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Abstract

Software product lines can be implemented with different

techniques. Those techniques can be grouped into annotation-

based and composition-based approaches, with complemen-

tary strengths and weaknesses. A combination seems useful

to utilize benefits of both groups but using two techniques in

parallel may cause new problems. To our knowledge, there is

no approach that integrates composition into an annotation-

based approach or vice versa. We propose the use of an

extended preprocessor to introduce physical separation of

concerns similar to feature-oriented programming. In this

paper, we i) present a preliminary implementation that inte-

grates composition into annotation, ii) analyse its benefits

and shortcomings, and iii) discuss implementation and tool-

ing. Overall, we enable developers to keep on using familiar

preprocessors but also to benefit from composition. Finally,

we show the potential of our approach.

Categories and Subject Descriptors D.3.4 [Processors]:

Preprocessors; D.3.3 [Language Constructs and Features]:

Modules, packages; D.2.13 [Reusable Software]: Domain

engineering

Keywords software product line, composition, annotation,

feature orientation, preprocessor

1. Introduction

Software product lines are a concept to develop similar

programs from a common code base, utilizing systematic

reuse [2, 10, 39]. Different variants are described by their

features that represent characteristics of a system [2]. In

particular, features specify commonalities and variability

within the product line. Developers select a valid set of

features to configure and customize a variant. By combining

reuse and variability, product lines enable companies to apply

mass-customization and promise several benefits, such as

reduced costs and faster time to market [2, 39].

For the implementation of product lines, several tech-

niques exist [2, 18], for instance feature-oriented program-

ming [40] or preprocessor directives [23]. They all have ben-

efits and limitations that often complement each other [2, 22,

24]. The underlying mechanisms follow similar ideas and

can be grouped in two classes. Annotation-based approaches

separate features only virtually. Variability is annotated in

the code base and removed during instantiation. In contrast,

composition-based approaches physically separate features,

using different modules that are composed during instantia-

tion. To utilize the complementary benefits, Kästner and Apel

[22] propose to combine both approaches. They focus on the

idea of introducing an additional implementation technique

on top of preprocessors. In the following, we refer to this as

combined approach that adds a new implementation layer.

We illustrate the context of feature-oriented implementa-

tion techniques in Figure 1. In practice, composition-based

approaches are rarely used [2, 22, 23]. Companies fear effort

and risks, especially, as they already use annotations to en-

able variability [2, 19, 22, 34]. Because composition-based

approaches will hardly establish in industry, combinations

of both techniques also seem to be less interesting for prac-

tice. Hence, to introduce composition in practice it is more

promising to improve annotations.

Our approach, Feature Compositional PreProcessor (Fea-

tureCoPP), enables physical separation of concerns for pre-

processors. Such a technique is relevant for practice as it

enables composition for a familiar approach. We are aware

of several scenarios in which our approach can be useful.

For instance, refactoring of annotated product lines to utilize,
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Figure 1: Feature-oriented implementation techniques.

or to migrate towards, composition. Another scenario, is to

adopt product lines from legacy systems (the extractive ap-

proach [27]) [22]. Overall, we lower the adoption barrier [9]

for composition-based approaches.

In this paper, we present an integrated implementation

concept that introduces composition in an annotation-based

approach. More precise, our proposal is to refine preproces-

sors to support physical separation of concerns similar to

feature-oriented programming. With an integrated approach,

developers are able to utilize benefits of annotation and com-

position, applying physical separation if suitable. In detail,

we render the following contributions:

• We introduce concept and idea of integrating composition

in an annotation-based implementation technique.

• We discuss previously reported quality criteria and analyse

them with regard to our approach.

• We provide an overview of a preliminary implementation

and challenges of our approach.

The remaining article is structured as follows. In Section 2,

we introduce annotation-based and composition-based imple-

mentation approaches. Afterwards, we present our idea and

the variability that it enables in Section 3. Then, we analyse

quality criteria for our approach in Section 4 and discuss a

preliminary implementation and its problems in Section 5.

Thereafter, we provide a brief overview of related work in Sec-

tion 6 and conclude in Section 7.

2. Implementation Approaches

Software product lines can be implemented with several

techniques. In the following, we provide a brief introduction

of annotation-based and composition-based approaches.

2.1 Annotation-Based Implementation

Annotation-based approaches mark code that belongs to a

feature accordingly [2]. Code mapped to non-selected fea-

tures is either removed during compilation or ignored at run-

time. This way, only a single code base is necessary and

includes all variable code. In Figure 2 we illustrate an anno-

tated Hello World example provided in FeatureIDE [30].

Figure 2a shows the implementation of different features.

The variable code is encapsulated in if-end comments of

1public class Main {
2public static void main(String [] args){
3/*if[Hello]*/
4System.out.print("Hello");
5/*end[Hello]*/
6/*if[Beautiful]*/
7System.out.print(" beautiful");
8/*end[Beautiful]*/
9/*if[Wonderful]*/
10System.out.print(" wonderful");
11/*end[Wonderful]*/
12/*if[World]*/
13System.out.print(" world!");
14/*end[World]*/
15}
16}

(a) Basic implementation of annotation-based variability.

