
Physical Separation of Features: A Survey with CPP Developers
Jacob Krüger

Harz University of Applied Sciences
Wernigerode, Germany

Otto-von-Guericke-University
Magdeburg, Germany
jkrueger@hs-harz.de

Kai Ludwig
Harz University of Applied Sciences

Wernigerode, Germany
kludwig@acm.org

Bernhard Zimmermann
Harz University of Applied Sciences

Wernigerode, Germany
bzimmermann@hs-harz.de

Thomas Leich
Harz University of Applied Sciences

Wernigerode, Germany
tleich@hs-harz.de

ABSTRACT
Several implementation techniques for software product lines
have emerged over time. A common distinction of these tech-
niques is whether features are annotated in the code base
(virtually separated) or composed from modules (physically
separated). While each approach promises different pros and
cons, mainly annotations and especially the C PreProces-
sor (CPP) are established in practice. Thus, the question
arises, which barriers prevent the adoption of composition-
based approaches. In this paper, we report an empirical study
among C and C++ developers in which we investigate this
issue. Therefore, we ask our participants to describe how
they use the CPP and how they assess the idea of mov-
ing annotated code into modules. More precisely, we use
small examples based on our Feature Compositional Pre-
Processor (FeatureCoPP) that enables this separation while
keeping annotations—avoiding divergences from the prepro-
cessor concept. Overall, we identify different characteristics
that indicate when physical separation can be useful. While
most responses are skeptical towards the approach, they
also emphasize its usability for source code analysis and for
implementing specific use cases.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
General and reference → Empirical studies;

KEYWORDS
Separation of concerns, product line, empirical study

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167351

ACM Reference Format:
Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas
Leich. 2018. Physical Separation of Features: A Survey with CPP
Developers. In SAC 2018: Symposium on Applied Computing,
April 9–13, 2018, Pau, France. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3167132.3167351

1 INTRODUCTION
Software product lines enable developers to systematically
reuse artifacts, reducing costs and allowing to derive cus-
tomized variants of a system [1, 6, 24]. These artifacts are
consolidated into features, which represent a specific, user-
visible behavior of the software product line [1]. Thus, features
represent the commonalities and variabilities between the
variants in a software product line. Based on a valid selection
(a so-called configuration) of features, a tool automatically
instantiates the specified variant.

Several techniques with different pros and cons can be
used to implement software product lines [1, 9, 11], for exam-
ple, runtime variability, components, preprocessor directives,
or feature-oriented programming [25]. However, a common
distinction of these techniques is whether they physically
separate features from the code base or only annotate them
(virtual separation) [1, 14, 16, 28]. In practice, annotation-
based approaches, mainly the CPP [12], are used to imple-
ment variability [1, 10, 11, 21]. Here, all code is part of the
same implementation and removed if the corresponding fea-
ture is not selected. Composition-based approaches, such
as feature-oriented programming [25] and aspect-oriented
programming [13], promise improved maintainability and
traceability, due to the physical separation of features into
modules. Despite these promises, they are hardly found in
practice, especially because preprocessors are simpler, more
flexible, and already included in some programming lan-
guages [1]. While preprocessors are often associated with the
so-called #ifdef hell [17, 20, 29], it is also unclear if physical
separation provides benefits in this regard [28].

To address this issue, experiments have been proposed
to measure the impact of virtual and physical separation
of features [8, 28]. First preliminary results show potential
benefits but are not reliable, due to the small number of par-
ticipants. In this work, we investigate the physical separation

https://doi.org/10.1145/3167132.3167351
https://doi.org/10.1145/3167132.3167351

SAC 2018, April 9–13, 2018, Pau, France Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich

transform

inline

Figure 1: Example of the FeatureCoPP concept [16]. CPP
code (left) can be transformed towards FeatureCoPP. Then,
features are separated into modules (i.e., fm1, fm2) that are
inlined at the defined reference points.

of features from another point of view: Instead of designing
a controlled experiment, we conduct an online questionnaire
with 34 experienced programmers that use the CPP in their
daily work. We ask them to provide background information
on their usage of the CPP and to give their opinion on differ-
ent aspects of physically separating features. Thus, we do not
focus on quantitative analysis but qualitative responses. To
illustrate the concept of physical separation, we use examples
based on FeatureCoPP [16], which integrates composition
into a preprocessor to ensure uniformity while still relying on
an annotation-based approach—with which the participants
are familiar. As a result, we assess this integrative approach
of FeatureCoPP in particular.

