
Towards Automated Test Refactoring for Software Product Lines
Jacob Krüger

Harz University of Applied Sciences
Otto-von-Guericke-University

Wernigerode & Magdeburg, Germany
jkrueger@ovgu.de

Mustafa Al-Hajjaji
Otto-von-Guericke-University

pure-systems GmbH
Magdeburg, Germany

mustafa.alhajjaji@pure-systems.com

Sandro Schulze
Otto-von-Guericke-University

Magdeburg, Germany
sanschul@ovgu.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
saake@ovgu.de

Thomas Leich
Harz University of Applied Sciences

METOP GmbH
Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

ABSTRACT
In practice, organizations often rely on the clone-and-own approach
to reuse and customize existing systems. While increasing mainte-
nance costs encourage some organizations to adopt their develop-
ment processes towards more systematic reuse, others still avoid
migrating to a reusable platform. Based on our experiences, a bar-
rier preventing the adoption of software product lines is the fear
of introducing new and more problematic bugs—during the mi-
gration or later on. We are aware of several works that automate
software-product-line adoption, but they neglect the migration and
maintenance of test cases. Automating the refactoring of tests can
help to facilitate the adoption barrier, compare the quality after
migrations, and support maintenance. In this vision paper, we i)
discuss open research challenges that are based on our experiences
and ii) sketch a first framework to develop automated solutions.
Overall, we aim to illustrate our idea and initiate further research to
facilitate the adoption and maintenance of software product lines.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering; Software testing and debugging;

KEYWORDS
Software product line, testing, legacy system, extractive approach,
migration, maintenance

ACM Reference Format:
Jacob Krüger,Mustafa Al-Hajjaji, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2018. Towards Automated Test Refactoring for Software Product
Lines. In SPLC ’18: 22nd International Systems and Software Product Line
Conference, September 10–14, 2018, Gothenburg, Sweden. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3233027.3233040

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’18, September 10–14, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6464-5/18/09. . . $15.00
https://doi.org/10.1145/3233027.3233040

1 INTRODUCTION
Organizations often develop a customized system by cloning an
existing one to fulfill new customer requirements [4, 15, 38]. This
clone-and-own approach is a simple and initially cheap reuse strat-
egy [19, 39]. However, with an increasing number of clones, the
efforts for development and maintenance can increase [4, 39], for
example, due to propagating changes and bug fixes [35]. For these
reasons, an organization may consider to migrate its cloned systems
towards a software product line to reduce costs [11, 26]. Such migra-
tions are referred to as extractive approach [25], which is the most
common software-product-line adoption strategy in practice [8, 16].

During the extractive adoption, legacy systems are partitioned
and migrated into reusable features [4, 25, 27]. These features im-
plement commonalities and variabilities of the systems and are
used to configure and instantiate a customized system [4, 5, 12].
Different surveys [18, 28] show that several approaches have been
proposed to automate such extractions and, thus, reduce their risks
and costs [11, 26]. Still, from our experience, some organizations do
not initiate a migration process, because they fear to introduce new
bugs into the resulting software product line. Form their perspective,
the promised benefits do not outweigh the necessary investments
to ensure correctness and testability.

To tackle this problem, we propose to not only rely on refactor-
ing [20] to migrate the legacy systems and their test cases, but also
to implement an automated mapping between them. Based on this
mapping, we can identify cloned tests and those that may need to
be updated after code is extracted. For instance, a feature’s imple-
mentation from different legacy systems may be merged. Here, the
question arises, which of the corresponding tests is the best suitable
to test the merged source code and which adaptations are required?
In this vision paper, we sketch a corresponding adoption strategy
and its challenges, arguing that this can help to facilitate the adop-
tion barrier towards software product lines [11]. As an existing
software product line is also updated, this mapping can further
support the maintenance phase. Thus, while our focus is on the ex-
tractive adoption, our idea can also facilitate software-product-line
engineering in general. In detail, we describe:

• Using a running example, we explore the importance of
refactoring tests while extracting a software product line.

