Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform

Jacob Kriiger
Otto-von-Guericke University
Magdeburg, Germany
jkrueger@ovgu.de

ABSTRACT

Many software systems need to exist in multiple variants. Orga-
nizations typically develop variants using clone & own—copying
and adapting systems towards new requirements. However, while
clone & own is a simple and readily available strategy, it does not
scale with the number of variants, and then requires a costly re-
engineering of the cloned variants into a configurable software
platform (a.k.a., software product line). Ideally, organizations could
rely on decision models or at least on substantial empirical data
to assess the costs and benefits of such a re-engineering. Unfortu-
nately, despite decades of research on product lines and platforms,
such data is scarce, not least because obtaining it from industrial re-
engineering efforts is challenging. We address this gap with a study
on re-engineering two cases of cloned variants of open-source
Android and Java games. Student developers re-engineered the
clones into software product lines, logging their activities and costs.
They performed the types of activities typically associated with
re-engineering, but the activities were intertwined and done itera-
tively. The costs were relatively similar among both cases, but the
used variability mechanism had a substantial impact. Interestingly,
beyond a common diffing tool, no dedicated re-engineering tool was
particularly useful. We hope that our results support researchers
working on re-engineering techniques and decision models, as well
as practitioners trying to assess the costs and activities involved in
re-engineering a software platform.

CCS CONCEPTS

» Software and its engineering — Software product lines;
Software reverse engineering; Maintaining software.

KEYWORDS
Software product lines, empirical study, re-engineering, clone & own

ACM Reference Format:

Jacob Kriiger and Thorsten Berger. 2020. Activities and Costs of Re-Engi-
neering Cloned Variants Into an Integrated Platform. In Proceedings of the
14th International Working Conference on Variability Modelling of Software-
Intensive Systems (VaMoS ’20), February 5-7, 2020, Magdeburg, Germany.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3377024.3377044

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VaMoS 20, February 5-7, 2020, Magdeburg, Germany

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7501-6/20/02...$15.00
https://doi.org/10.1145/3377024.3377044

Thorsten Berger
Chalmers | University of Gothenburg
Gothenburg, Sweden
bergert@chalmers.se

1 INTRODUCTION

Software product-line engineering provides methods and tools to
systematically manage and reuse software artifacts (e.g., source
code, models or documentation) based on an integrated and con-
figurable software platform [4, 16, 57]. To develop such a platform,
an organization needs to adopt many of those methods and tools—
for instance, it needs to identify and manage features [8, 41] (ab-
stract representations of the platform’s functionalities), organize
these features in a feature model [30, 52], incorporate variation
points in the source code [44], adopt a configurator tool [10, 59], re-
organize teams [55, 65] or change processes [11]. Once established,
the product-line platform allows to derive individual software vari-
ants in an automated process by selecting the desired features.
Software product-line engineering promises several benefits, such
as reduced development and maintenance costs, higher software
quality, and faster time to market of new variants [15, 32, 57, 66].

Unfortunately, establishing a product-line platform requires high
upfront investments most organizations are reluctant to spend [14,
33, 39]. Instead, organizations typically use a strategy known as
clone & own [19, 63]—copying an existing variant and adapting it to
new requirements. While clone & own is initially simple and cheap,
it does not scale with the number of variants and then causes high
maintenance overheads that challenge organizations [19, 43, 56, 62,
69]. In particular, manually propagating changes (e.g., new features,
updates or bug fixes) across the cloned variants requires developers
to identify the target variant and exact location to apply the change,
to adapt the change for the new location, and to quality-assure the
adaptation to avoid unwanted side effects. A product line avoids
such problems with its integrated platform. Many organizations
eventually re-engineer such a platform from their cloned variants—
the most common adoption scenario in practice [9, 20, 27, 69], also
known as extractive product-line adoption [34].

Re-engineering cloned variants into a product-line platform
is challenging. While product-line research focused on building
product lines from scratch [4, 16] and on improving already well-
engineered platforms, the actual re-engineering [6] is not well un-
derstood or supported. While numerous case studies report ex-
periences of re-engineering a software product line from cloned
systems [11, 27, 42, 43, 48, 70], little attention has been paid to sys-
tematically analyzing the re-engineering process, especially with
respect to the activities involved and their costs. As such, organi-
zations are challenged when planning and prioritizing the concrete
activities to perform. The lack of qualitative and quantitative em-
pirical data results in organizations being uncertain whether and
how to re-engineer clones into a product-line platform.

We present a multi-case study [68] on re-engineering two sets of
cloned variants of Java and Android games into two product-line

https://doi.org/10.1145/3377024.3377044
https://doi.org/10.1145/3377024.3377044

VaMoS °20, February 5-7, 2020, Magdeburg, Germany

platforms. Our subject systems are the Apo-Games [40], a curated
dataset of open-source games for Java and Android environments,
that were cloned over time. Our methodology was action-research-
like [21]: Two teams of two student developers each conducted the
re-engineering over a period of six months, supervised by the au-
thors who continuously discussed the re-engineering process and
any problems arising. To document and track the re-engineering,
we conceived a measurement and logging strategy, which involved
identifying the types of activities typically associated with product-
line re-engineering in the literature. To obtain broader insights,
we varied the implementation technique for variation points, with
one team using an annotation-based variability mechanism using
a preprocessor, and the other team a composition-based variability
mechanism using feature-oriented programming (FOP) [5, 58]. We
qualitatively and quantitatively compared the teams’ documented
activities and their characteristics—among others, to measure costs
in terms of efforts (person-hours) spent per activity.
In summary, we contribute:

o Alogging and measurement strategy for documenting re-engi-
neering projects.

e Qualitative and quantitative empirical data on the re-engineering
of our two cases.

e The resulting product-line platforms.

e An online appendix referencing the relevant repositories and
more detailed data.?

1

Our results show that the developer teams performed the types
of activities typically associated with re-engineering, but the activi-
ties were intertwined and performed iteratively. Beyond a common
diffing tool, no dedicated re-engineering tool proved particularly
useful. Creating a platform using FOP as variability mechanism
was more costly and difficult than creating a platform with an
annotation-based mechanism. Otherwise, the costs and activities
were largely similar among both teams (only the training costs were
higher for one team) for the other activities (e.g., domain analysis or
feature modeling). The majority of costs was, not surprisingly, still
spent on transforming the source code to integrate the variants into
a platform. We hope that our findings help researchers to improve
existing techniques and scope future research, and practitioners to
assess and plan their re-engineering efforts.

