
Tackling Knowledge Needs during Software Evolution
Jacob Krüger

Otto-von-Guericke University
Magdeburg, Germany
jkrueger@ovgu.de

ABSTRACT
Developers use a large amount of their time to understand the
system they work on, an activity referred to as program compre-
hension. Especially software evolution and forgetting over time
lead to developers becoming unfamiliar with a system. To support
them during program comprehension, we can employ knowledge
recovery to reverse engineer implicit information from the system
and the platform (e.g., GitHub) it is hosted on. However, to recover
useful knowledge and to provide it in a useful way, we first need
to understand what knowledge developers forget to what extent,
what sources are reliable to recover knowledge, and how to trace
knowledge to the features in a system. We tackle these three is-
sues, aiming to provide empirical insights and tooling to support
developers during software evolution and maintenance. The results
help practitioners, as we support the analysis and understanding of
systems, as well as researchers, showing opportunities to automate,
for example, reverse-engineering techniques.

CCS CONCEPTS
• Software and its engineering→ Software design tradeoffs;Main-
taining software; • Applied computing→ Psychology.

KEYWORDS
Program comprehension, Feature traceability, Forgetting, Memory,
Software maintenance, Software evolution
ACM Reference Format:
Jacob Krüger. 2019. Tackling Knowledge Needs during Software Evolution.
In Proceedings of the 27th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’19), August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3338906.3342505

1 INTRODUCTION
Software developers spend most of their time on program compre-
hension [50] to understand a system’s features and evolution [8, 38,
52–54]. During program comprehension, developers aim to improve
or recover their knowledge about the features and their charac-
teristics (so-called facets [7]) that are relevant for their task; in
particular, locating the code that belongs to a feature [11, 26, 44, 54].
To support knowledge recovery, several techniques have been pro-
posed to either facilitate the understanding of code (e.g. clean code

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3342505

guidelines [33]), to extract knowledge (e.g. feature location [11, 44])
or to store knowledge about a system (e.g. code comments [39]).

In parallel, software-hosting platforms, such as GitHub [20], are
used more and more often for software development. Such plat-
forms integrate a version control system with other capabilities
to track a system’s evolution and corresponding knowledge, for
example, Wiki and discussion pages—which is why we partly focus
on these platforms. Considering the evolution of software on such
platforms, we focus on three research questions:

RQ1 What knowledge do developers remember?
RQ2 What sources exist to recover knowledge?
RQ3 How can we trace knowledge to features?

For RQ1, we adopt psychological research on forgetting to under-
stand what knowledge (e.g., code, architecture, features) developers
remember at what point in time. Concerning RQ2, we identify suit-
able information sources in software-hosting platforms to recover
knowledge that may be forgotten. DuringRQ3, we investigate tech-
niques to trace knowledge directly to the source code to improve
its accessibility for the developer.

2 STATE OF THE ART
Extensive research focuses on techniques and artifacts to under-
stand and support program comprehension [46], for example, cog-
nitive models of the understanding of code [50, 53], analysis of
neural aspects [17, 47], and improvements of source-code read-
ability [1, 15]. Moreover, several techniques have been proposed
to recover implicit knowledge from systems based on reverse en-
gineering [9, 37] and to better trace the features in a system to
enrich the available knowledge [13, 18]. While these aspects have
been studied extensively, software evolution adds different per-
spectives that have rarely been analyzed in detail. For example, it
is important to understand what developers may still remember
about a system and its features, and what knowledge they actually
need [3, 19, 40, 48]. However, little research focuses on understand-
ing how developers forget what type of knowledge and how we can
support them to recover this knowledge [21]. There has been exten-
sive research on program comprehension and knowledge recovery
(e.g., expertise identification [14, 34]), but the current practices need
to be improved [43]. In particular, we need to enable and benchmark
automated techniques [51] that provide reliable knowledge to de-
velopers according to their needs—which is further highlighted by
several visions, for example, of Berger [6], Murphy [35] or Robillard
et al. [42]. For this purpose, we aim to improve our understand-
ing of how developers forget and we plan to provide capabilities
to recover and trace knowledge to features in a systematic way.
To achieve our goals, we build on and extend existing techniques
that aim to recover and present knowledge to software engineers,
facilitating their program comprehension, and thus tasks.