1public class Main {
2public static void main(String [] args){
3System.out.print("Hello");
4System.out.print(" beautiful");
5System.out.print(" world!");
6}
7}

(b) Processed variant for features Hello, Beautiful, and World.

Figure 2: Annotated code a) in implementation and b) after

instantiation using Munge.

the Munge1 preprocessor. We can generate different variants

by removing unselected features (e.g., Hello, Beautiful,

Wonderful, or World) [18]. The result is a single code base

as we display in Figure 2b.

There are several annotation-based implementation tech-

niques, such as the C preprocessor, XVCL [20], or Spoon [38].

Especially, preprocessors are commonly used in industrial

product lines [2, 22, 34]. This can be explained with their

simplicity, flexibility, and that some programming languages

include them [2]. For instance, the C preprocessor is one of the

most successful variability mechanisms in open-source and

industry [19]. However, there are several disadvantages, such

as scattering and tangling of feature code, or missing, since

not intended, physical separation of concerns [2, 19, 22, 34].

In our work, we aim to extend the existing idea of preproces-

sors to support composition.

We remark that we use Munge for our examples due to

availability and simplicity. In contrast, our further analysis is

based on the C preprocessor mainly for two reasons. First, it

provides far more functionality. Second, the C preprocessor

and its usage are already discussed in several works.

2.2 Composition-Based Implementation

Composition based approaches separate feature code phys-

ically, excluding them from the basic implementation [2].

Thus, several modules exist that specify more detailed func-

tionality of a program. Those modules are composed to in-

stantiate a customized variant. In Figure 3 we show a compo-

1 https://github.com/sonatype/munge-maven-plugin, 30.07.2016
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1 public class Main {
2 protected void print() {
3 System.out.print("Hello");
4 }
5 public static void main(String [] args){
6 new Main().print();
7 }
8 }
9 public class Main {

10 protected void print(){
11 original ();
12 System.out.print(" beautiful");
13 }
14 }
15 public class Main {
16 protected void print(){
17 original ();
18 System.out.print(" wonderful");
19 }
20 }
21 public class Main {
22 protected void print() {
23 original ();
24 System.out.print(" World!");
25 }
26 }

(a) Basic implementation of composition-based variability.

1 public class Main {
2 private void print__wrappee__Hello () {
3 System.out.print("Hello");
4 }
5 private void print__wrappee__Beautiful () {
6 print__wrappee__Hello ();
7 System.out.print(" beautiful");
8 }
9 protected void print() {

10 print__wrappee__Beautiful ();
11 System.out.print(" World!");
12 }
13 public static void main(String [] args) {
14 new Main().print();
15 }
16 }

(b) Composed variant for features Hello, Beautiful, and World.

Figure 3: Compositional code a) in implementation and b)

after instantiation using AHEAD.

sitional Hello World example from FeatureIDE. Figure 3a

illustrates the implementation of different features. Variable

code is physically separated in classes that refine others us-

ing the AHEAD approach [4] for feature-oriented program-

ming [40]. Selecting a valid configuration results in a com-

posed program as we show in Figure 3b. Even then, most

approaches separate the variability in some kind, for instance

methods as in this example.

Besides feature-oriented programming, several other

approaches exist, for instance aspect-oriented program-

ming [25] or frameworks [2]. In this paper, we aim to utilize

the idea of feature orientation: physically separate and com-

pose variability. Still, there are some disadvantages compared

to annotations. For example, the possible granularity of

variable code is coarser, programming languages require

extensions, and composition-based approaches are rarly used

in practice [2, 22, 23].

3. Compositional Annotations

Combining annotation-based and composition-based ap-

proaches promise to utilize advantages of both [22]. While

some studies suggest to introduce composition upon an-

notations [5, 22, 24], our goal is to develop an integrated

technique. In this section, we argue that an extension of a pre-

processor to support composition is reasonable and provides

several benefits. Furthermore, we describe how variability

can be implemented.

3.1 Motivation and Idea

Composition can be introduced into preprocessors by using

an additional implementation technique. However, this solu-

tion implies several challenges, for example:

• A non-integrated compositional technique is used and,

thus, adds a new implementation layer. This introduces

additional complexity and requires adapted tooling [22].

• Introducing a new approach for compositional variability

is error-prone and challenging [5].

• Developers and companies are familiar with preproces-

sors but not with composition. Hence, they often fear to

introduce such approaches despite their benefits [24].

The motivation of our idea is to enable composition

without introducing a new implementation technique to

overcome those challenges. To the adoption of our approach

we define four goals. First, our approach has to be minimal-

invasive on implementation level. As a result, companies

can reuse all of their code. They only have to separate

features and map them to their desired positions. Second,

IDE integration shall be straight-forward. Without tools,

companies can hardly introduce new development processes

in a structured way. Third, our implementation technique is

language independent. Thus, we can apply our preprocessor

on any programming language or use it on top of existing

approaches. Finally, we aim to use a simple implementation,

such as preprocessors. As a result, companies can decide if

and when they want to use new annotations while retaining

their current implementation. More important, we do not

want to add a third implementation layer as a combination

would do.