2 BACKGROUND

Software Product-Line Engineering. A product line facilitates
software reuse in an application domain. It relies on establishing
a configurable platform [4, 16] that allows to derive similar, yet
customized, software variants. Product-line engineering comprises
two main processes. Domain engineering establishes the platform.
Organizations typically perform a domain analysis to identify fea-
tures and define a feature model (a popular variability-modeling
notation) [4, 9, 17, 52], which defines the prospective variants of
the platform. Thereafter, the platform is implemented, for which
organizations can choose among a range of different implementa-
tion techniques (variability mechanisms) to define variation points
controlled by the respective features. Application engineering de-
rives individual variants. Based on customer-specific requirements,

1We presented the platforms’ characteristics in two short papers before [1, 18].
Zhttps://bitbucket.org/easelab/aporeengineering

Jacob Kriiger and Thorsten Berger

individual features are selected, and a variant is derived by binding
the variation points in an automated process. Any functionality
that is requested, but missing in the platform, must be implemented.
Cost Models for Software Product Lines. To estimate the costs
(e.g., person-hours needed) of adopting a product line, researchers
have proposed a variety of cost models. These models differ heavily
in the granularity of costs considered and in their applicability in
practice [2]. Unfortunately, most of these models were derived from
experiences with a single project only, almost no model comes with
an empirical evaluation, and no model considers the re-engineering
of product lines from cloned variants [2, 35, 39]. So, there is a severe
need to improve our empirical understanding of the re-engineering
process and its cost, to support organizations striving to adopt a
product line from cloned variants.

Consider, for instance, the cost models SIMPLE [15] and CO-
PLIMO [13], which are among the better known cost models for
product-line engineering. SIMPLE defines five conceptual cost func-
tions (e.g., costs of reuse) that are assumed to return all costs corre-
sponding to certain activities. These functions allow to understand
the costs, but are intentionally limited to this purpose—not pro-
viding details on actual parameters (i.e., values of cost factors). In
contrast, COPLIMO defines fine-grained cost factors (e.g., lines of
code, ratio of design modifications) that consider commonalities and
differences between variants. Still, COPLIMO faces the limitations
outlined above, as it does not consider re-engineering, does not build
on empirical data, and lacks an evaluation. A reason for such discrep-
ancies is missing data on re-engineering activities and their costs,
which are needed to derive an empirically grounded cost model.

3 STUDY DESIGN

In this section, we report the design of our multi-case study.

3.1 Research Objectives

The goal of our study was to establish the activities and costs
associated with re-engineering a product-line platform from a set
of cloned variants. We defined three research objectives:

RO Identify and analyze necessary re-engineering activities.
RO2 Measure the costs of the activities identified.
RO3 Perform a cross-case analysis.

To address these objectives, we conducted a multi-case study [68]
comprising two cases, as we depict in Figure 1. Our methodology is
action-research-like. Action research [21] usually involves solving a
real-world problem in a real-world environment (e.g., within a com-
pany) with frequent interactions and interventions of researchers.
While we simulate the real-world environment, and our developers
are student developers with industrial experience, we are inspired
by action research to supervise the developers and continuously
discuss the re-engineering process and any problems arising.
During the study, three teams were involved in the conduct
(cf. Table 2). Two developer teams (two Master students each, all
with industrial experience) indepsendently re-engineered product-
line platforms from the cloned variants. They collaborated only for
the design of a logging and measurement strategy, and for com-
paring the results. The coordination team (the authors) advised
the other teams in designing the re-engineering methodology and

https://bitbucket.org/easelab/aporeengineering

Activities and Costs of Re-Engineering Cloned Variants

Conduct Literature
Survey
Devise Logging and

Synthesize
Methodology

Measurement Strategy

Perform Case
I Study I

og Activities

VaMoS 20, February 5-7, 2020, Magdeburg, Germany

Summarize Data H Compare Results]—»@

Figure 1: Overview of our study design

measurements, providing feedback on intermediate outcomes, dis-
cussing problems, and comparing the results.

3.2 Conduct Literature Survey

The goal of this first step was three-fold: familiarize with prduct-line
engineering methods and tools, obtain an overview on the necessary
re-engineering activities, and plan the re-engineering. For instance,
both developer teams needed to be sufficiently familiar with feature
modeling, their assigned variability mechanisms (annotation-based
or composition-based), cost models, and tools. To this end, we
provided teaching material from a product-line course and some
publications on re-engineering [6, 37, 48, 64]. As a result, both teams
obtained a comparable level of training, both described the envi-
sioned activities, and provided a rough plan of the re-engineering.

3.3 Devise Logging and Measurement Strategy

To track and measure the activities performed during the re-engi-
neering, both developer teams proposed a logging and measurement
strategy (consolidated into one strategy in the next step). They pro-
posed what kind of information to track based on the literature
survey, which included cost factors taken from three established
cost models for product-line engineering, namely SIMPLE [15],
COPLIMO [13], and InCoME [54]. Since none of these models’ cost
factors are specific to re-engineering, we slightly adapted them to
define metrics usable to measure re-engineering. In the remainder,
we synonymously use the terms cost and effort, since we mea-
sure the former in terms of the latter (i.e., person-hours, explained
shortly).

3.4 Synthesize Methodology

To assure that both developer teams’ cases are comparable, we
consolidated their results from the previous step, ensuring com-
parable and sufficient knowledge of both groups on product-line
re-engineering, as well as a unified measuring and logging strategy
employed by both groups.

Identified Activities for Re-Engineering. The identified activities
were relatively diverse, on different levels of granularity (e.g., do-
main engineering versus feature modeling), and used various ter-
minologies (e.g., feature modeling versus variability modeling). To
make them comparable, we abstracted these activities into nine
activity types (ATs):

AT Software-product-line training summarizes activities that the
developer teams performed to get used to methods and tools
for product-line engineering (including the literature surveys).

ATy Domain analysis describes activities that the teams employed
to understand the domain of our subject systems, namely Java
and Android gamses.

ATs3 Preparatory analysis includes activities that the teams em-
ployed to improve the quality of the legacy systems (e.g., re-
move unused code or translate comments) or to obtain data
(e.g., code clones) for the following activities.

ATy Feature identification is an activity during which the teams
aimed to identify what features exist within a cloned variant.

ATs Architecture identification comprises activities that the teams
employed to understand the architecture of the legacy systems,
and define a new one for their product-line platforms.

AT Feature location refers to locating the exact code locations
(at the class, method, statement, or even sub-statement level)
of a feature. Since automated feature-location techniques are
typically not accurate enough [12, 42, 67], feature location was
a largely manual task for our teams.

AT7 Feature modeling is a core activity in product-line engineering
and models the commonality and variability of the product
line in terms of its mandatory and optional features [17, 52].

ATg Transformation summarizes activities on the actual code trans-
formation and implementation of the product-line platform.

ATy Quality assurance includes activities that are connected to vali-
dating the resulting platform (e.g., that the cloned variants can
be derived from the platform) and general quality assurance
(e.g., unit testing).