• Based on the running example, we discuss arising challenges
for test refactoring during migrations of legacy systems.

https://doi.org/10.1145/3233027.3233040
https://doi.org/10.1145/3233027.3233040
a-jkrueger
Textfeld
This is the authors' version of this paper and posted here for personal use only. For any other use, please contact the ACM.do: 10.1145/3233027.3233040

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden J. Krüger et al.

Listing 1 Basic buffer without restoring.
1 public class Buffer {
2 int buf = 0;
3 int get() {
4 return buf;
5 }
6 void set(int x) {
7 buf = x;
8 }
9 }

Listing 2 Buffer extended with a single-value restore.
1 public class Buffer {
2 int buf = 0;
3 int back = 0;
4 int get() {
5 return buf;
6 }
7 void set(int x) {
8 back = buf;
9 buf = x;
10 }
11 void restore () {
12 buf = back;
13 }
14 }

Listing 3 Buffer with a stack to restore multiple values.
1 public class Buffer {
2 int buf = 0;
3 Stack <Integer > back = new Stack <Integer >();
4 int get() {
5 return buf;
6 }
7 void set(int x) {
8 back.push(buf);
9 buf = x;
10 }
11 void restore () {
12 buf = back.pop();
13 }
14 }

Figure 1: Cloned implementations of a buffer based on the
example by Liu et al. [30].

• We sketch an initial framework to track code refactorings
and map them towards the corresponding tests.

Based on this vision, we hope to encourage further research to
investigate test refactoring for software-product-line engineering.
We argue that such an approach can facilitate the practical adoption
of software product lines by ensuring that the test suite can always
be used to validate the code. While we solely focus on the extrac-
tion of test cases in this paper, the derived challenges also apply
to software-product-line evolution. Thus, this work may addition-
ally foster future research in this direction. Furthermore, while we
only use unit tests [40] as examples, the challenges and proposed
framework can also be adopted for other test artifacts.

2 PROBLEM STATEMENT
For a set of cloned systems, an organization may have different
types of tests, for instance, unit tests [40]. These tests are used for
all or only for a subset of the legacy systems. Due to migrating
the legacy systems towards a software product line, these legacy

Listing 4: Unit tests for Listing 2.
1 import static org.junit.Assert.assertTrue;
2
3 public class Test {
4 Buffer buf = new Buffer ();
5
6 @org.junit.Test
7 public void bufTest () throws Exception {
8 buf.set (42);
9 assertTrue(buf.get() == 42);
10 }
11
12 @org.junit.Test
13 public void backTest () throws Exception {
14 buf.set (42);
15 buf.set (24);
16 buf.restore ();
17 assertTrue(buf.get() == 42);
18 }
19 }

tests may not be applicable anymore. For example, the code may
be restructured, could require different input, or create changed
output. Consequently, developers have to analyze refactorings and
adopt existing tests accordingly—also considering replicated and
customized tests. We argue that new analysis and adoption strate-
gies for automatic test migration reduce the adoption barrier [11].

Extracting a software product line from cloned systems requires
developers to analyze the existing code and migrate it into reusable
features [4, 18, 25]. Still, this can be an error-prone and costly
process [11, 26] and, based on our experience, organizations often
fear the possibility to introduce new bugs. To address such issues,
refactorings have been proposed that migrate clones towards a
software product line while ensuring consistency and reducing the
necessary effort [17, 23, 41]. However, refactoring cloned systems
(or a software product line during maintenance) can easily yield to
breaking the corresponding test cases. To this end, we propose to
extend code refactorings with test case mapping. Especially for the
extractive approach, we also have to avoid test case replications.

In the following, we will discuss these three aspects based on a
running example: We display three customized implementations of
a simple buffer manager in Figure 1 based on the work of Liu et al.
[30]. The implementation in Listing 1 only stores a single value in
a variable and can return it. Listing 2 and Listing 3 are extended
versions that store a single or multiple former values, respectively.