Overall, our idea is similar to macros in the C preprocessor

and aspect-oriented programming [25]. However, both have

shortcomings and conflict our goals:

• Macros

Code analysis: With macros it is challenging to en-

able code analysis [13]. While a specific variant can

be tested, family-based analyses on domain artefacts

are problematic. Some examples for validations are

syntax and type checking, static analysis, or model

checking [48]. With our approach we can still validate

source code.

Textual replacement: Macros work on textual level, re-

placing labels with a defined text. This leads to several
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problems, for instance cascading calls or the usage of

undefined statements [13]. Additional language depen-

dent tooling is required to address those points.

• Aspect-oriented programming

Language independence: Aspects require adopted ex-

tensions for each programming language [2]. In con-

trast to our goals, this technique is not language inde-

pendent.

Fragile-pointcut problem: Fragile pointcuts are a major

problem of aspect-oriented implementations [26]. For

instance, if we rename a base method without address-

ing the according advice, it will not be refined. Also,

adding a method with the same name as another one, it

will also be refined even if not intended. Our approach

can overcome those problems.

• Both

Minimal-invasive refactoring: Macros are an invasive

technique, as we have to switch from code to tex-

tual level. Aspect-oriented programming requires new

pointcuts, advices, and code structure, for instance con-

sistent renaming. In contrast to both, our approach can

extract existing code as it is and label an according

position. No further changes are necessary.

We illustrate a basic example of our idea in Figure 4.

There, we provide a preliminary implementation but no final

solution. In this example, we use naming to identify features

in different modules. As we display in Figure 4a, we are able

to apply preprocessor annotations as before. This way, fine-

grained adaptations, which are hard or even impossible to

separate physically, are supported [22–24]. While fine granu-

larity in extensions is rare, it still occurs. Even some coarser

extensions are difficult to address with compositions [31].

Also, not all features are suited for physical separation [11].

Despite those points, it is still beneficial to enable compo-

sition by modularization [36]. For instance, developers im-

plement similar ideas by separating functionality in different

files as alternative to preprocessor annotations [34]. In Fig-

ure 4a we show a basic implementation example for our ap-

proach. We are able to extract and later compose the features

Beautiful and Wonderful. In this preliminary example,

we use the key word include to specify the correct context

of the variable code. This is similar to other approaches that

use point-cuts or refine specific methods. Hence, we enable

physical separation of concerns using preprocessors.

An important point of our idea is to apply inlining of vari-

able code [49]. Thus, the processed code, as we illustrate

in Figure 4b, is identical to preprocessors, without additional

statements or method calls. Compositional approaches that

still separate refinements after composition also cause prob-

lems with scope-sensitive statements [5]. Inlining enables us

to extract not only methods that are later refined but also small

code fragments. Hence, we can resolve problems caused by

scope-sensitive statements. Another benefit of our concept

1public class Main {
2public static void main(String [] args){
3/*if[Hello]*/
4System.out.print("Hello");
5/*end[Hello]*/
6/*if[Beautiful] include hook_beautiful */
7/*if[Wonderful] include hook_wonderful */
8/*if[World]*/
9System.out.print(" world!");
10/*end[World]*/
11}
12}
13public class Beautiful {
14public void hook_beautiful () {
15System.out.print(" beautiful");
16}
17}
18public class Wonderful {
19public void hook_wonderful () {
20System.out.print(" wonderful");
21}
22}

(a) Idea of compositional annotations.

1public class Main {
2public static void main(String [] args){
3System.out.print("Hello");
4System.out.print(" beautiful");
5System.out.print(" world!");
6}
7}

(b) Processed variant for features Hello, Beautiful, and World.

Figure 4: Preliminary implementation of integrating compo-

sition into an annotation-based approach a) in implementation

and b) after instantiation.

is the ability to reuse the same variable code at different po-

sitions in the code. Our example in Figure 4 only illustrates

refinements of a method. However, due to inlining we can

place the variable code anywhere for example, to introduce a

variable.

In contrast, Batory et al. [4] found that bug fixing in

Jampack, which is similar to inlining [49], is error-prone.

Bugs must be manually propagated backwards to the original

implementation because layer boundaries are not preserved.

Still, for our approach it seems feasible to support fixes with

tooling. Based on annotations, mapping towards the original

implementation can be eased and bug fixing partly automated.

While inlining is rarely used in compositional approaches,

we argue that its advantages are useful for our approach.

In this section, we described and illustrated our basic

idea on a preliminary implementation. Next, we address how

we aim to combine annotation-based and composition-based

variability on implementation level.

3.2 Implementing Variability

In this section, we discuss how to integrate composition

into preprocessors. We argue, that our approach is capable

to combine and implement variability mechanisms of both

techniques. In addition, we are able to utilize variable code

similar to object-oriented methods and integrate the same
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code several times. This is not supported, neither by existing

preprocessors nor feature-oriented programming.

Variability of Preprocessors Preprocessors enable develop-

ers to use fine-grained adaptations on the level of single state-

ments (compare with Figure 2) or even letters [2, 23]. The

annotations are normally referred to as #ifdef statements.