We used these nine activity types to classify and compare activities,
as well as to map efforts (person-hours) to the individual activity
types to measure the re-engineering costs.

Activity Sheets. To document the re-engineering activities, we
created a common logging template based on the previous steps,
discussing the meaning of each part of the template to achieve a
common understanding among the teams. After resolving only few
discrepancies, we obtained the template we illustrate in Table 1
with example data of one activity as it was tracked. The template
has four sections as follows.

The section Information contains the activity’s meta-data: ac-
tivity types, short name, identifier, as well as the original variant
on which the activity was done (if applicable), start date, end date,
and a short description of the activity.

The section Data characterizes the activity by referencing the
commits made and providing metrics (cf. Section 3.3), when ap-
plicable (e.g., training activities of type AT; did not involve code
changes or commits). The metrics include the number of person-
hours spent, as well as the lines of code and files changed (added,
removed or modified) during the activity. The latter resemble the
cost factors of modified code (CM) and portion of adapted software
(AFRAC) from the cost model COPLIMO.

The section Artifacts documents the artifacts that were input
and output of the activity (e.g., source code or feature model), as
well as the tools used (e.g., the diff tool).

VaMoS °20, February 5-7, 2020, Magdeburg, Germany

Table 1: Example of an activity sheet following our template.

Jacob Kriiger and Thorsten Berger

Table 2: Team distribution and subject systems.

Information

Activity type: Preparatory analysis

Activity: Removing unused code

Activity ID: A10

Variant IDs: V2,V3,V4,V5

Start date: 2019-03-11

End date: 2019-03-12

Description: Identifying code that is not used in the variants.
We removed unused code to facilitate analyzing the
variants.

Data

Total hours: 12

Commits: 7
353517035€22907d30828cd82a475d6fd012d75
1397a2¢35632¢474e361da003d7¢8027f3d659¢7

LOC added: 0

LOC removed: 11,670

LOC modified: 0

Files added: 0

Files removed: 78

Files modified: 133

Artifacts

Input: Source code

Output: Refactored source code

Tools: Eclipse, UCDetector, Intelli]

Activity Description

Complexity: The activity is of relatively low complexity, thanks
to the available tools.

Importance: This activity is very important because failure to
detect unused code means the developer will spend
time transforming source code that is never used.

Dependencies: N/A

Finally, the section Activity Description contains further de-
scriptions: a summary of the complexity and the importance ex-
perienced, as well as dependencies to other activities (i.e., activity
identifier and a description of the dependency).

Logging in the Version Control System. We performed the whole
re-engineering within Git repositories with frequent commits. The
teams documented the respective commit identifiers according to
our template, and used descriptive commit messages using the
documented activity names.

3.5 Perform Case Study

After we defined the re-engineering methodology that both devel-
oper teams should follow, they started re-engineering the two cases.
Table 2 shows their core characteristics.

Subject Systems. We used the Apo-Games dataset [40], which of-
fers 20 Java and five Android games. They were created by a single
developer based on clone & own in a real-world setting, meaning
that they are published (e.g., in the Google Play Store) and are
used by end-users. Apo-Games is a popular dataset to evaluate
re- and reverse-engineering techniques. For instance, researchers
reverse-engineered feature models [50] and synthesized platform ar-
chitectures [46] from the Apo-Games’ cloned variants (the games).

Team Environment VM Games Year LOC
ApoCheating 2006 3,960
ApoStarz 2008 6,454
Dev.1 Java FOP Apolcarus 2011 5,851
ApoNotSoSimple 2011 7,558
ApoSnake 2012 6,557
ApoClock 2012 3,615
ApoDice 2012 2,523
Dev.2 Android Antenna ApoSnake 2012 2,965
ApoMono 2013 6,487
MyTreasure 2013 5,360

Coord. — — — — —

Variability Mechanism; Developer Team; Coordination Team

We selected five games per developer team, aiming at the same
number of variants with similar sizes to improve comparability. To
assure that both teams worked independently without interactions,
both teams’ games were implemented with different languages (i.e.,
Java and Android). For broader insights, we also varied the variabil-
ity mechanism used to define variation points in the prospective
platform. Team 1 used a composition-based mechanism, namely
feature-oriented programming [58] with the composer tool Fea-
tureHouse [5]. Team 2 re-engineered the games into an annotation-
based platform, using the preprocessor tool Antenna.? Both tools
are integrated in FeatureIDE [49].

Multi-Case Study Design. As we explained above, all teams col-
laborated to design a unified logging and measurement strategy
(cf. Section 3.4), as well as to compare the results (cf. Section 3.8).
However, the actual re-engineering was conducted independently
by each team.

We allowed the developer teams to use any tool they found use-
ful, but they needed to document the usage. Not surprisingly, the
prime tool was FeatureIDE [49], which provides capabilities for
feature modeling, configuring, and implementing software product
lines. Both teams also used other tools, for example, Intelli] IDEA for
running the Android games and several plug-ins for code analysis.

During the whole case study, each team communicated their pro-
cess once a week in a short Scrum-like meeting to the coordination
team. In these meetings, we evaluated the progress and identified
problems. Within additional bi-weekly meetings, the teams pre-
sented their results and progress in detail.

3.6 Log Activities

The teams described each re-engineering activity in a separate doc-
ument (activity sheet) based on our template (cf. Table 1) and up-
dated the documents incrementally when the activity was repeated.
Each team used a separate Git repository in which they committed
changes and stored their activity sheets. The teams updated the
sheets whenever they had to return to or repeat an activity, for
example, for the transformation and quality assurance activitity.

3.7 Summarize Data

After conducting the case study, each team separately analyzed the
resulting data and reported their lessons learned. For details on the

Shttp://antenna.sourceforge.net

http://antenna.sourceforge.net

Activities and Costs of Re-Engineering Cloned Variants

Table 3: Activities performed per developer team.

. Dev. Team
ID Activity Types 1(FOP) 2 (PP)
A01 Research on software product lines AT v v
A02 Research on tools AT, v v
A03 Running and testing games ATy; ATy v v
A04 Translating comments to English ATs3 v —
A05 Pairwise comparison of variants AT3 v v
A06 Removing unused code AT3 v .
A07 Reverse engineer class diagrams ATy; ATs v v
A08 Reviewing source code ATy; ATy; AT v v
A09 Create feature model AT; 4 v
A10 Transforming source code to features ~ATg; ATy v v

resulting platforms and those lessons learned, see our prior works [1,
18]. As the activity sheets were completed, this step involved mainly
checking the version-control history to verify the data. Finally, both
teams summarized their data by providing overview tables on the
single activities, their activity types, descriptions, and efforts.

