
When to Extract Features: Towards a Recommender System

Jacob Krüger
Otto-von-Guericke University Magdeburg & Harz University of Applied Sciences Wernigerode, Germany

jkrueger@ovgu.de

ABSTRACT

In practice, many organizations rely on cloning to implement cus-

tomer-specific variants of a system. While this approach can have

several disadvantages, organizations fear to extract reusable fea-

tures later on, due to the corresponding efforts and risks. A partic-

ularly challenging and poorly supported task is to decide which

features to extract. To tackle this problem, we aim to develop a

recommender system that proposes suitable features based on au-

tomated analyses of the cloned legacy systems. In this paper, we

sketch this recommender and its empirically derived metrics, which

comprise cohesion, impact, and costs of features as well as the users’

previous decisions. Overall, we will facilitate the adoption of sys-

tematic reuse based on an integrated platform.

CCS CONCEPTS

• Software and its engineering → Software product lines;

Software reverse engineering; Risk management;

KEYWORDS

Software product line, extractive approach, software maintenance

ACM Reference Format:

Jacob Krüger. 2018. When to Extract Features: Towards a Recommender

System. In ICSE ’18 Companion: 40th International Conference on Software

Engineering Companion, May 27-June 3, 2018, Gothenburg, Sweden. ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/3183440.3190328

1 INTRODUCTION

Software reuse is one of the most important concepts in software

engineering, reducing development and, if done systematically,

maintenance costs [3, 30]. However, organizations mostly apply

reuse by cloning and then adapting systems to new customer re-

quirements [3, 8, 28]. This is referred to as clone-and-own approach,

which is easy to use and requires no initial planning. Still, this

approach also results in several separated clones that must be main-

tained. Here, the problem of change propagation [24] to introduce

new features or to fix bugs can drastically increase the maintenance

costs, as each variant must be considered individually.

A systematic approach to reuse variants are software product

lines (SPLs) [3, 6]. In an SPL, features (e.g., movement commands [4,

15]) are used to describe common and variable functionalities of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5663-3/18/05. . . $15.00
https://doi.org/10.1145/3183440.3190328

variants. These features are modeled in a variability model [7] –

to document their interdependencies – and are implemented only

once. Instead of cloning and changing all code for each new variant,

only new features are introduced into the SPL. Then, a valid set of

features, a configuration, is selected to derive a variant. In practice,

SPLs are mostly implemented with preprocessors that annotate fea-

tures in a single code base [3, 21]. However, preprocessors usually

do not allow to physically separate and compose features.

Physical separation promises several benefits, such as, improved

traceability and modularity [3]. Despite such promises, organiza-

tions fear to migrate from cloned variants towards a composition-

based SPL, due to the corresponding costs and risks [14, 28]. A

particular challenge is to decide which features are suitable

and necessary to extract from the legacy systems. Numerous

factors influence such a decision including, for example, a feature’s

granularity, its usage among variants, its extraction costs, and the

potential savings. Consequently, these decisions are heavily based

on intuition, as empirical data and tools are still missing [13, 29].

To tackle this problem, we conduct empirical studies on physical

separation of features. We identify characteristics and thresholds

to support the decision whether a feature is suitable to extract from

a legacy system. In this paper, we describe our overall goal: We aim

to implement a recommender that analyzes characteristics of the

features in legacy systems and assesses their potential for extraction.

The metrics and thresholds can be customized by developers, but

we aim to provide default values. Thus, we facilitate the extraction

of features into a reusable, composition-based platform.

2 THE RECOMMENDER

With our recommender, we aim to analyze features in legacy sys-

tems and suggest those that promise benefits if they are physically

separated. In contrast to solely intuitive decisions, we will base our

recommender on empirical data.

Input For the first version, we solely rely on the source code of

the legacy systems: All features of interest have to be annotated

in at least one system. Feature location [26] and code clone detec-

tion [25] can be combined to locate and mark the code of optional

andmandatory features [11, 12, 15, 17]. These annotations allow our

recommender to identify all features and compute metrics for them.

In later versions, we will include additional information sources

as input, for example, version control systems. Thus, we aim to

include previous decisions of the developer and collaborators.

Metrics Deciding whether feature extraction may be beneficial

is a challenging task including several uncertainties and metrics.

Consequently, we can hardly include all metrics, but will support

developers to add additional ones, if necessary. Based on our re-

search [14–19], we will initially include the following metrics:

Size, scattering, and tangling: These metrics are well established

to measure the size and distribution of a feature in the source code.

Our findings [15, 16, 18, 19] indicate that these metrics are essential

This is the author's version of this paper and psoted here for personal use only. For the final

version please refer to the ACM Digital Library:

https://doi.org/10.1145/3183440.3190328

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Jacob Krüger

to decide when to extract a feature. For example, our studies show

that larger, cohesive units of code that have few dependencies with

the remaining system are preferable to extract. These metrics also

seem to differ for optional and mandatory features, potentially

allowing our recommender to identify this property automatically.