However, this summarizes several possible statements, for

instance to include new files (#include), introduce macros

(#define), or provide alternatives (#else) in the C prepro-

cessor [19]. Some of those concepts cannot be implemented

the same way with composition-based approaches. As we

keep using a preprocessor to implement variability, we are

able to apply all of those functionalities without introducing

new concepts.

Still, those advantages come at a price. Especially, tan-

gling, scattering, or nesting of variable code can be chal-

lenging and easily result in errors [15]. There are several

approaches to escape this “#ifdef hell” [15, 33], for instance

by hiding variability [3]. Another idea is to refactor the fea-

tures into compositional modules [32]. However, this is error-

prone and not a suitable approach for all annotations due to

limitations of existing composition-based approaches [5, 32].

We follow the same idea but aim to extend the functional-

ity of preprocessors to support composition directly. Hence,

we ease refactorings and spare an additional implementation

layer.

Introducing Compositional Variability With feature-ori-

ented programming, existing code is refined with feature

modules (compare with Figure 3) [2]. Current implemen-

tation techniques refer to a specific class and method that

they extend and specify which way they are integrated, for

instance by overriding. Similar to this idea and the #include

instruction of preprocessors, we propose to use statements

that enable fine-grained extensions. In contrast to existing

approaches, we inline physically separated code (compare

with Figure 4), which enables us to introduce more detailed

variability. This has several benefits in contrast to introducing

an additional implementation layer:

• We are able to separate and later inline feature code of

any length at any position. Thus, we are independent of

predefined extension points but can introduce them ad-hoc

when necessary.

• We do not need to introduce a new concept but use

preprocessor annotations to physically separate features.

This decreases the complexity of the implementation and

is easier to use.

• We can reuse the same feature module at several points

by including it again. This is similar to object-oriented

methods and can decrease the code size if the same

functionality is required multiple times.

• We provide the ability to further separate feature interac-

tions and inline them. Therefore, compared to composi-

tional approaches, we can reduce the number of deriva-

tives and duplicates that are otherwise necessary to imple-

ment interactions. This does not solve all problems but

provides additional solutions.

• We enable new alternatives to replace complicated or error-

prone code constructions. For instance, we can replace

goto statements that are often considered harmful [12]

and are challenging to extract into composition [5].

Summarized, we are able to implement variability in

several granularities and styles. In Figure 5 we conceptually

illustrate some examples. Centralized, we display a basic

code artefact, that is refined with three different features,

Orange, Green, and Blue, marked accordingly. Code that is

not variable is displayed in grey. Green only implements an

additional block within the existing code. Identical to existing

preprocessors, we encapsulate its variability with a start and

end statement. During instantiation the code is removed if

Green is not selected. Feature Orange implements additional

code in two separated feature modules. It refines existing

code at the position it is called and provides a new class

that did not exist before but is required for the feature.

During instantiation, the first segment is inlined while the

second one is additionally included into the variant. Blue

illustrates some more capabilities of our approach. It defines

a refinement that is used at different positions with the same

implementation. Most existing approaches require separated

code for each call or workarounds. However, we are able to

inline the code at the desired position, utilizing a similar idea

as methods in object-oriented programming. Thus, we can

refine other features, which we illustrate by the call of Blue in

Orange. We could also separate this feature interaction into

an additional module and define calls to this one. Those are

only conceptual examples of the possibilities we can utilize

with our approach.

In this section, we presented our idea to introduce com-

position into a preprocessor. We illustrated several benefits

that can ease feature-oriented development. Within the next

section, we analyse our proposed approach with regard to

several quality criteria.

4. Discussion

In this section, we discuss different characteristics of our

implementation approach. Our selection is based on previ-

ous discussions [22, 45] and quality criteria [2, 18] that fo-

cus on feature-oriented software development. We address

preplanning, adoption, separation of concerns, traceability,

information hiding, granularity, uniformity, and language

independence. Furthermore, we discuss different aspects of

understandability regarding our approach. Finally, we pro-

vide a brief overview to summarize our analysis.

4.1 Analysis

Several characteristics can be used to evaluate and compare

feature-oriented implementation techniques [2]. In the follow-

ing, we focus on preprocessors and feature-oriented program-
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Base

//base_code

/RVifV[Green]VR/

VVVVV//codeVGreen

/RVendV[Green]VR

//base_code

/RVifV[Blue]VinlcudeVh_blueVR/

/RVifV[Orange]VinlcudeVh_orangeVR/

//base_code

FeatureVModuleVBlue

Inline
Instantiation

CustomizedVVariant

//codeVOrangeVVVV

VVfunction_c1;

