This is the authors' version of this paper and posted here for personal
use only. For any other use, please contact the ACM.
doi: 10.1145/3233027.3236403

Apo-Games - A Case Study for Reverse Engineering Variability
from Cloned Java Variants

Wolfram Fenske
Otto-von-Guericke-University
Magdeburg, Germany

Thomas Thiim
Technische Universitat Braunschweig
Braunschweig, Germany

Jacob Kriiger
Harz University of Applied Science
Otto-von-Guericke-University

Wernigerode & Magdeburg, Germany wfenske@ovgu.de t.thuem@tu-braunschweig.de
jkrueger@ovgu.de
Dirk Aporius Gunter Saake Thomas Leich
Eudemonia Solutions AG Otto-von-Guericke-University Harz University of Applied Sciences
Magdeburg, Germany Magdeburg, Germany METOP GmbH

aporius@eudemonia-solutions.de saake@ovgu.de Wernigerode & Magdeburg, Germany

ABSTRACT

Software-product-line engineering is an approach to systematically
manage reusable software features and has been widely adopted in
practice. Still, in most cases, organizations start with a single prod-
uct that they clone and modify when new customer requirements
arise (a.k.a. clone-and-own). With an increasing number of variants,
maintenance can become challenging and organizations may con-
sider migrating towards a software product line, which is referred
to as extractive approach. While this is the most common approach
in practice, techniques to extract variability from cloned variants
still fall short in several regards. In particular, this accounts for the
low accuracy of automated analyses and refactoring, our limited
understanding of the costs involved, and the high manual effort. A
main reason for these limitations is the lack of realistic case studies.
To tackle this problem, we provide a set of cloned variants. In this
paper, we characterize these variants and challenge the research
community to apply techniques for reverse engineering feature
models, feature location, code smell analysis, architecture recovery,
and the migration towards a software product line. By evaluating
solutions with the developer of these variants, we aim to contribute
to a larger body of knowledge on this real-world case study.

CCS CONCEPTS

» Software and its engineering — Software product lines;
Software reverse engineering; Maintaining software;

KEYWORDS

Software-product-line engineering, reverse engineering, extractive
approach, feature location, case study, data set

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC ’18, September 10-14, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6464-5/18/09...$15.00
https://doi.org/10.1145/3233027.3236403

tleich@hs-harz.de

ACM Reference Format:

Jacob Kriger, Wolfram Fenske, Thomas Thiim, Dirk Aporius, Gunter Saake,
and Thomas Leich. 2018. Apo-Games - A Case Study for Reverse Engineering
Variability from Cloned Java Variants. In 22nd International Systems and
Software Product Line Conference - Volume A (SPLC ’18), September 10-14,
2018, Gothenburg, Sweden. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3233027.3236403

1 INTRODUCTION

Software-product-line engineering is a systematic approach to reuse
software based on features [1, 26]. A feature comprises a user-visible
behavior - represented by, for example, models, requirements, and
implementation — of the desired software variants. Features are also
used as configuration options to instantiate a concrete variant. Con-
sequently, features implement variable (shared among some vari-
ants) and common (shared among all variants) functionalities [1, 19].
To manage a software product line, features and their dependencies
are typically modeled with feature models [4, 8, 29] to specify the
valid configurations of a software product line.

Despite promising several benefits, such as, reduced develop-
ment and maintenance costs or faster time-to-market [1, 13, 26],
organizations seldom initiate their software as a software product
line—fearing the initial investments, uncertainties on the products’
future, and corresponding risks [14, 18]. Instead, they often start
with a single product that they clone and adopt for new customer re-
quirements, which is referred to as clone-and-own approach [10, 30].
However, with an increasing number of clones, managing and main-
taining them can become costly, as most updates and bug-fixes must
be propagated to other clones [1, 25, 28]. As a result, organizations
later on may consider to migrate towards software-product-line
engineering to address these issues, applying the extractive ap-
proach [16]. Still, extracting a software product line can be a costly
and risky process [7, 18].

