
Separation of Concerns: Experiences of the Crowd
Jacob Krüger

Harz University of Applied Sciences, Germany
Otto-von-Guericke-University Magdeburg, Germany

jkrueger@hs-harz.de

ABSTRACT
Separation of concerns is an important concept to define
meaningful artifacts of a system. For software product lines
(SPLs), concerns are described as features—that can be
reused to configure and automatically derive variants of the
system. Despite being extensively investigated, several fun-
damental questions regarding SPLs can only be answered
vaguely. In particular, when and how developers separate a
feature from a system. We aim to investigate this question by
employing community question-answering (CQA) systems,
which allow developers to share their experiences.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
General and reference → Empirical studies;

KEYWORDS
Separation of concerns, product line, empirical study

ACM Reference Format:
Jacob Krüger. 2018. Separation of Concerns: Experiences of the
Crowd. In SAC 2018: Symposium on Applied Computing, April
9–13, 2018, Pau, France. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3167132.3167458

1 INTRODUCTION
Separation of concerns [17] is an important concept to struc-
ture systems into meaningful artifacts. In SPLs, the standard
notion for concerns are features that describe common and
variable functionalities [1]. While features are an established
concept, there are still several uncertainties about them. For
example, it is unclear what comprises a feature—resulting
in different definitions [1–3]—or which granularities features
have [6, 14]—potentially causing problems during refactor-
ing [9, 12]. Separating and extracting a feature from an
existing system promises several benefits but is risky and si-
multaneously costly [1, 4, 10, 11]. Therefore, an organization
should know in advance if this is suitable for each particular
feature. However, corresponding investigations on physical
separation of features are rare and of limited size [5, 15].

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5191-1/18/04.
https://doi.org/10.1145/3167132.3167458

Thus, from a practical point of view, several questions are
of interest and currently remain unclear:
RQ1 Which pros and cons has physical separation of features

in practice?
RQ2 Which types of source code do developers separate?
RQ3 Which criteria apply developers to decide when to sep-

arate a feature?
We aim to utilize CQA systems, such as Stack Overflow [16],
to investigate these research questions in a large-scale study.
In such systems, the crowd—comprising experienced devel-
opers from around the world—can ask and answer questions;
thereby providing a large pool of available data and po-
tential participants. To ensure a systematic methodology
and improve the repeatability of our work, we will adopt
guidelines for systematic literature reviews (SLRs) as pro-
posed by Kitchenham and Charters [8]. However, conducting
empirical studies in CQA systems is connected to several chal-
lenges [13], for example to identify whether the investigated
topic is appropriately discussed, which may be problematic
in the context of SPLs.

Answering our research questions helps to decide if features
should be separated in specific scenarios. Thus, the practical
applicability of SPLs for an organization can be scoped. We
remark that we do not focus on a specific SPL implemen-
tation but consider any physical separation, for example,
components and aspect-oriented programming (AOP) [7].

2 METHODOLOGY
For this research, we aim to conduct empirical studies based
on CQA systems [13], complemented by additional surveys
in industrial and open-source settings. We aim to consolidate
experiences of developers from all over the world. As first
step, we start crawling existing data in CQA systems that
are related to our research questions. In addition, we will
post questions ourselves to receive more precise responses.
The validity and quality of the corresponding results depends
on several factors we cannot influence [13, 16], wherefore we
have to interpret them with caution.

In a second step, we aim to address this issue, using the de-
rived findings and existing literature, for example, by Berger
et al. [2], Liebig et al. [14], and Siegmund et al. [15], to de-
sign further empirical studies. We will use the investigated
CQA systems, industrial partners, and open-source projects
to identify participants for our studies that are experienced
with SPLs and physical separation of concerns in general. For
this, we aim to consider community members that answered
to relevant questions in the previous step, complemented by
sentiment analysis and expert identification [16]. This can

https://doi.org/10.1145/3167132.3167458
https://doi.org/10.1145/3167132.3167458


SAC 2018, April 9–13, 2018, Pau, France Jacob Krüger

Table 1: Selected results of searching Stack Overflow.

Search String Results
All Questions Answers

“separation of concerns” 6.362 1.090 2.067
“aspect-oriented programming” 1.734 306 431
“software product line” 20 9 3

help to scope and validate the usability of physical separation
for different features by answering our research questions.

3 PRELIMINARY RESULTS
Currently, we develop a tool that enables us to crawl differ-
ent CQA systems. We will use it to identify questions and
answers that are related to our research. However, as CQA
systems are not designed to perform empirical studies on
them, several challenges arise [13]. Besides technical issues,
we are facing the following four problems:

∙ Which CQA systems to crawl?
∙ Which search strings return suitable results?
∙ How can we automatically identify relevant results?
∙ How can we merge these results?