//codeVOrange

//codeVGreen

//codeVBlue

publicVclassVC1

{

VVpublicVvoidVfunction_c1V.}VV

VV{

VVVVVVV//codeVC1

VVVVV

V.}V

}

//codeVBlue

//base_code

/RVifV[Green]VR/

VVVVV//codeVGreen

/RVendV[Green]VR/

//base_code

/RVifV[Blue]VincludeVh_blueVR/

/RVifV[Orange]VincludeVh_orangeVR/

//base_code

publicVclassVBlueV{

VVpublicVvoidVh_blueV.}V{

VVVVVVV//codeVBlue

VV}

}

//codeVOrangeVVVV

VVfunction_c1

//codeVOrange

//codeVGreen

//codeVBlue

publicVclassVC1V{

VVpublicVvoidVfunction_c1V.}V{

VVVVVVV//codeVC1

VVVVV

VV}V

}

//codeVBlue

FeatureVModuleVOrange

VVVVVVV/RVifV[Blue]VinlcudeVh_blueVR/

V.}V

}

Require

publicVclassVOrangeV{

VVpublicVvoidVh_orangeV.}V{

VVVVVVV//codeVOrangeVVVV

VVVVVVVVVfunction_c1

VVVVVVV//codeVOrange

VV}

}

VVVVVVV/RVifV[Blue]VincludeVh_blueVR/

publicVclassVC1V{

VVpublicVvoidVfunction_c1V.}V{

VVVVVVV//codeVC1

VVVVV

VV}V

}

Figure 5: Examples of refinements with our approach on a conceptual level.

ming. Based on previous discussions [22], we also compare

a combination of both with our integrated approach.

Preplanning Effort Product-line engineering always re-

quires preplanning, independently of the used approach and

implementation [2]. Still, most techniques try to reduce the re-

quired effort by easing later introduction of variability. Using

preprocessor annotations, our approach allows to introduce

and add features at any time with low effort [2, 22]. For in-

stance, we can easily implement a new feature Amazing in

our example in Figure 4. There would be no preplanning

required to add the necessary code with annotations. Still,

large features that introduce several adaptations require plan-

ning, which cannot be overcome with any implementation

technique. In addition, feature interactions must always be

designed carefully. However, our approach enables ad-hoc

separation of interacting code and, thus, can ease their design.

Adoption Adoption summarizes the necessary effort and

industrial motivation to introduce variability. Therefore, this

characteristic is related to preplanning effort. Preprocessors

are already well-known in some programming languages and

are easy to introduce. In contrast, feature-oriented program-

ming (and other composition-based techniques) are challeng-

ing and seldom used in industry [2, 23]. Therefore, combining

or integrating both approaches can pay off [22]. Companies

can use lightweight annotations to initiate variability at lower

risks [9]. Later, the code might be refactored into separated

modules using a compositional approach. We see an addi-

tional benefit of our integrated approach as it utilizes an

already existing technique. The code must only be extracted

into modules and marked accordingly but does not require

additional concepts, which eases the transition and lowers

adoption efforts.

Separation of Concerns Separation of concerns describes

a fundamental principle of software design [37]. Features

are the concerns of primary interest in product-line engineer-

ing [2]. Implementing multiple features in one module is

sometimes seen as beneficial [18]. However, their separation

into different code artefacts can improve maintenance and

evolution of a program [2]. This modularization is intended

in most composition-based but not in annotation-based ap-

proaches [22]. Feature separation in our approach depends on

the implementation used by developers. They can either use

the well known #ifdef statements or introduce feature mod-

ules that are later inlined. Our concept allows the separation

of all variable code (even if not always useful). As a result,

modularization is even stronger than in many composition-

based approaches. For instance, crosscutting concerns can

additionally be separated by modularizing feature interac-

tions. Still, scattering and tangling are not removed and are

still present as labels remain at the desired positions.

Traceability Feature traceability describes the mapping

between a feature and its code artefacts [2]. Composition-

based approaches support tracing directly as they separate

feature code into different modules [22]. Annotations by

themselves do not provide traceability but this can be enabled

with tooling as all features are marked accordingly [2, 22]. In

our approach, variable code does not have to be physically

separated. Instead, annotations can be inlined, increasing

scattering and tangling. Thus, traceability is not enforced

as in compositional approaches. Still, our approach can

perform better than combinations of annotation-based and

composition-based implementations. For such cases, two

different separation styles must be mapped. In contrast, we

only use annotations to mark features accordingly. Hence,

tracking is simple and existing tools might be able to support

traceability of variable code without further extensions.

Information Hiding Information hiding means to separate

a module’s implementation by only providing an externaly

visible part, an interface [2]. While some implementation

techniques, such as frameworks or components, support infor-

mation hiding well, others do not. Schröter et al. [43] propose

feature-context interfaces as implementation of interfaces for
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FOP PP Combined Our approach

Preplanning Effort High Low Low Low

Adoption G##       

Separation of Concerns  G# ##  #  G#

Traceability    G#  G#  G#

Information Hiding  # ##  # G##

Granularity G##       

Uniformity     ##  G#

Language Independence  G#  G#  G#  G#

  very good,  G#good,  #medium, G##poor, ##no support

Table 1: Comparing feature-oriented programming (FOP), preprocessors (PP), and their combination [2, 22], with our approach.

features. This enables information hiding for composition-

based implementation to a certain degree. Our approach uses

inlining to include variable code and, hence, does not support

information hiding in such cases. Especially, the proposed

fine-grained separation partly prevents the usage of interfaces.

Still, we are able to implement interfaces and include them

if necessary but this heavily depends on the developer and

is not enforced. In conclusion, information hiding is weaker

than in compositional approaches.