1244

https://doi.org/10.1145/3338906.3342505
https://doi.org/10.1145/3338906.3342505


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jacob Krüger

3 RESEARCH APPROACH
Our work focuses on empirical research, aiming to understand how
developers forget what knowledge. Particularly in this regard, we
are cross-cutting with the domain of psychology and adopt their
concepts on forgetting curves and memory for software engineer-
ing. Moreover, we analyze systems and processes, open-source as
well as industrial, to understand the needs for and the availabil-
ity of knowledge, for example, in software-hosting platforms. In
order to tackle our goals, we adopt various established and new
research methods. For instance, we conduct interview studies and
systematic literature reviews to collect existing evidence and per-
form case studies as well as controlled experiments to evaluate new
techniques [23, 55]. To gain a broader practical perspective, we
conduct empirical studies with developers in community-question
answering systems [49], such as Stack Overflow, as these provide a
large, collective knowledge base [31].

4 CONTRIBUTIONS
In this section, we briefly summarize our current findings for each
research question and then sketch our ongoing and future work.
RQ1: Measuring Knowledge. Research on program comprehen-
sion focuses heavily on improving the actual source code of a sys-
tem [46]. This seems reasonable, as most developers tend to believe
the source code more than external information that are provided,
for example, as comments [39, 43]. However, the question arises,
what knowledge developers still have about their source code af-
ter what time. To this end, we conducted an empirical study [32]
with 60 open-source developers and identified factors that influence
their memory, derived their memory strength, and analyzed the
established forgetting curve of Ebbinghaus [12]. We could show
that especially repetitions and own code positively impact memory
performance. Without considering these factors, developers forget
the source code exponentially, as defined in the forgetting curve,
which we aim to adapt to consider these factors.
RQ2: Recovering Knowledge. As developers forget or may be
new to a system, it is necessary to understand what sources we
can exploit to recover knowledge, for which we focus on software-
hosting platforms. Despite such platforms, especially feature loca-
tion is still a largely manual process [26]. Even for cloned or forked
system that developed apart from a common base, automation is
hardly achievable, although we can identify code clones to analyze
their differences and commonalities. However, these do not align to
actual features [30]. The problem is that features are rarely mapped
explicitly to the code and their additional facets, for example, how
they got approved or were tested, are usually implicit.

We analyzed two systems from GitHub to identify what facets
that are relevant to evolve features of a system [7] we can recover
from what sources [29]. During this analysis, we found that modern
software-hosting platforms provide several information sources
that we can exploit for various facets to some extent. For example,
the release log of one system helped us to identify some features
and was mapping them to the source code, due to linking to pull
requests and commits. However, this knowledge is implicit and
needs to be stored and made explicit by reverse engineering it.
RQ3: Tracing Knowledge. Finally, we are concerned with tracing
knowledge back to features and the corresponding source code,

allowing developers to access it on demand. Still, as also our results
on trust in information show [39], we need sources that developers
do trust for this purpose. Software-hosting platforms are a helpful
means in this regard, as they automatically track changes and store
additional artifacts, such as discussions. In our current research [24],
we are aiming to establish a tracing between the code and features
by adding annotations in the source code that are automatically
synchronized with a feature model [5, 10, 45].

To support our technique, we conducted multiple empirical stud-
ies, collecting principles on how developers locate features [26] and
construct a feature model [36]. We plan to combine and automate
our insights to maintain the feature model and its mapping to the
code. For this mapping, we decided to use annotations in the code,
as we found that they can benefit program comprehension [27].
Practitioners also argue, and our results confirm, that decompos-
ing features into separate classes can be more challenging than
annotations (depending on the granularity [22]), as the system’s
behavior is split up and not understandable anymore, referred to
as action at a distance [25, 28]. Moreover, support to automatically
maintain, trace, and verify annotations has already been proposed
and developed, allowing us to build on existing research [2, 4].
Ongoing Work. Currently, we develop a concept to refine and
combine our previous results. First, we are conducting additional
studies to verify our findings. In particular, we focus on under-
standing and categorizing what knowledge developers forget and
remember. For this purpose, we conduct interview studies and ex-
periments to analyze whether developers recall other abstractions
of their system (e.g., architectures, features) longer then the source
code. This can help us to gain insights into what developers con-
sider important and how they remember, as well as what knowledge
we need to recover and present to them in more detail.