In detail, we contribute the following:
∙ We report and discuss how the CPP is used in practical

settings. The results help to scope studies addressing
preprocessors and their analysis. In particular, we find
that most of our participants use the CPP to react
to external factors, such as the platform, and face no
restrictions, such as using only disciplined annotation.

∙ We investigate how our participants assess the poten-
tial of physically separating features in their systems.
While the overall results indicate a negative opinion
towards this concept, several participants consider it
helpful in certain situations. Based on the responses,
we derive parameters that can help to decide which fea-
tures are suitable for physical separation. Furthermore,
most of our participants think that physical separation
can support code analysis, for example, to overview a
feature or to fix bugs.

2 PROBLEM STATEMENT
Several techniques have emerged to implement software prod-
uct lines [1, 9, 11], which can be separated in two types:
With annotation-based approaches, the software product line
is implemented as a single code base in which variation points
are labeled with annotations. Code, which is encapsulated
with annotations that correspond to unselected features, is

removed from the code base to derive a variant. The most
prominent and widely used annotation-based approach is
the CPP [7, 12, 19, 21], other techniques being, for instance,
Munge [1] or Spoon [22]. For the CPP, annotations are imple-
mented with conditional compilation and defined directives.
In contrast, composition-based approaches physically sepa-
rate features from the code base into distinct modules. The
resulting feature modules are composed into the base if the
corresponding feature is selected.

Both types of techniques promise complementary benefits,
due to the underlying concepts [1, 10, 11, 15]. For instance,
annotation-based approaches are easier to adopt and allow
fine-grained variability. In contrast, composition-based ap-
proaches can improve separation of concerns and information
hiding. Despite the different benefits and several works inves-
tigating a combination of both types [3, 4, 11, 15, 16], only
annotation-based approaches (mainly the CPP) are predomi-
nant in practice [1, 10, 11, 21].

Thus the question arises, which reasons hamper the adop-
tion of composition-based approaches in practice? Empirical
studies that investigate these reasons and would allow re-
searchers to derive potential solutions are rare [28]. To address
this issue, we conduct an online survey with 34 participants.
All of them are experienced with the CPP and, thus, its vari-
ability mechanism. With our survey, we aim to assess how
they use the CPP and to which extent they consider physical
separation of variability to be useful. As our participants
are familiar with annotation-based approaches, we rely on
small examples based on FeatureCoPP [16] to illustrate the
concept of separating features. We display a basic example
in Figure 1, where we show how variable code implemented
with the CPP (left side) is transformed towards FeatureCoPP
(right side). For this purpose, the variable code is separated
into modules and during instantiation inlined at the position
of the corresponding reference—resembling aspect oriented
programming [13]. The idea of FeatureCoPP is to provide a
simple and uniform mechanism that integrates composition
into the well-known preprocessor concept to facilitate its
adoption. An alternative based on the CPP is to use macros
to enable this mechanism as conditional inclusion, where
specific parts of a header file are included depending on a
condition. Overall, we contribute insights into obstacles of
adopting composition-based approaches in practice and the
usability of FeatureCoPP explicitly.

To address our goal, we investigate two research questions:

RQ1 How do our participants use the CPP?
With this research question, we aim to identify our
participants’ main application scenarios of the CPP:
Addressing internal (i.e., implementing application spe-
cific features) or external (e.g., adaptations to platform
or compiler) factors. Furthermore, we want to assess
whether they are forced to follow specific restrictions
regarding the granularity of annotated code. Answering
these questions helps us to put the results of our survey
into context and to provide an overview on practices of
using the CPP.

Physical Separation of Features: A Survey with CPP Developers SAC 2018, April 9–13, 2018, Pau, France

RQ2 How do our participants assess physical separation?
Regarding this question, we exemplify a small code
example based on FeatureCoPP, similar to the one we
show in Figure 1. To assess the potential of such an
approach, we let the participants rate different aspects,
such as the comprehensibility and maintainability of
such structures. The results help us to identify practi-
cal problems and adoption issues of composition-based
approaches, explicitly FeatureCoPP.

We remark that we expect more negative responses for the
second research question as it introduces an additional mech-
anism that the developers may not be familiar with. Thus,
they may not see benefits in applying physical separation
and changing their own development approach. However, we
especially focus on such developers as they have a good un-
derstanding of variability and can provide insights why they
prefer preprocessors.

3 SURVEY DESIGN
Conceptually, we conduct an online questionnaire, for which
we describe participants and questions in this section.

