
Finding Lost Features in Cloned Systems
Jacob Krüger

Harz University of Applied Sciences
Wernigerode, Germany

Otto-von-Guericke-University
Magdeburg, Germany
jkrueger@hs-harz.de

Louis Nell
Harz University of Applied Sciences

Wernigerode, Germany

Wolfram Fenske
Otto-von-Guericke-University

Magdeburg, Germany
wfenske@ovgu.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
saake@ovgu.de

Thomas Leich
Harz University of Applied Sciences

Wernigerode, Germany
tleich@hs-harz.de

ABSTRACT
Copying and adapting a system, also known as clone-and-own, is
a common reuse approach that requires little initial effort. Howe-
ver, the drawbacks of clones are increasing maintenance costs as
bug fixes and updates must be propagated. To reduce these costs,
migrating cloned legacy systems towards a software product line
promises to enable systematic reuse and customization. For both,
managing and migrating cloned systems, it remains a challenge
to identify and map features in the systems. In this paper, we i)
propose a semi-automatic process to identify and map features
between legacy systems, ii) suggest a corresponding visualization
approach, and iii) assess our process on a case study. The results
indicate that our process is suitable to identify features and present
commonalities and variability in cloned systems. Our process can
be used to enable traceability, prepare refactorings, and extract
software product lines.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering;Maintaining software;

KEYWORDS
Software product line, code clone detection, feature location, legacy
system, extractive approach, reverse engineering

ACM Reference format:
Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2017. Finding Lost Features in Cloned Systems. In Proceedings of SPLC ’17,
Sevilla, Spain, September 25-29, 2017, 8 pages.
https://doi.org/10.1145/3109729.3109736

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’17, September 25-29, 2017, Sevilla, Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5119-5/17/09. . . $15.00
https://doi.org/10.1145/3109729.3109736

1 INTRODUCTION
With cloning (a.k.a. clone-and-own), developers copy an existing sy-
stem and adapt it to new requirements [14, 32, 34]. This approach is
often used due to its low initial costs and simplicity [18, 35]. Howe-
ver, each new system results in additional code clones [31], requiring
careful propagation of changes (e.g., bug fixes) [30]. Especially when
knowledge about feature locations deteriorates, mapping features
in different systems is a challenging but necessary task to maintain
cloned systems and trace requirements [19]. While version control
systems can support tracing to some extent [17, 30, 40], they often
fall short in this regard. Hence, even with tool support, maintaining
cloned systems remains an error-prone and costly task.

As the maintenance costs for such cloned systems increase, com-
panies may consider to migrate these towards a software product
line [8, 26]. A software product line is described by a set of features
that implement commonalities and differences of variants [1, 9, 10].
Each feature represents a user-visible functionality and can be reu-
sed to customize a system [2]. Thus, changes in a feature must not
be propagated into other systems, which can significantly reduce
maintenance costs.

Several migration approaches were proposed [17, 27, 45], but the
initial step of identifying and tracing features in multiple legacy
systems remains challenging [19, 22, 25, 42]. For this purpose, fea-
ture location [3, 13, 33] techniques were proposed. However, these
are mostly designed for a single system [16]. In contrast to other
techniques that focus on multiple systems, for example by Xue [45],
we focus on a step-wise process and leave the specific design, such
as the used analysis techniques, to the developer [17]. This seems
necessary when due to vanishing domain knowledge [19] extensive
analyses are required.

In this paper, we present an approach to identify and map featu-
res in cloned systems. To this end, we introduce a semi-automatic
process that is independent of used programming languages or
concepts. We focus on small and partly automated steps to reduce
the necessary time and effort of our approach. While we cannot
fully automate all steps, we can utilize code-clone detection [31]
and feature location [3, 13, 33] techniques. Another challenge is to
visualize the results in a suitable way [16]. To address this issue, we
describe a representation we designed to support our proposed pro-
cess. Finally, we show the feasibility of our approach based on a case
study and compare it to the results of automatic refactorings [17].

https://doi.org/10.1145/3109729.3109736
https://doi.org/10.1145/3109729.3109736

SPLC ’17, September 25-29, 2017, Sevilla, Spain Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich

Beautiful

Hello

Wonderful

WorldFeature

HelloWorld Legend:

Alternative
Abstract
Concrete

Optional
Mandatory

Figure 1: Feature diagram for a HelloWorld product line.

Overall, we aim to support developers to identify common features
in cloned systems. Our process can help to improve the manage-
ment of cloned systems, recover variability information, enable
traceability, or migrate them towards a product line.

In detail, our contributions are:
• We propose a semi-automatic, step-wise process to identify
and map features in cloned systems. This process helps to
analyze, manage, and migrate cloned legacy systems.

• We describe an approach to map and present variability
according to our process. This approach is based on previous
work for product line potential analysis [16], which we refine
to suit our needs.

• We describe an exploratory case study to assess our process
and compare our findings to a reference study that is based
on the same systems [17]. Overall, we show that our process
is feasible and helps to analyze and prepare migrations of
cloned legacy systems.