3.8 Compare Results

Based on the teams’ summaries, each team then individually com-
pared the results to each other. Thereafter, we (the coordination
team) analyzed and compared the data on our own (without con-
sidering the developer teams’ summaries). Finally, we consolidated
all three analyses into one and synthesized a set of core insights.

4 RESULTS & DISCUSSION

We now present and discuss the results for our research objectives.

4.1 RO;: Activities Performed

Results. In Table 3, we show all activities the developer teams
performed in their cases. Comparing and consolidating the activities
revealed ten that we could clearly distinguish from each other.

We observe that the different types of activities we identified are
intertwined. Some activities map to multiple types and vice versa.
For instance, multiple activities can be seen as domain analysis
(type AT?2), and multiple activity types were done in parallel. For
example, familiarizing with the games (activity A03) contributes
to both domain analysis (AT2) and feature identification (ATjy).
Similarly, locating features (ATs) during the code review also led to
newly identified features (AT4). Moreover, both teams continuously
integrated the changes during the transformation process and tried
to test the extended product-line platform after each change. Thus,
it does not appear to be feasible to clearly separate transformation
(ATg) and quality assurance activities (AT9) during re-engineering.

Both teams employed each activity type at least once. However,
developer team 1 (FOP) performed two additional preparatory anal-
yses: translating comments to English (A04) and removing unused
code (A06). They employed these activities to support their pro-
gram comprehension and to speed up the transformation. In the
following, we briefly summarize all activities performed.

During activity A01, Research on Software Product Lines,
the teams became familiar with product-line engineering in general.
This way, we ensured a comparable knowledge base and that each
team could successfully conduct its case. As this activity is also
needed in an industrial context, we documented the time spent on it.

VaMoS 20, February 5-7, 2020, Magdeburg, Germany

In activity A02, Research on Tools, both teams familiarized
with the tools they wanted to use. The prime concern was getting
used to FeatureIDE and, for the Antenna group that used the An-
droid games, with Intelli] Idea. Still, both teams used—or aimed
to use—additional tools and plug-ins. We measured all efforts of
setting up the tools, fixing errors in them, and training to use them.

For activity A03, Running and Testing Games, each team ran
and played their games to see how they work and behave. The goal
was to understand the domain and identify user-visible features to
obtain an initial set of features that could be compared among the
games. Overall, this process resembles a top-down analysis, as both
teams started with playing the games instead of reviewing code.

Team 1 documented the activity A04, Translating Comments
to English, since many code comments were in German. The goal
was to better understand the games’ behavior through the original
developer’s descriptions. This step assumed that the comments
were maintained during development to be helpful [23, 53].

Activity A05, Pairwise Comparison of Variants, refers to diff-
ing the source code of two variants using a diff tool, as has been
done in case studies before [24, 27]. While the differences could be
immediately wrapped by annotations as a quick way of integrating
two variants, further effort is necessary to cluster the differences
into features and to refactor code to adhere to a proper and scalable
architecture [12, 20, 42, 45]. As such, both teams used the results
of this step solely to have starting points for other activities, and
to obtain a better understanding of the games’ code.

Developer team 1 performed activity A06, Removing Unused
Code, since their games were a bit larger in size compared to the An-
droid games of team 2. While they appeared to have more common
code, they also highlighted one problem of clone & own: unused
code. The team identified this issue during the previous activity and
decided to use an Eclipse plug-in (UCDetector*) to remove code
that was never executed, reducing the code size by almost 40 %.

Activity A07, Reverse-Engineer Class Diagrams, aimed to
better understand the legacy systems’ structure and guide the de-
velopment of the platform. Both developer teams extracted class
diagrams using Visual Paradigm® and Intelli] Idea, respectively.
Diffing the diagrams manually indicated a high degree of reuse
on the class level in each case, for example, via generic classes for
common game elements, such as the player and enemies.

During activity A08, Reviewing Source Code, after the teams
analyzed the games’ domain and structure, they identified addi-
tional features, located the source code belonging to each feature,
and documented common and variable parts for the transformation.
This again illustrates that the two activity types feature identifica-
tion and location are intertwined [37].

In activity A09, Create Feature Model, the developer teams de-
signed a feature model for their respective product line. They used
their knowledge about the cloned variants and their implemented
features obtained in the previous steps. The models helped to define
the dependencies between features and guided the transformations,
with both teams aiming to establish a testable code base first.

Activity A10, Transforming Source Code to Features, refers
to the actual re-engineering and testing, which differed significantly

*https://marketplace.eclipse.org/content/unnecessary-code-detector
Shttps://marketplace.eclipse.org/content/visual-paradigm-eclipse

https://marketplace.eclipse.org/content/unnecessary-code-detector

VaMoS °20, February 5-7, 2020, Magdeburg, Germany

among both teams (since the variability mechanisms differed sig-
nificantly), despite many of the preceding activities being similar.
Developer team 1 had to largely change the code architecture and
unify the code base to properly introduce feature-oriented program-
ming. Due to time constraints, they could not re-engineer all five
variants, but had to stop after three. In contrast, developer team 2
performed pair-wise merges of variants, adding annotations to the
variable parts, and only minor structural changes.

A particular challenge expressed by team 1 for this activity were
dependencies between features recognized during the transforma-
tion. Specifically, integrating a feature potentially required trans-
forming other features first, given its code dependencies. In fact,
planning the order of transforming features is an open problem.

Discussion. Despite the different sets of legacy systems, program-
ming languages, tools, and variability mechanisms, both developer
teams employed similar activities. This result indicates that the
activities and the types that we reported can be considered as
generalized abstractions of more fine-grained activities. So, our de-
scriptions can be seen as a general guide on what activities to plan
for during product-line re-engineering. Developer team 1 pointed
out that a more fine-grained analysis of activities (e.g., refactor sim-
ilar methods into a generic method) could provide more detailed
insights into the activities’ characteristics. However, both teams
also highlighted that our abstraction level of activities allowed to
compare the results. So, we argue that we provide a comprehensible
and comparable set of activities and their types for understanding
product-line re-engineering.

Most academic publications on product-line adoption, and re-
engineering in particular, report waterfall-like processes. For ex-
ample, domain and application engineering are often considered
strictly separated for the adoption, and other papers clearly distin-
guish between detection, analysis, and transformation [3, 6]. During
our case study, both teams switched regularly between various ac-
tivities, because they identified new features (AT4) or new code
belonging to a feature (AT¢) during the code review. An iterative
process seems more reasonable, as, for example, building a complete
feature model from the beginning is hardly possible. Consequently,
constant updates and iterations are necessary, especially if the de-
velopers have to familiarize with the systems under consideration.

o Our identified activity types abstractly represented the actual
activities that need to be performed during re-engineering.

o These types can be used to classify re-engineering activities.

o The activity types were intertwined during the actual activities
(e.g., feature identification and location).

o Waterfall-like re-engineering processes are not reasonable.