3.1 Participants
Our main criteria when recruiting participants is that they
are experienced with the CPP and have also real-life (work-
ing) experience. To invite participants, we rely on Google
newsgroups, XING, and a local German software develop-
ment mailing list, wherefore we received 22 responses from
Germany. In the initial phase of our questionnaire, each par-
ticipant is asked to fill out some information regarding their
experience. Overall, we receive 35 responses of which we ex-
clude 1, as the participant states to have no programming
experience neither with C nor C++.

Of the remaining participants, 19 have a Master or Diploma,
10 a Bachelor, and 2 a PhD degree. Four of these partici-
pants’ studies seem unrelated to programming as they stated
to have no educational qualification in this area. Still, ap-
proximately 79.5% of our participants studied programming
related courses. Also, while they may not have studied such
courses, the remaining participants seem to have gained
knowledge based on other education and their daily work.

Considering their experience, we find that on average our
participants have approximately programmed for 19.8 years,
use C or C++ for 13.9 years, and that programming is
part of their job for 13 years. In Figure 2, we illustrate the
distribution of our participants’ experience. Here, we show
the median value, which is close to the average in each case.
We see that all of our participants are using C or C++ at
least for some years.

Furthermore, we ask our participants to provide a coarse
classification of their main tasks in software development. 29
(85.3%) of them state that they work mostly on implementa-
tion level, while 3 work in requirements engineering, and 2
on design. Thus, most of our participants should be familiar
with the CPP as part of their daily work in programming.

19

13
11.5

0

10

20

30

40

Overall C/C++ Job

Programming Experience

Y
ea

rs

Figure 2: Distribution of the participants’ experience in years.

Overall, we argue that our participants are experienced
in implementing C and C++. Most of them studied pro-
gramming related courses, are familiar with these languages
for a long time, and are mainly working on implementation
level. Thus, the participants’ expertise in these program-
ming languages and the CPP provides a reliable base for our
analysis.

3.2 Questionnaire
To address our research questions, we use a questionnaire
including the questions we show in Table 1. We remark that
we abbreviate the displayed answers. In the questionnaire,
they are often supported by more detailed descriptions based
on small examples similar to the one we show in Figure 1.

The first part of our questionnaire aims at identifying how
practitioners use the CPP. This includes questions regarding
to which factors (i.e., internal or external) they react with
the variability mechanism and which restrictions they face.
Based on the first question, we want to identify if the CPP
is actually used to implement application features and not
just to customize a system to the underlying platform. Re-
garding the second question, we want to identify whether our
participants can use undisciplined annotations.

The second part of our questionnaire addresses the actual
physical separation of features. For this purpose, we first
describe a simple example based on FeatureCoPP, in which
an annotation is used to reference to feature code in a mod-
ule that is inlined at this position (cf. Figure 1). Thus, the
processed code will be exactly the same as before features
are physically separated and requires no larger refactoring.
Afterwards, we ask our participants several questions, regard-
ing their opinions on comprehension, maintenance effort, and
applicability of this techniques.

SAC 2018, April 9–13, 2018, Pau, France Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich

Table 1: Questionnaire and addressed research questions.

Nr RQ Question (Q) & Answers (A)
1 1 Q: The C preprocessor (henceforth CPP) allows the conditional lexical inclusion of source code, using so called conditional directives

(#if[n]def, #if, #elif, #else). Besides using it as include guard for header files: What is the leading cause for using these directives
within your project?

A: a) external factors (platform, compiler); b) internal factors (application features); c) both (none prevails)
2 1 Q: Are there any restrictions in your projects, to which degree conditional directives should enclose syntactical units?

A: a) none (anything can be enclosed);
Permitted for b) ... statement level; c) ... function definition level; d) ... large cohesive units;
e) other (open text)

3 2 Q: Do you think this modularized approach can improve the comprehensibility of source code?
A: Yes, depending on a) ... the extracted code size; b) ... code complexity; c) ... the number of identifiers defined elsewhere; d) ...

the functional cohesion of extracted code;
e) no; f) other (open text)

4 2 Q: How would you assess the maintenance effort regarding the scenario compared to an integrated approach?
A: Increasing a) ... if extracted portion is too small; b) ... if definitions of identifiers are scattered too much; c) ... since code units

are removed from their context;
Decreasing d) ... since code units are identifiable at first glance; e) ... since error-prone locations can be narrowed down quickly;
f) ... since disposing personal resources on code units is simplified;
g) other (open text)

5 2 Q: How would you categorize this separation approach?
A: a) applicable in code editing; b) additional tool for code analysis; c) not applicable; d) other (open text)

8

10

16

Internal

Both

External

0 5 10 15

Number of Responses

M
ai

n
U

sa
ge

 o
f t

he
 C

P
P

Figure 3: Usage of the CPP to react to factors.