This paper is structured as follows: In Section 2, we introduce
the foundations for the understanding of our process. We define
the concrete research problem and our process in Section 3. Then,
we describe our approach to map features during the process and
to present it to the user within Section 4. In Section 5, we present
our evaluation. We discuss related work in Section 6 and conclude
in Section 7.

2 BACKGROUND
To model the features we identify with our process, we rely on vari-
ability modeling. We utilize feature location and code-clone detection
concepts to identify and map common code in legacy systems. In
this section, we provide an overview on these topics.

2.1 Variability Modeling
Software product lines comprise a set of features that can be combi-
ned to derive a customized variant [1, 9]. To manage and represent
the resulting variability and dependencies, several variability mo-
dels have been proposed, for instance, feature models, delta models,
or decision models [7, 11, 36, 38]. In this work, we rely on feature
diagrams [1, 21], which are tree representations of the established
feature models [5, 7, 36], to express variability.

In Figure 1, we illustrate a feature diagram for a HelloWorld
product line. The root (i.e., HelloWold) is an abstract feature, which
means that it does not implement any functionality but helps to
structure the diagram [41]. In contrast, Hello is a concrete feature
that contains source code. A child feature can either be optional
(i.e., Feature), which means it need not be selected when its parent
is selected, or mandatory (i.e., Hello, World), which means it must

in t l o g (S t r i n g s) {
i f (s != null) {
System . out . p r i n t (s) ;
c oun t e r ++ ;
return coun t e r ;

}

return −1;
}

(a) Original source code.

Type-2 in t l o g (S t r i n g m) {
Type-2 i f (m != null) {
Type-2 System . out . p r i n t (m) ;
Type-1 coun t e r ++ ;
Type-1 return coun t e r ;
Type-1 } / / comment
Type-3 System . e r r . p r i n t (" n u l l a rg ") ;
Type-1 return −1;
Type-1 }

(b) Cloned source code.

Figure 2: Example for code clones Type-1 to Type-3.

be selected when its parent is selected. Child features can have
additional dependencies. For instance, Wonderful and Beautiful
are alternatives, wherefore only one of both can be selected at the
same time. Further dependencies between sub-trees can be covered
with cross-tree constraints, such as, requires or excludes. Based
on the feature model, a configuration of the product line can be
derived. A configuration is valid if it conforms to all dependencies
and only then a variant can be instantiated.

2.2 Feature Location
Feature location aims at identifying code that implements a fea-
ture. First, features must be specified as requirements and after-
wards mapped to the source code. Several approaches have been
proposed, for example, concern graphs and formal concept analy-
sis [3, 13, 33]. Still, there are shortcomings that hamper their ap-
plication in practice. Firstly, because feature location is already
challenging for one system [22], such approaches are rarely adop-
ted for several systems [16]. This limits their usability for migrating
legacy systems towards a product line. Secondly, only for few ap-
proaches tools are implemented and those are limited in several
ways, for example, they require adaptations to programming lan-
guages or do not analyze the source code but documentation of
systems [3, 13]. Finally, feature location can only propose feature
candidates, but these must be manually evaluated [6, 22, 48]. For
these reasons, we consider feature location to support the auto-
mation of our process but focus on code-clone detection to map
features in multiple legacy systems.

2.3 Code-Clone Detection
Code clones are code artifacts that occur in identical or similar form
at several occasions [31]. Clones between two systems can indicate
potential features that are implemented in both. Hence, code-clone
detection can enhance feature location in this context [16, 45].

As code might be changed after cloning, clones differ in their
degree of similarity. We illustrate this in Figure 2, in which Figure 2a
represents the original source code and Figure 2b its clone. Roy
et al. [31] define four types of code clones:

Type-1 clones are identical and may only differ in whitespaces
or comments, which we represent with Type-1 markers
in Figure 2b.

Type-2 clones additionally contain renamed elements, for instance,
function or variable names. In Figure 2b, all lines marked
with Type-1 and Type-2 form such a clone.

Finding Lost Features in Cloned Systems SPLC ’17, September 25-29, 2017, Sevilla, Spain

Figure 3: Problem and solution space for cloned systems.

Type-3 clones also include modified, removed, or added statements.
The whole clone we show in Figure 2b represents such a
clone, as the line marked with Type-3 is added.

Type-4 clones implement the same functionality while sharing no
or only few textual similarity.

Several approaches exist to identify especially Type-1 and Type-2
clones [31]. However, it is problematic to automatically identify the
other two types.

Following Bauer and Hauptmann [4], we further separate be-
tween to other kinds of code clones. Firstly, clones that appear
within the same system and, secondly, clones that appear between
systems. We refer to the second kind as cross-system code clones,
which are essential for our approach as they represent functionality
that is reused in different systems, potentially indicating features.

3 MAPPING FEATURES IN LEGACY SYSTEMS
In this section, we define the starting point for our approach. We
state the problem based on problem space and solution space to derive
requirements for our process, which we introduce afterwards.

