
cba

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Program Comprehension and Developers’ Memory
Presentation of work originally published in the
Proc. of the 40th Intl. Conf. on Software Engineering

Jacob Krüger1,2, Jens Wiemann2, Wolfram Fenske2, Gunter Saake2, Thomas Leich1,3

Abstract: In this extended abstract, we summarize our paper “Do You Remember This Source
Code?”, published at the International Conference on Software Engineering 2018 [Kr18]. We discuss
implications of our results on forgetting in the context of program comprehension, providing a more
contextual perspective on our results compared to the original paper and a previous abstract [Kr19].

Keywords: Familiarity; forgetting; empirical study; maintenance; program comprehension

Software developers constantly design, implement, maintain, and re-engineer software
systems. For this purpose, they have to understand the program itself, which is the most
time-consuming and costly activity that software developers perform—called program
comprehension. There exist numerous studies to show the impact of various factors on
program comprehension, and techniques to facilitate this activity, for instance, based on
comments or identifier names. However, few studies investigate the remaining software
familiarity of developers with a system. This familiarity comprises knowledge about the
code, design, architecture, and application of the software that is forgotten over time. While
some techniques (e.g., expertise identification) consider factors related to forgetting (i.e.,
time, authorship), we are not aware of empirical analyses that show the impact of these
factors on developers’ memory.

We conducted an empirical study on the self-assessed familiarity of 60 open-source
developers with source code they worked on [Kr18]. More precisely, we investigated
whether the well-known forgetting model of Ebbinghaus applies to software familiarity,
analyzed three factors (i.e., number of edits, ratio of own code, tracking behavior) from
learning theory that should also influence forgetting, and computed the memory strength
of our participants. In Table 1, we show the results of testing the significance of our
observations. To this end, we used two rank correlations (Kendall’s Tau is more strict than
Spearman’s Rho) that indicate the effect each factor has on our participants’ memory. We
remark that we controlled for the file sizes to ensure that these had no impact, as we asked
our participants to state their remaining familiarity as ratios of the files.
1 Harz University of Applied Sciences Wernigerode; tleich@hs-harz.de
2 Otto-von-Guericke-University Magdeburg; jkrueger@ovgu.de; wfenske@ovgu.de; saake@ovgu.de
3 METOP GmbH Magdeburg

https://creativecommons.org/licenses/by-sa/4.0/
tleich@hs-harz.de
jkrueger@ovgu.de
wfenske@ovgu.de
saake@ovgu.de


2 J. Krüger et al.

Tab. 1: Spearman’s Rho (rs), Kendall’s Tau (τ), and the
corresponding significance (sig.) values.

Factor rs sig. τ sig.

File Size 0.16 0.22 0.11 0.24
Number of Edits 0.67 4.56 × 10−9 0.55 5.18 × 10−8

Ratio of Own Code 0.55 4.57 × 10−6 0.42 6.86 × 10−6

Tracking Behavior 0.04 0.79 0.02 0.8

As we can see in Table 1, the file
sizes did not correlate with familiar-
ity, which was the prerequisite for
our analysis. The remaining results
showed a local maximum in famil-
iarity after approximately 120 days
had passed since the last edit of a file.
This highlights the impact of factors
other than time on familiarity. Our results indicate that the number of edits, which represents
repeated commits to the same file at different days, has a moderate to strong, positive
correlation to familiarity. For the ratio of own code that a developer implemented, we also
found a moderate, positive correlation. Consequently, we assume that repeatedly working
on a file and implementing more of its code does indeed improve a developer’s memory
of that file. In contrast, we found no correlation for the tracking behavior, which refers
to developers following and analyzing the changes others employ on the file. However,
this may be due to different understandings of tracking and we need to conduct further
analyses to see whether this finding holds true. Finally, we found that the averaged curve
resembles that of Ebbinghaus, especially if we remove the number of edits as factor. Thus,
Ebbinghaus’ forgetting model seems to apply to software engineering, but only if developers
implemented a file in one session. Overall, we argue that we need an adapted forgetting
curve for software development that considers additional factors that are specific to the
activities, processes, and interactions of developers.

We conducted this research in the context of re-engineering, for which developers first
need to comprehend the software. As program comprehension is costly, the costs for
re-engineering heavily depend on the remaining familiarity a developer has. In practice,
we can find various scenarios in which the question arises who should perform a task. For
example, consider a developer who implemented a file some time ago. Other developers
made changes to this file, introducing new functionality or fixing bugs. The question is,
who is best suited to perform a new task on this file? It may be the original developer (ratio
of own code), the one who did most changes (number of edits) or the one with the most
recent changes (time). This question is impossible to answer precisely, but our research
indicates that existing heuristics will benefit from taking the impact of forgetting on software
familiarity and program comprehension into account.

Acknowledgments: Supported by DFG grants LE 3382/2-1 and SA 465/49-1.

References
[Kr18] Krüger, Jacob; Wiemann, Jens; Fenske, Wolfram; Saake, Gunter; Leich, Thomas: Do You

Remember This Source Code? In: ICSE. 2018.

[Kr19] Krüger, Jacob; Wiemann, Jens; Fenske, Wolfram; Saake, Gunter; Leich, Thomas: Understand-
ing How Programmers Forget. In: SE/SWM. 2019.