4 RESULTS
In this section, we describe the results of our survey. For this,
we distinct the findings and discussion for each research ques-
tion. Afterwards, we consolidate our findings by discussing
additional remarks the participants’ provide.

4.1 RQ1 - Using the CPP
As we show in Figure 3, 16 participants report that they
use the CPP mostly to react to external factors, such as the
platform or compiler. For 8 participants the main cause are
internal features of the designed system and for 10 neither
of both factors prevails. Thus, for most of our participants
the main reason for using the CPP is to adapt a system to
influences from the outside.

In Figure 4, we display the responses regarding the anno-
tation granularity our participants are allowed to use in their
projects. We see, that 20 of them face no restrictions in this
regard but can enclose any part of the code with conditional

2

3

4

5

20

Other

Function

Statement

Modules

None

0 5 10 15 20

Number of Responses

R
es

tr
ic

tio
n

Le
ve

ls
 fo

r
th

e
C

P
P

Figure 4: Restriction levels when using the CPP.

directives. Some participants are only allowed to enclose com-
plete statements (4), functions (3), or even modules (5). Two
participants stated different responses, one of them empha-
sizing that they dislike the CPP but not providing a concrete
reason. The other participant faces surprising restrictions:
In their case, enclosing code is not permitted at all. Instead,
they implement variability in compositional fashion. They
utilize a build system to compose features that are imple-
mented in separate compilation units. This already resembles
a solution for physical separation, but the participant also
remarks their dislike for this solution.

Discussion. As the results show, our participants are using
the CPP more often to react to external factors. This seems
not surprising, as C and C++ are not platform independent
and several compilers as well as standards exist. Variably
adapting a system to these factors is necessary to deploy
it for different customers. Still, 8 of our participants use
the CPP mainly to implement system-specific features and
for 10 both factors are of equal importance. Overall, we find

Physical Separation of Features: A Survey with CPP Developers SAC 2018, April 9–13, 2018, Pau, France

3

5

6

7

18

Cohesion

Code Size

Identifiers

Complexity

No

0 5 10 15

Number of Responses

Im
pr

ov
in

g
C

om
pr

eh
en

si
on

Figure 5: Assessed effect of physical separation on program
comprehension.

that the CPP is actually used to react to external factors but
also to implement user-visible features of a system. Totally,
this suggests that at least 54.4 % of our participants should
have a certain awareness of variability in the means of fea-
tures, instead of considering variability solely as a means for
platform adaptation. However, such adaptations seem to be
the main cause of using the CPP.

Furthermore, it is important to consider the granularity
and discipline with which the developers can apply condi-
tional compilation [10, 18, 19]. Allowing a fine granularity can
result in small fractions of variable code that are scattered
and tangled among different files. As we see in Figure 4, most
of our participants face no restrictions in applying the CPP.
This can impact a developer’s opinion on physical separa-
tion, due to two situations: First, they may emphasize the
importance of the code’s context as it represents only a small
portion of a greater unit. Then, physical separation may
complicate the comprehension of code, for example, because
identifiers or operations on variables are unknown. Second,
they may emphasize the importance of gathering these code
parts into a module to get an overview on a feature. This way,
traceability and analysis of specific features can be facilitated
based on physical separation. Which of these two situations
is more likely for a feature depends on different factors that
we investigate with our second research question.

4.2 RQ2 - Physical Separation of Features
To answer our second research question, we ask our partic-
ipants to assess the effect of physical separation on three
different aspects. Note that in the following figures the num-
ber of responses can add up to more than 100% as we allowed
multiple selections. Firstly, program comprehension effects
how fast a developer understands a piece of code and is the
main activity of software developers [27, 30, 31]. Thus, it is
important to assess if physical separation can improve the
comprehension of a program [8, 28]. As we show in Figure 5,
approximately half (52.9%) of our participants does not think
that physically separating features can improve comprehensi-
bility. Still, other participants see improvements depending
on the code’s complexity (7), the number of identifiers that

Figure 6: Assessed effect of physical separation on mainte-
nance efforts.