RO;: Activities Performed —

4.2 RO,: Costs of Activities

Results. In Table 4, we summarize the efforts that each team
documented throughout its case. Since precisely tracking the effort
for each activity was challenging, given the interrelations between
activities and the iterations, we double-checked those estimates
against the version-control history. Still, we estimate the costs
of transformation (ATs) and quality assurance (ATo) together, as
both teams continuously integrated and tested the variants into

Jacob Kriiger and Thorsten Berger

Table 4: Costs tracked in terms of effort (person-hours).

ID Activity Type Dev. Team 1 Dev. Team 2

ph % ph %
ATy Software-product-line training 16.00 4.31 90.00 18.15
AT, Domain analysis 18.00 4.85 82.00 16.53
AT3 Preparatory analysis 49.25 13.26 40.00 8.06
AT4 Feature identification 22.25 5.99 22.00 4.44
ATs Architecture identification 2.00 0.54 5.00 1.00
AT¢ Feature location 50.00 13.46 7.00 1.41
AT7; Feature modeling 7.00 1.88 | 10.00 2.00
ATg Transformation 103.50 27.86 | 180.00 36.29
AT9 Quality assurance 103.50 27.86 60.00 12.10
Total 371.50 | 496.00

the platforms. For this reason, the teams incrementally added new
features and tested them, challenging a clear separation of efforts
(i.e., team 1 specified only development effort, while stating that
50 % is quality assurance).

Developer Team 1 spent more than half of its time on the actual
transformation and quality assurance (27.86%, each). Most of the
remaining effort went into preparatory analyses, such as removing
unused code and translating comments, as well as feature location,
which is known to be an expensive activity [29, 37, 67]. Other ac-
tivities required considerably less effort, resulting in accumulated
efforts of 371.5 person-hours in total.

Developer Team 2 performed extensive product-line training
(18.15 %) and domain analysis (16.53 %), mainly due to the nature
of the cloned variants (Android games). The product-line tooling
available did not specifically support Android, if at all, so the team
had to spend a substantial effort on fixing and combining tools (e.g.,
FeatureIDE and IntelliJ IDEA). Still, most of the effort went into the
actual transformation and quality assurance (48.39 %).

Discussion. Recall that distinguishing the efforts for each activity
is challenging, since activities are intertwined and the developers
switch between them in iterations. The activity of reviewing source
code may not initiate feature location (ATg), but the developers
will immediately search for additional features (AT4) and refine
their domain knowledge (AT5). This suggests that existing tools
should not solely focus on a single activity, but combine them to
support developers in their natural analysis strategies. Moreover,
while we used existing cost models to design the template for our
activity sheets, the granularity of these cost models seems to be
inappropriate. For instance, SIMPLE defines four cost functions that
summarize all activities, while COPLIMO defines factors (e.g., ratio
of code modified) without considering activities and tooling.

Both teams experienced that certain system and project char-
acteristics can lead to unexpectedly high efforts. For example, the
missing tool support for Android-based product lines drastically
increased the costs for developer team 2. Similarly, developer team
1 reported that they had been heavily relying on the code com-
ments and that the removal of unused code considerably facilitated
their activities. Finally, both teams reported that missing knowledge
about product-line engineering and the systems in particular was
a challenge. This clearly highlights the impact of system charac-
teristics and challenges the research community to provide new
or improved tools that consider these characteristics to support
developers.

Activities and Costs of Re-Engineering Cloned Variants

To further emphasize this point, consider the activities for which
we had particularly well working tools: architecture identification
(ATs5) and feature modeling (AT7). For recovering the architecture,
both teams relied on automated and established tools, considerably
reducing the effort. Similarly, FeatureIDE provides a comprehensi-
ble feature-model editor and as long as we collected information on
all features, the actual modeling was straightforward. In contrast,
most other activities are poorly supported, resulting in considerably
more effort—among others because the teams performed feature
location mostly manually [29, 37, 60] and only supported by the
pairwise comparison (AT3).

o The interconnection of re-engineering activities challenged pre-
cisely documenting and estimating the corresponding costs.

o System and project characteristics heavily impacted the costs.

o Developers may not be aware of these characteristics at the
beginning (e.g., availability of comments, code quality, existing
tooling, and domain knowledge).

o Some automation (e.g., architecture recovery) was possible, but
more automated tools are needed to support more activities.

RO3: Costs of Activities —

4.3 ROs;: Cross-Case Analysis

Results. In Table 4, we compare the efforts of both cases. De-
veloper team 2 spent almost 125 hours more, especially in the
beginning while researching product-line engineering, and during
domain analysis. We already described that the team had to investi-
gate and connect multiple tools to implement their product line in
Android. Moreover, we found that developer team 1 did not com-
pletely track the training phase, because they did already research
the topic before we designed the study. For a more comparable
overview, we provide the ratios of effort spent on each activity.

The efforts for the actual transformation and quality assurance
are similar for the composition-based and annotation-based cases
(207 to 240 person-hours and 55.72 % to 48.39 %, respectively). How-
ever, we remark that due to time restrictions, developer team 1
could only migrate three of the intended five variants. The main
issue that the team faced was the complexity of directly migrating
towards a composition-based variability mechanism. In contrast to
annotations, composable modules require larger-scale refactoring,
merges, and adaptations of the implementation to enable a config-
urable platform. A particular problem the team faced was localizing
bugs after integrating new features, which was a complex task due
to the separation of previously connected code [36, 38]. Moreover,
composition-based mechanisms are still not established in practice
and require more knowledge, which was also highlighted by the
developer teams as one reason for their struggles.

Besides the training and domain analysis activities, feature lo-
cation is also among the activities with considerable differences.
Apparently, developer team 1 put 50 person-hours (13.46 %) of effort
into this single activity, while developer team 2 spent only seven
person-hours (1.41 %). While this may be due to different analysis
strategies, during our discussion we found that this issue is more
connected to the actual variability mechanism. For feature-oriented
programming (developer team 1), we need to first identify and locate
all features in the code to refactor them into meaningful and com-
posable modules. In contrast, annotations (developer team 2) allow

VaMoS 20, February 5-7, 2020, Magdeburg, Germany

to add variability in an ad hoc manner. Not all code of a feature must
be located immediately, but it can be refined step-wise and extended
with code from other variants. As a result, feature location requires
less effort, which is an interesting insight indicating that the efforts
for feature location for re-engineering a product line depend on
the variability mechanism that will be introduced. However, the
actual transformation may comprise some of this effort, too.

