion boards, community-question-answering systems,
and Wikis; as well as providing designs (e.g., websites, user inter-
faces) and artwork (e.g., Mint, Fedora, CentOS). Some distributions
have rare options, for instance, supporting event organization (i.e.,
Fedora), a blog (e.g., Kali, Lubuntu) or a magazine (i.e., PCLinuxOS).
Technical Contributions. For technical contributions, we found
considerably less information compared to non-technical ones. We
identified five types of practices (cf. Table 2) during our first open-
card sorting, and added reviewing (RP) while cross-checking the
results and additional data. Interestingly, we observed that several
distributions have separated repositories for external developers to
implement own packages. Probably best known may be the Arch
User Repository (AUR)3 that allows to upload own packages that

3https://aur.archlinux.org/

https://www.trueos.org/contribute/
https://www.trueos.org/contribute/
https://aur.archlinux.org/

EASE 2020, April 15–17, 2020, Trondheim, Norway Jacob Krüger, Sebastian Nielebock, and Robert Heumüller

users can compile and run on Arch and its derivatives (e.g., Man-
jaro). Moreover, the Arch community uses AUR contributions to
judge which developers may join their development team. Sim-
ilar practices exist for other distributions (e.g., Mint community
projects) and some even allow their community to vote what pack-
ages should be included into the main distribution (e.g., Fedora).
Communication & Tools. Developers must communicate and
use specific tools to contribute. Depending on the contribution,
different channels are used by each community, including instant
messengers, discussion boards, mailing lists, wikis, and social media.
In fact, most distributions utilize multiple channels for communi-
cation and information-provisioning, making it harder to identify
the ones that comprise valuable information (cf. RQ1). For exam-
ple, FreeBSD uses Bugzilla to report and fix bugs. However, the
codified recommendation for contributing bug fixes is to read the
corresponding mailing list—scattering information at two places
and hiding information within communication.

Discussion. As for information-provisioning (cf. Section 4), we
found numerous possibilities to contribute to a distribution. While
non-technical contributions are often intuitively understandable
and linked on the websites, information and tools for technical
contributions are hard to identify. This problem challenges technical
contributions, as it becomes unclear where to find information,
identify open issues, and communicate or submit a contribution.
Moreover, providing information and tooling at different places may
easily result in inconsistencies and tangles communication with
information. For example, some communities use mailing lists and
Bugzilla in parallel, and Debian enforces templates for reporting
bugs in mails that can also be send with the reportbug tool.4 Such
inconsistency may have simply evolved over time, is working well
or represents a bad smell, but a more detailed understanding how
different tools are used and combined in a community can help to
improve our understanding of current practices.

Due to missing codified information and numerous options to
contribute, it seems challenging for new users to onboard. Stein-
macher et al. [28, 29] name specifically this problem as one barrier
for new developers. However, we found an elegant solution by the
Fedora community: An additional website5 allows new users to
interactively click through contribution options and links to corre-
sponding Wiki pages. While this may not be the best solution, it
is a unique one to motivate contributors, and comparing such an
onboarding site with the usual plain websites seems interesting.

We found various codified options for contributing to distri-
butions, which are not limited to technical contributions. As
different tools are used, information and communication may
get scattered and tangled at places new developers do not know.

RQ2: How can developers contribute to distributions?

6 RQ3: DEVELOPMENT PRACTICES
Results. As we show in Table 1, we found six codified develop-

ment and quality-assurance practices. For deployment practices
(DP) we only considered cases where we found information on
how to build binaries from the source files. For feature requests

