
Lost in Source Code:

Physically Separating Features in Legacy Systems

Extended Abstract

Jacob Krüger
Otto-von-Guericke-University Magdeburg, Germany Harz University of Applied Sciences Wernigerode, Germany

jkrueger@ovgu.de jkrueger@hs-harz.de

Abstract—Feature-oriented programming allows developers to
physically separate and reuse features via composition. This
promises several benefits compared to other reuse approaches,
for instance, easier traceability and maintenance. However, due
to their simplicity cloning and annotation-based product lines
are established in practice. We aim to reduce risks and costs of
migrating towards composition, lowering the adoption barrier.
This includes i) processes, ii) migration approaches, and iii)

assessing advantages and disadvantages. Overall, we will facilitate
integrating physical separation into legacy applications.

Index Terms—software product line, extraction, migration

I. INTRODUCTION

Software developers face the need to customize their systems

to customer requirements [1]. They reuse existing software

artifacts to reduce corresponding costs. In practice, two

approaches are commonly used. Firstly, with clone-and-own, an

existing system is copied and then customized to new require-

ments [1, 7]. While this approach is simple to apply, costs for

maintenance and customization increase with each clone, due

to change propagation and bug fixing [1]. Secondly, annotation-

based product lines, especially the C preprocessor, are used

to implement variability in a common code base [1, 8, 12].

However, variability is only virtually separated, resulting in

scattering and tangling of code (a.k.a. #ifdef hell), which

hampers maintenance and readability [12]. We refer to any

system developed with these approaches as legacy system.

Missing physical separation of features is one potential

problem of both approaches. A feature represents a concern

from conceptual down to implementation level [1]. Due to

physical separation, e.g. with feature-oriented programming,

compositional product lines enable systematic reuse and

customizing based on modularization [1, 8].

Still, migrating legacy systems towards composition is rarely

applied, because companies fear risks and costs of refactoring

their systems [2, 3, 9]. We aim to facilitate and systematize the

migration of features towards physical separation. Overall, we

want to support the introduction of composition into practice,

reducing companies’ adoption barrier [3]. To this point, we

address the following research questions:

1) How can we migrate legacy systems towards compo-

sitional product lines?

We aim to define processes and tools to guide the

separation of features depending on the legacy system.

2) How can we separate code into feature modules?

We want to identify patterns in legacy code that can be

separated with variant-preserving transformations [6].

3) How suitable are these approaches for practice?

We will conduct empirical studies to investigate several

characteristics of our approach.

II. RELATED WORK

Feature location aims to identify variability in a system [4].

Several approach were proposed but most focus on a single

system implemented without a variability mechanism [4, 5].

For cloned products, we aim to locate features in one system

and map them in others to identify a common base.

We summarize two refactoring types as variant-preserving

transformation:

• Variant-preserving migration (from stand-alone to product

line) towards feature-oriented programming is mostly

considered for a single system [6]. While some works

discuss approaches and potential patterns [11], others show

that there are still open challenges [2].

• Variant-preserving mapping (from annotation to composi-

tion and vice versa) towards feature-oriented programming

is rarely considered in research [6]. Several authors argue

that combining annotation and composition promises

benefits [8] and is essential for step-wise migrations [2].

We aim to extend these works to define processes and

patterns for migrating legacy systems towards feature-oriented

programming. In particular, we will investigate problematic

code structures and integrated tooling [2].

Some empirical studies address the implementation of

feature-oriented programming [2, 6, 11, 13]. However, to our

knowledge these studies are rarely applied, limited to single

cases, and are missing industrial evaluations. We aim to address

these points and extend the existing body of knowledge on

benefits of physically separated features by conducting further

studies.

III. CONTRIBUTIONS

We conceptually sketch our approach in Figure 1. For our

work, we assume the following three conditions to be true:

• Existing legacy systems: The prerequisite of our ap-

proach is that either cloned or annotated legacy systems

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI 10.1109/ICSE-C.2017.46



Fig. 1. Sketch of physical separation in legacy systems.

with a set of features exist (Figure 1 Step 1). However, vari-

ability is not necessarily mapped or managed, wherefore

we aim to semi-automatically locate and map features

(Figure 1 Step 2). To this point, we propose to adopt

feature location [4] and code clone detection [5].