Considering the other activities, the total numbers of person-
hours spent and also their ratios are similar among both cases. This
is hardly surprising, as most of them are independent of project
specifics and are relatively similar. For example, both teams per-
formed comparable steps during the feature identification (AT4) and
architecture recovery (ATs). Overall, we can see that the main differ-
ences between both cases are caused by preparation (e.g., training,
domain analysis, code analysis) and feature location. Besides the
transformation and quality assurance, these are also the activities
that contribute to most efforts.

Discussion. Overall, while the efforts for both cases are compa-
rable, we argue that re-engineering a product line based on an
annotation-based variability mechanism seems more suitable. This
mechanism can be applied ad hoc and requires less knowledge in
advance. Both teams made similar statements, experiencing that
there is a trade-off between the variability mechanisms: Feature-
oriented programming is complex, requires learning, and seems
too expensive for smaller, scattered features, such as in the Apo-
Games. A preprocessor is simpler to use and annotating code does
not require to refactor fine-grained and scattered features into mod-
ules. However, developer team 2 also argued that the readability
and structure of the code becomes poor, suggesting that a later re-
structuring into separate classes or changing towards composition
could help to address these problems. In summary, an annotation-
based variability mechanism seems easier to introduce with less
effort, but the developers should still consider the granularity of
decomposition of the resulting software product line.

This discrepancy in activity A10 is somewhat surprising, seem-
ingly contradicting techniques that aim to automatically refactor
between composition-based and annotation-based variability mech-
anisms [31] or that flexibly project either representation [7, 51]. Con-
sidering these works, team 1 could potentially have re-engineered
its variants into a annotation-based platform and automatically
refactored it into a composition-based one. Studying and explain-
ing this discrepancy is subject to future work.

® Re-engineering into composition-based variability was consid-
erably more costly than into annotation-based variability.

o Annotation-based variability required less focus on feature lo-
cation.

o Among the other activities, preparation (e.g., training, domain
analysis, code analyses) and transformation were most costly.

o The costs of most other activities were similar for both variability
mechanisms.

RO3: Cross-Case Analysis —
5 THREATS TO VALIDITY

Internal Validity. The main threat is that we could not cooper-
ate with the original developer of the Apo-Games. As a result, we
performed all analyses and transformations ourselves. This can

VaMoS °20, February 5-7, 2020, Magdeburg, Germany

threaten the results we obtained and the original developer would
potentially require less effort to perform the same tasks, due to his
knowledge. Still, as both teams started under similar conditions, the
results remain comparable and valuable, showing how developers
without previous knowledge about a system could perform.

Another threat concerns the granularity of our data collection.
Since costs often depend on many factors (e.g., human factors and
project specifics), and since activities are intertwined, it is challeng-
ing to measure the exact costs per activity and isolate these costs
from confounding factors. We mitigated these threats by surveying
existing cost models, defining a common template for the activity
sheets, and verifying our results with the version-control history.
Still, while we reduced confounding factors with this strategy, trans-
ferring our costs to other projects should be done with care.
External Validity. A threat is that we used only five cloned Apo-
Games variants for each of our two cases. While this limits the gen-
eralizability of our results, there exist only a few publicly available
datasets of software variants developed using clone & own. How-
ever, the dataset has been used to evaluate specific re-engineering
techniques in the literature. In this light, while our quantitative
results hardly generalize to portfolios of cloned software variants
with substantially different characteristics (e.g., variant sizes in LOC,
or team sizes in number of developers), we believe the qualitative
insights also hold for other re-engineering cases.

Our developer teams’ selection of tools might have influenced
the documented activities and their costs. Our focus was on re-
liable tools, such as FeatureIDE and InelliJ IDEA, but there have
been some problems, especially with the Android dataset. We also
experimented with research tools designed for re-engineering of
software product lines. However, these proved less helpful—if we
managed to start them at all. As such, while better tooling might
exist, our results reflect the state of the art that can be achieved
with the current tool maturity and landscape.

6 RELATED WORK

The Apo-Games dataset has been proposed as a baseline for reverse-
and re-engineering of software product lines from cloned vari-
ants [40]. Since real-world datasets are rare, Apo-Games recently
gained attention in the research community. For example, Lima et
al’s [46, 47] technique to automatically recover the architecture of
cloned variants is evaluated on Apo-Games; and so is Mendonca et
al’s [50] technique to automatically create Pareto-optimal feature
models that can represent the existing variants. While both tech-
niques could have supported re-engineering activities, we tried to
avoid collecting additional information on the Apo-Games to avoid
biases in our methodology, and to start with the same conditions
for both developer teams. We published a prior study on the Apo-
Games [42], which focused on feature location. We also published
descriptions (short papers) of the platforms we created during the
present case study [1, 18], also reporting early experiences. In the
present paper, we report a full re-engineering of variants into plat-
forms in a case study with two cases, reporting on all activities
performed as well as their costs, and we compare the two cases.
Other case studies and case-study collections on re-engineering
product lines from cloned variants exist. The ESPLA catalog [48] col-
lects case studies that report experiences and lessons learned, based

Jacob Kriiger and Thorsten Berger

on industrial and open-source systems [25-28, 70]. The catalog also
highlights the problem that many artifacts are not or only partly
available. We are also not aware of any case study that studies the
activities and their costs costs empirically. Consider, for example,
Rubin et al. [61], who report experiences of re-engineering three
sets of industrial cloned variants towards product lines; likewise,
Fenske et al. [22] provide automation for refactoring and merging
the systems into a common platform. While such works are promis-
ing, neither elaborates on the activities that are needed to analyze
the systems or the resulting costs.

7 CONCLUSION

We reported a case study on re-engineering two cases of cloned vari-
ants into product-line platforms. We documented re-engineering
activities and measured the costs (in terms of person-hours) needed.
For broader insights, we varied the technological environment
(standalone Java versus Android) and the variability mechanisms
(preprocessor versus feature-oriented programming). We found:

e A common set of re-engineering activities performed in both
cases. These can be seen as a baseline of activities needed for
re-engineering. Furthermore, many of our activities were inter-
twined and needed to be performed iteratively with frequent
switching among the activities—suggesting that re-engineering
does not follow waterfall-like processes.

e A re-engineering challenge arising from iterations and inter-
connections among activities (e.g., the results of one activity
are a prerequisite for another), which suggests that having too
specialized tools may not optimally support developers. It also
reinforces that tracking and documenting costs in isolation for
individual activities is difficult.

e Re-engineering cloned systems into a platform relying on com-
position-based variability mechanisms is more complex than
re-engineering into annotation-based mechanisms. Our experi-
ences suggest that composition-based mechanisms require more
training and more effort in modularizing code. Most other activ-
ities required similar efforts in both cases, with transformation
and quality assurance contributing to most costs.