These costs and risks often arise because features are not ex-
plicitly marked in the source code of the cloned systems and their
dependencies as well as interactions are rarely documented. Over
time, the developers’ memory fades [21] and the variants evolve.
Thus, the knowledge about features and their locations dimin-
ishes and must be recovered [12, 19]. As a result, feature loca-
tion [3, 9, 27] is one of the most common and most expensive tasks

https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1145/3233027.3236403
a-jkrueger
Textfeld
This is the authors' version of this paper and posted here for personal use only. For any other use, please contact the ACM.
doi: 10.1145/3233027.3236403

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

in software engineering [5, 32]—especially as automated techniques
often lack in accuracy and must be adapted to the system under
investigation [12, 19, 27]. Consequently, for migrating variants
towards a software product line, additional costs arise, for exam-
ple, due to the necessary reverse engineering tasks, the changing
development process, and the introduction of variability manage-
ment [6, 7, 17, 18, 20, 23].

The main problem of automated techniques is their limited appli-
cability in real-world scenarios [5, 12, 19, 20], often resulting from a
lack of appropriate case studies to evaluate such techniques against.
As a result, these techniques can hardly be tested and adopted for
industrial settings. For this purpose, some authors, such as, Olszak
and Jorgensen [24], Ji et al. [12], or Kriiger et al. [19], provide spe-
cific artifact sets containing feature locations. Also, Martinez et al.
[22] collect case studies used for different techniques of software-
product-line extraction and reverse variability engineering. Despite
such efforts, there are few real-world case studies that are publicly
available and provide comparable results for future research. With
our contributions, we aim to tackle this problem:

e We contribute a subset of the Apo-Games, making the source
code and resources of 20 Java variants — comprising 163.1
KSLOC - and 5 Android variants — comprising 20.9 KSLOC
- publicly available on BitBucket.! These open-source games
are developed by Dirk Aporius based on the clone-and-own-
approach. They have evolved over 12 years, are successful
in the Android store, are used for student programming
competitions at the University of Magdeburg, and have been
implemented by an experienced, industrial developer. Thus,
we argue that they provide a valid case study for software
product line extraction from variants.

o We ask the research community to apply their techniques
for reverse engineering of variability and software product
lines on the provided variants. In particular, our challenges
are reverse engineering of feature models, feature location,
code smell analysis, architecture recovery, and migration
to a software product line. Each submitted solution will be
evaluated together with the original developer. Thus, in con-
trast to other studies, we have a single, reliable source of
knowledge for the ground truths of the Apo-Games. This is
a good opportunity to submit solutions and receive feedback
by the real developer.

Overall, we provide a set of real-world variants for reverse engi-
neering variability and extracting software product lines. Submitted
solutions will receive feedback and those that reflect the real situa-
tion best can serve as ground truths for future research. Thus, we
ask to provide open access to any tool and the resulting artifacts in
addition to the solution to ensure replicability.

2 APO-GAMES

The Apo-Games are a set of small games that have been imple-
mented by a single developer based on the clone-and-own approach.
Since the initial start in 2006 until the end of 2017, three sets of
games have evolved:

(1) 40 Java games;

ISource code: https://bitbucket.org/Jacob_Krueger/apogamessrc
Games in action (in German): http://apo-games.de/.

J. Kriiger et al.

P 5 Time: 1:02:16
Dit. 0
ame: human Wikt 75 /100
. Randomlewel 1435390957
Points: 805 < Speed nomal B>

think time: 42765 A% 5
think fime: (0 mis D PR P R m Cm g g am
e Tk Tt SO TR TR R TRt T, T L L e

N T RV o e O R LI G, IR

Figure 1: Screenshot of ApoMario.

(2) 38 additional Java games comprising less than 4 Kilobyte in
byte code and resources; and
(3) 11 Android games.

Overall, the Apo-Games have been quite successful: The Android
variants have between 100 and 50,000 downloads each. Several
Java games are used at the University of Magdeburg to teach pro-
gramming in a competitive context. For example, students have
to implement search algorithms or small bots that are evaluated
against each other.

Over time, several games from different genres have evolved and
required adaptations. Some of the underlying concepts in the Apo-
Games are inspired by existing games to make them more accessible
to students. For example, in Figure 1 we show a screenshot of the
ApoMario game, which is a platform game inspired by the Super
Mario series. Other game types include a football simulation (i.e.,
ApoSoccer) and riddles (e.g., ApoImp).

Case Study Variants. With this challenge, we contribute a larger
dataset of 20 Java and 5 Android games that can be used for reverse
engineering approaches on cloned variants. In the repository, we
provide the source of all games in the latest stable version. As a
result, the games are in different formats, for example, as packed
jar files—which nonetheless include all source code files and have
to be unpacked. Considering the Java variants, all of these games
have been developed before 2013, when an evolutionary framework
change resulted in major adaptations in the implementation. Thus,
games developed afterwards can hardly been seen as clones of such
earlier Apo-Games anymore. While some of the Apo-Games are
written with German user interfaces and German comments, all
identifiers in the source code itself are in English.