Granularity Granularity describes the level on which vari-

ability is implemented, either coarse-grained (on top of a

hierarchical structure) or fine-grained (any lower level) [2].

Introducing fine-grained adaptations with compositional ap-

proaches is possible but normally includes replication of

code. Our approach can implement fine-grained variability

with low effort using #ifdef statements. For instance, we

can implement the feature Amazing with annotations, instead

of using a module as before. Later, fine-grained changes

can be separated and migrated towards a composition-based

approach [22]. Therefore, disciplined annotations [32], for

example on method granularity, may be helpful [44]. Never-

theless, finer and undisciplined annotations are used in prac-

tice. That is why our approach does not enforce disciplined

annotations and supports all levels of granularity.

Uniformity The implementation of a feature results in a

set of associated software artefacts. Uniformity describes the

concept that all those artefacts are similar encoded, regardless

of which technique is used [2, 4]. Both, preprocessors and

feature-oriented programming, define a set of rules and

enforce a common style. However, an approach that combines

those two techniques enables developers to use different

encodings, #ifdef statements and modules, at the same time.

Hence, uniformity is not well supported. In contrast, our

approach integrates composition into annotations. We only

use a single encoding similar to preprocessors. Therefore,

we argue that our approach supports uniformity on a similar

level as existing preprocessors. Due to the introduction of

composition, an additional implementation layer, uniformity

is slightly weakened.

Language Independence Preprocessors work directly on

textual level and are independent of a specific language.

Still, supporting tools, for instance for syntactical testing,

require knowledge on the basic implementation and must be

adapted. Same accounts for feature-oriented programming

that depends on its implementation language but can be

adopted with little effort [1]. For a combination of both

approaches, the same level of language independence can

be achieved but may require more effort [22]. Thus, our

approach still utilizes preprocessors and is also completely

independent.

We summarize and compare our results in Table 1. A com-

bination of annotation and composition provides several bene-

fits [22]. In particular, we can benefit from a better separation

of concerns, fine-grained extensions, and easier adoption.

Still, the selection of the most promising approaches and how

to combine those has also impact. As we illustrated, we argue

that our integrated approach may perform slightly better in

some characteristics than a pure combination. For instance,

we further improve physical separation or uniformity. We

also enable new possibilities in reusing variable code and

remove an implementation layer compared to a combination

of annotation and composition. However, our approach also

has shortcomings compared to annotation, composition, and

combinations. For instance, information hiding is challeng-

ing.

4.2 Understandability

Understandability is an important factor because develop-

ers spend most time during maintenance with understanding

code [47], which is causing most costs in software develop-

ment [8]. In particular, correct identification and removal of

bugs becomes problematic with increasing variability [35].

While understanding is often discussed, it is also challeng-

ing to assess. For example, a common assumptions is that

separation of concerns improves comprehension [45]. How-

ever, this is not empirically evaluated, mainly due to the fact

that such investigations are difficult and only possible in a

small scope, especially for feature-oriented software devel-

opment [14]. In the following, we preliminary discuss and

compare our approach with existing techniques. We focus on

understandability of annotations and code smells.
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Understanding Annotations Preprocessors are often con-

sidered as a bad concept in research. Annotations are scat-

tered, tangled, and wrongly used. Therefore, the readabil-

ity and understandability of code suffers [18, 29, 34, 46].

Sometimes, this situation is even called “#ifdef hell” [15].

Still, those problems can partly be resolved by using suited

tools [22, 29]. For instance, CIDE [21] enables decomposi-

tion and colouring of annotations to ease understanding. It

is not clear, to which extent feature-oriented programming

can improve this situation. However, some studies found

that virtual and physical separation of concerns can improve

understandability and development tasks [15, 29, 45]. Thus,

while preprocessors by themselves do not support understand-

ability, compositional approaches are slightly improved in

this regard, due to physical separation.

We argue that a combined but not integrated approach

may decrease the understandability compared to solely using

either preprocessors or feature-oriented programming. As we

illustrated before, developers have to handle two different

implementation techniques. This additional layer requires

adapted tooling and disciplined implementation. Overall, it

might be challenging to understand and analyse code that is

separated in different ways.

In contrast, our approach may improve the understanding

compared to pure preprocessors and a combined technique.

The compositional layer is an addition that allows fine-

grained extraction of variability. We are able to ease the

usage of annotations by physically separate features and,

thus, better manage the “#ifdef hell”. This is an improvement

to pure preprocessors. Feature-oriented programming may

perform better as we also introduce new complexity due to

the introduction of composition. As we integrate both layers

into a single implementation technique, our approach should

also perform better than a combination.

Code Smells Another point to address in regard of under-

standability are flaws in design and code, so called code

smells [17]. Fenske and Schulze [16] analyse those code

smells in the context of variable systems. For preprocessors

they introduce the annotation bundle. This smell describes

a large and tangled number of variable statements (annota-

tions) that belong to different features, the “#ifdef hell”. For

example, such implementations are difficult to understand,

require knowledge about several features, and complicate

maintenance. A counterpart is defined for feature-oriented

programming: the long refinement class. In this case, an im-

plementation is refined several times, resulting in additional

method calls. Therefore, introducing new variability is chal-

lenging as developers must analyse all existing refinements

and gain knowledge about their structure.

