
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2017; 00:1–28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Composing Annotations Without Regret?
Practical Experiences Using FeatureC

Jacob Krüger1,2∗, Marcus Pinnecke1, Andy Kenner3, Christopher Kruczek3, Fabian
Benduhn1, Thomas Leich2,3, Gunter Saake1

1Otto-von-Guericke University Magdeburg, Germany
2Harz University of Applied Sciences Wernigerode, Germany

3METOP GmbH Magdeburg, Germany

SUMMARY

Software product lines enable developers to derive similar products from a common code base. Existing
implementation techniques can be categorized as composition-based and annotation-based, with both
approaches promising complementary benefits. However, annotation-based approaches are commonly used
in practice despite composition allowing physical separation of features and, thus, improving traceability
and maintenance. A main hindrance to migrate annotated systems towards a composition-based product
line is the challenging and time consuming transformation task. For a company it is difficult to predict
the corresponding costs, and a successful outcome is uncertain. To overcome such problems, a solution
proposed by previous work is to use a hybrid approach, utilizing composition and annotation simultaneously.
Based on this idea, we introduce a step-wise migration process from annotation-based towards composition-
based approaches to lower the adoption barrier of composition. This process itself is independent of used
implementation techniques and enables developers to incrementally migrate towards composition. We support
our approach with detailed examples by partially migrating a real-world system. In detail, we describe i) our
migration process, ii) its application on a real-world system, and iii) discuss practical challenges we faced.
We implemented the proposed approach and show that appropriate tool support helps to migrate towards
composition-based product lines. Based on the case study, we show that hybrid product lines work correctly
and can compete with the performance of the original annotated system. However, the results also illustrate
open issues that have to be solved to apply such migrations in practice.
Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: software product line; composition; annotation; migration; integration; refactoring

1. INTRODUCTION

Software product lines are a systematic reuse approach to create similar systems from a common
base [1, 2]. Product lines are defined by their features that describe common and variable functionality,
and can be implemented using several techniques with different pros and cons [3, 4]. In this article, we
distinguish annotation-based and composition-based approaches [4, 5]. Implementing variability by
annotating source code, for example with preprocessor directives, is often used in practice [4, 5, 6, 7].
Preprocessors provide a low effort and ad-hoc mechanism to add fine-grained adaptations. While this
is an effective way to implement variability, code and feature traceability, as well as modularity are
poorly supported or even unintended [5, 8, 9]. Also, type-checking [10] all possible configurations of
a product line is challenging for annotation-based implementations [11, 12].

∗Correspondence to: Faculty of Computer Science, Otto-von-Guericke University, Universitätsplatz 2, D-39106
Magdeburg, Germany. E-mail: jkrueger@ovgu.de

Copyright c© 2017 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

This is the submitted version of this

article and represents the authors'

verion for personal use only.

The final version with some additional

changes has been accepted by

Wiley's SPE under the DOI:

10.1002/spe.2525

2 J. KRÜGER ET AL.

In contrast, composition-based approaches, such as feature-oriented programming (FOP), avoid
those problems, by using physical separation of features [4, 5, 13, 14, 15]. With feature-oriented
programming, each feature is encapsulated into a module and serves as a configuration option. Those
modules are combined to generate a customized variant. Due to this physical separation, feature and
code traceability are straightforward, which facilitates maintaining and extending the product line.

Despite these benefits composition-based approaches are rarely adopted in practice [4, 5, 16].
There are some reasons that hinder their application. For example, using composition is challenging
and error-prone, and corresponding tools have to meet high requirements and are hard to integrate
in existing development processes [17]. In contrast, annotation-based approaches are supported
by established tools, for instance the C preprocessor [7], and allow ad-hoc changes without much
preplanning effort [4]. Thus, they are widely used and accepted in practice. Finally, migrating legacy
applications from annotation to composition is time-consuming and costly [15, 18]. For such reasons,
annotation-based implementations are the dominant implementation approach in practice.

To overcome such problems, Kästner and Apel [5] introduce the idea to combine (integrate)
annotation and composition into a hybrid approach. They envision to utilize advantages of both
techniques, using step-wise migrations. However, they only discuss the characteristics of such
a combination but do not investigate the actual migration from an annotated system towards
composition. In an earlier paper, we built on their idea to develop a simple migration concept
and provided small examples [17]. For this article, we refine and extend our approach considerably.
We specify a full migration process and analyze possibilities to automate tasks, which reduces the
adoption barrier [18, 19]. Furthermore, we present new and detailed insights into a partial migration
of BERKELEY DB†, a preprocessor-based database system, to review and assess our migration
process. As a result, we present challenges and pitfalls, for example, undisciplined annotations and
required tooling, that companies may face during such migrations. Overall, our approach is not
limited to migrating product lines towards a composition-based or combined approach. Another
application scenario is the extraction of a product line from variable stand-alone systems.

More detailed, we make the following contributions:

• We propose a migration process to integrate composition into annotation-based approaches.
Besides technical concerns, we also address automation for each step.

• We provide detailed examples of our approach based on a migration of BERKELEY DB.
Therefore, we introduce FEATUREC, an extension of FEATUREHOUSE [20, 21], suitable for
feature-oriented programming with C and the C preprocessor.

• We identify and discuss technical, conceptual, and organizational challenges we faced during
the migration of Berkeley DB. For instance, we provide insights into practical migrations of a
large-scale product line and required efforts.

The remaining article is structured as follows. In Section 2 we introduce topics that are required for
the understanding of this article. We describe our research approach in Section 3 to define the scope
of our work. Afterwards in Section 4, we introduce FEATUREC that we use for our migration process,
which we describe in Section 5. Within Section 6, we provide detailed information on the practical
application of our process on BERKELEY DB. We discuss results and further experiences we gained
in Section 7 and Section 8. Finally, we provide a brief overview on related work in Section 9 before
we conclude in Section 10.

2. BACKGROUND

To implement software product lines, several implementation techniques exist [3, 4]. They can be
separated into annotation-based and composition-based approaches [4, 5, 22]. In the following, we
introduce both categories as we combine them in our work. Additionally, we provide background on
variability modelling as a common concept to manage product lines.

†http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/
overview/index.html, 07.09.2016

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 3

1 public class Main{
2 public static void main (S t r i n g []

a r g s) {
3 /*if[Hello]*/

4 System . o u t . p r i n t ("Hello") ;
5 /*end[Hello]*/

6 /*if[Beautiful]*/

7 System . o u t . p r i n t (" beautiful") ;
8 /*end[Beautiful]*/

9 /*if[Wonderful]*/

10 System . o u t . p r i n t (" wonderful") ;
11 /*end[Wonderful]*/

12 /*if[World]*/

13 System . o u t . p r i n t (" world!") ;
14 /*end[World]*/

15 }
16 }

(a) Annotated source code.

1public class Main{
2public static void main (S t r i n g []

a r g s) {
3System . o u t . p r i n t ("Hello") ;
4System . o u t . p r i n t (" beautiful") ;
5System . o u t . p r i n t (" world!") ;
6}
7}
8
9
10
11
12
13
14
15
16

(b) Preprocessed source code.

Figure 1. Annotation-based implementation using MUNGE. If the token Wonderful is not defined for the
annotated code (Figure 1a), the encapsulated code fragment is removed in the preprocessed code (Figure 1b).

2.1. Annotation-Based Approaches

In practice, variability in software product lines is commonly enabled with annotations [4, 5, 6, 7].
Typically, this approach is associated with the C preprocessors’ #ifdef statements, other techniques
being, for example, XVCL [23] or Spoon [24]. To include or exclude code during compilation,
the corresponding fragments are explicitly encapsulated by conditional compilation conditions.
Conditional compilation is achieved by combining two techniques: macro substitution and conditional

inclusion. We introduce both techniques in terms of the widely used C preprocessor [7, 25]:

• Macro substitution: A token along with a replacement text is defined (i.e., #define
<token> <replacement>). During preprocessing, all occurrences of the token are
substituted by its replacement. The replacing text may contain textual statements or can
be empty.

• Conditional inclusion: Allows to include or exclude annotated source code depending on
the evaluation outcome of an expression (i.e., #if <expression> <code fragment>

#endif). If the expression is evaluated to zero, the encapsulated code is removed.

Many variations and patterns for the C preprocessor are known and applied to overcome limitation
of the C programming language. For example, upper bounds for data type ranges depend on the
computer architecture‡ and can be adopted using conditional compilation. In the context of software
product lines, an expression of a conditional inclusion normally asks for the existence of a token (i.e.,
#ifdef <token>). This technique is commonly used to implement variability within a system.

In Figure 1, we illustrate a basic Hello World example provided in FEATUREIDE [26]. There,
we use the simplistic JAVA preprocessor MUNGE. The base code in Figure 1a is annotated within the
comments to encapsulate variable behaviour. Selecting a valid set of features leads to preprocessed
code from which all undesired variability is removed. For example, in Figure 1b, the feature
Wonderful is not selected and, thus, not part of the instantiated variant.

To control a product line’s variant space, which is implied by the existence or absence of a set of
tokens, several techniques are used in practice. These range from conditional definition of tokens
depending on the presence-condition of other tokens (e.g., #ifndef <token1> #define

‡ISO/IEC 9899:TC3, Section 5.2.4.2.1 Sizes of integer types <limits.h>, online available at http://www.open-std.
org/jtc1/sc22/wg14/www/docs/n1256.pdf, 06.10.2016

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

4 J. KRÜGER ET AL.

1 // Base Module

2 public class Main{
3 protected void p r i n t () {
4 System . o u t . p r i n t ("Hello") ;
5 }
6 public static void main (S t r i n g []

a r g s) {
7 new Main () . p r i n t () ;
8 }
9 }

10
11 // Feature Module Beautiful

12 public class Main{
13 protected void p r i n t () {
14 o r i g i n a l () ;
15 System . o u t . p r i n t (" beautiful") ;
16 }
17 }
18
19 // Feature Module Wonderful

20 public class Main{
21 protected void p r i n t () {
22 o r i g i n a l () ;
23 System . o u t . p r i n t (" wonderful") ;
24 }
25 }
26
27 // Feature Module World

28 public class Main{
29 protected void p r i n t () {
30 o r i g i n a l () ;
31 System . o u t . p r i n t (" World!") ;
32 }
33 }

(a) Modularized source code.

1public class Main{
2
3private void

p r i n t _ _ w r a p p e e _ _ H e l l o () {
4System . o u t . p r i n t ("Hello") ;
5}
6
7private void

p r i n t _ _ w r a p p e e _ _ B e a u t i f u l () {
8p r i n t _ _ w r a p p e e _ _ H e l l o () ;
9System . o u t . p r i n t (" beautiful") ;
10}
11
12protected void p r i n t () {
13p r i n t _ _ w r a p p e e _ _ B e a u t i f u l () ;
14System . o u t . p r i n t (" World!") ;
15}
16
17public static void main (S t r i n g []

a r g s) {
18new Main () . p r i n t () ;
19}
20
21}
22
23
24
25
26
27
28
29
30
31

(b) Composed source code.

Figure 2. Composition-based implementation using FEATUREHOUSE. If Wonderful is selected as feature
(Figure 1a), the method is added and called accordingly in the composed code (Figure 1b).

<token2>), over definition of tokens with compiler flags (e.g., gcc -Dtoken) and make files
(e.g., make), to high level build systems (e.g., KBUILD).