Code Refactoring. The source code of legacy systems is mi-
grated into a suitable domain implementation. During this integra-
tion of multiple systems into a single code base, several changes
in the source code may be necessary, for example, due to the used
variability mechanism or added glue code [4, 29, 42]. Still, already
for a single system, refactoring source code can result in broken
test cases [10]. Refactoring and integrating multiple legacy systems
while introducing a variability mechanism in parallel is even more
challenging, posing additional problems [31]. Thus, refactoring test
cases is essential while extracting a software product line.

To exemplify this, we use the unit tests we display in Listing 4
that test setting the buffer value and restoring it for the implemen-
tation in Listing 2—cloned versions for the other two implementa-
tions are omitted. Assume we extract all three restoring capabilities
(i.e., none, a variable, a stack) into different features. Based on the

Towards Automated Test Refactoring for Software Product Lines SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

variability mechanism, the test cases also require refactoring. For ex-
ample, using preprocessors, all annotations in the base code should
also be added to the test cases, which also have to be merged. An-
other possibility would be to use plug-ins or interfaces (e.g., similar
to Java’s comparable interface), when the feature implementation
would heavily change. This would also require adapting the test
cases to fit to the changed architecture.

Test Case Mapping. An issue closely related to the actual refac-
toring is the mapping of test cases to code and, thus, configurations.
Different test cases may be merged, discarded, or changed depend-
ing on the extracted features. Thus, we have to map which test
case belongs to which feature. Otherwise, the test cases will hardly
be applicable on the extracted software product line. This may be
done by implementing variability-aware test cases, meaning that
the variability is also transferred into the test cases.

For example, the test case for the reversing operation we show
in Listing 4 will only be applicable in some configurations. It will fail
whenever the value cannot be restored. In addition, it does not cover
the complete functionality of the stack implementation, wherefore
an additional test may be necessary for that feature—to test the
actual function of the stack to store multiple values. Depending
on the used variability mechanism, the mapping can be closely
related to the actual code refactoring. For instance, preprocessor
annotations would already implement the mapping and only have
to be used correctly [4].

Test Case Replications. The legacy test cases may not be the
same for all variants, as customizations in one variant can require
adapted or completely new test cases. Thus, for migrations we have
to consider two possibilities: First, we have to identify and remove
duplicated test cases to prevent unnecessary effort. Second, we have
to analyze adapted test cases to identify and manage differences—
preventing contradicting results and faulty test cases.

For instance, the first test case, which assesses whether the buffer
is set, in Listing 4 is identical for all variants in Figure 1, wherefore
only one of all potential duplicates must be kept. However, the test
cases that check the restore functionality may be partly duplicated,
but contain differences. Considering our example, for Listing 2
and Listing 3 we need to integrate the tests and implement variable
testing, depending on whether a single value or a stack is used
for restoring. Keeping all test cases may also cause errors if only
specific implementations are kept, for example, because the variable
back in Figure 1 is defined differently.

3 CHALLENGES
In the following, we describe six challenges that arise due to the
aforementioned situation and discuss their implications.

CH1 How can we map test cases to features?
As a set of legacy systems is merged into a single domain
implementation, it is necessary to identify which test corre-
sponds to which feature and, thus, configuration. Otherwise,
it will hardly be possible to apply the tests correctly and avoid
unnecessary test efforts. Approaching this issue will facilitate
the extraction of product lines and ease the adoption of an
appropriate quality assurance. Such a mapping can be based
on the variability mechanism, for instance, by using the same
preprocessor annotations (cf. Section 2).

CH2 How can we map code refactorings to the corresponding tests?
When source code is refactored into a software product line, it
is essential for developers to knowwhich test cases are affected
by these changes. This way, they can evaluate the impact of
their changes and the necessity to adapt existing test cases.
Thus, addressing this challenge helps developers to analyze
and manage tests during the migration process. Considering
our running example, we may decide to refactor Listing 1
and Listing 3 into features. Consequently, we have to identify
that the corresponding test cases require updates, such as,
removing duplicates (e.g., first test case in Listing 4), discarding
inappropriate tests (e.g., second test case in Listing 4), and
adapting variability for other test cases (e.g., clone of the
second test case in Listing 4 for the stack implementation).