3.1 Problem Statement and Requirements
The proactive approach [24] to software-product-line adoption is as-
sumed to require the highest upfront investment but to also promise
the most benefits [1, 5, 37]. Proactive development means to design
and implement a product line from scratch. Hence, the problem
space that defines a system’s requirements and behavior is defined
first, for example, with variability models [2, 9, 10]. Afterwards,
the features and their behavior are implemented, resulting in the
solution space.

In contrast, our precondition is that cloned legacy systems exist,
each defining its own solution space. From these, a product line
can be extracted to enable systematic reuse and to reduce costs.
This is referred to as the extractive approach [24]. However, the
different solution spaces should share common but also contain
unique parts, which we depict as a Venn-diagram in Figure 3. The
initial step towards a product line is to map these solution spaces
in a single problem space, reversing the proactive order.

Our goal in this paper is to describe a process to map existing
solution spaces towards a single problem space. For this, we aim to
fulfill the following requirements:
Req-1 Our process itself is independent of specifics of the cloned

systems, such as, programming paradigms or languages.
Req-2 Our process can be semi-automated to reduce manual analy-

sis efforts.

Figure 4: Step-wise process to locate andmap features in clo-
ned legacy systems.

Req-3 Our process enables step-wise refinements of the problem
space (i.e., variability model), allowing developers to evaluate
intermediate results.

Req-4 Our process investigates each system only once to reduce
costs and limitations of pairwise comparison [16], namely
the high number of necessary comparisons and hidden in-
formation in the results.

Based on these requirements, we propose a generally applicable
process that can reduce the efforts and errors of mapping variability
in cloned systems. Thus, we aim to reduce the adoption barrier [8]
for product lines and improve the management of cloned systems.

3.2 Mapping Process
Our process, which we depict in Figure 4, is based on the idea
proposed by Koschke et al. [23] and integrates steps that developers
perform for feature location [42]. In contrast to Koschke et al. [23],
we do not assume that an expert designs a model in advance and
compares it to the system’s architecture. Instead, our goal is to
completely identify the variability of systems within their source
code and to reverse engineer a corresponding variability model.
While we focus on source code in this paper, our process can also
be adapted for other artifacts, such as documentations.

As input, our process requires the source code of all systems that
shall be analyzed. Initially, we aim to identify and map features
only for one selected system. We do this to create a complete varia-
bility model and mapping for this base system (sbase) that we can
later extend. During the process, we refine the variability model
to represent all reused parts in the systems and map features to
their corresponding code. To do this, we benefit from code-clone
detection and feature location techniques. We describe how a cor-
responding mapping is presented in Section 4.

1. Identify Candidates. Starting with n different systems, we first
select a base system from which we start our analysis. As we il-
lustrate in Step 1 in Figure 4, we first identify feature candidates.
These candidates represent artifacts that potentially belong to a
feature. For our process, we utilize the fact that several cloned

SPLC ’17, September 25-29, 2017, Sevilla, Spain Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich

legacy systems exist. Hence, we apply code clone detection to iden-
tify cross-system clones between sbase and other systems. These
cross-system clones are our first candidates for potential features.

2. Locate Features. To this point, we found trivial commonalities
between the systems that represent feature candidates. However,
we need to analyze if we found actual features and if these are
complete, which is why we now evaluate the feature candidates
(Step 2 in Figure 4). Several candidates may belong to the same
feature but also may not cover all code belonging to this one. To
support this task, feature location techniques can be used to identify
additional code of a feature. Still, in the end a developer has to
manually decide which candidate is part of which feature and if it is
completely located [6, 22]. The result of this step is a full mapping
of the source code to features.

3. Model Variability. In the third step, we create a variability mo-
del that represents the feature dependencies of the analyzed systems.
To create this model, approaches to reverse engineer variability
models [39] or dependencies, for example, in preprocessor-based
systems [29], can be adopted to enable automation. Still, manual
effort is necessary for these approaches, mainly because feature
dependencies can only partly be extracted from a system’s source
code. In addition to creating the model, features are also mapped
to the base system to enable traceability.

4. Map Features. After the previous three steps, we have a distinct
mapping between a variability model and a system’s source code.
In the fourth step of our process, we map another system to these
features and the model. As we know exactly the code we have
identified and its position, this step can be fully automated. Still, we
have to be aware that lines of code might be removed, changed, or
added compared to previous systems, which requires adaptations
of existing code-clone detection approaches. The result of this step
is a mapping of all previously identified features to a newly selected
system’s source code.

5. Identify Variations. In a cloned system, existing features might
be changed or completely new features are introduced. Hence, we
have to identify and assess such variations in the newly selected
system. Again, this can be supported with approaches for feature
location (analyzing the system by itself) and code clone detection
(comparing it with another system). Still, at this point we can ex-
clude already identified parts of the source code from our analysis,
reducing the manual effort from this point forward.