4https://www.debian.org/Bugs/Reporting
5https://whatcanidoforfedora.org/

(FR), we found that most distributions ask developers to suggest
them either through an issue tracker (e.g., GitHub, Bugzilla) or pull
requests (in GitHub). Few communities provide codified guidelines
on how to submit and describe new features (e.g., Mint, Fedora).
Interestingly, Fedora maintains a guideline on “forbidden” features,
which excludes proprietary software, but also violations with US
laws. The information codified most commonly (21) was on feature
development and versioning, which we detail in the following.
Tools. The most common information we found was the versioning
system used. In most cases, we found Git repositories or software-
hosting platforms (e.g., GitHub, GitLab), while some communities
rely (in addition) on SVN (e.g., FreeBSD), Launchpad and Bazaar
(e.g., Ubuntu) or own systems (e.g., OpenSUSE). Interestingly, the
Debian community provides extensive guides on how to develop,
but supports only mirrors to download the source code, apparently
not relying on a version control system. Most communities use the
features of software-hosting platforms, particularly pull requests,
to manage and trace contributions. Some communities specify addi-
tional development tools, such as distribution-specific libraries (e.g.,
GNOME for Mint), IDE recommendations (e.g., Sublime for Mint),
review tools (e.g., Gerrit for deepin), build systems (e.g., Meson for
elementary), and design tools (e.g., Glade for Mint). In some cases,
we found scripts to check for style conformance (e.g., Solus).
Contributing. For contributing, several communities specify re-
quirements and restrictions, also based on developer roles and the
contributions an applicant has done. Some communities provide
information on how developers can apply and what requirements
they have to fulfill to gain access. To this end, communities have
different access levels based on a developer’s role. For example,
FreeBSD defines the roles of “contributor”, “committer”, and “main-
tainer”, each with specific responsibilities and access restrictions.
In addition, most communities ask contributors to register to their
systems, apply for access (e.g., via mail), get recommendations by
members, maintain personal information, and participate regularly.
For an application, the communities seem to focus on the appli-
cant’s knowledge. An applicant usually has to read, and agree to
documents (e.g., guidelines, code of conduct), show that they are
skilled in developing and the tools used, can cooperate with other
developers (i.e., soft skills), and provide reference contributions
(e.g., in the AUR). Concerning development rules, some communi-
ties define coding conventions. Some unique rules are that only
individuals may receive access (i.e., FreeBSD) or that developers
should not have access to the source code of specific software:

“We only ask that you have not had access to Microsoft source code for
the area you want to work on.”

https://www.reactos.org/participation

ReactOS

Finally, some communities codify how to prepare for a new contribu-
tion. Mainly, this includes how to check that the same contribution
is not already under development and how to set up tools.
Soft Skills. We identified information on developers’ soft skills
for eight distributions. As these are complex, non-uniform and not
about contributing features itself, we did not dig into detail. Still, it
is an interesting finding that few communities seem to codify the
required skill set of developers or the code of conduct employed. For

https://www.debian.org/Bugs/Reporting
https://whatcanidoforfedora.org/
https://www.reactos.org/participation

How Can I Contribute? EASE 2020, April 15–17, 2020, Trondheim, Norway

example, Mint specifies understanding English as the only soft-skill
needed, while Fedora defines a short code of conduct.6

Discussion. For most distributions, we were able to identify the
(version control) system in which the community develops. While
we also found recommendations on code styles and tools, the actual
development process was rarely codified (cf. previous TrueOS ex-
amples). As a positive example, the Fedora7 community describes
the processes for various activities in detail. For some distributions,
any developer can suggest features in issue trackers or pull requests,
for example, the deepin community8 reviews pull requests and ac-
knowledges contributors after acceptance. However, it is unclear
whether the same processes are employed by each community, as
they may be hidden behind an application barrier. Further analyses
seem necessary to assess what development practices should be
codified to support the onboarding of new developers.

The application barrier seems quite high for several distributions,
requiring significant knowledge about a distribution. Particularly
challenging may be the regular contribution to packages, as for
instance Arch (i.e., AUR) and TrueOS (i.e., five or more pull requests
in sixmonths) demand. Some communities still restrict a developers’
activities according to specific roles. In contrast to these codified
rules, soft skills are rarely mentioned. Overall, onboarding new
developers seems rather problematic, as a lot of information is not
codified. These problems arguably relate to our hypotheses forRQ2,
asking for a more detailed analysis of a community’s motivations.

Most distributions rely on a version control system, but we rarely
found codified information on actual development practices and
how to interact with the system.

RQ3: What feature-developmenmt practices are publicly codified?