Second, we implement tools that automatically recover knowl-
edge from systems and their platforms, combine it, and present it to
the developer. We intend to show howwe can use feature traces (i.e.,
annotations) to more accurately provide relevant knowledge on the
system’s evolution. To this end, we plan to conduct experiments,
simulations, and case studies especially on preprocessor-based sys-
tems, such as the Linux Kernel. Preprocessors add annotations that
are used to configure systems [5] and partly align to features. Also,
the evolutionary history (e.g. of Linux [16, 41]) provides a useful
data source to evaluate our techniques further. Overall, our goal is
to provide a technique that automatically recovers knowledge for
a system, traces it to the system’s features, and presents it to the
developer who is working on that feature on demand.

5 CONCLUSION
Changes in a system challenge developers’ program comprehen-
sion and require them the recover implicit knowledge. In this paper,
we reported results we obtained from various empirical studies on
program comprehension during software evolution. We highlighted
that knowledge needs can change during software evolution, for
example, due to forgetting and unnoticed changes, Moreover, we
described how we intend to extend our current findings and pro-
vide automation that supports developers during their tasks. This
way, we hope to facilitate software development and maintenance,
tackling the fact that developers forget and software evolves.

1245



Tackling Knowledge Needs during Software Evolution ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.

2011. An Empirical Study of the Impact of two Antipatterns, Blob and Spaghetti
Code, on Program Comprehension. In CSMR.

[2] Hadil Abukwaik, Andreas Burger, Berima K. Andam, and Thorsten Berger. 2018.
Semi-Automated Feature Traceability with Embedded Annotations. In ICSME.

[3] Abdullah Al-Nayeem, Krzysztof Ostrowski, Sebastian Pueblas, Christophe Restif,
and Sai Zhang. 2017. InformationNeeds for Validating Evolving Software Systems:
An Exploratory Study at Google. In ICST.

[4] Berima Andam, Andreas Burger, Thorsten Berger, and Michel R. V. Chaudron.
2017. FLOrIDA: Feature LOcatIon DAshboard for Extracting and Visualizing
Feature Traces. In VaMoS.

[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[6] Thorsten Berger. 2017. Feature-Oriented Traceability. In Grand Challenges of
Traceability: The Next Ten Years.

[7] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature?: A Qualitative Study of Features in Industrial Software Product Lines.
In SPLC.

[8] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. 1994. Program
Understanding and the Concept Assignment Problem. Communications of the
ACM (1994).

[9] Elliot J. Chikofsky and James H. Cross. 1990. Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software (1990).

[10] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In VaMoS.

[11] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. Journal of Software:
Evolution and Process (2013).

[12] Hermann Ebbinghaus. 1885. Über das Gedächtnis: Untersuchungen zur Experi-
mentellen Psychologie. Duncker & Humblot. In German.

[13] Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, and Christophe Dony. 2013.
Feature-to-Code Traceability in a Collection of Software Variants: Combining
Formal Concept Analysis and Information Retrieval. In IRI.

[14] Thomas Fritz, Gail C. Murphy, and Emily Hill. 2007. Does a Programmer’s
Activity Indicate Knowledge of Code?. In ESEC/FSE.

[15] Johannes C. Hofmeister, Janet Siegmund, and Daniel V. Holt. 2019. Shorter
Identifier Names take Longer to Comprehend. Empirical Software Engineering
(2019).

[16] Ayelet Israeli and Dror G. Feitelson. 2010. The Linux Kernel as a Case Study in
Software Evolution. Journal of Systems and Software (2010).

[17] Ahmad Jbara and Dror G. Feitelson. 2017. How Programmers Read Regular Code:
A Controlled Experiment Using Eye Tracking. Empirical Software Engineering
(2017).

[18] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In SPLC.

[19] Jitendra Josyula, Sarat Panamgipalli, Muhammad Usman, Ricardo Britto, and
Nauman Bin Ali. 2018. Software Practitioners’ Information Needs and Sources:
A Survey Study. In IWESEP.

[20] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In MSR.

[21] Keumseok Kang and Jungpil Hahn. 2009. Learning and Forgetting Curves in
Software Development: Does Type of KnowledgeMatter? ICIS Proceedings (2009).

[22] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in
Software Product Lines. In ICSE.