Combined approaches may improve the handling of those

code smells. We can freely switch between annotation and

composition, depending on the required granularity. Hence,

both introduced smells can be partly resolved by replacing an-

notation with composition and the other way around. Still, as

for not combined approaches the design and implementation

of code highly depends on the discipline of developers.

Overall, it is unclear how the understandability is influ-

enced by our new instructions. Therefore, further investiga-

tions in this regard are necessary. In particular, it might be

interesting whether our approach helps to avoid the “#ifdef

hell”. Compared to our integrated approach, a main benefit

of using annotation or composition solely, or a combination

of both, is the tooling. Existing approaches can rely on well

suited and tested tools that can be used and freely combined.

As we will describe in the next section, we have to improve

and develop new techniques to support our technique.

5. Implementation

The most challenging part for now is the implementation

of our approach. Especially, developing appropriate tools

beyond existing ones, for instance FeatureIDE [30] or

CIDE [21], is a concern. In the following, we categorize

our approach along three dimensions of variability imple-

mentation to sketch the starting point. Afterwards, we briefly

analyse the required tooling and conclude with an analysis of

shortcomings of our approach.

5.1 Dimensions of Variability Implementation

Apel et al. [2] describe three dimensions to classify variability

implementations. Those are binding time, language versus

tool, and annotation versus composition. However, it is

difficult to clearly classify our approach for all categories.

We summarize our classification in Table 2.

Binding time describes at which time-point features are

selected for a variant. We can separate between static, selec-

tion before the program is executed, and dynamic, selection

at runtime, binding [41]. By default, preprocessors support

static binding. However, they can be adopted to support dy-

namic binding [42]. We can imagine to enable a preprocessor

to refactor annotated features to be selectable at runtime,

transforming them to parameter-based variability. Still, this

requires additional implementation effort and planning. Over-

all, we categorize our approach to elementary support static

binding. It might be possible to implement code transforma-

tion to enable dynamic binding to a certain degree.

Language-based approaches host a programming language

that is able to implement features. In contrast, tool-based tech-

niques require external tools for the implementation and con-

figuration of features [2]. Our approach is clearly tool-based.

Preprocessors are already an additional tool and require more

support to adequately manage and map variability.

The whole idea of our approach is to combine annotation

and composition. On the basis, we use an annotation-based

technique and extend it to enable composition. It might be

arguable to still categorize it as annotation-based approach

because we use preprocessors. However, we made strong

points that we support composition on several granularities

and could even apply it completely. In this case, annotations
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Dimension Classification

Binding time Static

Language vs. tool Tool-based

Annotations vs. composition Integrated combination

Table 2: Implementation dimensions [2].

would only describe points at which features are introduced,

similar to other composition-based techniques. Hence, we

argue that we provide an integrated combination of both

approaches.

5.2 Tooling

An important part of software-product-line engineering is the

selection of suitable tools. Managing and mapping variability

from requirements over modelling to implementation and

testing is a challenging task. In the following, we discuss

different steps that are necessary and may require new tools

to use our approach. Especially, we focus on variability

implementation, modelling, and testing.

The first step towards tooling for our approach is to im-

plement a usable preprocessor. Therefore, we can extend an

existing, which might be impractical due to standardisations

and complexity, or develop a new preprocessor. For example,

companies can utilize existing knowledge and just introduce

new annotations. For each new annotation, we have to de-

fine algorithms that compose and inline code accordingly.

Working on textual level seems to be the most suitable ap-

proach. As a result, our approach is independent of a specific

language and can also be used on top of other techniques.

Afterwards, we can enable modelling and mapping of vari-

ability. Preprocessors are a familiar approach and several

tools support them. Still, in practice annotations are fine-

grained, scattered, and nested [15, 31, 32]. Our approach

may increase those factors as we enable further decomposi-

tion. While existing tools, such as FeatureIDE [30], BigLever

GEARS [28], or pure::variants [7], are able to handle mod-

elling and mapping for preprocessors, we still have to in-

troduce our newly defined statements. However, this task

is straight forward. More challenging might be to visualize

all dependencies and interactions that exist within the sys-

tem. For instance, we may require adopted views [32] or use

colouring to separate non-modularized feature code.

Another point to address is correct instantiation and testing

of our approach. One specific tool that can be used for

preprocessors is CIDE [21]. For instance, it checks syntactical

correctness and configurations. While CIDE already supports

fine granularity, we argue that it still needs adoption for

our approach. In particular, we enable physical separation

of concerns even of syntactical wrong code artefacts. For

instance, we can extract a context-sensitive statement, such

as return, without its context. Normally, this would result

in error messages by the IDE. However, due to inlining, the

final product will still work. Thus, we have to introduce new

testing procedures.

Overall, it is clear that we at least must adopt existing

IDEs to support our approach. The first step is to define

and implement a suited preprocessor. While modelling and

mapping seem fairly manageable, we see huge challenges in

testing. In the regard of tooling, existing approaches and their

combinations have a clear advantage.