7 RQ4: QUALITY-ASSURANCE PRACTICES
Results. We found that nine communities codified information

on reviewing (RP) and 14 on testing practices (TP). Some communi-
ties explicitly list becoming a tester as a way to contribute to the
distribution. However, the processes are unclear, with few commu-
nities reporting about automated testing (e.g., Lubuntu, ReactOS)
and testing teams (e.g., Arch). For reviewing, most communities
only state that pull requests are reviewed, but not how this is done.
We can see in Table 1 that almost all (23) communities describe how
to report bugs (BR), so we focus on this practice in this section.
Tools. Many distributions use issue trackers to report bugs (and
request features), particularly those integrated in software-hosting
platforms. Still, we found third-party trackers, such as Launchpad,
Bugzilla or Jira, and self-developed tools (e.g., Solus Development
Portal9). If bugs are connected to third-party packages or base dis-
tributions, most communities ask to redirect the reports to those.
Issue trackers usually incorporate bug-report search engines, which
are explicitly mentioned and are used to avoid duplicate bug re-
ports. Also, some communities use tools to finance bug reports to
provide incentives for bug fixing, for example on Bountysource (e.g.,
Lite). Some communities use tools for automated data collection
and report creation, for instance, apport (i.e., Ubuntu, Lubuntu) or
6https://docs.fedoraproject.org/en-US/project/code-of-conduct/
7https://fedoraproject.org/wiki/Join_the_package_collection_maintainers
8https://www.deepin.org/en/developer-community/development/
9https://dev.getsol.us/

reportbug (i.e., Debian). Other tools are sometimes mentioned to
be used, but are actually not designed for this purpose. For instance,
this includes mailing lists that involve automated processing of
reports and forum threads for discussions. Again, tools get tangled,
for example, Debian uses a mailing list based on which tickets are
generated, while other distributions seem to just run both tools in
parallel. Most tools are used to assign and clarify bug reports, which
is mostly done by attaching discussions to a report.
Content of Bug Reports. Many communities provide detailed
information on what should be described in a bug report. Still, the
Arch community may best summarize what is relevant:

“If you do not know what the relevant pieces of information are, do
not be shy: it is better to give more information than needed than not
enough.”

https://wiki.archlinux.org/index.php/Bug_reporting_guidelines

Arch

Besides this recommendation, we could find several codes from
various distributions to define the content of a bug report. Most
important is a summarizing title for searching and understanding
the report. In addition, the report should describe observed and
expected behavior, enriched with logged data (e.g., error logs), and
screenshots or videos to depict graphical bugs. To facilitate bug fixing,
most communities ask to specify the environment (e.g., system
configuration) and provide a step-by-step replication guide. Finally,
some communities ask to classify or tag bugs (e.g., severity level,
bug type, packages) and provide contact data.

We could further identify themes on how to write this content
and what not to put into a report. Namely, this includes some
soft-skills related information, stating that a bug report should be
polite and not include gossip. Bug reports should also not comprise
sensitive data, such as passwords. While preparing a bug report,
most communities ask the contributor to first check whether it
already exists or has been fixed (e.g., in a newer or nightly version).
Some communities also codify whether to report something or not:

“MOST IMPORTANTLY: if you’re not sure if you should report a bug,
report it anyway!”

https://phab.lubuntu.me/w/bugs/

Lubuntu

Important for most communities is to post only a single issue in
each bug report. The codified information we found highlights
that most communities mostly care about getting informed about
bugs. They seem to prefer that as much information as possible is
provided, that all potential bugs are reported, and that they do not
have to separate multiple bugs tangled in a single report.

Discussion. The details of the information codified on quality as-
surance vary heavily, sometimes only specifying where to submit a
bug, while some communities define templates. Some communities
report processes to determine whether a bug is a bug, whether it has
been reported, and what information should be provided. For exam-
ple, Mint provides a detailed introduction on what general concepts
or steps users should be aware of, including observation, expecta-
tion, reproducibility, responsibility, change, errors, environment
as well as steps for reporting bugs.10 Unfortunately, such detailed

10https://linuxmint-troubleshooting-guide.readthedocs.io/en/latest/

https://docs.fedoraproject.org/en-US/project/code-of-conduct/
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers
https://www.deepin.org/en/developer-community/development/
https://dev.getsol.us/
 https://wiki.archlinux.org/index.php/Bug_reporting_guidelines
https://phab.lubuntu.me/w/bugs/
https://linuxmint-troubleshooting-guide.readthedocs.io/en/latest/