[23] Barbara A. Kitchenham, David Budgen, and Pearl Brereton. 2016. Evidence-Based
Software Engineering and Systematic Reviews. CRC Press.

[24] Sebastian Krieter, Jacob Krüger, and Thomas Leich. 2018. Don’t Worry About It:
Managing Variability On-the-Fly. In VaMoS.

[25] Jacob Krüger. 2018. Separation of Concerns: Experiences of the Crowd. In SAC.
[26] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2019. Features and How to

Find Them: A Survey of Manual Feature Location. In Software Engineering for
Variability Intensive Systems.

[27] Jacob Krüger, Gül Calıklı, Thorsten Berger, Thomas Leich, and Gunter Saake.
2019. Effects of Explicit Feature Traceability on Program Comprehension. In

ESEC/FSE.
[28] Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich. 2018.

Physical Separation of Features: A Survey with CPP Developers. In SAC.
[29] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and

Thorsten Berger. 2019. Where is my Feature and What is it About? A Case Study
on Recovering Feature Facets. Journal of Systems and Software (2019).

[30] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In SPLC.

[31] Jacob Krüger, Ivonne Schröter, Andy Kenner, and Thomas Leich. 2017. Empirical
Studies in Question-Answering Systems: A Discussion. In CESI.

[32] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2018. Do You Remember This Source Code?. In ICSE.

[33] Robert C. Martin. 2009. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson.

[34] Audris Mockus and James D. Herbsleb. 2002. Expertise Browser: A Quantitative
Approach to Identifying Expertise. In ICSE.

[35] Gail C. Murphy. 2019. Beyond Integrated Development Environments: Adding
Context to Software Development. In ICSE.

[36] Damir Nešić, Jacob Krüger, Stefan Stănciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In ESEC/FSE.

[37] Joaquín Nicolás and Ambrosio Toval. 2009. On the Generation of Requirements
Specifications from Software Engineering Models: A Systematic Literature Re-
view. Information and Software Technology (2009).

[38] Michael Nieke, Lukas Linsbauer, Jacob Krüger, and Thomas Leich. 2019. Sec-
ond Intl. Workshop on Variability and Evolution of Software-Intensive Systems
(VariVolution). In SPLC.

[39] Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger, Thomas Leich, and Frank
Ortmeier. 2018. Commenting Source Code: Is It Worth It For Small Programming
Tasks? Empirical Software Engineering (2018).

[40] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information Needs in Contemporary Code Review. Proceedings
of the ACM on Human-Computer Interaction (2018).

[41] Leonardo Passos, Jesús Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco T. Valente. 2015. Feature Scattering in the Large: A Longitudinal
Study of Linux Kernel Device Drivers. In MODULARITY.

[42] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, Gail C. Murphy, Laura Moreno, David C. Shepherd, and
Edmund Wong. 2017. On-Demand Developer Documentation. In ICSME.

[43] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
Do Professional Developers Comprehend Software?. In ICSE.

[44] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering.

[45] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006.
Feature Diagrams: A Survey and a Formal Semantics. In RE.

[46] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-
prehending Studies on Program Comprehension. In ICPC.

[47] Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes C. Hofmeister,
Christian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring Neural Efficiency of Program Comprehension. In ESEC/FSE.

[48] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions Program-
mers Ask During Software Evolution Tasks. In FSE.

[49] Ivan Srba and Maria Bielikova. 2016. A Comprehensive Survey and Classification
of Approaches for Community Question Answering. ACM Transactions on the
Web (2016).

[50] Margaret-Anne Storey. 2006. Theories, Tools and Research Methods in Program
Comprehension: Past, Present and Future. Software Quality Journal (2006).

[51] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Benchmark-
ing the Techniques for the Evolution of Variant-Rich Systems. In SPLC.

[52] Rebecca Tiarks. 2011. What Maintenance Programmers Really do: An Observa-
tional Study. In WSR.

[53] Anneliese Von Mayrhauser and A. Marie Vans. 1995. Program Comprehension
During Software Maintenance and Evolution. Computer (1995).

[54] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Devel-
opers Perform Feature Location Tasks: a Human-Centric and Process-Oriented
Exploratory Study. Journal of Software: Evolution and Process (2013).

[55] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer.

1246


	Abstract
	1 Introduction
	2 State of the Art
	3 Research Approach
	4 Contributions
	5 Conclusion
	References