CH3 How can we measure similarity between test cases?
To identify which test cases are replications or adaptations,
it is necessary to measure their similarity. For this, suitable
analysis techniques are necessary to support developers in
identifying test cases, and their differences, that must be refac-
tored. As a result, the effort of extracting software product
lines can be reduced, lowering the adoption barrier [11]. Mea-
suring similarity may be done based on clone detection (e.g.,
for the first test case in Listing 4) or execution traces, but
requires certain criteria and metrics.

CH4 How and when do we derive new test cases?
Identical to refactorings in a single system [34], the extrac-
tion of software product lines from legacy systems can result
in new and changed implementations. Thus, additional test
cases may be necessary to cover such changes. In this context,
automated test case generation can support developers to fa-
cilitate the extraction process. For example, in Figure 1 the set
method of Listing 2 and Listing 3 may be merged and receive
a second variable to determine each restoring functionality at
runtime. To this end, a new variable is introduced and requires
additional test cases, next to the necessary updates.

CH5 How do we migrate test cases to suit a software product line?
There are some works that address the refactoring of test
cases for a single system [10, 14, 34]. However, when extract-
ing a software product line, we may be able to benefit from
analyzing existing test cases and use automation to some de-
gree. Therefore, we have to investigate how we can merge
and adapt similar test cases to the resulting software product
line. For instance, based on the code refactorings and their
mappings to the test cases, it may be possible to automatically
merge them to some extent. In Listing 4, we could imagine
that cloned test cases of the restoring function (e.g., for the
stack implementation in Listing 3) are automatically merged.

CH6 How can we evaluate the quality of refactored test cases?
For each refactored test case, the question arises whether it is
suitable or requires further adaptations. To address this point,
evaluations for test cases are necessary. This way, a defined
degree of quality for the extracted test cases can be guaranteed
to also ensure the quality of the resulting software product
line. Considering Listing 4, we may see that the second test
case would fulfill the same requirements for Listing 2, but not
for Listing 3. Thus, we could identify issues in the resulting
code and also support the previous challenges.

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden J. Krüger et al.

Addressing the aforementioned challenges and combining their
outcomes seems promising to facilitate the extraction and evolution
of software product lines.

4 TOWARDS A FRAMEWORK
In this section, we sketch our initial idea on managing legacy test
cases while extracting a software product line. We depict the corre-
sponding process in Figure 2. To explain our idea, we use abstract
syntax trees [44] as representations of the legacy systems’ source
code on a model-based level. We remark that other representa-
tions, such as dependency graphs or execution traces, or even other
approaches may be better suited to address some of the aforemen-
tioned challenges. The benefits of abstract syntax trees are that they
only require static analysis and allow to compare variants on code
level. However, they do not comprise information about a variants
behavior at execution time and can only be indirectly mapped to
test cases—while dynamic representations allow to execute tests
and, thus, map them to code. For now, we base our framework
on abstract syntax trees, but we arguably have to explore other
representations to evaluate them and enable automation.

The root of an abstract syntax tree can represent a whole system,
with its children illustrating packages, import declarations, down
to classes and statements. By adapting approaches to analyze these
representations, for example by Baxter et al. [6] and Neamtiu et al.
[33], we aim to collect the necessary information to automate and,
thus, facilitate the migration of legacy test cases. In the following,
we describe the different steps that we depict in Figure 2.

Extracting Abstract Syntax Trees. At the beginning of our
process, we extract an abstract syntax tree from each existing legacy
system. Then, we have to execute the existing test cases to map
their executions onto the abstract syntax trees. Thus, we identify all
relevant nodes and have an abstract representation of the test cov-
erage [47] (i.e., based on statements) that is achieved for the legacy
systems. We aim to use these information on test coverage to track
refactorings from the legacy systems towards the extracted soft-
ware product line and assess their impact. To this end, we assume
that any refactoring of the source code can also be represented in
the abstract syntax tree, for example as proposed by Behringer and
Rothkugel [7], and nodes are either inserted, removed, or replaced.
We track if such modifications change the coverage of the system
or a specific test case (e.g., nodes are removed that belonged to its
execution trace), for instance, if a feature is derived we add a new
node representing this feature. This way, we address the first (CH1)
and second challenge (CH2) we discussed in Section 3. Considering
our example in Figure 1, we would map the first test case (and its
clones) of Listing 4 to each of the legacy implementations. Thus,
any change in these parts can be mapped accordingly.