System-Wise Refinement. The second to fifth step are repeated
for any new system, as we show in Figure 4. After each cycle, the
new system is mapped to the variability model, which is refined if
variations occur. In the end, we can derive a full variability model
that represents all features within the legacy systems. This allows
developers to analyze the systems and extract reusable features
from the source code.

Overall, the results of our process support developers in several
ways. Our main objective is to enable the extraction of a software
product line. We do this as we identify commonalities and differen-
ces in the legacy systems, construct and transfer a variability model,
and, thus, prepare refactorings [17]. Furthermore, our process helps
to continue developing with cloned systems but improve change

propagation due to the implemented mapping [30]. Hence, it is
easier to identify which changes must be done in which systems
and to assess their impact.

4 VISUALIZATION CONCEPT
During our process, a developer needs support to find, analyze, and
map features in the source code. For this reason, a visual representa-
tion is necessary. In the context of investigating the reuse potential
of cloned systems, Duszynski and others propose to use occurrences
matrices for analysis and bar charts for visualization [15, 16]. Both
techniques are more suitable as the number of systems grows than
Venn-diagrams, which become unintelligible. However, while the
simple distribution of common and variable code among systems
is suitable to evaluate reuse potential we see four shortcomings of
occurrence matrices and bar charts:

(1) Systemsmust be compared pairwise and, thus, multiple times
to detect all commonalities. For instance, pairwise compari-
son can lead to transitive dependencies: A clone is located in
sbase ∧ s1 and also in sbase ∧ s2. Hence, s1 ∧ s2 also contains
this clone, which can only be exploited while comparing
these systems or aggregating results. Overall, n ∗ (n − 1)/2
pairs are necessary forn different systems [16], contradicting
the idea of our process.

(2) Occurrences matrices map only atomic elements (i.e., lines
of code) that can be unambiguously identified. At the end,
the matrices are merged to aggregate information for all
systems. As a result, the displayed order of elements can be
different from the real one, which is problematic for mapping
source code to features and analyzing variations. Further-
more, occurrences matrices are suitable to be used by tools
but are rather complicated to analyze for humans.

(3) Only two entities (e.g., files with the same path) are com-
pared. Additional analyses are necessary to identify atomic
elements that are moved to a different entity. To address
this point, code clone detection seems more promising to
compare source code.

(4) Presenting the results in bar charts [16] hides important
information about the location and size of specific commo-
nalities. A direct mapping is not possible in this case due to
the aggregation of information.

We address these points by using an adapted visualization concept
based on occurrence matrices, bar charts, and code clone reports.

More precisely, we implemented a prototype that transforms
results of the code clone detection tool Clone Detective [20] into
the representation we depict in Figure 5. In this view, a specific
feature (i.e., Game) is displayed in its distribution among files and
systems. This representation shows the commonalities and vari-
abilities between different systems in more detail and does not
condense information. For improved analysis capabilities, we plan
to also transform the views to display a specific class and the distri-
bution of features within it, identical to the presentation of code
clone detection tools. Finally, the variability model as well as cor-
responding source code is mapped towards these views, allowing
users to directly access and navigate between them. Hence, it is
possible to open and investigate the mapped feature code of each
systems directly from this view.

Finding Lost Features in Cloned Systems SPLC ’17, September 25-29, 2017, Sevilla, Spain

Game

11 34

Button - 106 LoC

Component - 151 LoC

13 55 7251

Model - 58 LoC

6 34 55

Entity - 99 LoC

5 35 9415

Dice Clock MonoDroid Snake MyTreasure

Figure 5: Sketch of the visualization concept to display and
analyze commonalities and variability in cloned systems.

5 EVALUATION
To evaluate our process, we performed a case study on a set of
cloned systems. In this sections, we describe the tools we used, our
research questions and method, and discuss our results. Finally, we
review potential threats to validity.

5.1 Tooling
For the code-clone detection during our evaluation, we used Clone
Detective, which is part of the ConQAT framework [12, 20]. This tool
uses token-based analysis, is language independent, and finds most
type-2 clones [31]. To enable cross-system code clone detection, we
simulated that all our subject systems belong to a single project.
We manually analyzed the code clones using Clone Detective’s user
interface. In addition, we used our prototype to transform the output
towards our visualization concept. We decided against further tools
to focus on the general applicability and tool independence of our
process.

5.2 Subject Systems and Reference Study
To evaluate our process, we require a set of cloned systems. While
it does not matter in which programming language they are de-
veloped, it is necessary that they contain common and custom
code. Such custom code is a result of, for instance, adding new
functionality to a cloned system or refactoring it. In addition, a
documentation or a reference study should be available to evaluate
whether the found features are meaningful.

Due to these requirements, we decided to use a set of five systems
of ApoGames1 that implement different games for Android and are
written in Java. For clarity, we always use shortened versions for
feature and file names. This means that we suppress any identifying
naming conventions and always refer to these as an entity that
exists in several of these games.