18

8

8

Code Analysis

Code Editing

None

0 5 10 15

Number of Responses

A
pp

lic
at

io
n

S
ce

na
rio

Figure 7: Assessed application scenarios of physically separat-
ing features.

are defined elsewhere (6), the actually extracted code size
(5), and the overall cohesion of a feature (3).

Secondly, as maintenance is the main cost driver in soft-
ware development [5, 26, 30], we ask our participants to assess
whether the maintenance effort would increase or decrease.
We display the corresponding results in Figure 6. Here, we see
that only 11 participants think that the effort could actually
decrease, mainly (6 responses) because error-prone locations
could be narrowed down more quickly. Faster resources as-
signment (3) and separated features (2) are rarely considered
to decrease such efforts. In contrast, most responses state
that maintenance efforts would increase if the code is too
small (13), if identifiers are defined elsewhere (14), and if the
code is removed from its context (cohesion, 20).

Finally, we ask the participants to assess if they see any
application scenario for physical separation. We illustrate
the responses in Figure 7. 8 participants state that they
see no application scenario for this approach at all, while
the same number can imagine it for code editing. The most
considered application scenario for physical separation, with
18 responses, is as an additional tool to analyze a system.

Discussion. Considering program comprehension, it seems
not unexpected that approximately half of our participants

SAC 2018, April 9–13, 2018, Pau, France Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich

cannot see any improvement when applying physical sep-
aration. Especially fine-grained separation on the level of
single statements or expressions would cause a loss of contex-
tual information regarding identifiers, data flow, and control
flow, thus hampering understandability. Furthermore, our
participants are familiar with annotating code to implement
variability and physical separation is a less known concept to
them. However, 18 of them can imagine physical separation
to be beneficial, depending on different factors. Surprisingly,
the overall cohesion of the extracted code parts was consid-
ered seldom to improve program comprehension. As this is
one of the strong points of annotation-based approaches, we
assumed that it would be considered to be more important.

For the maintenance effort, even fewer participants see
any benefit in physical separation. Most responses substanti-
ate the importance of the aforementioned factors: Too small
code units and identifiers that are defined somewhere else
are associated with increasing maintenance effort. Interest-
ingly, missing cohesion was rated fewest to affect program
comprehension but is considered to be the main factor for
increasing maintenance effort. Unfortunately, we cannot de-
rive a meaningful explanation from our study regarding this
apparent contradiction. Still, the responses indicate that our
participants believe that to improve the understandability
of a feature, it does not need to be cohesive unit. However,
due to reduced cohesion, it can be unclear how maintenance
activities, such as bug fixing or refactoring, affect other parts
of the system. Thus, while comprehensibility is not threat-
ened, the maintenance effort could increase. Further studies
are necessary to assess this issue in more detail.

Regarding the previous responses of our participants—
indicating a more negative opinion towards physical separa-
tion of features—we are surprised by their assessment of its
application scenarios. Despite the stated problems, 18 par-
ticipants think that this approach is suitable for additional
source code analysis. For example, this includes the options
we exemplify in the questionnaire: To summarize the code of
specific features or narrow down bugs. This indicates that de-
velopers are indeed aware of the potential benefits of physical
separation. However, only few of them see this approach as a
feasible implementation technique. Based on the responses,
we argue that physical separation can be integrated more into
practice by first utilizing it for source code analysis. Tools to
summarize features can support developers and may improve
the awareness for compositional implementation techniques.

4.3 Participants’ Remarks
At the end of our questionnaire, we provide a free text field in
which our participants can document any additional remarks
concerning our study. In the following, we review those re-
sponses for a more complete overview on our participants’
opinions on physical separation. We remark, that we do not
ask for specific projects but that our participants come up
with any example by themselves.

First, some participants state remarks that resemble our
previous findings. For example, one of them writes:

“It looks like it could be for small thin[g]s (like the example)
a bit too much, but for a large one it could be practical
to maintain that in a different file/location.”

Furthermore, another participant states:
“[T]here must be an restriction that no declaration is in-
cluded and the [...] exported code should have a minimum
size, [...] otherwise you have too much structure for too
small code size.”

These two responses substantiate our previous findings. If
physical separation shall be useful, it is necessary that the
extracted source code fulfills certain characteristics. For this,
the code size, complexity, and content of the module should
follow specified rules.

Second, one of the participants provides detailed responses
to many of our questions and, thus, shared their concerns
with us. For example, considering program comprehensibility
(compare with our second research question), they state:

“It’s my opinion that comprehensibility of source code
is inversely related to the number of tools required to
build it, and to the number of source files which need to
be read to understand a particular functional unit. That
said, #ifdef-hell kills comprehensibility as well. This is a
toss-up for me.”