The research community criticizes the concept of annotation-based approaches as they hinder
traceability and physical separation of features [4, 5, 6, 7]. However, there is still ongoing discussion
whether annotations make it more difficult to develop systems or not [8, 27, 28]. Several researchers
suggest to restrict the power of conditional inclusion, leading to a more disciplined usage of
preprocessors [27]. In addition, to overcome the limitations regarding feature traceability and physical
separation of concerns, composition-based approaches were proposed. However, these do not allow
fine-grained adaptations and require preplanning [4, 16].

2.2. Composition-Based Approaches

Composition is an established technique to merge software artefacts by composing their
substructure [4, 21]. In contrast to annotation-based approaches, compositions are aware of the
structure of the affected classes and methods. Hence, the source code to be modified is enriched with
more semantics by feature syntax trees. A feature syntax tree is a generalized view on the structure
of objects that contain information to cover the modularity of an artefact. It is defined by its set of
nodes, where each node maps into the language-dependent structure and defines a syntactic category
and name. For instance, a data type struct S in the C language might be represented by a node

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 5

Beautiful

Hello

Wonderful

WorldFeature

HelloWorld Legend:

Mandatory

Optional

Alternative

Concrete

Abstract

Figure 3. Basic feature model for the previous code examples.

called S with the type struct. This mapping inside feature syntax trees enables merging artefacts
at structural level and, thus, refining base code (i.e., S).

We show a Hello World example from FEATUREIDE [26] for a composition-based approach
(i.e., FEATUREHOUSE [20, 21]) in Figure 2. In contrast to Figure 1, we see that additional source
code is necessary to represent context information. Each refinement in Figure 2a is placed in an
own module, respectively class and method, with the same names. During composition, the features
are merged into the base code. As we show in Figure 2b, the class is completely merged while the
methods are only added and call each other.

Clearly, since syntax trees are independent of a certain language, due to their generalized
view on structures, they can be applied for a variety of languages. In this article, we focus on
FEATUREHOUSE [20, 21], an AHEAD-based [14] framework and tool chain for feature-oriented
programming [13]. However, there are several alternatives to implement composition, for instance
aspect-oriented [29] or delta-oriented programming [30]. While our basic example already uses
FEATUREHOUSE, we will introduce this technique more detailed in Section 4.

2.3. Variability Modelling

Software product lines tend to cover a broad variability space of a domain. The complexity grows
exponential, hence, for n optional and independent features 2

n possible configurations exist. To
achieve reusability of features, quality guarantees, and to model the variability space (i.e., the
dependencies of features), the research community introduced variability management using feature
models [4, 31, 32]. Managing variability is divided into two tasks: domain engineering, and
application engineering [4, 33].

Domain engineering includes defining a product line’s variability and corresponding dependencies.
For this purpose, several representations have been proposed or adapted, for example, feature
models, decision models, delta models, UML, or natural language [34, 35, 36, 37, 38]. Despite this
variety of representations, feature models and decision models are established in both, academia and
industry [35, 36, 39]. Due to our own experiences and only minor differences between these two
representations [37], we rely on feature models to describe variability in a product line.

A feature model is typically represented as a feature diagram [34]. We illustrate a basic example
that corresponds with the intended variability in the previous code snippets in Figure 3. Feature
models are important to define the variability and dependencies in a product line that is not represented
in the source code. For example, in Figure 3 Beautiful and Wonderful are alternatives. Hence,
only one of these two is intended to be selected for a product, while the source code itself does
allow any combination. Other constrains might be parent-child relationships, optional, or mandatory
selections of features inside a group, implications or exclusions. Besides the model itself, several code
artefacts are developed during domain engineering. For instance, in the Hello World application
the outputs Beautiful and Wonderful are modelled as two features. The associated code for
these contains all code necessary to implement the refinement (compare with Figure 1 and Figure 2).

In application engineering, the variability space, implied by the feature model, is used to specify
variants. A variant is a valid selection of features according to the constraints defined in the domain
engineering. Since the dependencies in the feature model guarantee compatibility of several features
selections, a variant can easily be generated. This generation process assembles corresponding

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

6 J. KRÜGER ET AL.

artefacts to a fully functional system. How the generation actually proceeds, depends on the used
implementation technique. For instance, a composer defines the tasks needed to assemble artifacts,
and typically considers either runtime or compile-time variability. Runtime can be achieved by using
plug-in systems or global configuration classes. In contrast, for compile-time composition-based or
annotation-based approaches can be used.

A composer refines classes orthogonal to class inheritance of the object-oriented programming
paradigm. State-of-the-art composers only consider either annotation or composition. In contrast, we
propose a composer that can manage both simultaneously within the same code base.

3. RESEARCH APPROACH

In this section, we provide an overview on our research approach to scope the contribution of this
article. Therefore, we define our research goal and methodology, define corresponding evaluation

criteria, and describe the used tools.

3.1. Research Goal and Methodology

Overall, we aim to provide a process that supports the migration from annotation-based towards
composition-based implementations. We especially aim to facilitate the practical application of this
process to support practitioners in using composition. Hence, we focus on partly migrating a legacy
system towards a hybrid system, integrating composition into annotation, to limit risks and potential
pitfalls. More precisely, our research questions are as follows:

RQ-1 How can we migrate an annotation-based towards a composition-based implementation?
RQ-2 How does the resulting hybrid system perform compared to the original system?
RQ-3 Which open issues and potential pitfalls do exist?

To answer these research questions, we partly migrate BERKELEY DB from its annotated C
version towards feature-oriented programming [13]. We focus on a partial migration to better reflect
the practical application of our approach. It seems reasonable for a company to only migrate some
features towards composition to limit costs, focus on regularly updated features, or because fine-
grained [16, 40] variability may not be useful to migrate. Hence, in a hybrid approach three different
sets of features can exist:

• Implemented only with annotations.
• Implemented solely with composition.
• Implemented with both, composition and annotations.

During our case study, we explicitly aim to cover these sets. Thus, we fully migrate some features
towards feature-oriented programming and partly migrate some others, mainly to cover feature
interactions. We emphasize that the scope of our work is not to fully migrate annotations towards
composition but enable a step-wise and partial integration into a hybrid approach.

3.2. Evaluation Criteria

An evaluation is challenging to perform for our process. Still, we answer our first research questions
based on the conducted case study. We report results on the migrated source code and argue that our
process is suitable for step-wise migrations. This provides an overview on the process’s applicability
and open challenges.

To answer our second research question, we apply two evaluations similar to related work [41]:
Firstly, we assess whether the binary size (a.k.a. footprint) of migrated configurations stay the same.
Secondly, we use a test suite and a performance suite with several test runs provided with BERKELEY

DB to evaluate the correctness and measure performance differences. In both cases, similar results
should be achieved for the hybrid system, indicating that our migration is implemented correctly.

To answer our third research question, we discuss observations we made during our case study.
We derive open issues based on problems we faced ourselves and that we were only partly able to

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 7

1 @MethodObject
2 static class Txn_traceCommit {
3 // [...]

4
5 void e x e c u t e () {
6 }
7
8 // [...]

9 }

(a) Base module.

1public class Txn{
2@MethodObject
3static class Txn_traceCommit {
4void e x e c u t e () {
5l o g g e r = envImpl . g e t L o g g e r () ;
6o r i g i n a l () ;
7}
8}
9}

(b) Feature module.

1 @MethodObject
2 static class Txn_traceCommit {
3 // [...]

4
5 void e x e c u t e () {
6 l o g g e r = envImpl . g e t L o g g e r () ;
7 e x e c u t e _ _ w r a p p e e _ _ b a s e () ;
8 }
9

10 // [...]

11 }

(c) Composed base module.

Figure 4. FEATUREHOUSE composition in the JAVA version of BERKELEY DB.

resolve. Hence, we provide starting points for further research, especially to improve the practical
applicability of composition.

3.3. Tools

For our case study, we relied on existing tools, namely:

• ECLIPSE§ as integrated development environment, extended with the C/C++ DEVELOPMENT

TOOLING¶ (CDT), for C development, and FEATUREIDE [17, 42, 43], for software product
line development and variability modeling, plug-ins.

• FEATUREHOUSE [20, 21] as tool chain for feature-oriented programming and software
composition.

• BERKELEYDB as the subject system for our case study and its test and performance suites for
our evaluation.

In addition, we developed FEATUREC to enable FEATUREHOUSE to compose any annotated source
code, as we describe in the next section.

4. FEATUREC

To combine annotation-based and composition-based approaches, we need a suitable composer.
For our purpose, we developed FEATUREC, a feature-oriented extension of C that also supports
preprocessor directives. We base our implementation on FEATUREHOUSE [20, 21], which provides a

§https://eclipse.org/, 06.09.2016
¶https://eclipse.org/cdt/, 07.09.2016

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

https://eclipse.org/
https://eclipse.org/cdt/

8 J. KRÜGER ET AL.

Figure 5. Depiction of a grammatical change (highlighted in blue) to support annotations in FEATUREC.

Figure 6. Instantiation of a variant in a combined annotation-based and composition-based product line.

tool chain to compose software. It can be applied on different programming languages by defining a
suitable grammar. This grammar describes how the language is parsed and composed.

We illustrate a code example from BERKELEY DB with FEATUREHOUSE in Figure 4. In Figure 4a,
an empty method within the base code is defined (execute). The Txn feature in Figure 4b, refines
this method by applying a logging function. Calling original refers to the position at which the
variability is added. In our example, the feature code comes first and only afterwards the original
implementation follows. As we illustrate in Figure 4c, the previously empty execute is refined
with two additional lines of code. The annotation (@MethodObject) specifies, how the artefacts
are represented to the composer.

Applying FEATUREHOUSE directly on the C version of BERKELEY DB is possible. However, the
standard grammar does not support all kinds of annotations and, thus, limits our possibilities.
Therefore, we defined FEATUREC to overcome such shortcomings. To use composition and
annotations in concert, enabling a hybrid product line, our grammar has to:

• specify how to parse the programming language,
• define composition rules, and
• also support annotations.

Parsing and composing are already included in FEATUREHOUSE but require adaptation for C.
More challenging is the introduction of some preprocessor annotations. We are able to avoid some
grammatical changes through source-code discipline [27, 28]. In C, only annotations on a) entire
functions, b) type definitions, c) entire statements, or d) elements inside type definitions are considered
to be disciplined [27]. Still, it is not possible to solve all problems this way. For example, annotations
that encapsulate a complete method are problematic. During composition, such methods get lost
and result in variants with missing source code. We display this grammar change in Figure 5. The
composer must be aware of the possibility that annotations may indicate variability for a whole
method. However, annotations within methods are unproblematic to compose.

Overall, we can create a customized variant for a hybrid approach using FEATUREC. All annotated
code is located in specific feature modules. Then, we can configure, compile, and execute different
systems. In Figure 6, we illustrate how we compose a specific variant. The first step is to select
a valid set of features, the configuration, and provide it to the composer. Afterwards, FEATUREC
selects the correct feature modules that are then composed. Before our composer can preprocess the
remaining source code, it has to map each selected feature to its annotations. Thereafter, undesired
annotations are removed and, finally, the code is compiled. Hence, the customized variant is created.
While this process might be straightforward [5], it still provides challenges, for instance mapping
old make files. We discuss this topic in Section 8.3. It is conceptually possible to switch selection
and composition of feature modules with the preprocessing step. However, it could be possible that
switching the instantiation steps will result in different variants, due to the three sets of features in a
hybrid product line (see Section 3).