• Step-wise migration: We will utilize a step-wise and

semi-automatic process to facilitate the risks of migrations

and allow ongoing assessments [2, 9, 10]. For this reason,

we consider to migrate only selected features to refine the

system (Figure 1 Steps 3 and 4), enabling incremental

migration towards physically separated features.

• Benefits of physical separation: In advance, we assume

that physically separated features are beneficial to a

certain degree. Several works discuss the complementary

advantages of cloning, annotations, and composition [1, 8],

but empirical studies are rare [13]. Thus, we aim to

assess our approach as well as to which extend physical

separation is useful.

Overall, we will describe a process to migrate legacy

systems towards feature-oriented programming. To facilitate its

application, we propose to semi-automatically locate variability

and migrate code based on an incremental approach.

IV. EVALUATION AND RESULTS

We plan to combine the following three evaluation ap-

proaches:

• Open-Source Case Studies: Several open-source systems

developed with clone-and own or annotations exist, partly

originating from industry. Due to the open access, we

aim to use such systems for case studies to define and

assess our approach, especially to adopt feature location

and identify migration patterns.

• Industrial Case Studies: With industrial partners, we aim

to evaluate our processes in practice, especially its costs

and benefits. As a result, we can describe best practices

or pitfalls that companies may face during such migration

processes and identify improvements.

• Empirical Studies: In addition to case studies, we aim

to conduct experiments and interviews, for instance with

industrial and open-source developers, to assess benefits of

physical separation of features. The results help to further

assess benefits of physically separating features and our

approach.

With these strategies, we aim to credibly and comprehensively

evaluate our approach. This way, we can further improve the

defined processes.

V. CONCLUSIONS

Summarized, our goal is to define processes for migrating

legacy systems towards feature-oriented programming. To our

knowledge, this is the first systematic approach to implement

such migrations based on source code analysis and trans-

formation. We aim to combine and integrate existing works

from several domains, such as feature location, to extend and

customize them for our processes.

ACKNOWLEDGMENT

This research is supported by DFG grant LE 3382/2-1. I

thank Gunter Saake and Thomas Leich for their guidance.

REFERENCES

[1] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented
Software Product Lines. Springer, 2013.

[2] F. Benduhn, R. Schröter, A. Kenner, C. Kruczek, T. Leich, and
G. Saake. Migration from Annotation-Based to Composition-
Based Product Lines: Towards a Tool-Driven Process. In
SOFTENG, pages 102–109. IARIA, 2016.

[3] P. C. Clements and C. W. Krueger. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE
Softw., 19(4):28–30, 2002.

[4] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature
Location in Source Code: A Taxonomy and Survey. J. Softw.
Evol. Process, 25(1):53–95, 2013.

[5] S. Duszynski, J. Knodel, and M. Becker. Analyzing the Source
Code of Multiple Software Variants for Reuse Potential. In
WCRE, pages 303–307. IEEE, 2011.

[6] W. Fenske, T. Thüm, and G. Saake. A Taxonomy of Software
Product Line Reengineering. In VaMoS, page 1–8. ACM, 2013.

[7] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed.
Enhancing Clone-and-Own with Systematic Reuse for Devel-
oping Software Variants. In ICSME, pages 391–400. IEEE,
2014.

[8] C. Kästner and S. Apel. Integrating Compositional and Anno-
tative Approaches for Product Line Engineering. In McGPLE,
pages 35–40. University of Passau, 2008.

[9] J. Krüger, W. Fenske, J. Meinicke, T. Leich, and G. Saake. Ex-
tracting Software Product Lines: A Cost Estimation Perspective.
In SPLC, page 354–361. ACM, 2016.

[10] J. Krüger, I. Schröter, A. Kenner, C. Kruczek, and T. Leich.
FeatureCoPP: Compositional Annotations. In FOSD, pages
74–84. ACM, 2016.

[11] R. E. Lopez-Herrejon, L. Montalvillo-Mendizabal, and A. Egyed.
From Requirements to Features: An Exploratory Study of
Feature-Oriented Refactoring. In SPLC, pages 181–190. IEEE,
2011.

[12] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. The
Love/Hate Relationship with the C Preprocessor: An Interview
Study. In ECOOP, pages 495–518. Schloss Dagstuhl, 2015.

[13] J. Siegmund, C. Kästner, J. Liebig, and S. Apel. Comparing
Program Comprehension of Physically and Virtually Separated
Concerns. In FOSD, pages 17–24. ACM, 2012.