In a reference study [17], we used these systems to evaluate refac-
torings that automatically extract code clones into feature modules.
For this, we also implemented a rename refactoring to address type-
2 clones. We present detailed results for this automatic approach
that we can use to compare our mapping against. In Table 1, we
summarize the results of this previous study [17]. The focus was

1http://apo-games.de/index_android.php, 22.03.2017

Table 1: Results of the automatic migration in the previous
study [17].

System Base #SLOC Migrated #SLOC ∆SLOC
Dice 2,504 1,346 1,158
Clock 3,584 2,696 888
MonoDroid 6,483 5,490 993
Snake 2,946 1,786 1,160
MyTreasure 5,322 4,483 839
Common - 1,779 -
Total 20,839 17,580 -15.6%

the automatic extraction of features based on cloned fields and
methods and, at the end, 1,779 SLOC were migrated into modules.

Due to the automation, the final product line contains 15 common
and 5 custom (i.e., unique code of each system) features. However,
the resulting model contains mainly cross-tree constraints between
common and custom features, neglecting dependencies between
the common features. We also found that the automatic refactoring
partly extracted rather small code fragments of the same class into
different modules. For example, we investigated the file ApoEditor
that was part of all five systems. In the final product line, this file was
part of seven common features. However, six of these refinements
added only one or two statements to the original source code and
two features contained solely extensions to this file. Such a fine
granularity, which is the result of automatic refactorings, seems
unsuited for modules and it is questionable whether these represent
useful features.

Overall, we can use this reference study to compare our mapping
and also illustrate the necessity of our process while extracting pro-
duct lines: Applying automatic refactorings only after identifying
features in the source code will result in i) a suitable variability
model, ii) improved scope of automated refactorings, and iii) corre-
sponding mappings.

5.3 Research Questions
Based on the previously described subject systems and reference
study, we derive the following research questions:

RQ-1:Howmuch of the extracted code in the reference study
do we identify? First, we assess to which extent we identify the
same code clones and features as our reference study. This way, we
aim to investigate how complete we mapped the systems with our
process compared to automatic refactorings.

RQ-2: How do the differences between our mapping and the
reference study look like? Based on the first research question,
we aim to analyze potential differences in the found code clones
and features. More precisely, we discuss the granularity of features
we identified compared to the automatic approach.

RQ-3: How does a featuremodel for the subject systems look
like? Finally, we will derive a feature model based on our results.
We cannot show that the model is correct, due to missing documen-
tation and domain knowledge. Still, based on the results derived
during the process, we argue that it represents a suitable structure
for the systems.

http://apo-games.de/index_android.php

SPLC ’17, September 25-29, 2017, Sevilla, Spain Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich

Table 2: Identified and mapped features.

Feature Function #Classes
∑
SLOC

Dice Clock MonoDroid Snake MyTreasure
Base Core functionality 2 275 275 275 199 275
Editor Create levels 1 61 34 0 27 0
Game Game objects 8 347 129 118 253 20
Load Load levels 2 282 282 282 282 267
Menu Menu 2 295 61 201 93 0
Puzzle Chooser Select levels 2 121 111 0 121 0
Save Save levels 1 17 17 17 17 17
Total 1,398 909 893 992 579

5.4 Methodology
We performed the process we described in Section 3 as follows. We
analyzed one base system (i.e., Dice) by identifying cross-system
code clones with all other systems. Based on this, we located fea-
tures and manually determined which clones belong to them. We
derived an initial feature model and refined it while mapping the
found features to the other systems, for instance, we changed de-
pendencies from mandatory to optional. Note that we did not inves-
tigate variations within the other systems as is emphasized in our
process. Depending on our decisions whether specific statements
are additions to a feature or not, our results would change. Hence,
we may bias our findings due to our personal opinion on a feature’s
size. In addition, we will reason about necessary efforts and benefits
of automatic refactorings. This is why we solely focused on the
detected code clones in this evaluation.

To answer our first research question, we measure the lines of
code for the identified features. We compare the sizes of common
code in each subject systemwith our reference study. To answer our
second research question, we manually investigate the differences
between the features created in the reference study and these we
identified. We analyze their number, sizes, and distributions in the
different systems. To answer our third research question, we model
the variability of the systems as a feature diagram. For this, we
analyzed which features are present in which systems and manually
determined dependencies between them, for instance, based on
method calls. To summarize our findings, we discuss benefits of our
process and its combination with automatic refactorings.

5.5 Results
In Table 2, we describe the features we identified, the functionality
they implement, and their sizes. Overall, we found seven common
features that are shared among the systems. These features are
mostly part of one or two classes but Game is scattered among eight
different classes. The source lines of code vary heavily, from 17
SLOC for the Save feature up to 347 SLOC for Game.

We remark that not all lines of code are part of each system.
Instead, subsets exist only in two or three systems. For example,
we depict part of the feature Game in Figure 5. There, common
code exists between up to four systems within the class Component.
However, the first and last part do only exist in three systems. Thus,
the numbers we present in Table 2 provide only an overview of the
size but not the structure of features.