To address these questions, we start to manually analyze
Stack Overflow, which is one of the most widely used CQA
systems focusing on software development.

Adopting guidelines for SLRs [8], we first test different
search strings. We summarize the outcome in Table 1, in
which we distinguish between: All returned results, only
questions, and only accepted answers (independent of the
question). We remark that other metrics, for example highly
voted answers (not only accepted ones), may be also—or even
more—appropriate. Because not all results are connected to
our research, scoping the search string, automatic extraction
of data, and merging results are essential. To gain first in-
sights, we analyze all questions that contain AOP as a term
(306). We define as inclusion criteria that pros and cons are
discussed, and that an answer is accepted (197).

Initial results indicate several pros and cons for AOP,
contributing to our first research question (RQ1):

Pro We identify several responses that are related to the
expected benefits of AOP: It is an mechanism to facili-
tate the extension of multiple methods with the same
functionality, and improves maintainability as well as
understandability of code. In particular, the ideal (but
also only seen) use case are orthogonal concerns that
do not affect the remaining program.

Con Some negative responses are connected to the separa-
tion of concerns and automatic code weaving, resulting
in the anti-pattern action at a distance. Thus, develop-
ers are not aware how the productive source code will
look like. Other responses criticize missing tools and
that the separation of concerns could break analyses,
e.g., for test coverage. As any aspect can be imple-
mented with object-orientation alone, some users also
reject this idea completely.

Overall, we find that the pros and cons regarding AOP
are addressing different issues in using this concept. Thus,
further investigations on the usage scenarios and how to
resolve problems can be based on our findings.

4 CONCLUSION
Separation of concerns is important to structure systems.
Still, despite its importance, several uncertainties about as-
sumed pros and cons remain. Previous works are often limited
in size, which we aim to overcome by considering CQA sys-
tems. Furthermore, we combine qualitative and quantitative
studies to achieve a more complete view. While several new
challenges arise, first results are promising and we will extend
our analysis significantly in future work.

ACKNOWLEDGMENTS
This research is supported by DFG grant LE 3382/2-1.

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake.

2013. Feature-Oriented Software Product Lines. Springer.
[2] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher,

Adeline Silva, Martin Becker, Marsha Chechik, and Krzysztof
Czarnecki. 2015. What is a Feature? A Qualitative Study of
Features in Industrial Software Product Lines. In SPLC.

[3] Andreas Classen, Patrick Heymans, and Pierre-yves Schobbens.
2008. What’s in a Feature: A Requirements Engineering Perspec-
tive. In FASE.

[4] Paul C. Clements and Charles W. Krueger. 2002.
Point/Counterpoint: Being Proactive Pays Off/Eliminating the
Adoption Barrier. IEEE Softw. 19, 4 (2002), 28–30.

[5] Janet Feigenspan, Christian Kästner, Sven Apel, and Thomas
Leich. 2009. How to Compare Program Comprehension in FOSD
Empirically - An Experience Report. In FOSD.

[6] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008.
Granularity in Software Product Lines. In ICSE.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. 1997.
Aspect-Oriented Programming. In ECOOP.

[8] Barbara A. Kitchenham and Stuart Charters. 2007. Guidelines
for Performing Systematic Literature Reviews in Software En-
gineering. Technical Report EBSE-2007-01.

[9] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher
Kruczek, Fabian Benduhn, Thomas Leich, and Gunter Saake.
2017. Composing Annotations Without Regret? Practical Experi-
ences Using FeatureC. Softw. Pract. Exper. (2017).

[10] Jacob Krüger. 2017. Lost in Source Code: Physically Separating
Features in Legacy Systems. In ICSE.

[11] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich,
and Gunter Saake. 2016. Extracting Software Product Lines: A
Cost Estimation Perspective. In SPLC.

[12] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and
Thomas Leich. 2017. Finding Lost Features in Cloned Systems.
In SPLC.

[13] Jacob Krüger, Ivonne Schröter, Andy Kenner, and Thomas Le-
ich. 2017. Empirical Studies in Question-Answering Systems: A
Discussion. In CESI.

[14] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner,
and Michael Schulze. 2010. An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines. In ICSE.

[15] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel.
2012. Comparing Program Comprehension of Physically and
Virtually Separated Concerns. In FOSD.

[16] Ivan Srba and Maria Bielikova. 2016. A Comprehensive Survey and
Classification of Approaches for Community Question Answering.
ACM Trans. Web 10, 3 (2016), 1–63.

[17] Peri Tarr, Harold Ossher, William Harrison, and Stanley M Sut-
ton Jr. 1999. N Degrees of Separation: Multi-Dimensional Sepa-
ration of Concerns. In ICSE.


	Abstract
	1 Introduction
	2 Methodology
	3 Preliminary Results
	4 Conclusion
	Acknowledgments
	References