Aggregating Abstract Syntax Trees. In the next step (cf. Fig-
ure 2), we aggregate the derived abstract syntax trees into a single
tree, based on comparing and transforming the representations [13].
The purpose of this aggregation is to identify test cases that cover
identical or similar parts (e.g., statements) of the legacy systems.
Thus, we can reduce the number of considered test cases by re-
moving replications. Additionally, we can also identify those tests
that are affected by the same changes but still contain variability.
These may cover specific features in the resulting software product

line. As a result, we have a reduced set of test cases for the fur-
ther process and identified relations between them, addressing our
third research challenge (CH3). For instance, in the previous step
we mapped the first test case of Listing 4 and its clones to three
different legacy implementations. Based on comparing the abstract
syntax trees, we could identify that they actually cover identical
code and remove two of them—and updating the mappings.

Mapping Refactorings. The third step of our framework is
to map source code refactorings onto an abstract syntax tree that
represents the resulting software product line. For this purpose,
developers can either start from scratch or base it on the abstract
syntax tree of a specific legacy system. By mapping refactorings
with model transformations and using the previously merged ab-
stract syntax tree, we can identify new, modified, and removed
nodes that may affect test cases. In Figure 2, we exemplify such
situations with red nodes. We remark that we consider legacy nodes
that are only appended to the software product line’s abstract syn-
tax tree as unchanged. Based on the change, we can consider:

(1) If a test case covers only unchanged nodes, it can be applied
without further adaptations.

(2) If a test case covers modified nodes, it must be adapted to
the new structure.

(3) If a test case covered removed nodes, it must be adapted if
possible or potentially discarded.

(4) If no test case covers a node, it might be necessary to derive
a completely new one.

By extending this analysis, we can address our fourth research
challenge (CH4) and decide for which nodes we need new or adapted
test cases. For our example, we can imagine that the getter, for which
we identified one test case, may be updated to return the whole
buffer object instead of the last value. Thus, corresponding nodes in
the abstract syntax tree would be modified and the second scenario
would apply to the mapped test case.

Refactoring Test Cases. Depending on the decisions a devel-
oper derives from the previous assessment, test cases must be de-
rived or refactored. Besides utilizing existing work on regression
testing [46], approaches for single systems [10, 14] can be adopted
to address the fifth challenge (CH5). In particular, we may be able to
extend them based on semantic knowledge of the applied software-
product-line refactorings to automatically extend the test suite. For
instance, on a formal level of pre- and post-conditions, if these con-
ditions are derived automatically for new program elements (i.e., a
feature) during the refactoring, it may be possible to automatically
generate new tests for this particular element. Another point to
address is, whether we can automatically join and combine legacy
test cases to cover more extensive refactorings. Currently, we envi-
sion a less automated approach to support developers in this step
of the process. Again, assuming that the previously exemplified
test case requires an update, adapting it to test the object may be
partly possible. Nonetheless, while we may be able to define rules
that replace the equality operators in Listing 4 with testing for an
instance, this may not be enough to derive a proper test case.

Evaluating Test Cases. One way to assess the quality of test
cases, especially new and refactored ones, of the extracted software
product line is to use mutation testing [22]. By using conventional
mutation operators and operators for software product lines [1,

Towards Automated Test Refactoring for Software Product Lines SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

(1) Extract AST coverage (2) Aggregate ASTs (3) Map refactorings (4) Refactor test cases (5) Evaluate test cases

Figure 2: Sketch of the envisioned framework. The abstract syntax tree structures represent the source code of the legacy
systems that are then migrated to a software product line.