To assess the impacts of changes within the instantiation process, several aspects require further
research. First, complexity and effort is important. Both may heavily depend on the project
implementation and the degree of migration. For instance, assuming that the composition is only

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 9

Test
Extract
Artefact

Analyse
Feature

Map
Composition

Enable
Composition

Model
Variability

Enable
Automation

Incremental
Modelling

Complete
Modelling

Migration
Complete

1 2 3 4 5

67

Figure 7. Activity diagram [47] of the step-wise migration process to integrate composition into an annotation-
based product line.

applied on a coarse granularity and includes a lot of annotations, composing can exclude numerous
preprocessor directives. Hence, preprocessing costs are reduced.

Second, grammar changes, as we applied them in FEATUREC, can be necessary. The corresponding
adaptations depend on the used implementation techniques and also the order in which the
instantiation is done. If we remove annotations first, we do not need to consider them in FEATUREC.
However, changes on the preprocessor are necessary to consider feature modules.

Third, conceptually the order should not influence the completeness of the instantiated variants.
Still, due to different implementation techniques and possibly required grammar changes, this cannot
be ensured for all hybrid approaches. Further analyses and case studies on such approaches are
required to assess adaptations.

Finally, these aspects can affect the main goal of refactorings not to change a system’s
behaviour [44, 45]. Thus, all migrations should be minimal invasive, causing as few changes in
the source code as possible. To achieve this, we used the instantiation order depicted in Figure 6.
Our BERKELEY DB version is implemented using the C preprocessor. The standard tool-chain for
preprocessors combines processing and compilation of source code. Separating both is only done
exceptionally for analyses. Also, the C preprocessor works correctly on composed code but may
require changes to address feature modules. Hence, our instantiation process requires fewer changes
and lowers the adoption barrier.

In this section, we introduced FEATUREC. It can compose variants of a hybrid software product
line in the C programming language. We require FEATUREC’s basic concept in our migration process
and use it for our case study.

5. MIGRATION PROCESS

In this section, we introduce our migration process of annotated systems towards composition. As
presented in previous papers, such processes are independent of concrete techniques [5, 17, 22],
wherefore they can be adopted and applied for all of them. In this context and for the remaining
article, we use the following terms:

• Process refers to our migration process, which follows the definition of Lonchamp [46] and,
thus, is a set of steps that are used to maintain a software based on human and automated tasks.

• Project refers to an annotated legacy system and its corresponding migration process.
• Feature refers to a concern in a project, especially on conceptual level rather than in

implementation.
• Artefact refers to a single variable code fragment of a feature and, thus, its implementation.

Hence, within a project one or more features are considered, which are implemented by one or more
artifacts.

We illustrate the activity diagram [47] of our migration process, which consists of seven process
steps [46], in Figure 7. As input, the process only requires an annotation-based legacy system but can

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

10 J. KRÜGER ET AL.

be facilitated with additional information and artefacts, such as, documentation and tests. In detail,
the provided legacy system is migrated with the following steps:

1. Enable Automation: Based on a project’s characteristics, for example, the programming
language and used composition mechanism, tool support is selected for each following step.

2. Model Variability: The variability of the system must be modelled to enable configuration for
composition-based approaches. This can be done incrementally for each migrated feature or all
at once (complete).

3. Enable Composition: The composition mechanism is introduced into the project.
4. Map Composition: Composition units (e.g., modules) are designed for features that are migrated

and mapped to the model.
5. Analyse Feature: A feature in the legacy system is analysed to assess how it can be migrated.
6. Extract Artefact: An artefact of the analysed feature is migrated into a composition unit.
7. Test: The result of the migration is evaluated, which can be done after each or for a set of

migrations.

The last three steps (5-7) are repeated to extract several artifacts and features of the product line. As
described, it is also possible to repeat steps two to four if features are incrementally modelled and
mapped as soon as they are extracted. This enables an incremental approach to focus on one feature
at a time during the whole process.

As this indicates, the output of our process is not necessarily a fully migrated, composition-based
product line (including a variability model). Instead, we enable a hybrid system, enabling annotations
and composition at the same time, by following the idea of refactorings: improving source code
without changing its behaviour [44, 45]. Hence, with respect to software product lines, we address
variability-preserving migration and refactoring [4, 48]. Overall, we aim to facilitate maintenance
and evolution of a company’s systems.

The goal of our approach is to ensure a consistent system after each step. Thus, long development
stops and additional costs are reduced. Both aspects are essential to integrate composition into
existing software product lines [18]. While details on consistency unavoidably vary for concrete
projects (e.g., depending on implementation techniques, languages, or tools) [49], we can ensure that
the migration itself is consistent. In the following, we describe our migration process in detail.

5.1. Enable Automation

For minimal interruptions, it is necessary that the system can be compiled, executed, and tested after
each step. Thus, the first step of our process is to select suitable tools, which enables automation for
instantiating variants. An integrated development environment (IDE) helps during the whole process.
It has to support annotation-based and composition-based software development at the same time. As
in many IDEs, such as ECLIPSE, this includes building, executing, and testing programs that utilize
both approaches. Most of these steps must be adapted for different implementation techniques and
especially their combinations. Hence, support for the used implementation techniques is the most
influential factor.

Other tasks in our migration concept can be further automated. Thus, we can categorize tools by
the process steps they support and discuss them then. Still, every automation influences the IDE
decision or may require adaptations. As a result, a company has to plan its migration to avoid later
tool changes.

In contrast to further steps, selecting the right tools can hardly be automated. It requires manual
analysis and selections based on the project and included tasks. This might be costly for some
approaches that need further adaptations. Even though, it must only be done once for a project.

5.2. Model Variability

After tool support is selected, it is necessary to determine and model the variability within the system.
In particular, systematic variability management must be introduced to customize the software. For
an existing product line, it might be the case that such management already exists. Otherwise, more
detailed analyses are necessary. Ideally, the variability of the program is modelled and mapped to

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 11

corresponding code artefacts. Thus, developers can easier find and analyse variable code of the
system in later steps. In contrast, it is also possible to reduce modelling and mapping to a minimum.
We could only model features, which we will extract later, ad-hoc to reduce efforts, similar to
step-wise refactorings. While this strategy may reduce the efforts during this step, others will be
more challenging and modelling may not be consistent.

Variability management can be supported with several tools. Some IDEs, such as
FEATUREIDE [26], GEARS [50], or PURE::VARIANTS [51], already include modelling and
automated configuring. However, it must be ensured that both tasks are available for annotations
and compositions in parallel. Analysing variability in a legacy system can also be supported [52],
for instance with LEADT [53] or feature location tools [54, 55]. Especially in the presence of
preprocessor statements or based on additional artifacts, automatically extracting parts of feature
models is possible [56, 57, 58, 59]. Nonetheless, variability mining cannot be done fully automatic
but requires manual work [60, 61]. Therefore, this analysis may require a lot of effort, time, and
domain knowledge. Still, each feature must only be added once to the variability model for a project.
Updating the model afterwards to add previously unrepresented dependencies is relatively simple
and several refactorings and validity checks have been proposed [52].

5.3. Enable Composition

During this step, composition is integrated into the system. The result is a trivial decomposition of
all code into a single module. For example, using feature-oriented programming we initialize the
whole project with one base feature that includes all annotations. Thus, there is still no physical
separation of variability but the required implementation technique is enabled. While it is the first
change on the concrete implementation, variants can still be instantiated as before. Important is to
ensure that the composer’s grammar is able to compose the code correctly. For instance, this may
require disciplining annotations for syntactical correctness and addressing correct language versions.

This whole step can be semi-automated. Therefore, a tool needs to provide an import functionality
that supports developers. Still, even manual integration does not require much time or effort. The
goal is to ensure that the composition is working without errors. This may require additional changes
in the source code, such as disciplining annotations, that must be done manually. For instance, in
our case study we had to implement FEATUREC. However, this step is only required once during a
migration project.

5.4. Map Composition

While composition is available after the previous step, we still have to map implementation and
variability management. Only this way, correct configuration and instantiation is ensured. Therefore,
modules for features are defined on implementation level. With feature-oriented programming, each
module is a file that will later contain a feature’s code. These files have the same name as the file
they refine to enable correct composition. Afterwards, each module is stored into a folder with the
name of the corresponding feature (i.e., the previous preprocessor token). This maps the modules to
a feature and the feature model. Extracted artefacts are later added to the corresponding modules.
This way, a valid configuration can be selected in a tool and provided to the composer.

Identical to and depending on the variability modelling, this step can be done all at once or step-
wise. Hence, in Figure 7 this step might be repeated for each feature. Mapping the composition-based
feature modules requires manual effort. Developers have to create an according project structure
and connect it to the configuration. However, as this step mainly requires to set up additional files
and folders, it does not require much effort. Semi-automated support is possible by implementing a
functionality that automatically links new feature modules to selected artefacts.

5.5. Analyse Feature

After the previous steps are done, the actual migration can start. The first task is to identify and
analyse code artefacts that belong to a feature and shall be extracted. This is necessary to decide
which artefacts to migrate. For instance, it is most likely not useful to extract a single line of variable

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

12 J. KRÜGER ET AL.

Table I. Overview of our step-wise migration process.

Step Iteration Automation Tool examples

1 Enable automation P Manual None
2 Model variability P/F Semi Modelling, feature location
3 Enable composition P Semi Import functionality
4 Map composition P/F Semi Variability management
5 Analyse feature A Semi Highlighting, feature location
6 Extract artefact A Semi Refactorings
7 Test A Semi Unit test, configuration

P: Once per project, F: Once per feature, A: Once per artefact

code. At this point it seems more useful for a company to benefit from the combination of annotation
and composition, and keep the code as it is. Afterwards, refactoring and restructuring the source code
is planned. In particular, feature interactions must be addressed. These can require additional code
changes and feature implementations.

It will most likely never be possible for a program to automatically identify all feature code [60, 61].
However, tools and IDEs to highlight and map annotations that belong to a specific feature
exist [26, 62]. In addition, feature location [55] or variability mining [53, 61] techniques also
support identification, analysis, and interpretation of artefacts. Despite such tools, the final migration
plan must be designed by a developer. Analyses have to be done for each artefact of a feature that
shall be extracted into a module.

5.6. Extract Artefact

This step includes the actual migration of an annotated code fragment into a compositional module.
Thus, the previously designed migration plan is executed. A first task is to refactor and improve
the code to ease modularization. Removing design flaws, so called code smells [44, 63, 64], and
disciplining the usage of preprocessors can be useful to reduce error-proness [65]. The second task
is the migration of the source code artefact. Afterwards, a new compositional module exists and
separates the feature from the base implementation. This module is linked to its original position
based on the used composition mechanism.

It is possible to support the identification of error-prone feature code with metrics [66]. However,
the actual migration must mainly be done manual. There are IDEs that can support these tasks
with some simple mechanisms [67] or support refactorings, and some approaches for automatic
modularization exist [22]. However, a developer has to use and assess the tools, and implement
additional or adapted code. The whole step is repeated for each extracted artefact.

5.7. Test

With the previous step, the extraction of a single feature fragment is finalized. After each migration,
the system shall be in a consistent and executable state. Still, the behaviour of the system must
be tested and evaluated. Thus, developers can assess that the product line is working and can be
configured correctly. This might be done after each migration, for instance if additional refactorings
were needed, but for small and simple extractions several tests might be consolidated. Other
approaches, to test product lines or software in general, can be used to further ensure the system’s
quality. Some examples are code inspections, reviews, or unit tests to assess migrations [68, 69].

For testing software product lines several approaches exist [70]. More and more of these can be
executed automatically, test multiple aspects of a system, and are integrated into IDEs. However,
testing the changed behaviour requires manual effort to identify and analyse suitable test cases. The
effort of these tasks highly depends on the size and complexity of the extraction. Testing correct
instantiation can be done with each IDE that supports the combined approach. Hence, it requires only
few effort and might be automated. Still, developers have to manually assess the results and remove
found errors.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 13

Figure 8. Snippet of BERKELEY DB after import into ECLIPSE CDT.