Furthermore, we see that the distribution of common code varies
heavily between the different systems. In particular, we found that
some features are not part of MonoDroid and MyTreasure at all. We
see that Dice contains 1,398 SLOC in common features in contrast
to MyTreasure for which we found only 579 SLOC. The other three
systems range from 893 to 992 SLOC in common features.

5.6 Discussion
Regarding RQ-1, we found that our results vary from the reference
study. We identified that Dice and Clock contain more common
code thanwas extractedwith the automatic refactorings. In contrast,
we mapped less feature code within Snake and MyTreasure with
approximately 160 SLOC and 260 SLOC respectively. Overall, we
see that we found more feature code within the analyzed base
system (Dice). Hence, the manual analysis we performed in our
process improves localization of common features. Still, because
we only mapped the found code in other variants but performed no
additional analysis, we missed commonalities between the other
systems.

Regarding RQ-2, we found that we also identified smaller and
unique code artifacts in the base system compared to the reference
study. This is not surprising as we manually analyzed it and were
not solely focusing on common fields and methods. Considering
the sizes, our mapping performs similar to automatic refactoring
if the same source code is mapped. While we thought that our
process would require far more effort due to the manual analysis,
we also required similar analysis in the reference study. There,
many fields and methods could only be migrated into modules after
renaming, which also required manual assessments. Still, this seems
to be a limitation of the used clone detection tool rather than the
refactoring itself.

A critical point to answer RQ-2 is which common code is part
of which features. The automatic refactorings created a feature
with 619 SLOC that is shared among all systems [17]. However,
we identified no feature of this size and especially not one that is
part of all systems. When comparing the results, we found that
automatic refactorings, not surprisingly, migrated parts of several
features we identified into a single one. For instance, one refactored
module contained parts of Game, Base, Menu, Load, and Save. Thus,
we argue that it is problematic to identify meaningful features based
solely on automatic clone refactoring.

Another difference is that in the reference study common code
was also refactored if it appeared multiple times in the same system.

Finding Lost Features in Cloned Systems SPLC ’17, September 25-29, 2017, Sevilla, Spain

Apo

MyTreasureSnakeDice

Load

Clock

Base

Game

Puzzle Chooser

SaveMenu

MonoDroid

Editor

Legend:

Optional
Alternative
Abstract
Concrete

Mandatory

Figure 6: Extracted feature model for ApoGames.

The focus on pure code clones and identical naming resulted in
more extracted source code. This was mostly due to system specific
methods overwriting or copying parts of existing ones. As explained
previously, we did not map this code to specific features because
we do not assume that they represent an actual feature. However,
this is not a limitation in our process but in our evaluation. To this
point, we argue that domain knowledge cannot be fully replaced to
decide on the size and scope of features in cloned systems.

Regarding RQ-3, we display the final feature model we derived
from our analysis in Figure 6. Overall, the investigated systems do
contain 3 mandatory and 4 optional features. We mainly derived
optional and mandatory dependencies based on the sizes and ap-
pearances of features in specific systems, which we show in Table 2.
In addition, we investigated which features call each other to derive
parent-child dependencies. While the resulting model is not perfect
and mainly considers features which share code among systems,
we argue that it represents a reasonable structure.

Summary. In summary, we find that automatic refactorings but
also our process have advantages and disadvantages. Automatic
refactorings ease the extraction of code clones into modules sig-
nificantly. However, they heavily depend on the used code-clone
detection approach and potentially on identical naming to identify
feature code. In addition, it seems problematic that they extract all
found clones without regarding their scope. Hence, features may
not represent a meaningful unit and may contain code artifacts that
do not belong to a feature.

We argue that our process provides an initial step to identify
and map features before migrating them. Still, the disadvantages
are increased costs as extended manual analysis are necessary. An
integrated tooling that utilizes both and supports them with ad-
ditional techniques seems to be a promising approach. This way,
meaningful features could be identified with reduced costs.

5.7 Threats to Validity
A potential threat to the validity of our evaluation are the conside-
red subject systems. Firstly, these are rather small, which will rarely
be the case in real-world scenarios. However, larger cloned systems
that contain different changes and are developed independently are
rare. In addition, studies that provide detailed information to com-
pare our findings against do not exist. These points are fulfilled by
the ApoGames systems [17]. Secondly, the systems were developed
with specific naming conventions: Classes have prefixes that iden-
tify a system. For example, levels are defined in ApoClockLevel
in ApoClock but ApoDiceLevel in ApoDice. This convention can
impact the results of our code-clone detection tool. Still, we especi-
ally used a tool that is capable of handling renaming (i.e., type-2

clones) to some extent and manually assessed the results to limit
this threat.