2], we execute test cases against generated mutants that contain
faults [9]. We can then ensure a certain quality of these test cases
based on two assessments: How well do the test cases perform on
the extracted software product line and is their quality comparable
to the legacy counterparts (i.e., if they have been adapted)? Still,
while we can automatically provide some information on the quality
of test cases, it is also an expensive means [2, 22] and cannot fully
replace a manual assessment. Nonetheless, mutation testing is one
possible way to address our sixth challenges (CH6). Considering our
previous example, a return values mutant for the getter in Listing 2
would return a zero instead of the variable, which would be revealed
by the legacy test. For our refactored code, the same operator would
return null instead of the buffer object. A refactored test case can
also reveal this by checking the instance of the object. Consequently,
we could assume the same quality of the test cases for this method,
as they find the same mutant. Still, due to the high costs of mutation
testing, ensuring correctness based on the refactorings is important.

Summary.We presented an initial framework to manage test-
case refactoring during software-product-line extraction and ex-
emplified it based on our running example. While we are focusing
on abstract syntax trees and, thus, a representation close to the
source code, other representations also seem necessary. For in-
stance, using model-based software testing [13, 43] may help to
improve automation on test case analysis and creation.

5 RELATEDWORK
Several approaches have been proposed to extract systems and their
different artifacts into software product lines [18, 28]. For exam-
ple, Alves et al. [3], Rubin andChechik [37], andXue [45] all propose
to extract a software product line from similar legacy systems based
on analyzing corresponding models. These approaches mainly uti-
lize the idea of combining different variability models (e.g., fea-
ture models) and partly extend their approaches with, for instance,
dependency graphs and information retrieval. Similarly, Koschke
et al. [24] compose the architecture of a software product line by
combining architectural models of legacy systems. Our idea to uti-
lize abstract syntax trees to model the execution of test cases and
the affected program elements builds on similar concepts. However,
in contrast to existing approaches, we focus on extracting test cases
rather than the systems themselves and, thus, complement these
works. In addition, it is possible to automatically extract abstract
syntax trees, while most other approaches require experts to derive
the necessary models.

Other authors propose approaches to identify and extract com-
monalities of legacy systems. For example, Mende et al. [32], Dus-
zynski et al. [16], and Krüger et al. [27] utilize code-clone detec-
tion [36] rather then model comparison. This way, they identify and
measure similarity and variability in legacy systems solely based
on the source code. Moreover, several authors [17, 23, 41] propose
refactorings to extract source code into a software product line.
These approaches focus on analyzing and refactoring source code—
including test cases, but not on the mapping between those. We
complement these works and may use similar ideas, for example,
using code-clone detection on abstract syntax trees [6], to derive
additional information and integrate our own approach into these.

For single system development, Guerra and Fernandes [21] ob-
serve that refactoring test cases is different from refactoring source
code. To this end, Passier et al. [34] propose to maintain unit tests
during refactorings by tracking source code changes and reflecting
these to the test cases. Similarly, Chu et al. [10] describe an approach
to guide the refactoring of test cases for design patterns. In contrast
to these approaches, we focus on the refactoring of multiple legacy
tests to be suitable for an extracted software product line. Thus, we
can use, but have to extend and refine, such works.

6 CONCLUSION
Several approaches have been proposed to extract artifacts of cloned
legacy systems into a software product line. Most focus onmodeling
the systems and source code, but rarely consider other artifacts. In
particular, we argue that it is necessary to improve the management
and refactoring of legacy test cases, which is already challenging
in single system development. Otherwise, ensuring the quality and
testability of an extracted software product line can hardly be en-
sured. In this paper, we discussed the problems and challenges we
identified in the context of refactoring legacy test cases. Further-
more, we proposed an initial concept for managing and automating
this process based on abstract syntax trees.

In future work, we plan to implement the sketched framework.
To this end, we especially have to develop a suitable mapping from
legacy source code (i.e., abstract syntax trees) to the test cases and
an update mechanism for refactorings. Additionally, we aim to
investigate further automation and to perform case studies.
Acknowledgments This research is supported by the German
Research Foundation (DFG; LE 3382/2-1, SA 465/49-1), the German
Federal Ministry of Education and Research (BMBF; 01|S16043N),
and Volkswagen Financial Services AG.