Impact analysis: It is important to identify how a feature is inte-

grated within the SPL. Features that are used by several or all (i.e.,

mandatory) variants are more useful to extract than those that are

specific for a single variant [15, 17]. In addition, dependencies to

other features indicate how many changes are necessary to extract

a feature and still allow to instantiate the legacy systems. Later on,

providing an additional feature model can extend this analysis.

Costs and savings: For organizations, costs and savings are the

most important metrics [5]. Only if extracting a feature promises a

reasonable relation of risks, investments, and benefits, an organi-

zation can be convinced. Despite research on this topic, empirical

data on the costs of feature extraction are still missing [14, 18]. To

gain such data, we conduct empirical studies in organizations. Here,

we analyze SPL engineering, clone-and-own approaches, and the

migration to abstract associated tasks and costs of each scenario.

Based on these studies, we aim to derive a model that translates

our other metrics into costs by considering the necessary tasks.

For each metric, we aim to provide computations and thresholds

based on empirical studies, but also allow users to adapt these to

their needs. Later on, we will include further metrics and additional

information sources, for example, based on version control systems.

Output As output for our recommender, we envision information

sheets that summarize the metrics for each feature [15]. These

sheets shall contain estimations for the costs of extraction and

potential benefits. A ranked list or matrix of features – using nor-

malized metrics – can be generated to provide an overview of all

features. Here, the developer can mark (e.g., suitable) features and

the recommender shall use such markings to rank other features.

3 DISCUSSION

Novelty We are unaware of any recommender to automatically

analyze legacy systems to decide which features are suitable for

physical separation. Our goal is to provide such a recommender that

can be included into any analysis tool and process. While some of

our metrics are well-known in the SPL community, most still need

empirical investigations, for example, considering mandatory fea-

tures, their dependencies, and costs [14, 15]. Consequently, feature

extraction is often solely based on intuition instead of empirical

data. Our research provides insights into the usefulness of specific

metrics, the importance of features in an SPL’s architecture, as

well as extraction costs. Overall, we facilitate the introduction of

systematic reuse based on composition into practice.

Contributions Overall, our contributions and results will include:

• Empirical analyses on features and their characteristics. Our

analyses include, for example, code comprehension, archi-

tectural alignment, and costs [14, 15, 19]. The results help to

better understand such factors, supporting practitioners and

further research on feature-oriented software reuse.

• A set of metrics and thresholds derived from empirical stud-

ies [13, 15, 16, 18]. We aim to utilize experiments but also

developers’ experiences to derive recommended thresholds.

• A model to describe tasks and costs of extracting features

from legacy systems [14]. Thus, we help organizations to

better understand corresponding costs, risks, and benefits.

• A recommender system that includes these contributions in

a single tool. We will implement it in a way that facilitates

reuse and extensibility for different projects and processes.

Overall, our contributions help to better understand composition-

based software reuse. We facilitate the adoption of such approaches

and support organizations in making a reasonable decision.

Ongoing Work Our main task for future research is to conduct

further studies on different characteristics of software features and

their extraction. Currently, we are focusing on practical investiga-

tions on tasks, costs, and experiences of organizations that have

extracted features. Here, we aim to refine our metrics and identify

suitable thresholds. Based on the results, we will implement our

recommender system and potentially integrate it into an existing

tool to facilitate evaluations. Consequently, parts of our research

also investigate the initial steps of feature location and following

steps of the actual extraction.

4 RELATEDWORK

We are unaware of a recommender that is based on empirical data

and supports the decision whether to extract a feature. Some rec-

ommender systems for SPLs investigate the extraction of variability

models from legacy artifacts [10, 27], support configuration pro-

cesses [23], or propose variability points in general [31]. Closest to

our approach seems to be VarMeR [31], which focuses on visual-

izing commonalities and variability between cloned variants and

proposes polymorphism to improve reuse. In contrast, we focus on

a feature-oriented notion instead of sole code reuse, base our rec-

ommendations on empirical data, and incorporate cost estimations.

Some approaches aim to automatically detect refactoring op-

portunities in source code [1, 9]. Mostly, the purpose of such ap-

proaches is to improve the source code and to remove code smells

or code clones. Still, the defined metrics and detection approaches

can complement our work on physical separation of features.

There exist empirical studies on features and their characteris-

tics [20, 21, 29] as well as on costs of SPL adoption [2, 22]. However,

the existing studies are often focused solely on variable features

and also limited in their validity [13, 15, 29]. Similarly, current

cost models have shortcomings considering empirical data, practi-

cal evaluations, and focus on SPL extraction [2, 14]. We base our

research on such works, but will complement and extend them.