5.3 Reflection

Considering the implementation, we also reflected on nega-

tive aspects of our approach. In this section, we briefly discuss

some obstacles that we identified. We already discussed oth-

ers, such as understandability or the usage of preprocessors,

previously.

Code Validation Many IDEs are capable to validate the

correctness of implemented source code on syntactical level.

Existing preprocessors have no problem with this because

they only provide additional annotations, similar to comments.

The code can still be validated. Our approach enables the

extraction of modules of any length. For most analysis

existing validations can be used but some are more difficult.

Depending on the implementation, type checking might be

partly achieved but we have to address local variables and

scope-sensitive statements. For instance, we can extract a

single case in a switch. Still, physically separated switch,

case, and break commands are not aware of their scope

until composition. Thus, IDEs will throw error messages. A

first idea we can imagine is some kind of virtual inlining that

enables an IDE to correctly validate the code.

Code Fragmentation Our idea is to enable fine-grained

physical separation of concerns. This can improve several

aspects of feature-oriented software development. However,

utilizing our approach can also result in a huge number of

small code fragments. The overall number of separated mod-

ules can be higher compared to compositional techniques.

An increasing amount of small modules may cause several

problems. First, testing all combinations becomes more chal-

lenging. Second, the fragments must be stored and mapped

to assign them to a specific feature. Third, it might be prob-

lematic to identify loops or recursion within the fragments.

Such problems can be addressed with tooling, consistent de-

velopment styles, or disciplined annotations. Still, it might be

challenging to apply our approach to its fullest extent.

Preprocessor Usage We are aware, that preprocessors

and, thus, our approach are seen as an unclean approach.

Composition-based implementations are often seen as the

better solution because they are integrated into the desired

language. However, such techniques are not established in

industry. Our approach has a far better chance as we extend a

widely used and familiar approach. Hence, we might be able

to increase the industrial awareness of composition-based

software development.

In this section, we addressed the implementation of our

approach. Mainly, we have to address tooling to enable the
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usage in practice. Still, there are some challenges we have to

solve.

6. Related Work

There are some works that focus on the combination of

annotation and composition to some extent. In the following,

we briefly overview a selection of those.

Batory et al. [4] introduce AHEAD, an approach for

feature-oriented development. The proposed jampack com-

poses all refinements into a single code base. This idea is

similar to inlining but the code is not merged [49]. Our ap-

proach does not only compose a single code base but inlines

variable code.

A closely related concept to our idea are classboxes [6].

Classboxes represent modules that are only visible to specific

clients and are inlined on instantiation. However, due to the

used separation only classes and methods can be refined or

added. In contrast to our approach, fine-grained adaptations

are not possible. Furthermore, classboxes are not language

independent.

Kästner and Apel [22] discuss the idea of combining

annotation-based and composition-based approaches. They

also provide examples using AHEAD and CIDE. In contrast

to them, we do not aim to combine two approaches but

integrate composition into a preprocessor. Our approach may

improve some characteristics of feature-oriented software

development compared to their idea.

A formal model for refactorings from annotation to com-

position and vice versa is provided by Kästner et al. [24].

Their case study uses AHEAD and CIDE to illustrate their

model and refactorings on different product lines, for example

Berkeley DB. We aim to extend an existing implementation

technique, the preprocessor, instead of enabling migrations

to different approaches.

Finally, Benduhn et al. [5] provide a case study that

utilizes the idea proposed by Kästner and Apel [22]. They

migrated Berkeley DB, annotated with the C preprocessor,

towards partial composition. While this was possible, they

emphasized that the task is challenging, error-prone, and that

not all physical separations can be achieved easily. Again, our

idea is to remove the third layer of implementation techniques.

As we discussed, we can also solve some of the problems

described by Benduhn et al. [5]. In particular, scope-sensitive

statements are easier to extract.

7. Conclusion

Implementing software product lines can be done in different

ways [2, 18]. While several independent approaches, such

as feature-oriented programming [40] or preprocessors [23]

exist, a combination of annotation and composition can pro-

vide benefits of both [22]. In particular, we can ease the

introduction of composition and extraction of product lines

from legacy applications. Work focusing on this approach

mainly discusses combinations of both approaches using sep-

arated implementation techniques. We argue that integrating

composition into an annotation based approach can provide

additional benefits and solve some problems.

In this work, we described the fundamentals of such a tech-

nique based on preprocessors and feature-oriented program-

ming. We discussed the basic idea and illustrated benefits

of fine-grained annotation-based composition. Furthermore,

we analysed quality criteria and categorizations to put our

idea into context. We overviewed necessary tooling and its

extension. Finally, we concluded that our integrated approach

has some additional benefits but also opens challenges.

In future work, we aim to define and implement a suited

preprocessor. Based on its structure, we will adopt tool

support. While modelling and mapping are already well

supported and can be reused, other parts might be more

challenging. For example, testing becomes more challenging

foremost because we can extract code into syntactically

incorrect modules. Overall, our future work focuses on tool

support for all steps in the software life-cycle. In addition, we

aim to conduct studies to evaluate the characteristics of our

approach.
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