We summarize the corresponding set, name, development year,
and source lines of code of all 25 games in Table 1. Here, we can see
that the games have been developed over 8 years and evolved from
each other. The contributed games comprise between 1.7 KSLOC
and 19.6 KSLOC. Individually, they are relatively small but cumulate
to overall sizes of 163.1 and 20.9 KSLOC. As they are developed by
a single developer, the games have some specific characteristics

https://bitbucket.org/Jacob_Krueger/apogamessrc
http://apo-games.de/

Apo-Games - A Case Study

Table 1: Details of the contributed Apo-Games.

Set Name Year SLOC
ApoCheating 2006 3,960
TutorVolley 2006 1,659
ApoDefence 2007 12,917
ApoSkunkman 2007 8,645
ApoStarz 2008 6,454
ApoBot 2009 5,857
ApoSoccer 2009 10,736
ApoCommando 2010 9,820
ApolcejumpReloaded 2010 8,138
ApoPongBeat 2010 6,591

Java
Apolcarus 2011 5,851
ApoMarc 2011 5,493
ApoMario 2011 17,184
ApoSlitherLink 2011 7,313
ApoNotSoSimple 2011 7,558
ApoRelax 2011 6,868
ApoSimple 2011 19,558
ApoSnake 2012 6,557
ApoSudoku 2012 5,517
Apolmp 2012 6,432
Sum 20 163,108
ApoClock 2012 3,615
ApoDice 2012 2,523

Android ApoSnake 2012 2,965
ApoMono 2013 6,487
myTreasure 2013 5,360
Sum 5 20,950

that can help or pose problems during the challenges. For example,
there are specific naming conventions, meaning that cloned classes
may contain the game title as a prefix in their name.

3 THE CHALLENGES

The Apo-Games are subject systems for reverse engineering vari-
ability from cloned variants. In this section, we describe five chal-
lenges that we consider interesting and that will help to provide
necessary reference artifacts for further research. We focus on re-
verse engineering feature models, feature location, code-smell and
impact analysis, architecture recovery, as well as migration to a soft-
ware product line. While each challenge can be addressed separately,
they are connected and we encourage researchers to select a suitable
subset of their choice.

For each challenge, we are interested in manually, semi-automat-
ically, or fully-automatically derived solutions. It is important that
all steps, problems, and results are well documented to ensure that
they can be evaluated and compared to each other. This should also
include reporting and discussing experiences and lessons learned
for each solution. For all tools that are used, we ask that they are
publicly available. However, these do not need to be tools specifi-
cally developed for software-product-line engineering. In addition,
we ask that any created artifact, for example, feature models or

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

. z
3 $
= <
Fof ¢
Features & £ £ =
4|HelloWorld
4 Feature
Wonderful EEEE
Beautiful EEEE
World HEEEE

Figure 2: Configuration map for a Hello-World example
from FeatureIDE.

source code with feature locations, is made publicly available. Both,
tools and artifacts, have to be available from the point of submitting
a solution henceforth. We also remark that it is not necessary to
include all variants into a solution. However, it has to be justified
why specific variants are not considered.

3.1 Reverse Engineering a Feature Model

A common problem of software-product-line adoption is to identify
features and their constraints in legacy systems, and to derive a
feature model from these. This often requires specific input artifacts,
domain knowledge, and manual analysis. For example, developers
may analyze existing documentation to identify feature descriptions
based on which they reverse engineer constraints and a model.
Some approaches assume either a feature for each code clone that
is shared among variants or a feature for each variant. However,
these are hardly actual features—neither in a notion of functionality
nor in a notion of variability.

Task We ask for solutions that describe how a feature model can
be derived from the source code of cloned variants. Consequently,
the applied process and its single steps should be reported. Finally,
a feature model for the Apo-Games variants shall exist that de-
fines the features and their dependencies. Additionally, it should
be explained how meaningful the identified features are.

Evaluation For evaluation purposes, we expect, in any format
that can be imported by FeatureIDE [15, 31], the feature model
(e.g., in FeatureIDE, GUIDSL, SXFM, Velvet, or DIMACS format)
of the Apo-Games, and further statistics. These statistics include
the numbers and types of features as well as their distribution
among the original variants. The distributions should be provided
in a comprehensive overview that can be, or should resemble, a
configuration map in FeatureIDE, for which we show an example
in Figure 2. In addition, the degree of granularity that is used in the
variability model will be evaluated: One feature for each variant
does not help, as it is likely to be too coarse-grained and one feature
for every differing statement is probably too fine grained. Here, we
expect a proper explanation how a certain granularity is defined
and ensured within the proposed solution.