In future work, we plan to extend our analysis to more cases,
especially industrial ones. Based on a larger corpus of data, we
hope to obtain more detailed and empirical data on activities and
costs, also confirming or refuting our activities and activity types.
We plan to refine and extend our logging and measurement strat-
egy to more automatically collect empirical data and to control for
confounding factors, such as tool majurity, developer experience,
and system sizes. However, our results show that we still need to
advance existing tools and provide them in a mature form. Finally,
another open research question concerns finding an optimal order
of integrating features during re-engineering, which turned out as
a challenge specifically for developer team 1, which recognized fea-
ture dependencies requiring transforming dependent features first.

ACKNOWLEDGMENTS

Supported by the Swedish Research Council (257822902) and the
German Research Council (SA 465/49-3). We thank Jennifer Horkoff
for valuable comments.

Activities and Costs of Re-Engineering Cloned Variants VaMoS 20, February 5-7, 2020, Magdeburg, Germany

REFERENCES [29

[1] Jonas Akesson, Sebastian Nilsson, Jacob Kriiger, and Thorsten Berger. 2019.

Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In SPLC.

[30] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson.

Migrating the Android Apo-Games into an Annotation-Based Software Product
Line. In SPLC.

1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech. Rep. SEI,
CMU.

[2] Muhammad S. Ali, Muhammad A. Babar, and Klaus Schmid. 2009. A Comparative o . .
Survey of Economic Models for Software Product Lines. In SEAA.] Christian Kastner, Sven Apel, and Martin Kuhlemann. 2009. A Model of Refac-
[3] Vallabh Anwikar, Ravindra Naik, Adnan Contractor, and Hemanth Makkapati. toring Physically and Vlrtua'illy S“eparatefi Feature's. In GPCE. i
2012. Domain-Driven Technique for Functionality Identification in Source Code.] Peter Kna}lber,]eS}ls Bermejo, Gunter chkle, Julio C.S. do P?ado Leltej Frank J.
ACM Sigsoft Software Engineering Notes (2012), 1-8. van der Linden, Linda M. Northrop, Michael Stark, and David M. Weiss. 2001.
[4] Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. 2013. Feature- Quantifying Prodyct Line EeneﬁtsA In PFE,’ . .
Oriented Software Product Lines. Springer. Peter Knauber, Dirk Muthig, Klaus Schmid, and Tanya Widen. 2000. Applying
(5] Sven Apel, Christian Kastner, and Christian Lengauer. 2009, FEATUREHOUSE: Product Line Concepts in Small and Medium-Sized Companies. IEEE Software 17,
Language-Independent, Automated Software Composition. In ICSE. 5 (2000), 88-95. i . L
[6] Wesley K. G. Assungio, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R. Charles W. Krueger. 2001. Easing the Transition to Software Mass Customization.
Vergilio, and Alexander Egyed. 2017. Reengineering Legacy Applications into In PEE. . X X X
Software Product Lines: A Systematic Mapping. Empirical Software Engineering] Jacob Kriiger. 2016. A Cost Estimation Model for the Extractive Software-Product-
22, 6 (2017), 2972-3016. Line Approach. Master’s thesis. Otto-von-Guericke-Univerity Magdeburg.
[7] Benjamin Behringer, Jochen Palz, and Thorsten Berger. 2017. PEoPL: Projectional Jacob Kri'.l.gen 2018. Separation of Concerns: Expe‘nences of the Crowd. In SAC.
Editing of Product Lines. In ICSE. Jacob Kriiger, Thorsten Berger, and Thomas Leich. 2019. Features and How
[8] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grinbacher, Adeline Silva, to Flnd‘ThAeAm: A Suryey of Manual Featgre Location. AIn Sof tware Engineering
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a for Variability Intensive Systems: Foundations and Applications. LLC/CRC Press,
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In 153-172. . . .
SPLC. [38] Jacob Kriiger, Gul Calikli, Thorsten Berger, Thomas Leich, and Gunter Saake.
[9] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M Atlee, Martin Becker, 2019. Effects of Explicit Feature Traceability on Program Comprehension. In
Krzysztof Czarnecki, and Andrzej Wasowski. 2013. A Survey of Variability ESEC/E: SE . .
Modeling in Industrial Practice. In VaMoS. Jacob Kriiger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
[10] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof 2016. Ext'r'acting Software Product Lines: A Co's't Estimation Pe'rspective. In SPLC.
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems Jacob Kriiger, Wolfram Fenske, Thomas Thiim, Dirk Aporius, Gunter Saake,
Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611— an‘? T}.n?mas Leich. 2018. APO'CT‘*m‘“-S’ A Case Study for Reverse Engineering
1640. Variability from Cloned Java Variants. In SPLC.
[11] Thorsten Berger, Jan-Philipp Steghéfer, Tewfik Ziadi, Jacques Robin, and Jabier [41] Jacob Kriiger, Mukelabai Mukelgbal, Wanzi Gu, Hui Shenj Regma Hgblg, and
Martinez. 2019. The State of Adoption and the Challenges of Systematic Variabil- Thorsten Berger. .2019' Where is my Feature and What is it About? A Case
ity Management in Industry. Empirical Software Engineering (2019). Preprint. Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
[12] Ted]. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. 1993. The Concept 2397253‘“ . .
Assignment Problem in Program Understanding. In ICSE. [42] Jacob Kriiger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
[13] Barry Boehm, A. Winsor Brown, Ray Madachy, and Ye Yang. 2004. A Software F".‘dmg LOSt Features“m Cloned S'ystem.s. In SPLC. .
Product Line Life Cycle Cost Estimation Model. In ISESE.] Elias Kuiter, Jacob Kriiger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
[14] Paul C. Clements and Charles W. Krueger. 2002. Point / Counterpoint: Being 2018. Getting RldA of Clone-and-Own: Moving to a Software Product Line for
Proactive Pays Off / Eliminating the Adoption Barrier. IEEE Software 19, 4 (2002), Temperfatu_re Monitoring. In S_PL_C' L . .
28-31. Joerg Liebig, Sven Apel, Christian Lengauer, Christian Késtner, and Michael
[15] Paul C. Clements, John D. McGregor, and Sholom G. Cohen. 2005. The Structured Schulze. 2910. An Analysis of the Variability in 40 Preprocessor-Based Software
Intuitive Model for Product Line Economics (SIMPLE). Technical Report CMU/SEI- Produ(;t Lines. In ICSE. .
2005-TR-003. Carenegie-Mellon University.] Max Lillack, Stefan Stanciulescu, Wilhelm Hedman, Thorsten Berger, and An-
[16] Paul C. Clements and Linda M. Northrop. 2001. Software Product Lines: Practices drzej WETSOWSkl‘ 2019. Intention-Based Ir?tegr'fxtlon of Software Variants. In 41st
and Patterns. Addison-Wesley. International Conference on Software Engineering (ICSE).
[17] Krzysztof Czarnecki, Paul Griinbacher, Rick Rabiser, Klaus Schmid, and Andrzej Crescencio Lima, Wesley K. G. Assuncdo, Jabier Martinez, Ivan do

(18]

Wasowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In VaMoS.