As a general conclusion they write:
“[...] I’m generally in favor of the process, but I am slightly
concerned that excessive automation may lead to prolif-
eration of #ifdef-hell. To pick on one particular project,
Vim’s code is bad. It should be fixed, not papered over
with a tool.”

The first response describes one concern we identify for most
participants: Scattering the source code among several files
looses context and reduces cohesion, which can complicate
program comprehension. In addition, the participant states
that additional tools make it more challenging for software
developers to implement code. Thus, it seems necessary for
tools, especially those that aim to address comprehensibil-
ity, to be as integrated as possible. We argue that this is
also in favor of FeatureCoPP, as it integrates composition
into annotations instead of solely combining two different
techniques. Overall, this participant sees potential benefits
in physical separation. This may also be related to the fact
that they apply a similar concept based on build systems, as
we describe for our first research question.

Third, one participant sees no benefit in physical separation
outside of existing language capabilities and emphasizes to
utilize these:

“C and C++ already have a clean separation of code at
function level, adding new separation layers just makes
the code less manageable.”

Of course this is possible and, in connection with the CPP,
resembles the same concept we utilize with FeatureCoPP.
This remark indicates that instead of developing language
extensions or new paradigms it may be practically more
relevant to utilize the capabilities that already exist. However,

Physical Separation of Features: A Survey with CPP Developers SAC 2018, April 9–13, 2018, Pau, France

extending such tools becomes more and more challenging
and follows standards, limiting practically useful extensions.

Finally, two interesting remarks are related to the usage
of the CPP in general:

“[...] the need for using the preprocessor is at least 10x
less in C++ than in C.”
“[t]here’s very little need to use the preprocessor anymore.
It’s obsolete.”

The first response indicates that further investigations may
be necessary to assess to which extent the CPP is more im-
portant in C than in C++. Such analyses could help to assess
the necessity of preprocessors (and variability mechanisms)
in languages with (C++) and without (C) object-oriented
mechanisms. While we do not know the participant’s actual
reason for this assumption, it may indicate that features can
be more easily implemented as objects. The second response
goes even further and states that there is no need for pre-
processors at all. Unfortunately, we do not know why the
participant believes the CPP is obsolete nor which program-
ming language (C or C++) they rely on. Potentially, they
may face the same situation as the previous participant when
using C++ or may rely on another variability mechanism.

5 THREATS TO VALIDITY
In this section, we provide an overview on threats to validity,
following the classification described by Perry et al. [23].
Construct Validity. A threat to the construct validity are the
used questions and terms. Potentially, the participants may
have misunderstood something, due to language barriers and
different background knowledge in the domain. However, we
ask our participants at the end of the survey to state if they
had any problems in understanding but none of them reported
ambiguous questions. Thus, we argue that the construction
of our survey is not threatened.
Internal Validity. There are other usage scenarios and factors
in which physical separation may be more helpful than in
these we assess. Due to this limitation, our findings can be
biased. We focus especially on program comprehension and
maintenance effort as these are crucial in software develop-
ment. To this end, our survey provides reliable insights.

Another threat to the internal validity is that we solely rely
on subjective assessments. We did not derive any data from
an experiment or interviews but ask our participants for their
opinion. Thus, there may be a discrepancy between individual
opinions, measurable effects, and qualitative interviews. This
threat also includes that we have to trust the opinions of a
small set of participants. We argue that this is not a big threat,
as considering the opinions of representative, experienced
developers is a reliable source of information. Still, we cannot
generalize the findings to a global level.
External Validity. The main threat to the external validity
of our survey is the sample of participants: We focus only
on C and C++ but no other software developer. This biases
our findings, which are only applicable in this context. Still,
our goal is to receive qualitative responses on the usability of
physical separation of features. We argue that our participants

are familiar with variability mechanisms and can at least
imagine this concept. Also, our goal is to identify problems in
adopting physical separation in practice and such developers
are suitable participants for this purpose.
Reliability. While there are some threats to this work, we
think that any researcher can replicate it. The results may
change depending on the participants and questionnaire. How-
ever, this is the case for all empirical studies and is not a
threat for our survey. Replications and extensions can help
to consolidate our findings.