3.2 Feature Location

Feature location [27] is a common problem in maintaining and re-
verse engineering software, often connected to high efforts even for
a single system. The particular challenge is to locate only the source
code that belongs to specific features. To this end, at least some
features need to be identified and the results must be documented.

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

In the context of cloned systems, these challenges increase as each
feature can be present in multiple variants with certain variations.

Task Solutions to this challenge shall provide the source code
of several variants in which features are mapped. We encourage
to support multiple representations, for example, by annotating
features in the source code. Still, we require one artifact that lists
each feature and the lines of code that belong to it in each variant.
It should be discussed how these feature locations are found and
separated from each other. In particular, variations of features in
different variants and their characteristics, such as size, tangling,
and scattering, are interesting to compare among variants.

Evaluation Considering the evaluation, we ask that the loca-
tions of each feature are mapped and saved persistently within
separate csv-files. It has to be explained which features have been
located based on which approach. At least, the following metrics
have to be presented to evaluate a solution:

o Size and distribution represent the source lines of code (SLOC)
of a feature. For this purpose, the locations of a feature should
be documented with an identifier, to relate them among
variants, as well as start and end line in each variant and file.

e Scattering degree measures at how many locations consecu-
tive lines of code in a variant implement a feature.

o Tangling degree describes the number of other features that
are part of the considered feature.

For the distribution, we recommend a csv-file for each feature. Fur-
thermore, another csv-file should show the scattering, tangling,
and sizes of features among variants to show variations and distri-
butions. In addition, we recommend to discuss the quality of the
results and the necessary efforts to obtain them.

3.3 Code Smell Analysis

Code smells indicate flaws in the design and implementation of
software [11]. Such flaws can be harmful as they potentially lead
to bugs or challenge program comprehension. Consequently, they
can already be problematic in a single system. However, in cloned
variants they may be even more problematic, as they appear in
several systems—meaning that removing them requires change
propagation. Also, addressing code smells may be a reason to adopt
software-product-line engineering, but they can also complicate
the adoption process.

Task Any solution to this challenge has to identify code smells
in the Apo-Games and must describe the applied process. This
includes not only analysis of a single system, but also identifying the
located smells in other variants. In addition, we ask that solutions
assess the impact of the identified code smells on maintenance
or software-product-line adoption. To this end, efforts to resolve
identified smells — within the clones or during migrations — have
to be estimated and discussed.

Evaluation Solutions for this challenge have to include several
statistics that should also be provided as a separate csv-file for each
variant, including the following columns:

o Type describes the type of code smell that has been identified.

o Identifiers should be used to identify the exact same smell
within the same and among multiple variants.

o File refers to a file that is affected by a code smell.

J. Kriiger et al.

e Positions should include the affected lines of code, for exam-
ple, by providing line numbers or start and end line, that
contribute to the code smell.

As for feature location, a summarizing csv-file should show the
total number and distribution of code smells among the variants.
Optionally, we are also interested in understanding why a smell
may not exist in other variants, even if the same or changed code
is present.

3.4 Architecture Recovery

Architectural views offer a coarse-grained perspective on a software
system. Such views help to understand a system’s inner workings
by hiding distracting details. As most likely accounts for many
cloned systems, manual inspection of the Apo-Games indicates
that many of them follow a similar structure and, thus, may have
similar architectures. Despite many similarities, there are also some
derivations not only in terms of features (a functional perspective)
but also code files, their structure, and their dependencies (an ar-
chitectural perspective). Already having an architecture view on a
software product line in terms of components and classes can be a
powerful guide for their adoption. The challenge is to create this
architecture based on an analysis of the variants.

Task We ask the participants of this challenge to reconstruct
and consolidate the architecture of the Apo-Games into aggregated
UML class diagrams, potentially including variability in attributes
and methods. The goal is to create a unified architectural view of
the selected variants, which could be used to migrate them into a
software product line. Along with aggregated architectures, partic-
ipants are requested to submit a description of their process and
tool chain. Moreover, efforts as well as challenges - both, addressed
and open - should be documented. Optionally, an estimation of the
effort to condense single classes can be provided.