EASE 2020, April 15–17, 2020, Trondheim, Norway Jacob Krüger, Sebastian Nielebock, and Robert Heumüller

guides are rare, but may provide a basis for other projects, guide-
lines, issue trackers, and analyses to improve practices. Detailed
information in issue trackers may help advancing techniques, for ex-
ample, to assign bugs to issue trackers, evaluate testing techniques,
classify bugs or automated data collection and report creation.

We found that mainly information on bug reporting is codified,
but many details about the quality-assurance practices employed
remain unclear for externals.

RQ4: What bug-reporting practices are publicly codified?

8 THREATS TO VALIDITY
Internal Validity. The documents we analyzed were produced by
the community of a distribution andmay not represent their current
practices. For example, documents may be incomplete, outdated,
inaccessible or wrong (cf. Section 4). So, we cannot conclude to what
extent the communities employ practices, but we purposefully took
this perspective of externals facing potentially tainted information.

We manually identified and analyzed natural-language docu-
ments. While we carefully read the documents and recorded our
process, the outcome may be influenced by our opinions and knowl-
edge. Moreover, we may have made errors or used varying depths
while searching for documents, potentially resulting in false classi-
fications or missed information. We aimed to mitigate this threat
by using open coding and open-card sorting, by synchronizing our
results and processes constantly, and by cross-checking the results.
External Validity. We analyzed Unix-like distributions, which
essentially comprise the adaptation and maintenance of packages.
These distributions are complex and require substantial knowledge,
wherefore contributors have to undergo an intensive onboarding.
We cannot determine whether other OSS/FLOSS projects are more
open or codify more information publicly. Moreover, we did not
analyze to what extent the provided information is actually useful
to support onboarding. So, we cannot generalize our results, but our
insights on practices and information provisioning are still highly
valuable for communities and researchers.

9 CONCLUSION
In this paper, we qualitatively analyzed the publicly codified in-
formation on how to contribute to 25 Unix-like distributions. We
investigated four research questions on how and what information
is provided, identifying considerable differences between communi-
ties. Overall, our results are valuable for open-source communities
to design and codify their project practices. For new developers
and researchers, we highlighted challenges of identifying codified
information about such communities. In future work, we intend to
compare the codified information to the practices employed, We
also aim to conduct interviews and surveys to understand what
practices work better in what scenarios.
Acknowledgments. This research has been supported by the Ger-
man Research Foundation project EXPLANT (SA 465/49-3).

REFERENCES
[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability Bugs in

the Linux Kernel: A Qualitative Analysis. In ASE.
[2] Mark Aberdour. 2007. Achieving Quality in Open-Source Software. IEEE Software

24, 1 (2007).
[3] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco

Gerosa. 2018. Newcomers’ Barriers. . . Is That All? An Analysis of Mentors’ and

Newcomers’ Barriers in OSS Projects. CSCW.
[4] Anton Barua, Stephen Thomas, and Ahmed Hassan. 2014. What are Developers

Talking About? An Analysis of Topics and Trends in Stack Overflow. Empirical
Software Engineering 19, 3 (2014).

[5] Glenn Bowen. 2009. Document Analysis as a Qualitative Research Method.
Qualitative Research Journal 9, 2 (2009).

[6] Jailton Coelho and Marco Valente. 2017. Why Modern Open Source Projects Fail.
In ESEC/FSE.

[7] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo.
2010. Software Aging Analysis of the Linux Operating System. In ISSRE. IEEE.

[8] Kevin Crowston, Hala Annabi, and James Howison. 2003. Defining Open Source
Software Project Success. In ICIS.

[9] Uwe Flick. 2018. An Introduction to Qualitative Research.
[10] Denae Ford, Justin Smith, Philip Guo, and Chris Parnin. 2016. Paradise Unplugged:

Identifying Barriers for Female Participation on Stack Overflow. In FSE.
[11] Andrea Hemetsberger and Christian Reinhardt. 2006. Learning and Knowledge-

Building in Open-Source Communities: A Social-experiential Approach. Man-
agement Learning 37, 2 (2006).