6 RELATED WORK
A closely related study to ours is reported by Siegmund
et al. [28]. The authors propose an experiment to compare
physical and virtual separation of features. Still, due to the
small number of participants, the authors could not derive
meaningful results. In contrast to Siegmund et al. [28], we
rely on qualitative analysis in the form of a questionnaire.

Several works address combinations of composition-based
and annotation-based implementation techniques. Kästner
and Apel [11] compare different factors of both approaches
and identify pros and cons. They propose to combine compo-
sition and annotations and, thus, aim to utilize the benefits
of these approaches. Our work is complementary to this,
as our results can help to refine such assessments and pro-
vide practitioners knowledge as input. Based on this work,
some authors investigated how to implement such combina-
tions [3, 15]. They face different problems and challenges,
connected to combining composition and annotations, as well
as applying this concept in practice. Here, our work can help
to scope such works to practitioners’ needs.

Behringer [2] follows another idea than the aforementioned
works. Instead of combining different implementation tech-
niques, he uses projectional editing, which enables developers
to switch between an annotated and a modularized represen-
tations of the system without changing the underlying code.
While this promises additional benefits, it is questionable
how fast this approach can be adopted by practitioners and if
they see any benefit in it. To this end, our work may help to
refine the proposed approach and improve its applicability.

Some works address the granularity and discipline of CPP
directives [18, 19, 21]. The authors compare different systems
and how annotations are applied, identifying commonalities
between most systems and proposing improvements on using
the CPP. Thus, these works can help in further investigations
to analyze the factors our participants consider important.

7 CONCLUSIONS
In this paper, we report an empirical study conducted with 34
experienced developers. We investigate how the CPP is used
in practice and if our participants see benefits in physically
separating features. Overall, we conclude the following:

∙ The CPP is used more often to react to external factors,
such as underlying platforms or compilers.

∙ Most developers face no restrictions on how they use
the CPP. Accordingly, they can use undisciplined and

SAC 2018, April 9–13, 2018, Pau, France Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich

fine-grained annotations that are often considered to
be problematic.

∙ Physically separating features is rarely desired for ac-
tually implementing source code. If this separation
shall help to improve comprehension or reduce mainte-
nance efforts, different factors, such as the code size,
complexity, and cohesion, must be assessed.

∙ In contrast, many of our participants can imagine phys-
ical separation to support code analysis, for example to
collect and investigate all code belonging to a feature.

∙ Some surprising statements indicate that the CPP
may be replaced by developers with other approaches,
for example, in the object-oriented C++. Here, the
question arises, due to which reasons and how the
preprocessor is replaced.

To summarize the overall outcome and problems, a response
by one of our participants seems to hit the mark:

“[...] the example was too long and there was no convincing
argument why someone should do that. Maybe your idea
is good for a specific use case, but this use case is not
obvious for me.”

Based on this statement, it seems necessary to improve the
understanding and practical applicability of composition, as it
can help to resolve problems of annotation-based approaches.

Based on our findings, several further works are interesting.
In the future, we aim to conduct additional studies and de-
velop concepts on physically separating features from source
code. Here, we will identify the extent and scenarios for which
this can be useful. In addition, analysis on how developers
use the CPP in C and C++, focusing on differences and
potential workarounds, will be part of our work.

ACKNOWLEDGMENTS
This research is supported by DFG grant LE 3382/2-1 and
Volkswagen Financial Services AG.

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake.

2013. Feature-Oriented Software Product Lines. Springer.
[2] Benjamin Behringer. 2017. Projectional Editing of Software

Product Lines - The PEOPL Approach. Ph.D. Dissertation.
University of Luxembourg.

[3] Fabian Benduhn, Reimar Schröter, Andy Kenner, Christopher
Kruczek, Thomas Leich, and Gunter Saake. 2016. Migration from
Annotation-Based to Composition-Based Product Lines: Towards
a Tool-Driven Process. In International Conference on Advances
and Trends in Software Engineering. IARIA, 102–109.

[4] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. 2005.
Classbox/J: Controlling the Scope of Change in Java. SIGPLAN
Notices 40, 10 (2005), 177–189.

[5] Barry W. Boehm. 1981. Software Engineering Economics.
Prentice-Hall.

[6] Paul C. Clements and Linda M. Northrop. 2001. Software Product
Lines: Practices and Patterns. Addison-Wesley.

[7] Michael D. Ernst, Greg J. Badros, and David Notkin. 2002. An
Empirical Analysis of C Preprocessor Use. IEEE Transactions
on Software Engineering 28, 12 (2002), 1146–1170.