5 CONCLUSION

Physically separating features from legacy systems promises bene-

fits, but is also connected to costs and risks. In practice, features are

typically separated based on intuition, as metrics and data to reason

about this approach are missing. Within this paper, we sketched

a recommender system to facilitate such decisions. Based on auto-

mated analyses and developers’ preferences, it ranks features that

are suitable for extraction and estimates corresponding efforts. To

provide a substantial basis, we conduct several empirical studies to

scope our recommender and provide a practically useful tool.

Acknowledgments Supported by DFG grant LE 3382/2-1. I thank

Thomas Leich, Gunter Saake, Thorsten Berger, and Regina Hebig.

When to Extract Features: Towards a Recommender System ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Jehad Al Dallal. 2015. Identifying Refactoring Opportunities in Object-Oriented

Code: A Systematic Literature Review. Information and Software Technology 58
(2015), 231–249.

[2] Muhammad Sarmad Ali, Muhammad Ali Babar, and Klaus Schmid. 2009. A Com-
parative Survey of Economic Models for Software Product Lines. In Euromicro
Conference on Software Engineering and Advanced Applications. IEEE, 275–278.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[4] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In
International Conference on Software Product Line. ACM, 16–25.

[5] Barry W. Boehm. 2002. Software Engineering Economics. In Software Pioneers:
Contributions to Software Engineering. Springer, 641–686.

[6] Paul Clements and LindaNorthrop. 2002. Software Product Lines. Addison-Wesley.
[7] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej

Wa̧sowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In International Workshop on Variability Modelling of
Software-Intensive Systems. ACM, 173–182.

[8] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In European Conference on Software Maintenance and
Reengineering. IEEE, 25–34.

[9] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to
a Product Line. In International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 316–326.

[10] Mostafa Hamza and Robert J. Walker. 2015. Recommending Features and Feature
Relationships from Requirements Documents for Software Product Lines. In
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering. IEEE, 25–31.

[11] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In International
Systems and Software Product Line Conference. ACM, 61–70.

[12] Sebastian Krieter, Jacob Krüger, and Thomas Leich. 2018. Don’t Worry About
it: Managing Varaibility On-The-Fly. In International Workshop on Variability
Modelling of Software-Intensive Systems. ACM, 19–26.

[13] Jacob Krüger. 2017. Lost in Source Code: Physically Separating Features in Legacy
Systems. In International Conference on Software Engineering Companion. IEEE,
461–462.

[14] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference. ACM, 354–361.

[15] Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In International Workshop on
Variability Modelling of Software-Intensive Systems. ACM, 105–112.

[16] Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich. 2018.
Physical Separation of Features: A Survey with CPP Developers. In Symposium
on Applied Computing. ACM, 2028–2035.

[17] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In International Systems and Software
Product Line Conference. ACM, 65–72.

[18] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher Kruczek, Fabian
Benduhn, Thomas Leich, and Gunter Saake. 2018. Composing Annotations
Without Regret? Practical Experiences Using FeatureC. Software: Practice and
Experience 48, 3 (2018), 402–427.

[19] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher Kruczek, and Thomas
Leich. 2016. FeatureCoPP: Compositional Annotations. In International Workshop
on Feature-Oriented Software Development. ACM, 74–84.

[20] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware Product Lines. In International Conference on Software Engineering. ACM,
105–114.

[21] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
2015. The Love/Hate Relationship with the C Preprocessor: An Interview Study.
In European Conference on Object-Oriented Programming, Vol. 37. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 495–518.

[22] Andy J. Nolan and Silvia Abrahão. 2010. Dealing with Cost Estimation in Software
Product Lines: Experiences and Future Directions. In International Systems and
Software Product Line Conference. Springer, 121–135.

[23] Juliana Alves Pereira, Pawel Matuszyk, Sebastian Krieter, Myra Spiliopoulou, and
Gunter Saake. 2016. A Feature-Based Personalized Recommender System for
Product-line Configuration. SIGPLAN Notices 52, 3 (2016), 120–131.

[24] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with VariantSync. In International Systems
and Software Product Line Conference. ACM, 329–332.

[25] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A Qualitative Ap-
proach. Science of Computer Programming 74, 7 (2009), 470–495.

[26] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
Springer, 29–58.

[27] Abdel Salam Sayyad, Hany Ammar, and Tim Menzies. 2012. Software Feature
Model Recommendations Using Data Mining. In International Workshop on Rec-
ommendation Systems for Software Engineering. IEEE, 47–51.

[28] Klaus Schmid and Martin Verlage. 2002. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software 19, 4 (2002), 50–57.

[29] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel. 2012. Comparing
Program Comprehension of Physically and Virtually Separated Concerns. In
International Workshop on Feature-Oriented Software Development. ACM, 17–24.

[30] Thomas A. Standish. 1984. An Essay on Software Reuse. IEEE Transactions on
Software Engineering SE-10, 5 (1984), 494–497.

[31] Anna Zamansky and Iris Reinhartz-Berger. 2017. Visualizing Code Variabilities
for Supporting Reuse Decisions. In Symposium on Conceptual Modelling Education.
25–34.