SPLC ’18, September 10–14, 2018, Gothenburg, Sweden J. Krüger et al.

REFERENCES
[1] Mustafa Al-Hajjaji, Fabian Benduhn, Thomas Thüm, Thomas Leich, and Gunter

Saake. 2016. Mutation Operators for Preprocessor-Based Variability. In Inter-
national Workshop on Variability Modelling of Software-Intensive Systems. ACM,
81–88.

[2] Mustafa Al-Hajjaji, Jacob Krüger, Fabian Benduhn, Thomas Leich, and Gunter
Saake. 2017. Efficient Mutation Testing in Configurable Systems. In International
Workshop on Variability and Complexity in Software Design. IEEE, 2–8.

[3] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos
Lucena. 2006. Refactoring Product Lines. In International Conference on Generative
Programming: Concepts and Experiences. ACM, 201–210.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] Sven Apel and Christian Kästner. 2009. An Overview of Feature-Oriented Soft-
ware Development. Journal of Object Technology 8, 5 (2009), 49–84.

[6] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. 1998. Clone Detection Using Abstract Syntax Trees. In International
Conference on Software Maintenance. 368–377.

[7] Benjamin Behringer and Steffen Rothkugel. 2016. Integrating Feature-Based
Implementation Approaches Using a Common Graph-based Representation. In
ACM Symposium on Applied Computing. ACM, 1504–1511.

[8] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In InternationalWorkshop on VariabilityModelling
of Software-Intensive Systems. ACM, 7:1–7:8.

[9] Luiz Carvalho, Marcio Augusto Guimarães, Márcio Ribeiro, Leonardo Fernandes,
Mustafa Al-Hajjaji, Rohit Gheyi, and Thomas Thüm. 2018. Equivalent Mutants
in Configurable Systems: An Empirical Study. In International Workshop on
Variability Modelling of Software-Intensive Systems. ACM, 11–18.

[10] Peng-Hua Chu, Nien-Lin Hsueh, Hong-Hsiang Chen, and Chien-Hung Liu. 2012.
A Test Case Refactoring Approach for Pattern-Based Software Development.
Software Quality Journal 20, 1 (2012), 43–75.

[11] Paul C. Clements and Charles W. Krueger. 2002. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE Software 19, 4 (2002),
28–30.

[12] Paul C. Clements and Linda M. Northrop. 2001. Software Product Lines: Practices
and Patterns. Addison-Wesley.

[13] Krzysztof Czarnecki and Simon Helsen. 2006. Feature-Based Survey of Model
Transformation Approaches. IBM Systems Journal 45, 3 (2006), 621–645.

[14] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. 2002.
Extreme Programming Perspectives. Addison-Wesley, Chapter Refactoring Test
Code, 141–152.

[15] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In European Conference on Software Maintenance and
Reengineering. IEEE, 25–34.

[16] Slawomir Dus-zynski, Jens Knodel, and Martin Becker. 2011. Analyzing the
Source Code of Multiple Software Variants for Reuse Potential. In Working Con-
ference on Reverse Engineering (WCRE). IEEE, 303–307.

[17] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to
a Product Line. In International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 316–326.

[18] Wolfram Fenske, Thomas Thüm, and Gunter Saake. 2013. A Taxonomy of Soft-
ware Product Line Reengineering. In International Workshop on Variability
Modelling of Software-Intensive Systems. ACM, 1–8.

[19] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-And-Own with Systematic Reuse for Developing
Software Variants. In International Conference on Software Maintenance and
Evolution. IEEE, 391–400.

[20] Martin Fowler and Kent Beck. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley.

[21] Eduardo Martins Guerra and Clovis Torres Fernandes. 2007. Refactoring Test
Code Safely. In International Conference on Software Engineering Advances. IEEE,
44–49.

[22] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011), 1–31.