5.8. Summary

In this section, we introduced our migration process. We summarize each step in Table I, considering
required iterations, automation degree, and examples for possible tool support. Modelling variability
and mapping the resulting model to modules can be done for the whole project at once or only for
features that are currently migrated. In contrast, the actual analysis and migration of variable code
must be done for each artefact. While tool support exists for most of the steps to some extent, all of
them still require some manual effort. During each task it can be necessary or helpful to go back and
review gained results. We address this point in Section 8.1.

Overall, it is possible to implement composition without refactoring the whole product line at once.
As the system is in a consistent state after each migration, companies do not need to stop production.
This can significantly lower the adoption barrier [18]. Still, currently our process’s manual effort
limits its applicability to single features and smaller systems.

6. PRACTICAL APPLICATION

To this point, we introduced FEATUREC, a composer that can handle annotations, and our migration
process. In this section, we illustrate our process on a real-world system. For each step, we describe
detailed examples and challenges we found in our practical application. Our example is based on
the industrial BERKELEY DB, an embedded database management system. The used version is
implemented in C and includes preprocessor annotations to define variability. Overall, our BERKELEY

DB system contains 229,419 lines of code. Hence, it is a relevant case study for practice, involving
high challenges of annotations-based implementations. Also, BERKELEY DB is used and analysed in
several other case studies in product-line research [22, 40, 41, 71, 72]. Our goal is to partly migrate
the annotated system towards a compositional implementation, using feature-oriented programming
with FEATUREC.

6.1. Enable Automation

The initial step for our migration is to select and adopt suitable tools. Mainly, we had to address two
tasks:

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

14 J. KRÜGER ET AL.

Figure 9. Feature model of BERKELEY DB. Features we fully migrated towards feature-oriented programming
are framed with solid black. Dotted black frames indicate features that we partly migrated.

• Selecting an IDE that supports both composition-based and annotation-based approaches.
• Importing and integrating BERKELEY DB as project into the IDE.

There exist several IDEs that support product line development. For this case study, we
build on our previous work, FEATUREIDE, an ECLIPSE plug-in for feature-oriented software
development [17, 42, 43]. It includes all important tasks and techniques that we require for
our migration. For example, FEATUREIDE supports modelling as well as annotation-based and
composition-based approaches. Still, we needed to combine annotation-based and composition-based
implementations, wherefore we integrated FEATUREC into FEATUREIDE.

To import BERKELEY DB, we used the C/C++ DEVELOPMENT TOOLING (CDT). It is another
plug-in that supports C and its preprocessor in ECLIPSE. In FEATUREIDE, we created a new C project
and imported all source and additional files of the database system. Then, we adapted BERKELEY

DB’s settings and implementation to ensure correct behaviour. For our case, some errors occurred
because of deviations from the C standard or deprecated statements. We show a screenshot of our
imported BERKELEY DB project in Figure 8. The explorer and console illustrate 116 found errors.
However, many of those are caused by syntax rules of the FEATUREC grammar, which we address in
step three. Such problems hinder the usage of composition for now but we can still instantiate the
system with the C preprocessor.

This step required several hours. Still, the effort strongly depends on the used IDE, its support for
an integrated approach, and the complexity of the project. While we needed a lot of manual work,
we only had to do it once for the project. Also, with the development of integrated approaches and
tools, the effort of this step may decrease. Overall, it is essential to use an IDE that supports all
implementation and instantiation tasks for a company’s project.

6.2. Model Variability

The next step in our process is to introduce variability modelling. Therefore, we first created a feature
model with a single base module. Afterwards, we expanded this model and introduced the features of
BERKELEY DB. We illustrate the resulting variability in Figure 9. For BERKELEY DB, we were able
to reuse analysis and information of previous research. Based on this, we identify the 10 preprocessor
variables shown in Figure 9 to represent features. Each of these provides optional variability, which
can be combined freely. During our case study, we completely migrated the features Hash and
Heap. In addition, we analysed and extracted parts of other features, which was mainly did due to
interactions. Thus, we partly migrated Compression, Partition, Queue, and Replication.
However, in this article we exemplary focus on Hash and Heap.

For our example, the effort of modelling variability was minimal due to existing research. Other
projects may require a lot of analysis before it can be described with a feature model. Due to the

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 15

Figure 10. The undisciplined code (left) from Figure 8 is refactored according to the grammar provided by
FEATUREC (right).

annotation-based implementation it seems feasible to use semi-automated and partial analysis to
ease this step. For instance, feature location [54, 55] and variability mining [53, 61] are adoptable.
Appropriate approaches may identify annotations and corresponding source code. This way, suitable
features for migration could be identified with less effort.

6.3. Enable Composition

To this point, we imported BERKELEY DB into ECLIPSE using the FEATUREIDE and CDT plug-ins.
In this step, we migrated its base code into a module to enable composition. Afterwards, the whole
implementation is encapsulated within a single base feature. With our adopted FEATUREC grammar,
we are able to instantiate the implementation by selecting this base module. Then, we use the C
preprocessor to customize the annotations.

However, to use FEATUREC we first had to refactor the BERKELEY DB implementation. As
described in Section 6.1, FEATUREIDE reported many errors that are caused by conflicts with our
defined grammar. Mainly, this was due to undisciplined use of annotations. In Figure 10 we illustrate
an example in which we refactored such an error. The original implementation on the left side has
two closing brackets that are part of different annotations. Currently, FEATUREC does not support
such constructs. Instead, we migrate the implementation to an equivalent but disciplined form. On the
right side of Figure 10, opening and closing brackets are equal within each annotated code fragment.
This disciplined style is supported by FEATUREC.

During our case study we found that such refactorings can be challenging tasks. They are error-
prone, we deviate from the original implementation, and need code clones to address feature
interactions. For instance, in Figure 10 some code is duplicated after disciplining. Most of the
time we spent to manually adapt the implementation to suit the compositional grammar. However,
these tasks are mostly required because no suitable tooling is available. Hence, semi-automatic
tool support can ease such refactorings. Alternatively, we could further adopt FEATUREC to accept
fine-grained adaptations. Still, disciplined annotations are often considered to improve source code
understanding and analysis tasks [27, 28]. Thus, we decided to restructure the implementation rather
than adopting our grammar furthermore, which is an error-prone task.

An interesting fact we found is that the overall effort for this step is less dependent on the size or
number of features. More impact have the language and tools that are used to integrate composition.
In our case, we had to refine the FEATUREHOUSE grammar. Nevertheless, we could not keep all
annotations as they were but had to discipline them. Additionally, differences in supported language
versions must be resolved. These two aspects caused the most effort for us while enabling composition.
Using a grammar that supports undisciplined annotations and the identical programming language
can ease this step.

6.4. Map Composition

Until now, we have enabled composition within a single base module. However, variable code is not
physically separated, yet. During this step, we introduce further modules for each feature we aim
to extract. Therefore, we only have to create according folders and map them to the feature model
and, thus, variability management. As a result, FEATUREIDE is able to automate configuration,

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

16 J. KRÜGER ET AL.

1 #ifdef HAVE_HASH
2 if (dbp−>t y p e == DB_HASH)
3 __ham_copy_conf ig (dbp , p a r t _ d b , p a r t −>n p a r t s) ;
4 #endif

Figure 11. Snippet of annotated BERKELEY DB code.

1 // Call hook method

2 __hook_HAVE_HASH_3 (dbp , p a r t _ d b , p a r t) ;
3 // #ifdef HAVE_HASH [...]

4
5 // Definition of hook-method in feature module

6 void __hook_HAVE_HASH_3 (DB ∗dbp ,DB ∗ p a r t _ d b , DB_PARTITION ∗ p a r t) {
7 if (dbp−>t y p e == DB_HASH)
8 __ham_copy_conf ig (dbp , p a r t _ d b , p a r t −>n p a r t s) ;
9 }

Figure 12. Migrated feature module of the feature Hash from Figure 11.

generation, and execution, for each migrated feature. A challenging aspect of this task can be the
mapping of existing build or make processes. Companies still want to customize their legacy products
and, thus, migration of these processes is necessary. We further address this challenge in Section 8.3.

While we did this step manually, the mapping of modules to variability is a simple task. More
challenging is the migration of existing build processes. For our case study, we manually migrated
predefined configurations and generations into FEATUREIDE. However, the whole step took us
only few time. We could easily map the feature model, which we defined in step two, towards the
corresponding folders. Also, configurations can easily be defined in FEATUREIDE and, thus, are
well supported.

6.5. Analyse Feature

At this point, we started to identify and analyse feature artefacts in BERKELEY DB. Therefore,
we searched for annotations that belong to the features Hash and Heap. In Figure 11, we show
an example of the original implementation. There, Hash adds a conditional with a single line of
executed code. While it is only a small part, we identified it to be easy to extract and modularize into
composition. We planned to define a hook method, which encapsulates the previously annotated code.
In the base code, we completely replace the variable part with a method call to the newly defined
hook. Basically, hook methods are empty methods within the base code that are later refined [72, 73].
Although they may not be best practice [72, 74], they provide a common extract-method refactoring

to physically separate variability [4, 73]. With hooks, we can modularize parts of features at any
point of a method and, thus, apply and ease a step-wise migration. Still, we used hooks only sparsely.
In most cases, the annotation discipline of FEATUREC encapsulated whole methods. Hence, we can
migrate these artefacts into modules defined by FEATUREHOUSE to refine whole methods.

The effort for such analyses varies significantly. Simple cases as the one in Figure 11 are
straightforward. However, there are more complex situations and feature interactions that require
more detailed assessments. This can hardly be automated and is a challenging task, especially in the
context of scope-sensitive statements, which we discuss in Section 8.4. Besides the analysis, locating
all relevant feature artefacts and interactions is challenging. This cannot be fully automated [60, 61].
However, there are some methods that can provide assistance, for example colourization [9, 62] or
searching for annotations. Also, we can consider only parts of a feature to ease this step and reduce
risks and costs.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 17

6.6. Extract Artefact

After a suitable code artefact is identified, we extract it towards composition. Therefore, we either
refine methods, as intended by FEATUREHOUSE, or migrate variable code into a hook method.
Such a method encapsulates the previously annotated implementation. To enable feature-oriented
programming, we add a corresponding call at the position of the extracted variability. We illustrate
the migrated code of Figure 11 in Figure 12. Line 2 implements the call of the hook method. It is
placed at the same position as the originally annotated code, which are commented in lines 3 to 6.
The physically extracted module is implemented from line 9 to 12 and is stored in the corresponding
Hash directory defined in step 4 (see Section 6.4).

We migrated all features manually, wherefore all extractions were time consuming and also
error-prone. However, migrating a single artefact is unproblematic in most cases. There are some
approaches that address such refactorings [48] and aim to ease or partly automate this task. For
instance, Liebig et al. [75] introduce MORPHEUS, a tool for automated refactorings of C code that
can handle annotations. Kästner et al. [22] describe concepts to automate extractions. They also
focus on the migration of annotation-based towards composition-based approaches. Similar to our
process, they require disciplined annotations. Their concepts may provide help for our case study but
must be adapted from LIGHTWEIGHT JAVA to C. Other approaches investigate the transformation of
preprocessor annotations towards aspect-oriented programming [76, 77, 78]. While our case study
uses feature-oriented programming, our general process can still be applied. All these approaches
require further analyses but provide potential to integrate them into our concept. This way, a tool
chain with defined tasks could be established.