Evaluation We require aggregated UML class diagrams, includ-
ing important classes and their identified dependencies. In the
context of software-product-line engineering, important refers es-
pecially to variability and core classes, which can be clustered if
necessary. Each modeled class has to be mapped to the variants
it contributes to, for example, using a representation in the UML
diagram, a separate collaboration diagram [1] (cf. Figure 3), or a
similar representation. As concrete metrics, we ask for each class to
provide the number of variants it contributes to, as well as the dif-
ferences in code size, number of attributes, and number of methods.
For the estimated migration effort, we expect that potential costs
are exemplified based on the available data. Still, we do not ask to
use a cost model but to reason about relative costs of migrating
specific classes — considering identical, adapted, or unique parts
among variants.

3.5 Migration to a Software Product Line

Code duplication is the number one problem arising from clone-
and-own development, requiring updates in all variants. One of the
aims of migrating variants to a software product line is therefore to
reduce the amount of duplicated code (i.e., code clones). Specifically,
the goal is not to reduce code clones within a single product, but to
reduce code clones between multiple variants. To this end, features
are extracted from the variants.

Apo-Games - A Case Study

HelloWorld.java
lel model

Hello © Helloworld
@ main(String[])
< print()

Wonderful | | @ HelloWorld
< print()

Beautiful O HelloWorld
< print()

World ® HelloWorld
< print()

Figure 3: Collaboration diagram for a Hello-World example
from FeatureIDE.

e

Task In this challenge, we ask for a migration of the provided
variants into a software product line. Considering the extraction
process, the focus should be to describe a detailed process including
the applied tasks, identified problems, and necessary efforts, for
example, by measuring the required time for and the number of per-
formed activities. In the end, a software product line shall exist that
includes mandatory and optional features of the provided variants
and can be used to instantiate these. For the variability mecha-
nism, any implementation technique can be used. However, we
recommend those that are supported by FeatureIDE to facilitate the
evaluation, for example, Antenna, FeatureHouse [2], frameworks,
or runtime parameters.

Evaluation To evaluate a solution, we require the extracted soft-
ware product line. As particular results, we expect measurements
on the amount of code clones that have been removed from the
variants. This also includes numbers and sizes of derived features in
the software product line. Another evaluation is to show to which
extend the cloned variants and their extracted software product
line counterparts are identical. Thus, each solution has to show that
the variants generated in the software product line suit the original
ones. Considering the experiences and lessons learned, we ask that
they are consolidated and compared to existing works.

4 SUMMARY

In this paper, we described the Apo-Games, a set of cloned Java
and Android games. Of these, we contribute the sources of 20 Java
and 5 Android variants in a repository and challenge the research
community to propose solutions that describe these variants. To
condense a ground truth for further research, we call for feature
models, feature location, knowledge on code-smells, architectural
views, and extracted software product lines. All solutions will be
evaluated with the original developer and we will include proper
solutions into the repository to provide artifacts to evaluate and
compare future approaches against.

ACKNOWLEDGMENTS

This research is supported by DFG grants LE 3382/2-1, SA 465/49-1,
and Volkswagen Financial Services AG.

REFERENCES

[1] Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

[2] Sven Apel, Christian Kastner, and Christian Lengauer. 2009. FeatureHouse:
Language-Independent, Automated Software Composition. In International Con-
ference on Software Engineering. IEEE, 221-231.

Wesley Klewerton Guez Assuncdo and Silvia Regina Vergilio. 2014. Feature

Location for Software Product Line Migration: A Mapping Study. In International

Systems and Software Product Line Conference (SPLC). ACM, 52-59.

[4] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611—
1640.

[5] Ted]. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. 1986. The Concept
Assignment Problem in Program Understanding. In International Conference on
Software Engineering (ICSE). IEEE, 482-498.

[6] Gunter Bckle, Jestis Muioz, Peter Knauber, Charles Krueger, Julio do Prado Leite,
Frank van der Linden, Linda Northrop, Michael Stark, and David Weiss. 2002.
Adopting and Institutionalizing a Product Line Culture. In International Confer-
ence on Software Product Lines (SPLC). Springer, 1-8.

[7] Paul C. Clements and Charles W. Krueger. 2002. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE Software 19, 4 (2002),
28-30.

[8] Krzysztof Czarnecki, Paul Griinbacher, Rick Rabiser, Klaus Schmid, and Andrzej

Wasowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability

Modeling Approaches. In International Workshop on Variability Modelling of

Software-Intensive Systems (VaMoS). ACM, 173-182.