To detect code clones in the systems, we used Clone Detective.
While our reference study [17] uses another tool, we especially se-
lected a tool that can detect type-2 clones to consider the renaming
refactoring preformed there. Other than this, we used the same
setting of detecting clones only for more than ten tokens, resulting
in the same potential threat: The detection may have missed shor-
ter clones belonging to a feature. As defined in our process, we
limited this problem by manually assessing the feature candidates
and analyzing potential variations.

Due to our mainly manual analysis, we may have missed featu-
res. Still, the evaluation illustrates the potential of our approach
and we aim to develop and assess corresponding tooling. A more
significant concern is the basic assumption of our approach that
domain knowledge is missing. In the context of our evaluation this
may result in a different variability model than intended by the
developer. We carefully checked our findings and compared them
to a reference study to reduce both threats.

6 RELATEDWORK
Duszynski et al. [16] present an approach to reverse engineer quan-
titative information about commonality and variability of cloned
systems. This information is visualized using occurrence matrices
and bar charts. Although the approach is adaptable to other simi-
larity detection tools, the presented instantiation relies on diff,
which is more sensitive to formatting, renaming, and reordering
than the clone detector we use. Additionally, their visualizations
mainly support management decisions, such as cost estimations,
whereas our visualizations can also guide developers through the
analysis process.

Xue and various co-authors locate features in legacy systems in
a “top-down/bottom-up sandwich” fashion. They combine feature
model differencing at requirements level with clone differentia-
tion [43], program dependency graphs, and information retrieval
techniques at implementation level [44–47]. Their approach requi-
res as input the feature models of all variants, which may constitute
a major challenge as the necessary information is often unavailable
for legacy systems. By contrast, we locate and map features in only
one variant and step by step transfer the mapping to other variants.

Several frameworks of migrating cloned variants were proposed,
for example by Rubin et al. [34] and Martinez et al. [28], which ab-
stract conceptual activities, e.g., similarity detection, from concrete
techniques, e.g., clone detection. Similarly, the steps of our process
are also independent from specific techniques or tools. In addition
to presenting a process, we also provide an implementation of that
process, and demonstrated its feasibility on a case study.

Ziadi et al. [48] propose an algorithm to identify feature candida-
tes in legacy variants by processing structural models of those vari-
ants. After manual filtering of the feature candidates, a feature mo-
del can be built. While their algorithm is likely to reduce the amount
of manual work compared to our approach, it is programming-
language dependent whereas the clone detector we use is not. It
would be interesting future work to compare our feature location
approach and theirs on the ApoGames.

SPLC ’17, September 25-29, 2017, Sevilla, Spain Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich

7 CONCLUSION
Identifying and mapping features in cloned legacy systems is an
expensive but important task, for instance, to facilitate the mainte-
nance of these systems or to extract a product line. We proposed
a semi-automatic process to reverse-engineer commonalities and
variabilities in such systems incrementally. Furthermore, we intro-
duced a visualization approach to support developers during this
process. The results of our evaluation show that our process is able
to identify meaningful features and can provide the basis for, or
improve, other approaches, for instance, product line extraction
and automatic refactorings.

In the future, we aim to extend our prototype to support direct
mappings to the source code, enable different views, and improve
its integration into other tools. Additionally, we want to provide
an integrated environment for our whole process to guide users
during their analysis. Integrating our automated refactorings that
migrate mapped features accordingly can extend our approach.
With these tools, we will conduct additional case studies especially
in industrial contexts to investigate their practical suitability.

ACKNOWLEDGMENTS
This research is supported by DFG grants LE 3382/2-1, SA 465/49-1,
and Volkswagen Financial Services AG.

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines. Springer.
[2] Sven Apel and Christian Kästner. 2009. An Overview of Feature-Oriented Soft-

ware Development. JOT 8, 5 (2009), 49–84.
[3] Wesley K. G. Assunção and Silvia R. Vergilio. 2014. Feature Location for Software

Product Line Migration: A Mapping Study. In SPLC. ACM, 52–59.
[4] Veronika Bauer and Benedikt Hauptmann. 2013. Assessing Cross-Project Clones

for Reuse Optimization. In IWSC. IEEE, 60–61.
[5] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,

Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In VAMOS. ACM, 7:1–7:8.

[6] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. 1993. The Concept
Assignment Problem in Program Understanding. In ICSE. IEEE, 482–498.

[7] Lianping Chen and Muhammad Ali Babar. 2011. A Systematic Review of Evalua-
tion of Variability Management Approaches in Software Product Lines. IST 53, 4
(2011), 344–362.

[8] Paul C. Clements and Charles W. Krueger. 2002. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. Software 19, 4 (2002),
28–30.

[9] Paul C. Clements and Linda M. Northrop. 2001. Software Product Lines: Practices
and Patterns. Addison-Wesley.

[10] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley.

[11] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In VAMOS. ACM, 173–182.

[12] Florian Deissenboeck, Elmar Juergens, Benjamin Hummel, Stefan Wagner, Be-
nedikt Mas y Parareda, and Markus Pizka. 2008. Tool Support for Continuous
Quality Control. Software 25, 5 (2008), 60–67.