[12] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of Software
Developers in Open Source Projects: An Internet-Based Survey of Contributors
to the Linux Kernel. Research Policy 32, 7 (2003).

[13] Ayelet Israeli and Dror Feitelson. 2010. The Linux Kernel as a Case Study in
Software Evolution. Journal of Systems and Software 83, 3 (2010).

[14] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in
Software Product Lines. In ICSE.

[15] Jacob Krüger. 2019. Are You Talking About Software Product Lines? An Analysis
of Developer Communities. In VaMoS.

[16] Jacob Krüger. 2019. Tackling Knowledge Needs during Software Evolution. In
ESEC/FSE.

[17] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2018. Do You Remember This Source Code?. In ICSE.

[18] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case Study
on Recovering Feature Facets. Journal of Systems and Software 152 (2019).

[19] Simone Livieri, Yoshiki Higo, Makoto Matsushita, and Katsuro Inoue. 2007. Anal-
ysis of the Linux Kernel Evolution Using Code Clone Coverage. In MSR.

[20] Christopher Mendez, Hema Padala, Zoe Steine-Hanson, Claudia Hilderbrand,
Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma, and
Margaret Burnett. 2018. Open Source Barriers to Entry, Revisited: A Sociotechni-
cal Perspective. In ICSE.

[21] Courtney Miller, David Widder, Christian Kästner, and Bogdan Vasilescu. 2019.
Why Do People Give Up FLOSSing? A Study of Contributor Disengagement in
Open Source. In OSS.

[22] Rohan Padhye, Senthil Mani, and Vibha Sinha. 2014. A Study of External Com-
munity Contribution to Open-Source Projects on GitHub. In MSR.

[23] Huilian Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and Bogdan
Vasilescu. 2019. Going Farther Together: The Impact of Social Capital on Sustained
Participation in Open Source. In ICSE.

[24] Jeffrey Roberts, Il-Horn Hann, and Sandra Slaughter. 2006. Understanding the
Motivations, Participation, and Performance of Open Source Software Developers:
A Longitudinal Study of the Apache Projects. Management Science 52, 7 (2006).

[25] Oscar Rodríguez, Ana Martínez, Jesús Favela, Aurora Vizcaíno, and Mario Piattini.
2004. Understanding and Supporting Knowledge Flows in a Community of
Software Developers. In Groupware: Design, Implementation, and Use.

[26] Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim Lakhani.
2006. Understanding Free/Open Source Software Development Processes. Soft-
ware Process: Improvement and Practice 11, 2 (2006), 95–105.

[27] Ivan Srba and Maria Bielikova. 2016. A Comprehensive Survey and Classification
of Approaches for Community Question Answering. ACM Transactions on the
Web 10, 3 (2016).

[28] Igor Steinmacher, Tayana Conte, Marco Gerosa, and David Redmiles. 2015. Social
Barriers faced by Newcomers Placing their first Contribution in Open Source
Software Projects. In CSCW.

[29] Igor Steinmacher, Marco Silva, Marco Gerosa, and David Redmiles. 2015. A
Systematic Literature Review on the Barriers faced by Newcomers to Open
Source Software Projects. Information and Software Technology 59 (2015).

[30] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In CCS.

[31] Josh Terrell, AndrewKofink, JustinMiddleton, Clarissa Rainear, EmersonMurphy-
Hill, Chris Parnin, and Jon Stallings. 2017. Gender Differences and Bias in Open
Source: Pull Request Acceptance of Women versus Men. PeerJ Computer Science
3 (2017).

[32] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov.
2014. How Social Q&A Sites Are Changing Knowledge Sharing in Open Source
Software Communities. In CSCW.

[33] Thomas Zimmermann. 2016. Perspectives on Data Science for Software Engi-
neering. Chapter Card-Sorting: From Text to Themes.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 RQ1: Information Provisioning
	5 RQ2: How to Contribute
	6 RQ3: Development Practices
	7 RQ4: Quality-Assurance Practices
	8 Threats to Validity
	9 Conclusion
	References