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.

Feature Location in Source Code: A Taxonomy and Survey. Journal of Software:

Evolution and Process 25, 1 (2013), 53-95.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,

and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial

Software Product Lines. In European Conference on Software Maintenance and

Reengineering (CSMR). IEEE, 25-34.

Martin Fowler and Kent Beck. 1999. Refactoring: Improving the Design of Existing

Code. Addison-Wesley.

Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.

Maintaining Feature Traceability with Embedded Annotations. In International

Systems and Software Product Line Conference (SPLC). ACM, 61-70.

Peter Knauber, Jesus Bermejo, Giinter Béckle, Julio Cesar Sampaio Do Prado

Leite, Frank van der Linden, Linda M. Northrop, Michael Stark, and David M.

Weiss. 2002. Quantifying Product Line Benefits. In International Workshop on

Product-Family Engineering (PFE). Springer, 155-163.

Peter Knauber, Dirk Muthig, Klaus Schmid, and Tanya Widen. 2000. Applying

Product Line Concepts in Small and Medium-Sized Companies. IEEE Software 17,

5 (2000), 83-95.

Sebastian Krieter, Marcus Pinnecke, Jacob Kriiger, Joshua Sprey, Christopher

Sontag, Thomas Thiim, Thomas Leich, and Gunter Saake. 2017. FeatureIDE: Em-

powering Third-Party Developers. In International Systems and Software Product

Line Conference. ACM, 42-45.

Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.

In International Workshop on Software Product-Family Engineering (PFE). Springer,

282-293.

[17] Jacob Kriiger. 2017. Lost in Source Code: Physically Separating Features in
Legacy Systems. In International Conference on Software Engineering (ICSE). IEEE,
461-462.

[18] Jacob Kriiger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.

2016. Extracting Software Product Lines: A Cost Estimation Perspective. In

International Systems and Software Product Line Conference (SPLC). ACM, 354—

361.

Jacob Kriiger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and

Thorsten Berger. 2018. Towards a Better Understanding of Software Features

and Their Characteristics: A Case Study of Marlin. In International Workshop on

Variability Modelling of Software-Intensive Systems (VaMoS). ACM, 105-112.

[20] Jacob Kriiger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.

Finding Lost Features in Cloned Systems. In International Systems and Software

Product Line Conference (SPLC). ACM, 65-72.

Jacob Kriiger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.

2018. Do You Remember This Source Code?. In International Conference on

Software Engineering (ICSE). ACM, 764-775.

Jabier Martinez, Wesley K. G. Assuncao, and Tewfik Ziadi. 2017. ESPLA: A

Catalog of Extractive SPL Adoption Case Studies. In International Systems and

Software Product Line Conference (SPLC). ACM, 38-41.

Linda M. Northrop. 2002. SEI's Software Product Line Tenets. IEEE Software 19,

4(2002), 32-40.

Andrzej Olszak and Bo Norregaard Jorgensen. 2011. Understanding Legacy

Features with Featureous. In Working Conference on Reverse Engineering (WCRE).

IEEE, 435-436.

Tristan Pfofe, Thomas Thiim, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.

2016. Synchronizing Software Variants with VariantSync. In International Systems

and Software Product Line Conference (SPLC). ACM, 329-332.

[3

[9

[10

[11

[12

[13

=
&

[15

[16

[19

[21

[22

~
&

[24

[25

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

[26] Klaus Pohl, Giinter Bockle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer.

[27] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering. Springer, 29-58.

[28] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-
aging Forked Product Variants. In International Systems and Software Product
Line Conference (SPLC). ACM, 156-160.

[29] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz
Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software
Diversity: State of the Art and Perspectives. International Journal on Software
Tools for Technology Transfer 14, 5 (2012), 477-495.

J. Kriiger et al.

[30] Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. 2015. Forked and

[31

]

Integrated Variants in an Open-Source Firmware Project. In International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 151-160.

Thomas Thiim, Christian Kastner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming 79 (2014),
70-85.

[32] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Devel-

opers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study. Journal of Software: Evolution and Process 25, 11 (2013),
1193-1224.

	Abstract
	1 Introduction
	2 Apo-Games
	3 The Challenges
	3.1 Reverse Engineering a Feature Model
	3.2 Feature Location
	3.3 Code Smell Analysis
	3.4 Architecture Recovery
	3.5 Migration to a Software Product Line

	4 Summary
	References

