S. Becker, 1. Bogicevic, G. Herzwurm, S. Wagner (Hrsg.): SE/SWM 2019,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 85

Understanding How Programmers Forget

Jacob Kriiger'-? Jens Wiemann? Wolfram Fenske? Gunter Saake? Thomas Leich!-3

Abstract: This extended abstract is based on our paper “Do You Remember This Source Code?”,
published at the International Conference on Software Engineering 2018 [Kr18]. We summarize
and discuss our results on programmers’ memory and forgetting. To this end, we focus on reverse
engineering of software, which was the primary context in which we conducted this work.

Keywords: Familiarity; forgetting; empirical study; maintenance; program comprehension

During software development, programmers rely on their knowledge about a system. More
precisely, software familiarity comprises knowledge about the system’s source code, design,
architecture, and usage. Consequently, being familiar with a system is essential for various
aspects of software development, such as task performance, program comprehension,
bug fixing, maintenance, and re-engineering. Thus, researchers and practitioners consider
familiarity as an important factor in techniques for cost modeling, expertise identification,
and task assignments. Still, empirical analyses of software familiarity are sparse and these
techniques usually rely on indirect heuristics or user estimates to consider forgetting.

Within our previous paper [Kr18], we report an empirical study with 60 open-source
developers. We investigated whether an established forgetting model applies to software
familiarity, analyzed three factors that may influence the memory, and computed a memory
strength for our participants. In Figure 1, we display the familiarity of our participants,
relating the times since their last commit to their subjective familiarity. Each circle represents
a single developer and its size the number of commits the developer performed on the
selected file. The solid blue line represents the average familiarity the developers stated,
while the red dashed line represents the average only considering the data for single commits.

We can see that, besides the time, repeated commits to a file seem to significantly influence
the familiarity of a developer. This is indicated by the peak of the average that appears at
around 120 days after the last commit. In order to test this observation and other hypotheses,
we performed two significance tests for four factors: The code size of the file; for which
we tested that it does not have any impact, which we assumed based on the used forgetting
curve; the number of repeated commits, the ratio of own code, and the tracking behavior
of a developer. Our results indicate that repetitions as well as the ratio of own code are
significantly positively correlated to familiarity. Furthermore, we computed the average

! Harz University of Applied Sciences Wernigerode; tleich@hs-harz.de
2 Otto-von-Guericke-University Magdeburg; jkrueger @ovgu.de; wfenske @ovgu.de; saake@ovgu.de
3 METOP GmbH Magdeburg

©@@®@®@ doi:10.18420/5¢2019-23

https://creativecommons.org/licenses/by-sa/4.0/
tleich@hs-harz.de
jkrueger@ovgu.de
wfenske@ovgu.de
saake@ovgu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/se2019-23

86 Jacob Kriiger et al.

memory strengths to compare the used forgetting curve to our participants’ responses.
The dashed red line that we show in Figure 1 resembles this curve and matches with our
results: We found that the curve is only applicable if a developer edited a file only once,
as this mitigates the effects of repetitions and changes that others may perform. Thus, we
conclude that we require adapted forgetting curves for software development that consider
the identified factors that correlate to forgetting. These curves and factors can then be
considered in software engineering techniques—based on further analyses of forgetting.

We conducted this research in the
context of re-engineering software
artifacts and estimating the efforts
to perform this task. During re-
engineering, software developers
have to comprehend the code they
aim to refactor and migrate. As pro-
gram comprehension is one of the
main and most costly activities in
software development, the effort of
re-engineering is heavily dependent
on the remaining familiarity a devel-
oper may have. The question arises, 251
whether it is more suitable to as-
sign the original developer who im-
plemented most code (ratio of own - - — -
code) or the developer how did most Days Since Last Commit

(repetitions) or more recent (time) Fig. 1: Participants’ familiarity related to the time since the
changes? Answering this and related last commit. The size of a circle represents the number of
questions is challenging and often commits, the solid blue line average values, and the dotted
based on educated guesses. In our red line the average of responses with only one commit.
research, we are concerned with un-

derstanding the impact of forgetting especially on re-engineering tasks, supporting decision
making, improving cost estimations, and facilitating expert identification. Thus, our results
help researchers to scope new techniques and practitioners in making reasonable decisions.
We aim to conduct more studies to verify and extent our findings in future work, focusing
on the impact of familiarity on development activities and utilizing implicit and explicit
knowledge, for example, in version control systems, to support developers.

Familiarity

Acknowledgments: Supported by DFG grants LE 3382/2-1 and SA 465/49-1.

References

[Kr18] Kriiger, Jacob; Wiemann, Jens; Fenske, Wolfram; Saake, Gunter; Leich, Thomas: Do You
Remember This Source Code? In: International Conference on Software Engineering. ICSE.
ACM, pp. 764-775, 2018.