Jamel Debbiche, Oskar Lignell, Jacob Kriiger, and Thorsten Berger. 2019. Migrat-
ing Java-Based Apo-Games into a Composition-Based Software Product Line. In
SPLC.

Carmo Machado, Christina von Flach G. Chavez, and Willian D. F. Mendonga.
2018. Towards an Automated Product Line Architecture Recovery: The Apo-
Games Case Study. In SBCARS.

Crescencio Lima, Ivan do Carmo Machado, Eduardo S. de Almeida, and Christina
von Flach G. Chavez. 2018. Recovering the Product Line Architecture of the

[19] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, Apngames: In SPLC. - o
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial (48] Jabier Martinez, Wesley K. G. Assuncao, and_ Tewfik Ziadi. 2017. ESPLA: A
Software Product Lines. In CSMR. Catalog of Extractive SPL Adoption Case Studies. In SPLC.
[20] Slawomir Duszynski, Jens Knodel, and Martin Becker. 2011. Analyzing the Source Jens Meinicke, Thomas Thiim, Relmar Schroter., F""b"‘m Benduhn, Thomas .Le“:h’
Code of Multiple Software Variants for Reuse Potential. In WCRE. and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.
[21] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.] Wllhfm D F.'Mendo‘n(%a, Wesley K. G Assungﬁ"’ apd Lukas Linsbauer. 2018.
2008. Selecting Empirical Methods for Software Engineering Research. In Guide Multi-Objective Optimization for Reverse Engineering of Apo-Games Feature
to Advanced Empirical Software Engineering. Springer, 285-311. Models. InSPLC. L)) .
[22] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter] Mukelabai Mukelabai, Benjamin B@hrmger, Montz Fey, Jochen Palz,]acqb Kruger,
Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to a and Thorsten Berger. 2018. Multi-View Editing of Software Product Lines with
Product Line. In SANER. P EOPL‘ In}’CSE. . o)
[23] Beat Fluri, Michael Wursch, and Harald C. Gall. 2007. Do Code and Comments D_amlr Nesi¢, Jacob Kruger, Stefan Stanciulescu, and Thorsten Berger. 2019. Prin-
Co-Evolve? On the Relation Between Source Code and Comment Changes. In ciples Pf Fezlxture Modehr}g, In ESEC/FSE: i)
WCRE.] Sebastian Nielebock, Dariusz Krolikowski, Jacob Kriiger, Thomas Leich, and Frank
[24] Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo Zhang. Ortmeier. 2019. Commenting Source Code: Is it Worth it for Small Programming

2016. Ten Years of Product Line Engineering at Danfoss: Lessons Learned and
Way Ahead. In SPLC.

Tasks? Empirical Software Engineering 24, 3 (2019), 1418-1457.
Jarley Nobrega, Eduardo Santana de Almeida, and Silvio Meira. 2008. InCoME:
Integrated Cost Model for Product Line Engineering. In SEAA.

[25] Paul Griinbacher, Rick Rabiser, Deepak Dhungana, and Martin Lehofer. 2009. . . Y ! ! - .
Model-Based Customization and Deployment of Eclipse-Based Tools: Industrial] Hénk Obbink, Jirgen Miiller, Pierre Amerlca',' Rob van Ommering, Gerrit Muller,
Experiences. In ASE. William van der Sterren, and Jan Gerben Wijnstra. 2000. COPA: A Component-

[26] Nili Itzik, Iris Reinhartz-Berger, and Yair Wand. 2015. Variability Analysis of Oriegted Platform Architecting Method for Families of Software-Intensive Elec-
Requirements: Considering Behavioral Differences and Reflecting Stakeholders’ tronic Products. In SPLC. .

Perspectives. IEEE Transactions on Software Engineering 42, 7 (2015), 687-706.] Tristan Pfofe, Thqmas Thiim, Sand'ro Schullze, qufram Fenske, and Ina Schaefer.

[27] Hans P. Jepsen, Jan G. Dall, and Danilo Beuche. 2007. Minimally Invasive Migra- 2016. Synchroumzmg §0ftware Variants with VanafltSync. In SPLC.
tion to Software Product Lines. In SPLC.] Klaus Pohl, Gunter Bockle, and Frank J. van der Linden. 2005. Software Product

[28] Hans P. Jepsen and Flemming Nielsen. 2000. A Two-Part Architectural Model as Line Engineering: Foundations, Principles and Techniques. Springer.

Basis for Frequency Converter Product Families. In ITW-SAPF.

VaMoS °20, February 5-7, 2020, Magdeburg, Germany

[58] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In ECOOP.

[59] Rick Rabiser, Paul Griinbacher, and Martin Lehofer. 2012. A Qualitative Study on
User Guidance Capabilities in Product Configuration Tools. In ASE.

[60] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering.

[61] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2015. Cloned Product
Variants: From Ad-hoc to Managed Software Product Lines. International Journal
on Software Tools for Technology Transfer 17, 5 (2015), 627-646.

[62] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-
aging Forked Product Variants. In SPLC.

[63] Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. 2015. Forked and

Integrated Variants in an Open-Source Firmware Project. In ICSME.

Daniel Striiber, Mukelabai Mukelabai, Jacob Kriiger, Stefan Fischer, Lukas Lins-

bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Benchmark-

ing the Techniques for the Evolution of Variant-Rich Systems. In SPLC.

[64

[65]

66]

Jacob Kriiger and Thorsten Berger

Frank J. van der Linden, Jan Bosch, Erik Kamsties, Kari Kénsild, and Henk Obbink.
2004. Software Product Family Evaluation. In SPLC.

Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer.

[67] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Devel-

opers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study. Journal of Software: Evolution and Process 25, 11 (2013),
1193-1224.

Robert K. Yin. 2018. Case Study Research and Applications: Design and Methods.
Sage.

Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. 2006. Assessing
Merge Potential of Existing Engine Control Systems into a Product Line. In SEAS.
Gang Zhang, Liwei Shen, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2011.
Incremental and Iterative Reengineering Towards Software Product Line: An
Industrial Case Study. In ICSM.

	Abstract
	1 Introduction
	2 Background
	3 Study Design
	3.1 Research Objectives
	3.2 Conduct Literature Survey
	3.3 Devise Logging and Measurement Strategy
	3.4 Synthesize Methodology
	3.5 Perform Case Study
	3.6 Log Activities
	3.7 Summarize Data
	3.8 Compare Results

	4 Results & Discussion
	4.1 RO1: Activities Performed
	4.2 RO2: Costs of Activities
	4.3 RO3: Cross-Case Analysis

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