6.7. Test

We tested the migrated BERKELEY DB on several occasions. To do this, we summarized simple
migrations to test cases, reducing necessary time and effort. For instance, we did multiple extractions
like the one shown in Figure 12. These are straight-forward and require only small changes. After we
did some of such migrations for a specific feature, we automatically tested whether the configuration
worked. In addition, we used unit tests [68, 69] to assess the behaviour of our adaptations. Still, there
are more challenging migrations, which we describe in Section 8.4. They often required several
adaptations or the introduction of new modules with cloned code. Thus, errors are more likely to
happen. We evaluated such changes immediately after migration to ensure consistency.

There exist several approaches that can help to automate the testing of a migration [43, 68, 70, 79].
We used automated instantiations of FEATUREIDE and unit tests. Still, we needed some time and
effort, mainly to fix bugs and assess code manually. Overall, the number of errors was small and
mostly due to wrong syntax or missing parameters in method calls. This might be an indicator that
our step-wise migration provides a good way to avoid larger bugs during migrations. We focused on
a single code artefact at a time and did not change the behaviour of the system. Hence, if carefully
analysed, the potential for errors is small. Instead, if we would refactor a whole and scattered feature
all at once, it is more challenging, increasing the threat of introducing errors.

6.8. Summary

In this section, we described the application of our step-wise migration concept on a real-world
system. We illustrated all steps of our process and described possible tool support and efforts. Overall,
we found our approach to ease the integration of composition into an annotated system. Within the
next section, we evaluate the resulting system of this case study. Afterwards, we discuss experiences
we gained during the migration in Section 8.

7. RESULTS

BERKELEY DB is a productive embedded database written in C and uses preprocessor directives
to enable variability. We fully migrated two of its features from annotation towards composition

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

18 J. KRÜGER ET AL.

Table II. Performance and footprints of BERKELEYDB variants.

Configuration
Original BERKELEY DB Migrated BERKELEY DB Differences

Time in sec. Footprint in MB Time in sec. Footprint in MB ∆ Time ∆ Footprint
Base 16.4 7.37 16.9 7.35 +0.5 -0.02
Partition 17.2 7.37 16.9 7.35 -0.3 -0.02
Hash 16.7 7.41 16.8 7.39 +0.1 -0.02
Hash, Heap 16.6 7.42 16.1 7.43 -0.5 +0.01
Hash, Partition 16.5 7.41 16.3 7.39 -0.2 -0.02
Heap 17.1 7.38 16.6 7.39 -0.5 +0.01
Heap, Partition 16.3 7.38 16.6 7.39 +0.3 +0.01

without changing their behaviour and partly migrated four other features. Summarized, we extracted
7,146 out of 16,680 lines of code (42.8 %) from the ten defined features. This way, we developed a
hybrid product line containing all three sets of features that are possible (see Section 3). While the
number of migrated lines of code is relatively small in comparison to the full size of BERKELEY DB,
we remark that we especially focused on this hybrid approach and already gained detailed insights.
Overall, we found some points that reason for integrated approaches and the usability of our process.

Firstly, we reduced the overall size by 396 lines, which is approximately 6% of the extracted code.
The code base can be further reduced by improved extraction concepts. We often had to extract
methods multiple times to address feature interactions, as we discuss in Section 8.4. Still, due to
reusing migrated parts, the code sized decreased.

Secondly, we modularize and gather scattered source code. For instance, Hash affects 12 and
Heap 9 files within BERKELEY DB. In contrast to sole annotations, their variability can now be
assessed within a single file. Hence, we can achieve physical separation of concerns if a feature is
suitable for it. Otherwise, developers can still use annotations within the base code.

Finally, we rarely had to use hook methods. Within Hash, only three situations required to use
them. Due to disciplined annotations, the designated composition mechanism of FEATUREHOUSE

could be used most of the time. Hence, whole methods refine the base implementation and only few
further adaptations are necessary.

To assess our second research question, we used a test suite that is provided together with
BERKELEY DB and contains several test cases. We generated different variants of BERKELEY

DB for the original and migrated system. For each variant, the test suite contained 19 test cases if
Partition was deselected and 25 otherwise. No test that we could successfully run on the original
BERKELEY DB failed in the migrated system. Hence, our migration is correct as far as the test cases
cover the features’ behaviour.

In Table II, we present the times a performance suite, which is provided by ORACLE, needed to run
for 7 different variants as well as the variants’ footprints. We remark that this suite is implemented
for an older version and, thus, we first migrated the seven performance tests to the version of our
BERKELEY DB system. These tests cover, for instance, read, write, and bulk operations, each using
1,000,000 key-value entries. Considering the performance, we repeated each run 10 times for each
variant and present the average time reported by the suite. While the tests require more time for some
migrated variants, they are faster for others.

The same accounts for the binary size of the migrated BERKELEY DB. There are only minor
differences compared to the original system, which might be due to different optimizations of the
compiler. Overall, we find no significant changes in the execution times and binary footprints. Thus,
for our second research question, we argue that variants in a hybrid product line can perform equally
to annotated systems.

8. EXPERIENCES AND DISCUSSION

In this article, we proposed a process to integrate composition into an annotation-based product line.
We illustrated our step-wise and consistent migration on a real world system. During this case study,
we found some additional challenges that we discuss in the following. More detailed, we address, the

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 19

interdependence of process steps, undisciplined annotations, preservation of legacy configurations,
scope-sensitive statements, and our process’s practical implementation.

8.1. Interdependence of Process Steps

Our migration process contains several steps that build on each other. However, a company is not
forced to perform them all as atomic tasks. Thus, it is not necessary to fully migrate a whole feature
towards composition at once. This avoids parallelism, for example keeping a productive and a
development system, as well as delays, costs, and risks. Overall, our proposed approach can lower
the adoption barrier [18]. Still, there exist interdependencies between the steps that require further
analyses and support.

During the migration of BERKELEY DB we found that revisions of previous steps might be
necessary. For example, after the first refactoring, we identified some tool-driven and conceptual
challenges that resulted in changes in previous steps. This led to further adaptations on FEATUREC to
better integrate composition and enabling physical separation and mapping. Mostly, these revisions
resulted in slight changes in the process. During further reviews and practical applications additional
improvements and details might be identified.

8.2. Undisciplined Annotations

We did our first migrations using only existing tools. However, we found that language support was
not sufficient. More precise, composition-based mechanisms for feature-oriented programming (e.g.,
FEATUREHOUSE) do not support all kinds of annotations. To overcome this problem, we introduced
FEATUREC to provide a suitable grammar. Additionally, we were able to avoid several changes by
disciplining preprocessor annotations.

We partly addressed discipline during our case study while enabling composition. This is not the
only possible solution to suit a compositional grammar. New concepts or adaptations can improve
FEATUREC. For instance, we may enable support for fine-grained annotations. Still, disciplining the
usage of preprocessors promises to improve the development process [27, 28]. Hence, this may still
be a suitable approach. The alternative of improving concepts for parallel composition-based and
annotation-based implementations is challenging. We would not be able to use existing tools without
significant adaptations. In detail, introducing an approach that can handle all cases of preprocessor
statements and also composition is difficult. For this reason, we choose to refactor the source code
with the desired discipline of annotations.

8.3. Preservation of Legacy Configurations

Building a system from its sources is a non-uniform process and, thus, includes adapted concepts
and tasks. Developing variable software systems uses certain configurations before compilation and
build processes. These steps vary heavily in terms of shape, language support, tools, and degree
of automation. To utilize a hybrid annotation-based and composition-based application, we must
ensure that it is possible to built legacy products as before, although composition is introduced. The
challenge is to cope the changed configuration space, adapted by composition-based techniques, to
existing configurations that only target annotated code.

Configuring a code base defines how and which source parts are modified before compilation.
In Section 2.1 we introduced annotation-based approaches and their major techniques to enable
variability. The question is how to cope the configuration space of used symbols in order to express
valid and desired products. Therefore, the build process is used. Building a code base describes how
to construct a desired artefact. It is influenced by several aspects of software development, such as:

• Programming language: Different languages require adopted build processes. For instance,
compiling a C file is different from the interpretation of PYTHON code.

• Runtime environment: Depending on the runtime environment, the support for build processes
changes. For example, conditional compilation for native code of LINUX and managed code of
.NET are significantly different.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

20 J. KRÜGER ET AL.

1 switch (new_dbc −> d b t yp e) {
2 case DB_BTREE :
3 // [...]

4 break ;
5 #ifdef HAVE_HASH
6 case DB_HASH:
7 if ((r e t = _ _ h a m _ s t a t (new_dbc , &hsp , f l a g s)) != 0)
8 goto e r r ;
9 // [...]

10 break ;
11 #endif

12 default :
13 break ;
14 }

Figure 13. Example of a problematic switch environment in BERKELEY DB.

• Code homogeneity: While our case study uses the pure C implementation of BERKELEY DB,
there are also projects that combine several programming languages. Thus, they may also use
different annotation styles and build processes that must be considered.

• Company constraints: A company can enforce guidelines or constraints. For example, it may
use tailor-made build tools that are not uniform with the standard and, hence, require further
adaptations.

For such reasons, build processes range from direct compiler invoking, over multi-step processes, to
cross-language compilation. These processes must be adapted or mapped when a composition-based
approach is integrated on top of an existing implementation. This can be challenging, depending on
existing tooling and used techniques. In our case study, we manually migrated existing configurations
of BERKELEY DB towards the introduced composition. As a result, we could use FEATUREC to
invoke the same variants as before. However, we thereby made existing configuration and build
processes useless for the migrated product line. For a company it may be problematic that such legacy
builds cannot be used. However, we argue that a suitable tooling to support the mapping towards
composition can facilitate this task.

8.4. Scope-Sensitive Statements

During our practical application, we often tried to use hook methods to enable fine-grained feature-
oriented programming in BERKELEY DB. These would allow us to extract small parts of variability
and later include them again at defined positions. However, we faced several problems that forced us
to extract whole methods as desired by FEATUREHOUSE. While this might be a more disciplined
and understandable solution, it also results in code clones. We experienced that statements that
are depending on their current scope can be problematic. Such statements are part of specific
implementation constructs that cannot work on their own. For instance, we cannot separate a single
case within a switch despite the fact that only this one is variable. We display this example
in Figure 13. This code snippet is found in BERKELEY DB and includes several problems with
scope-sensitive statements, due to the variable case (line 5 to 11) and the included goto (line 8).

In BERKELEY DB, we found that also goto and return statements can cause problems. We
summarize the occurrences of such situations, we identified during our practical implementation,
in Table III. As we can see, potentially problematic constructions are rare within BERKELEY DB,
compared to the overall occurrences of scope-sensitive statements. Still, they occur, are challenging
to extract, and require adapted refactorings.

In the following, we briefly analyse these statements. We do not provide best practices or patterns,
but describe how we migrated such scope-sensitive statement into feature-oriented programming.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 21

Table III. Occurrences of scope-sensitive statements within BERKELEY DB.

Berkeley DB Variable Code Problematic
switch 429 71 36
goto 4642 634 127
return 7779 1254 248

goto Statements In Figure 13, we illustrate a problematic goto statement. Assume, we just
modularize this statement into a module. This would result in a loss of scope for the goto and, thus,
an error. In its new scope within the features hook method, the referenced label (err) is undefined.
Thus, we cannot simply migrate such constructs without further refactorings. Within BERKELEY

DB, we identified 635 goto statement in variable code. Of these, 20% may cause problems. To
resolve such constructs, we found three solution strategies. We applied the first two depending on
which was the most promising one, while the third requires a different concept during composition
than we applied.