[8] Janet Feigenspan, Christian Kästner, Sven Apel, and Thomas
Leich. 2009. How to Compare Program Comprehension in FOSD
Empirically - An Experience Report. In International Workshop
on Feature-Oriented Software Development. ACM, 55–62.

[9] Critina Gacek and Michalis Anastasopoules. 2001. Implementing
Product Line Variabilities. ACM SIGSOFT Software Engineering
Notes 26, 3 (2001), 109–117.

[10] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner,
Olaf Leßenich, Martin Becker, and Sven Apel. 2016. Preprocessor-
Based Variability in Open-Source and Industrial Software Systems:
An Empirical Study. Empirical Software Engineering 21, 2 (2016),
449–482.

[11] Christian Kästner and Sven Apel. 2008. Integrating Composi-
tional and Annotative Approaches for Product Line Engineering.
In Workshop on Modularization, Composition and Generative
Techniques for Product Line Engineering. University of Passau,
35–40.

[12] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Pro-
gramming Language. Prentice Hall.

[13] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. 1997.
Aspect-Oriented Programming. In European Conference on
Object-Oriented Programming. Springer, 220–242.

[14] Jacob Krüger. 2017. Lost in Source Code: Physically Separating
Features in Legacy Systems. In International Conference on
Software Engineering. IEEE, 461–462.

[15] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher
Kruczek, Fabian Benduhn, Thomas Leich, and Gunter Saake.
2017. Composing Annotations Without Regret? Practical Ex-
periences Using FeatureC. Software: Practice and Experience
(2017).

[16] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher
Kruczek, and Thomas Leich. 2016. FeatureCoPP: Compositional
Annotations. In International Workshop on Feature-Oriented
Software Development. ACM, 74–84.

[17] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. #ifdef Con-
firmed Harmful: Promoting Understandable Software Variation.
In Symposium on Visual Languages and Human-Centric Com-
puting. IEEE, 143–150.

[18] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner,
and Michael Schulze. 2010. An Analysis of the Variability in
Forty Preprocessor-Based Software Product Lines. In icse. ACM,
105–114.

[19] Jörg Liebig, Christian Kästner, and Sven Apel. 2011. Analyzing
the Discipline of Preprocessor Annotations in 30 Million Lines
of C Code. In International Conference on Aspect-Oriented
Software Development. ACM, 191–202.

[20] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk,
and Wolfgang Schröder-Preikschat. 2006. A Quantitative Analysis
of Aspects in the eCos Kernel. In SIGOPS/EuroSys European
Conference on Computer Systems. ACM, 191–204.

[21] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi,
and Rohit Gheyi. 2015. The Love/Hate Relationship with the C
Preprocessor: An Interview Study. In European Conference on
Object-Oriented Programming. Schloss Dagstuhl, 495–518.

[22] Renaud Pawlak. 2005. Spoon: Annotation-Driven Program Trans-
formation - the AOP Case. In Workshop on Aspect Oriented
Middleware Development. ACM, 1–6.

[23] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. 2000.
Empirical Studies of Software Engineering: A Roadmap. In Con-
ference on The Future of Software Engineering. ACM, 345–355.

[24] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005.
Software Product Line Engineering: Foundations, Principles,
and Techniques. Springer.

[25] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh
Look at Objects. In European Conference on Object-Oriented
Programming. Springer, 419–443.

[26] David Sharon. 1996. Meeting the Challenge of Software Mainte-
nance. IEEE Software 13, 1 (1996), 122–125.

[27] Janet Siegmund. 2016. Program Comprehension: Past, Present,
and Future. In International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 13–20.

[28] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel.
2012. Comparing Program Comprehension of Physically and
Virtually Separated Concerns. In International Workshop on
Feature-Oriented Software Development. ACM, 17–24.

[29] Henry Spencer and Collyer Geoff. 1992. #ifdef Considered Harm-
ful, or Portability Experience With C News. In USENIX Confer-
ence. USENIX Association, 185–198.

[30] Thomas A. Standish. 1984. An Essay on Software Reuse. IEEE
Transactions on Software Engineering 5 (1984), 494–497.

[31] Rebecca Tiarks. 2011. What Maintenance Programmers Really Do:
An Observational Study. In Workshop on Software Reengineering.
36–37.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Survey Design
	3.1 Participants
	3.2 Questionnaire

	4 Results
	4.1 RQ1 - Using the CPP
	4.2 RQ2 - Physical Separation of Features
	4.3 Participants' Remarks

	5 Threats to Validity
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