[13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. SMR 25, 1 (2013),
53–95.

[14] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In CSMR. IEEE, 25–34.

[15] Slawomir Duszynski. 2010. Visualizing and Analyzing Software Variability with
Bar Diagrams and Occurrence Matrices. In SPLC. Springer, 481–485.

[16] Slawomir Duszynski, Jens Knodel, and Martin Becker. 2011. Analyzing the Source
Code of Multiple Software Variants for Reuse Potential. InWCRE. IEEE, 303–307.

[17] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to a
Product Line. In SANER. IEEE, 316–326.

[18] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-And-Own with Systematic Reuse for Developing
Software Variants. In ICSME. IEEE, 391–400.

[19] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In SPLC. ACM.

[20] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. 2009. CloneDe-
tective - A Workbench for Clone Detection Research. In ICSE. IEEE, 603–606.

[21] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spen-
cer Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report. SEI, CMU.

[22] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. 2014. Variability
Mining: Consistent Semi-Automatic Detection of Product-Line Features. TSE 40,
1 (2014), 67–82.

[23] Rainer Koschke, Pierre Frenzel, Andreas P. Breu, and Karsten Angstmann. 2009.
Extending the ReflexionMethod for Consolidating Software Variants into Product
Lines. SQJ 17, 4 (2009), 331–366.

[24] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In PFE. Springer, 282–293.

[25] Jacob Krüger. 2017. Lost in Source Code: Physically Separating Features in Legacy
Systems. In ICSE. IEEE, 461–462.

[26] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In SPLC.
ACM, 354–361.

[27] Miguel A. Laguna and Yania Crespo. 2013. A Systematic Mapping Study on
Software Product Line Evolution: From Legacy System Reengineering to Product
Line Refactoring. SCICO 78, 8 (2013), 1010–1034.

[28] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. 2015. Bottom-Up Adoption of Software Product Lines: A Generic and
Extensible Approach. In SPLC. ACM, 101–110.

[29] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2015.
Where do Configuration Constraints Stem From? An Extraction Approach and
an Empirical Study. TSE 41, 8 (2015), 820–841.

[30] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with Variantsync. In SPLC. ACM, 329–
332.

[31] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and Eva-
luation of Code Clone Detection Techniques and Tools: A Qualitative Approach.
SCICO 74, 7 (2009), 470–495.

[32] Julia Rubin and Marsha Chechik. 2013. A Framework for Managing Cloned
Product Variants. In ICSE. IEEE, 1233–1236.

[33] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
InDomain Engineering: Product Lines, Languages, and Conceptual Models. Springer,
29–58.

[34] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing Cloned
Variants: A Framework and Experience. In SPLC. ACM, 101–110.

[35] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Ma-
naging Forked Product Variants. In SPLC. ACM, 156–160.

[36] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz
Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software
Diversity: State of the Art and Perspectives. STTT 14, 5 (2012), 477–495.

[37] Klaus Schmid and Martin Verlage. 2002. The Economic Impact of Product Line
Adoption and Evolution. Software 19, 4 (2002), 50–57.

[38] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006.
Feature Diagrams: A Survey and a Formal Aemantics. In RE. IEEE, 139–148.

[39] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In ICSE. IEEE, 461–470.

[40] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In ICSME. IEEE, 151–
160.

[41] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund.
2011. Abstract Features in Feature Modeling. In SPLC. IEEE, 191–200.

[42] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Deve-
lopers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study. SMR 25, 11 (2013), 1193–1224.

[43] Zhenchang Xing, Yinxing Xue, and Stan Jarzabek. 2011. CloneDifferentiator:
Analyzing Clones by Differentiation. In ASE. IEEE, 576–579.

[44] Yinxing Xue. 2011. Reengineering Legacy Software Products into Software
Product Line Based on Automatic Variability Analysis. In ICSE. ACM, 1114–
1117.

[45] Yinxing Xue. 2013. Reengineering Legacy Software Products Into Software Product
Line. Ph.D. Dissertation. University of Singapore.

[46] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. 2010. Understanding Feature
Evolution in a Family of Product Variants. In WCRE. IEEE, 109–118.

[47] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. 2012. Feature Location in a
Collection of Product Variants. In WCRE. IEEE, 145–154.

[48] Tewfik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva, and Mikal Ziane. 2012.
Feature Identification from the Source Code of Product Variants. In CSMR. IEEE,
417–422.

	Abstract
	1 Introduction
	2 Background
	2.1 Variability Modeling
	2.2 Feature Location
	2.3 Code-Clone Detection

	3 Mapping Features in Legacy Systems
	3.1 Problem Statement and Requirements
	3.2 Mapping Process

	4 Visualization Concept
	5 Evaluation
	5.1 Tooling
	5.2 Subject Systems and Reference Study
	5.3 Research Questions
	5.4 Methodology
	5.5 Results
	5.6 Discussion
	5.7 Threats to Validity

	6 Related Work
	7 Conclusion
	References