Firstly, the straightforward solution is to migrate not only the goto statement but its whole
encapsulating method into a module. This solution can be used in all situations but results in code
clones and, thus, diminishes the benefits of modularization. In addition, clones can cause new
problems and are often considered as bad design [44, 80].

Secondly, in some cases it is possible to extract both, the goto statement and its label together. This
is often possible for simple error-handling. However, it requires that the variable code by itself does
not include scope-sensitive statements. Also, we require further modifications. For instance, we have
to preserve the state of all variables in the scope of the goto [41]. This results in huge parameter lists,
which are considered as anti-pattern in software engineering and, hence, not desirable [44, 63, 64].

Finally, we could apply the concept of inlining [81], with which the hook method’s call would be
completely replaced by its implementation. This would allow us to only extract the goto statement
as it would be inlined during composition, thus, regaining its correct scope. However, with this
approach we separate the goto and its label, breaking the convention for this mechanism. Also,
we would have to further adapt FEATUREC, or any other composition-based approach used, in an
invasive style.

switch Environment As we described, the example in Figure 13 cannot be treated in a
straightforward manner. Extracting any case without the corresponding switch results in errors.
The case but also the according break are unaware of the environment they are used in. We can
see in Table III that switch environments are rare within BERKELEY DB. Still, while they only
occur 71 times in variable code, approximately 50% of them are problematic. Because the number of
such situations is relatively low, expensive adoption of tools may not be advisable. Instead, we used
two refactorings to resolve switch environments and identified a conceptual solution.

The first option is to migrate the switch as a whole into a module. Within the code base, only
all non-variable artefacts remain. During composition, the feature refines the switch. However,
this strategy is problematic if too many variables are necessary to preserve the status of all values
in scope. A second option is to keep the variable case within the base code and use a hook in it.
This can require additional adaptations to ensure that the control variable is defined, which can be
error-prone. For instance, in Figure 13 we would have to ensure that DB_HASH (line 6) is always set
even if the feature Hash is not selected. Finally, we could change the composition mechanism with,
for example, a new keyword to refine case statements. However, this requires special knowledge
and is an error-prone adaptation of existing composers.

return Statement A third problem we encountered within BERKELEY DB is the migration
of return statements. However, extracting a return into a hook is only problematic if it is
defined for some but not all possible cases, which may appear in switch environments. In those
situations, the hook may or may not return a parameter. Thus, it is problematic to simply use a hook

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

22 J. KRÜGER ET AL.

method. BERKELEY DB contains 7779 return statements of which 1254 are variable and 248 are
problematic. We considered two possible solutions during our practical application.

On the one hand, we can use an additional parameter to indicate whether a value is returned. This
parameter has to be evaluated on the caller side, requiring some smaller adaptations. On the other
hand, we can also directly utilize return statements. More precise, if we know, for example, that
all originally returned values are positive integers, we can use a negative one to indicate that the
return is not valid.

Overall, we found some challenges in extracting scope-sensitive statements that are part of variable
code. We propose several solutions to still migrate annotations towards feature-oriented programming.
However, further analysis and concepts are necessary to ease such transformations.

8.5. Practical Implementation

Our step-wise migration process can be applied in any company that aims to introduce composition
into an annotation-based product line. During our practical application we gained some experiences
that a company has to consider:

• Annotation and composition in concert: We experienced that we can achieve advantages by
combining annotation-based and composition-based implementations. More precise, we could
decide for each artefact, which approach is more useful. Especially, we do not have to migrate
fine-grained variability. While this is often possible after disciplining annotations, we argue
that it is not always beneficial, for instance when considering a single line of code.

A point that may complicate the integration of both approaches is uniformity [4, 14].
Developers have to assess several implementation techniques and styles, which decreases
their understanding. For instance, after migration BERKELEY DB uses C, its preprocessor, and
FEATUREC. Hence, we added an additional and non-uniform implementation layer.

• Step-wise migration: Our process allows us to only migrate parts of a product line towards
composition. Thus, a company does not have to extract complete features. Instead, it can
analyse critical parts of the code base and only migrate those for which it is beneficial. This
mechanism can significantly lower the adoption barrier.

• Refactoring legacy systems: The introduction of composition-based implementation into an
annotation-based system is mainly driven by benefits of modularization. However, we found
that a step-wise migration is also an opportunity to analyse and refactor legacy systems. On
the one hand, this leads to additional costs, for instance disciplining annotations or preserve
configurations. On the other hand, a company can improve its source code, documentations, or
models. For example, while we had feature models of BERKELEY DB due to previous work,
during a step-wise migration an according model can also be extracted.

• Tool support: Tooling for combined approaches is insufficient yet. While Kästner and Apel [5]
argue that tool integration is only an engineering task, we found that it is quite challenging.
A company cannot just use existing tooling and simply put it on top of their development.
Current processes must be carefully analysed and suitable implementation approaches assessed.
Also, even if suitable tools exist, further adaptations might be necessary to address combined
implementation techniques. For instance, we had to change the grammar of FEATUREHOUSE

to support annotations.
• Composition: Composition provides several benefits, mainly modularization [4, 5, 13, 14]. We

found that it is possible to migrate BERKELEY DB’s features into separated modules. Hence,
it is possible to access and overview all corresponding variable code at once. Still, composition
is rarely used in practice [4, 5]. For companies this is a problematic situation. Without suitable
experiences in composition-based implementation, migrating a variable system can provide
several challenges. For instance, we required profound knowledge to implement FEATUREC or
refactor scope-sensitive statements.

To gain new and assess these experiences, further studies especially with an industrial background
are required. While we argue that our migration process eases the migration towards composition,
we also see challenges.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 23

8.6. Summary

Combining annotation and composition into a system provides several challenges. In this section,
we discussed problems we faced during our practical application. Additionally, we summarized and
described experiences that are important for companies. Overall, we found that a step-wise migration
is a helpful concept to ease the introduction of composition into existing applications. However,
there are some aspects that must be addressed in further research. Especially, suitable tooling is an
important factor currently hindering composition-based implementations and the application of our
process in practice.

9. RELATED WORK

Kästner and Apel [5] formulate the idea of combining annotation-based and composition-based
implementation approaches to facilitate step-wise migration. We base on their idea, provide a
corresponding process, and assess its application on a real world system. Following, we describe
related work categorized by those focusing on combining implementation techniques and studies on

refactorings of software product lines.

Combining implementation techniques There exist several implementation approaches for
software product lines with different advantages and disadvantages [3, 4]. The following approaches
address the combination of different techniques.

An idea proposed by Apel et al. [82, 83] is to combine feature- and aspect-oriented programming.
In particular, shortcomings of feature-oriented programming for incremental development are solved
with aspects. Apel et al. [82] also present FEATUREC++, a language extension for C++. However,
the used approaches are both composition-based. While we also introduce a language extension, our
goal is to integrate feature-oriented programming into an annotated product line.

Kästner and Apel [5] analyse and compare annotation-based and composition-based approaches in
detail. They also focus on a combination, which can utilize benefits of both techniques. While our
work is based on this article, we propose a migration process for such combinations and investigate its
practical applicability. This is complementary to their work as they solely focus on the characteristics,
for example, granularity and traceability, but not actual migration processes. Similar to us, Kästner
and Apel [5] also provide some code examples on a simple stack implementation. In contrast, we use
the real-world system BERKELEY DB to show the potential of our approach.

Kästner et al. [22] describe several formal refactorings from annotations towards composition
and vice-versa. They showed that such code transformations are complete and, hence, that both
approaches can replace each other. In addition, they provide several case studies to illustrate their
refactorings. To do this, they rely on a simplified JAVA version, LIGHTWEIGHT JAVA [84]. This
complements our work, as it could be possible to use their proposed migrations during our process.
Still, the focus of this article is on the practical implementation and combination of composition and
annotation rather than just refactorings.

Walkingshaw and Erwig [85] introduce a formal calculus for the implementation of variability.
The proposed model unifies composition and annotation on a formal basis. In contrast to our work,
no practical application or technical discussion is provided.

Behringer [86] proposes to unify annotation-based and composition-based approaches. The goal
is to improve the integration of both techniques, for instance with adapted tools. In another article,
Behringer and Rothkugel [87] build on this idea and introduce the usage of structured document
graphs. This model enables developers to switch between composition-based, annotation-based, and
mixed implementations of the same product line. Overall, these works complement ours and can
provide assistance during our migration concept. Especially the need for suitable tool support will be
addressed in their further work.

Finally, Krüger et al. [88] proposed compositional annotations to integrate the idea of
physically separating features into annotation-based approaches. They discussed the advantages
and shortcomings of their idea but did not implement a tool or evaluate it. The goal is to facilitate

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

24 J. KRÜGER ET AL.

later migrations towards composition-based implementations, such as feature-oriented programming.
Hence, this approach might be able to further prepare our process and lower the adoption barrier.

Refactoring studies Several case studies address the extraction or migration of existing systems
and product lines towards composition. Following, we briefly summarize some of those.

A common case study is the refactoring of annotated database systems towards aspect-oriented
product lines. Tesanovic et al. [71] show the possibilities of tailoring and managing BERKELEY

DB with aspects. They focus on the benefits and shortcomings of aspect-oriented development for
databases. Similar to this, Kästner et al. [72] also refactored BERKELEY DB using ASPECTJ [89].
They conclude, that legacy applications are rarely designed for feature-extensibility. In their opinion,
the migration towards composition is not only a difficult task but ASPECTJ is also not appropriate
to do this. Contrary to these works, we integrated feature-oriented programming into BERKELEY

DB instead of fully migrating towards aspects. Also, we based our study on a step-wise migration
process that provides guidance during the process.

Alves et al. [76] present another case study on a real-world product line. They also use aspect-
oriented programming to refactor the system towards composition. In addition, they propose several
language-specific strategies to transform certain patterns. Hence, their work provides additional
guidance for the actual migration in our process and partly complements the insights we gained.

Reynolds et al. [77] analysed the code of the LINUX kernel to analyse the potential to extend it by
using aspect-oriented programming. They conclude, that most migrations of existing preprocessor
annotations could be straightforward. While we are not aware of an according case study in which
the kernel is migrated, this work provides details on analysing annotated code. Hence, it can provide
help in assessing the potential of migrating a product line towards composition.

Finally, Rosenmüller et al. [41] extracted a feature-oriented implementation of BERKELEY DB. In
contrast to us, they first refactored the C code towards C++. Only afterwards, the object-oriented code
is migrated into modules. We focused on the direct application of feature-oriented programming on
the original code. Hence, we avoid additional refactorings, lowering costs and risks. Also, the focus of
Rosenmüller et al. [41] is to show the ability to customize database systems without performance loss,
while our scope is the migration process itself, without previously moving towards object-oriented
programming.

10. CONCLUSION

Integrating annotation-based and composition-based implementation techniques promises to raise
benefits of both [5]. In practice, annotation is the dominant strategy [4, 5, 16]. Hence, most companies
would have to introduce composition into an existing product line. This is an error-prone and
expensive task.

To facilitate this migration from annotation-based to composition-based implementations and
lower its adoption barrier [18], we propose a step-wise migration process. We focus on preprocessor
annotations, which are widely used [7], and feature-oriented programming [4, 13, 14]. For each
step in our process, we analyse possible tool support and required effort. In addition, we introduce
FEATUREC, a FEATUREHOUSE [21] adaptation, to support annotations within feature modules.