[23] Jongwook Kim, Don Batory, and Danny Dig. 2017. Refactoring Java Software
Product Lines. In International Systems and Software Product Line Conference.

ACM, 59–68.
[24] Rainer Koschke, Pierre Frenzel, Andreas P. J. Breu, and Karsten Angstmann.

2009. Extending the Reflexion Method for Consolidating Software Variants into
Product Lines. Software Quality Journal 17, 4 (2009), 331–366.

[25] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In International Workshop on Software Product-Family Engineering. Springer, 282–
293.

[26] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference. ACM, 354–361.

[27] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In International Systems and Software
Product Line Conference. ACM, 65–72.

[28] Miguel A. Laguna and Yania Crespo. 2013. A Systematic Mapping Study on
Software Product Line Evolution: From Legacy System Reengineering to Product
Line Refactoring. Science of Computer Programming 78, 8 (2013), 1010–1034.

[29] Frank van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action. Springer.

[30] Jia Liu, Don Batory, and Christian Lengauer. 2006. Feature Oriented Refactoring
of Legacy Applications. In International Conference on Software Engineering.
ACM, 112–121.

[31] John D. McGregor, Prakash Sodhani, and Sai Madhavapeddi. 2004. Testing
Variability in a Software Product Line. In International Workshop on Software
Product Line Testing. Avaya Labs, 45–50.

[32] Thilo Mende, Felix Beckwermert, Rainer Koschke, and Gerald Meier. 2008. Sup-
porting the Grow-and-Prune Model in Software Product Lines Evolution Using
Clone Detection. In European Conference on Software Maintenance and Reengi-
neering. IEEE, 163–172.

[33] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. 2005. Understanding Source
Code Evolution Using Abstract Syntax Tree Matching. ACM SIGSOFT Software
Engineering Notes 30, 4 (2005), 1–5.

[34] Harrie Passier, Lex Bijlsma, and Christoph Bockisch. 2016. Maintaining Unit
Tests During Refactoring. In International Conference on Principles and Practices
of Programming on the Java Platform. ACM, 18:1–18:6.

[35] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with Variantsync. In International Systems
and Software Product Line Conference. ACM, 329–332.

[36] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A Qualitative Ap-
proach. Science of Computer Programming 74, 7 (2009), 470–495.

[37] Julia Rubin and Marsha Chechik. 2012. Combining Related Products into Prod-
uct Lines. In International Conference on Fundamental Approaches to Software
Engineering. Springer, 285–300.

[38] Julia Rubin and Marsha Chechik. 2013. A Framework for Managing Cloned
Product Variants. In International Conference on Software Engineering. IEEE,
1233–1236.

[39] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-
aging Forked Product Variants. In International Systems and Software Product
Line Conference. ACM, 156–160.

[40] Per Runeson. 2006. A Survey of Unit Testing Practices. IEEE Software 23, 4 (2006),
22–29.

[41] Sandro Schulze, Malte Lochau, and Saskia Brunswig. 2013. Implementing Refac-
torings for FOP: Lessons Learned and Challenges Ahead. In International Work-
shop on Feature-Oriented Software Development. ACM, 33–40.

[42] Mikael Svahnberg, Jilles vanGurp, and Jan Bosch. 2005. A Taxonomy of Variability
Realization Techniques. Software: Practice and Experience 35, 8 (2005), 705–754.

[43] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A Taxonomy of
Model-Based Testing Approaches. Software Testing, Verification and Reliability
22, 5 (2012), 297–312.

[44] David S. Wile. 1997. Abstract Syntax from Concrete Syntax. In International
Conference on Software Engineering. ACM, 472–480.

[45] Yinxing Xue. 2013. Reengineering Legacy Software Products Into Software Product
Line. Ph.D. Dissertation. University of Singapore.

[46] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. Software Testing, Verification and Reliability 22, 2
(2012), 67–120.

[47] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test
Coverage and Adequacy. Comput. Surveys 29, 4 (1997), 366–427.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Challenges
	4 Towards a Framework
	5 Related Work
	6 Conclusion
	References