The focus of this article is the practical application of the migration process. Therefore, we have
used BERKELEY DB, an embedded database system implemented in C, as an example. We applied
our step-wise migration to refactor BERKELEY DB partly towards composition. Our migration
illustrated the practical usability of our process. It provides guidance and allows to migrate a product
line in a consistent way. Additionally, we are able to migrate only selected artefacts while keeping
annotations where beneficial. Still, we experienced some challenges during this study. For example,
we discussed the preservation of legacy configurations and scope-sensitive statements.

Our approach suggests to facilitate the introduction of composition-based implementation
techniques in practice. Nevertheless, there are open issues to address in future work. Firstly, additional
case studies and industrial applications are needed. By this means, we will continue to refine our

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 25

process and apply it to other implementation techniques. In cooperation with industrial partners,
further and more practical insights could be gained.

Secondly, a detailed and adapted tool-chain for the migration process is a prerequisite. Several
other approaches start to develop combinations of annotation-based and composition-based
approaches [22, 86, 87]. However, these are only under progress and require further analysis. Also, it
would be advantageous to integrate them into a single framework.

Finally, we plan to analyse scope-sensitive statements. In existing refactorings from annotation
towards composition and the other way around [22], we found no detailed analysis of such constructs,
yet. Still, our practical application showed that they are quite common in annotated product lines
and are difficult to migrate. In this regard, our goal is to provide a detailed catalogue with solution
strategies and further analyses of existing systems.

ACKNOWLEDGEMENTS

This research was partly supported by DFG grants LE 3382/2-1 and SA 465/49-1, BMBF grants 01IS14017A
and 01IS14017B, and Volkswagen Financial Services AG.

REFERENCES

[1] Clements PC, Northrop LM. Software Product Lines: Practices and Patterns. Addison-Wesley, 2001.
[2] Pohl K, Böckle G, van der Linden FJ. Software Product Line Engineering: Foundations, Principles and

Techniques. Springer, 2005.
[3] Gacek C, Anastasopoules M. Implementing Product Line Variabilities. Symposium on Software

Reusability: Putting Software Reuse in Context, SSR, ACM, 2001; 109–117, doi:10.1145/375212.
375269.

[4] Apel S, Batory D, Kästner C, Saake G. Feature-Oriented Software Product Lines. Springer, 2013,
doi:10.1007/978-3-642-37521-7.

[5] Kästner C, Apel S. Integrating Compositional and Annotative Approaches for Product Line Engineering.
GPCE Workshop on Modularization, Composition and Generative Techniques for Product Line
Engineering. MCGPLE, University of Passau, 2008; 35–40.

[6] Medeiros F, Kästner C, Ribeiro M, Nadi S, Gheyi R. The Love/Hate Relationship with the C
Preprocessor: An Interview Study. European Conference on Object-Oriented Programming. ECOOP,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015; 495–518, doi:10.4230/LIPIcs.ECOOP.2015.
495.

[7] Hunsen C, Zhang B, Siegmund J, Kästner C, Leßenich O, Becker M, Apel S. Preprocessor-Based
Variability in Open-Source and Industrial Software Systems: An Empirical Study. Empirical Software
Engineering 2016; 21(2):449–482, doi:10.1007/s10664-015-9360-1.

[8] Le D, Walkingshaw E, Erwig M. #ifdef Confirmed Harmful: Promoting Understandable Software
Variation. Symposium on Visual Languages and Human-Centric Computing. VL/HCC, IEEE, 2011;
143–150, doi:10.1109/VLHCC.2011.6070391.

[9] Feigenspan J, Kästner C, Apel S, Liebig J, Schulze M, Dachselt R, Papendieck M, Leich T, Saake
G. Do Background Colors Improve Program Comprehension in the #ifdef Hell? Empirical Software
Engineering 2013; 18(4):699–745, doi:10.1007/s10664-012-9208-x.

[10] Thüm T. Product-Line Specification and Verification with Feature-Oriented Contracts. PhD Thesis,
University of Magdeburg 2015.

[11] Kenner A, Kästner C, Haase S, Leich T. TypeChef: Toward Type Checking #Ifdef Variability in
C. International Workshop on Feature-Oriented Software Development, FOSD, ACM, 2010; 25–32,
doi:10.1145/1868688.1868693.

[12] Kästner C, Apel S, Thüm T, Saake G. Type Checking Annotation-Based Product Lines. ACM
Transactions on Software Engineering and Methodology 2012; 21(3):14:1–14:39, doi:10.1145/2211616.
2211617.

[13] Prehofer C. Feature-Oriented Programming: A Fresh Look at Objects. European Conference on Object-
Oriented Programming. ECOOP, Springer, 1997; 419–443, doi:10.1007/BFb0053389.

[14] Batory D, Sarvela JN, Rauschmayer A. Scaling Step-Wise Refinement. IEEE Transactions on Software
Engineering 2004; 30(6):355–371, doi:10.1109/TSE.2004.23.

[15] Krüger J. Lost in Source Code: Physically Separating Features in Legacy Systems. International
Conference on Software Engineering Companion. ICSE-C, IEEE, 2017; 461–462, doi:10.1109/ICSE-C.
2017.46.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

26 J. KRÜGER ET AL.

[16] Kästner C, Apel S, Kuhlemann M. Granularity in Software Product Lines. International Conference on
Software Engineering. ICSE, ACM, 2008; 311–320, doi:10.1145/1368088.1368131.

[17] Benduhn F, Schröter R, Kenner A, Kruczek C, Leich T, Saake G. Migration from Annotation-Based
to Composition-Based Product Lines: Towards a Tool-Driven Process. International Conference on
Advances and Trends in Software Engineering. SOFTENG, IARIA, 2016; 102–109.

[18] Clements PC, Krueger CW. Point / Counterpoint: Being Proactive Pays Off / Eliminating the Adoption
Barrier. IEEE Software 2002; 19(4):28–31, doi:10.1109/MS.2002.1020283.

[19] Krüger J, Fenske W, Meinicke J, Leich T, Saake G. Extracting Software Product Lines: A Cost
Estimation Perspective. International Systems and Software Product Line Conference. SPLC, ACM,
2016; 354–361, doi:10.1145/2934466.2962731.

[20] Apel S, Kästner C, Lengauer C. FeatureHouse: Language-Independent, Automated Software
Composition. International Conference on Software Engineering. ICSE, IEEE, 2009; 221–231, doi:
10.1109/ICSE.2009.5070523.

[21] Apel S, Kästner C, Lengauer C. Language-Independent and Automated Software Composition: The
FeatureHouse Experience. IEEE Transactions on Software Engineering 2013; 39(1):63–79, doi:
10.1109/TSE.2011.120.

[22] Kästner C, Apel S, Kuhlemann M. A Model of Refactoring Physically and Virtually Separated Features.
International Conference on Generative Programming and Component Engineering. GPCE, ACM,
2009; 157–166, doi:10.1145/1621607.1621632.

[23] Jarzabek S, Bassett P, Zhang H, Zhang W. XVCL: XML-Based Variant Configuration Language.
International Conference on Software Engineering. ICSE, IEEE, 2003; 810–811, doi:10.1109/ICSE.
2003.1201298.

[24] Pawlak R. Spoon: Annotation-Driven Program Transformation - the AOP Case. Workshop on Aspect
Oriented Middleware Development. AOMD, ACM, 2005; 1–6, doi:10.1145/1101560.1101566.

[25] Kernighan BW, Ritchie DM. The C Programming Language. Prentice Hall, 1988.
[26] Leich T, Apel S, Marnitz L, Saake G. Tool Support for Feature-Oriented Software Development -

FeatureIDE: An Eclipse-Based Approach. OOPSLA Workshop on Eclipse Technology eXchange. eclipse,
ACM, 2005; 55–59, doi:10.1145/1117696.1117708.

[27] Liebig J, Kästner C, Apel S. Analyzing the Discipline of Preprocessor Annotations in 30 Million Lines
of C Code. International Conference on Aspect-Oriented Software Development. AOSD, ACM, 2011;
191–202, doi:10.1145/1960275.1960299.

[28] Schulze S, Liebig J, Siegmund J, Apel S. Does the Discipline of Preprocessor Annotations Matter?: A
Controlled Experiment. SIGPLAN Notices 2013; 49(3):65–74, doi:10.1145/2637365.2517215.

[29] Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J. Aspect-Oriented
Programming. European Conference on Object-Oriented Programming. ECOOP, Springer, 1997; 220–
242, doi:10.1007/BFb0053381.

[30] Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N. Delta-Oriented Programming of Software
Product Lines. International Systems and Software Product Line Conference. SPLC, Springer, 2010;
77–91, doi:10.1007/978-3-642-15579-6_6.

[31] Lee J, Muthig D. Feature-Oriented Variability Management in Product Line Engineering.
Communications of the ACM 2006; 49(12):55–59, doi:10.1145/1183236.1183266.

[32] Kästner C, Thüm T, Saake G, Feigenspan J, Leich T, Wielgorz F, Apel S. FeatureIDE: A Tool Framework
for Feature-oriented Software Development. International Conference on Software Engineering, ICSE,
IEEE, 2009; 611–614, doi:10.1109/ICSE.2009.5070568.

[33] Czarnecki K, Eisenecker UW. Generative Programming: Methods, Tools, and Applications. Addison-
Wesley, 2000.

[34] Schobbens PY, Heymans P, Trigaux JC. Feature Diagrams: A Survey and a Formal Semantics.
International Conference Requirements Engineering. RE, IEEE, 2006; 139–148, doi:10.1109/RE.
2006.23.

[35] Chen L, Babar MA. A Systematic Review of Evaluation of Variability Management Approaches in
Software Product Lines. Information and Software Technology 2011; 53(4):344–362, doi:10.1016/j.
infsof.2010.12.006.

[36] Schaefer I, Rabiser R, Clarke D, Bettini L, Benavides D, Botterweck G, Pathak A, Trujillo S, Villela
K. Software Diversity: State of the Art and Perspectives. International Journal on Software Tools for
Technology Transfer 2012; 14(5):477–495, doi:10.1007/s10009-012-0253-y.

[37] Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wąsowski A. Cool Features and Tough Decisions: A
Comparison of Variability Modeling Approaches. International Workshop on Variability Modeling of
Software-Intensive Systems. VaMoS, ACM, 2012; 173–182, doi:10.1145/2110147.2110167.

[38] Mohabbati B, Asadi M, Gašević D, Hatala M, Müller HA. Combining Service-Orientation and Software
Product Line Engineering: A Systematic Mapping Study. Information and Software Technology 2013;
55(11):1845–1859, doi:http://dx.doi.org/10.1016/j.infsof.2013.05.006.

[39] Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wąsowski A. A Survey of Variability
Modeling in Industrial Practice. International Workshop on Variability Modelling of Software-Intensive
Systems. VaMoS, ACM, 2013; 7:1–7:8, doi:10.1145/2430502.2430513.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

COMPOSING ANNOTATIONS WITHOUT REGRET? PRACTICAL EXPERIENCES USING FEATUREC 27

[40] Liebig J, Apel S, Lengauer C, Kästner C, Schulze M. An Analysis of the Variability in Forty Preprocessor-
Based Software Product Lines. International Conference on Software Engineering. ICSE, ACM, 2010;
105–114, doi:10.1145/1806799.1806819.

[41] Rosenmüller M, Apel S, Leich T, Saake G. Tailor-Made Data Management for Embedded Systems:
A Case Study on Berkeley DB. Data & Knowledge Engineering 2009; 68(12):1493–1512, doi:
10.1016/j.datak.2009.07.013.

[42] Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T. FeatureIDE: An Extensible Framework
for Feature-Oriented Software Development. Science of Computer Programming 2014; 79:70–85,
doi:http://dx.doi.org/10.1016/j.scico.2012.06.002.

[43] Meinicke J, Thüm T, Schröter R, Krieter S, Benduhn F, Saake G, Leich T. FeatureIDE: Taming the
Preprocessor Wilderness. International Conference on Software Engineering, ICSE, ACM, 2016;
629–632, doi:10.1145/2889160.2889175.

[44] Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[45] Mens T, Tourwé T. A Survey of Software Refactoring. IEEE Transactions on Software Engineering
2004; 30(2):126–139.

[46] Lonchamp J. A Structured Conceptual and Terminological Framework for Software Process Engineering.
International Conference on the Software Process. ICSP, IEEE, 1993; 41–53, doi:10.1109/SPCON.
1993.236823.

[47] Rumbaugh J, Jacobson I, Booch G. The Unified Modeling Language Reference Manual. Pearson, 2004.
[48] Fenske W, Thüm T, Saake G. A Taxonomy of Software Product Line Reengineering. International

Workshop on Variability Modelling of Software-Intensive Systems, VaMoS, ACM, 2014; 4:1–4:8, doi:
10.1145/2556624.2556643.

[49] Humphrey WS. Managing the Software Process. Addison-Wesley, 1989.
[50] Krueger CW. BigLever Software Gears and the 3-tiered SPL Methodology. ACM SIGPLAN Conference

on Object-oriented Programming Systems and Applications. OOPSLA, ACM, 2007; 844–845, doi:
10.1145/1297846.1297918.

[51] Beuche D. Modeling and Building Software Product Lines with Pure::Variants. International Systems
and Software Product Line Conference. SPLC, ACM, 2012; 255, doi:10.1145/2364412.2364457.

[52] Laguna MA, Crespo Y. A Systematic Mapping Study on Software Product Line Evolution: From
Legacy System Reengineering to Product Line Refactoring. Science of Computer Programming 2013;
78(8):1010–1034, doi:10.1016/j.scico.2012.05.003.

[53] Kästner C, Dreiling A, Ostermann K. Variability Mining with LEADT. Technical Report, Philipps
University Marburg 2011.

[54] Dit B, Revelle M, Gethers M, Poshyvanyk D. Feature Location in Source Code: A Taxonomy and
Survey. Journal of Software: Evolution and Process 2013; 25(1):53–95, doi:10.1002/smr.567.

[55] Assunção WKG, Vergilio SR. Feature Location for Software Product Line Migration: A Mapping
Study. International Systems and Software Product Line Conference. SPLC, ACM, 2014; 52–59,
doi:10.1145/2647908.2655967.

[56] Nadi S, Berger T, Kästner C, Czarnecki K. Mining Configuration Constraints: Static Analyses and
Empirical Results. International Conference on Software Engineering. ICSE, ACM, 2014; 140–151,
doi:10.1145/2568225.2568283.

[57] Nadi S, Berger T, Kästner C, Czarnecki K. Where do Configuration Constraints Stem From? An
Extraction Approach and an Empirical Study. IEEE Transactions on Software Engineering 2015;
41(8):820–841, doi:10.1109/TSE.2015.2415793.

[58] Yu D, Geng P, Wu W. Constructing Traceability between Features and Requirements for Software
Product Line Engineering. Asia-Pacific Software Engineering Conference. APSEC, IEEE, 2012; 27–34,
doi:10.1109/APSEC.2012.135.

[59] Yu D, Chen Z, Zhang Y. From Goal Models to Feature Models: A Rule-Based Approach for Software
Product Lines. Asia-Pacific Software Engineering Conference. APSEC, IEEE, 2015; 277–284, doi:
10.1109/APSEC.2015.22.

[60] Biggerstaff TJ, Mitbander BG, Webster D. The Concept Assignment Problem in Program Understanding.
International Conference on Software Engineering. ICSE, IEEE, 1993; 482–498.

[61] Kästner C, Dreiling A, Ostermann K. Variability Mining: Consistent Semi-Automatic Detection
of Product-Line Features. IEEE Transactions on Software Engineering 2014; 40(1):67–82, doi:
10.1109/TSE.2013.45.

[62] Kästner C. CIDE: Decomposing Legacy Applications into Features. International Systems and Software
Product Line Conference. SPLC, 2007; 149–150.

[63] Mäntylä M. Bad Smells in Software - A Taxonomy and an Empirical Study. PhD Thesis, Helsinki
University of Technology 2003.

[64] Moha N, Gueheneuc YG, Duchien L, Le Meur AF. DECOR: A Method for the Specification and
Detection of Code and Design Smells. IEEE Transactions on Software Engineering 2010; 36(1):20–36,
doi:10.1109/TSE.2009.50.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

28 J. KRÜGER ET AL.

[65] Kästner C, Apel S. Virtual Separation of Concerns - A Second Chance for Preprocessors. Journal of
Object Technology 2009; 8(6):59–78.

[66] Fenske W, Schulze S, Meyer D, Saake G. When Code Smells Twice as Much: Metric-Based Detection
of Variability-Aware Code Smells. International Working Conference on Source Code Analysis and
Manipulation. SCAM, IEEE, 2015; 171–180, doi:10.1109/SCAM.2015.7335413.

[67] Murphy GC, Kersten M, Findlater L. How are Java Software Developers Using the Elipse IDE? IEEE
Software 2006; 23(4):76–83, doi:10.1109/MS.2006.105.

[68] Runeson P. A Survey of Unit Testing Practices. IEEE Software 2006; 23(4):22–29, doi:10.1109/MS.
2006.91.

[69] Myers GJ, Sandler C, Badgett T. The Art of Software Testing. Wiley, 2011.
[70] Engström E, Runeson P. Software Product Line Testing - A Systematic Mapping Study. Information

and Software Technology 2011; 53(1):2–13, doi:10.1016/j.infsof.2010.05.011.
[71] Tesanovic A, Sheng K, Hansson J. Application-Tailored Database Systems: A Case of Aspects in an

Embedded Database. International Database Engineering and Applications Symposium, IDEAS, IEEE,
2004; 291–301, doi:10.1109/IDEAS.2004.1319803.

[72] Kästner C, Apel S, Batory D. A Case Study Implementing Features Using AspectJ. International Systems
and Software Product Line Conference. SPLC, IEEE, 2007; 223–232, doi:10.1109/SPLINE.2007.12.

[73] Lopez-Herrejon RE, Montalvillo-Mendizabal L, Egyed A. From Requirements to Features: An
Exploratory Study of Feature-Oriented Refactoring. International Systems and Software Product Line
Conference. SPLC, IEEE, 2011; 181–190, doi:10.1109/SPLC.2011.52.

[74] Murphy GC, Lai A, Walker RJ, Robillard MP. Separating Features in Source Code: An Exploratory
Study. International Conference on Software Engineering, ICSE, IEEE, 2001; 275–284, doi:10.1109/
ICSE.2001.919101.

[75] Liebig J, Janker A, Garbe F, Apel S, Lengauer C. Morpheus: Variability-Aware Refactoring in the Wild.
International Conference on Software Engineering. ICSE, IEEE, 2015; 380–391.

[76] Alves V, Costa Neto A, Soares S, Santos G, Calheiros F, Nepomuceno V, Pires D, Leal J, Borba P. From
Conditional Compilation to Aspects: A Case Study in Software Product Lines Migration. Workshop on
Aspect-Oriented Product Line Engineering. AOPLE, 2006.

[77] Reynolds A, Fiuczynski ME, Grimm R. On the Feasibility of an AOSD Approach to Linux Kernel
Extensions. AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software, ACP4IS,
ACM, 2008; 8:1–8:7, doi:10.1145/1404891.1404899.

[78] Adams B, De Meuter W, Tromp H, Hassan AE. Can We Refactor Conditional Compilation into Aspects?
International Conference on Aspect-Oriented Software Development, AOSD, ACM, 2009; 243–254,
doi:10.1145/1509239.1509274.

[79] Al-Hajjaji M, Thüm T, Meinicke J, Lochau M, Saake G. Similarity-Based Prioritization in Software
Product-line Testing. International Systems and Software Product Line Conference, SPLC, ACM, 2014;
197–206, doi:10.1145/2648511.2648532.

[80] Fenske W, Schulze S. Code Smells Revisited: A Variability Perspective. International Workshop on
Variability Modelling of Software-Intensive Systems. VaMoS, ACM, 2015; 3–10, doi:10.1145/2701319.
2701321.

[81] Thüm T, Apel S, Zelend A, Schröter R, Möller B. Subclack: Feature-oriented Programming with
Behavioral Feature Interfaces. Workshop on MechAnisms for SPEcialization, Generalization and
inHerItance, MASPEGHI, ACM, 2013; 1–8, doi:10.1145/2489828.2489829.

[82] Apel S, Leich T, Rosenmüller M, Saake G. FeatureC++: On the Symbiosis of Feature-Oriented and
Aspect-Oriented Programming. International Conference on Generative Programming and Component
Engineering, GPCE, Springer, 2005; 125–140, doi:10.1007/11561347_10.

[83] Apel S, Leich T, Saake G. Aspectual Feature Modules. IEEE Transactions on Software Engineering
2008; 34(2):162–180, doi:10.1109/TSE.2007.70770.

[84] Strniša R, Sewell P, Parkinson M. The Java Module System: Core Design and Semantic Definition.
Conference on Object-Oriented Programming Systems and Applications, OOPSLA, ACM, 2007; 499–
514, doi:10.1145/1297027.1297064.

[85] Walkingshaw E, Erwig M. A Calculus for Modeling and Implementing Variation. ACM SIGPLAN
Notices 2012; 48(3):132–140, doi:10.1145/2480361.2371421.

[86] Behringer B. Integrating Approaches for Feature Implementation. International Symposium on
Foundations of Software Engineering, FSE, ACM, 2014; 775–778, doi:10.1145/2635868.2666605.

[87] Behringer B, Rothkugel S. Integrating Feature-Based Implementation Approaches Using a Common
Graph-based Representation. Symposium on Applied Computing, SAC, ACM, 2016; 1504–1511, doi:
10.1145/2851613.2851791.

[88] Krüger J, Schröter I, Kenner A, Kruczek C, Leich T. FeatureCoPP: Compositional Annotations.
International Workshop on Feature-Oriented Software Development. FOSD, ACM, 2016; 74–84, doi:
10.1145/3001867.3001876.

[89] Laddad R. AspectJ in Action: Practical Aspect-Oriented Programming. Dreamtech Press, 2003.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
Prepared using speauth.cls DOI: 10.1002/spe

	1 Introduction
	2 Background
	2.1 Annotation-Based Approaches
	2.2 Composition-Based Approaches
	2.3 Variability Modelling

	3 Research Approach
	3.1 Research Goal and Methodology
	3.2 Evaluation Criteria
	3.3 Tools

	4 FeatureC
	5 Migration Process
	5.1 Enable Automation
	5.2 Model Variability
	5.3 Enable Composition
	5.4 Map Composition
	5.5 Analyse Feature
	5.6 Extract Artefact
	5.7 Test
	5.8 Summary

	6 Practical Application
	6.1 Enable Automation
	6.2 Model Variability
	6.3 Enable Composition
	6.4 Map Composition
	6.5 Analyse Feature
	6.6 Extract Artefact
	6.7 Test
	6.8 Summary

	7 Results
	8 Experiences and Discussion
	8.1 Interdependence of Process Steps
	8.2 Undisciplined Annotations
	8.3 Preservation of Legacy Configurations
	8.4 Scope-Sensitive Statements
	8.5 Practical Implementation
	8.6 Summary

	9 Related Work
	10 Conclusion

