
Extracting Software Product Lines:

A Cost Estimation Perspective

Jacob Krüger1, 2
jkrueger@hs-harz.de

jkrueger@ovgu.de

Wolfram Fenske2

wfenske@ovgu.de
Jens Meinicke2

meinicke@ovgu.de

Thomas Leich1

tleich@hs-harz.de
Gunter Saake2

saake@ovgu.de
1Hochschule Harz (FH) -

University of Applied Sciences
2Otto-von-Guericke-University

Magdeburg

ABSTRACT
Companies are often forced to customize their software prod-
ucts. Thus, a common practice is to clone and adapt existing
systems to new customer requirements. With the extractive
approach, those derived variants can be migrated into a soft-
ware product line. However, changing to a new development
process is risky and may result in unnecessary costs. There-
fore, companies apply cost estimations to predict whether
another development approach is beneficial. Existing cost
models for software-product-line engineering focus on devel-
opment from scratch. Contrarily, the extractive approach is
more common in practice but specialized models are missing.
Thus, in this work we focus on product-line extraction from
a set of legacy systems. We i) describe according cost factors,
ii) put them in context with the development process and
cost curves, and iii) identify open challenges in product-line
economics. This way, our work supports cost estimations
for the extractive approach and provides a basis for further
research.

CCS Concepts
•Software and its engineering ! Software product lines;
Risk management;

Keywords
software product line, extractive approach, cost estimation,
investment analysis, risk assessment

1. INTRODUCTION
With increasing demand for customized software, com-

panies are forced to develop multiple variants of the same
system [23, 45, 51]. Software reuse enables an organization to
derive systems from existing artefacts instead of developing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC ’16, September 16 - 23, 2016, Beijing, China

c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4050-2/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2934466.2962731

them anew [35]. To manage and reuse similar products sys-
tematically, software product lines were adopted in software
engineering [2, 36, 45]. Software product lines promise sev-
eral benefits compared to single system development, such as,
mass customization, reduced development and maintenance
e↵ort, and faster time to market [2, 13, 33, 45].

Despite such benefits, companies often apply single-system
development because they fear costs and risks, face time
limitations, or are unaware of suitable approaches [19, 32,
51, 54]. Instead, they apply unsystematic reuse, using the
clone-and-own approach, to derive customized variants [2,
19, 23, 32]. This strategy describes cloning and modifiyng of
a legacy system to adopt it to new customer needs [22, 52].
After cloning, a new and separated variant exists and can be
assigned to developers [19, 50, 51, 56]. Summarized, clone-
and-own is an opportunistic ad-hoc strategy to reuse software
[13, 41, 52]. However, with the growth of variants, costs of
development, maintenance, and customization increases [2,
50]. Due to such reasons, a company may consider migrating
its cloned variants towards a product line. In practice this
scenario is more common than developing a software product
line from scratch [4, 20, 45, 51].

Developing new products is riskier than selecting successful
variants that already exist. Thus, as legacy systems already
exist, less market and risk analysis are required. Still, before a
company migrates towards software-product-line engineering,
it must estimate costs and benefits to justify the paradigm
change [41]. There exist multiple cost models for product
lines, such as the approaches of Poulin [47], SIMPLE [7, 8, 14],
or COPLIMO [10]. However, re-engineering legacy systems
is not considered in those models [34]. To address this gap,
we make the following contributions:

• We analyse cost functions defined in SIMPLE and
extend them with regard to migration of legacy systems.
Thus, we identify additional cost factors, that must be
considered in an according cost model.

• We put these cost factors in a systematic context with
cost curves and the software-product-line development
process. By doing this, we aim to show coherences of
costs for software-product-line extraction.

• We identify and overview open challenges on cost es-
timations for the extractive approach. This way, we
want to define a basis for further research in this area.

354

2. BACKGROUND
To describe cost estimations for the extractive approach,

two topics are of interest. First, the extraction process for
software product lines to identify specific costs. Second, the
SIMPLE cost model that we refine for this extraction process.

2.1 Extracting Software Product Lines
There are essentially three approaches to develop software

product lines [36]:

• Proactive - A product line is designed and implemented
from scratch.

• Reactive - A small set or only one product is developed
for systematic reuse. Later on, new features are added
to extend the scope.

• Extractive - A product line is developed from a set of
legacy systems. Common and variable parts of the ex-
isting implementations are re-engineered into reusable
assets.

Proactive development is often considered to be the optimal
strategy towards a product line [4, 12, 51]. In an empirical
study, Berger et al. [4] asked for adoption strategies applied
by the participating companies. 35.5% of the participants
developed a product line proactive whereas the extractive
approach was already used by 50%. One reason for this is
that costs for extracting a product line is normally smaller
than developing one from scratch [6, 12, 51]. Hence, proactive
development is often not reasonable if cloned variants exist.

For the extractive approach, there are essential tasks dur-
ing which costs occur [2, 36, 41]. First, commonalities and
di↵erences of legacy systems are analysed for feature identifi-
cation. This can be supported by feature location techniques
and tools [3, 18, 49]. After features and their dependencies
are described, a feature model can be derived to describe
variability of the product line [16]. Second, the identified
features are re-engineered into reusable assets. During this
task, it may be possible to reuse artefacts of the legacy sys-
tems. Otherwise, features must be implemented anew. Third,
variability of assets, described by the feature model, must be
implemented with a suitable technique. As result of these
three steps, an extracted software product line exists.

2.2 SIMPLE
When switching to a new development approach, a com-

pany estimates the prospects of success. Cost models are a
helpful means to predict e↵orts and savings. We base our
considerations on the Structured Intuitive Model for Product
Line Economics (SIMPLE) [7, 8, 14], a cost model for soft-
ware product line engineering. It is not a calculation-based
model but provides an overview and descriptions of relevant
costs. For each function values can be determined with a cost
estimation technique, such as, judgement-based, algorithmic
model, or analogies [9].

A company’s situation can be described with a general
scenario [7]:

“An organization has n product lines, each com-
prising a set of products, and s1 standalone prod-
ucts. It wants to have m product lines, each
comprising a (perhaps di↵erent) set of products,
and s2 stand-alone products. Along the way, the
organization intends to add k products or delete
d products.”

From this definition additional scenarios can be derived.
For example, Böckle et al. [7, 8] propose a scenario to ex-
cluded variants from an existing product line. Clements et al.
[14] consider the migration of existing products towards a
product line (the extractive approach). Depending on the
scenario, coherences of the cost functions vary. Those func-
tions are separated into basic, which describe the adoption
process, and evolution, which consider the maintenance.

Basic Cost Functions.

SIMPLE defines four basic costs in software-product-line
engineering:

1. C
org

represents costs of introducing software-product-
line development in an organization. Examples for
cost drivers are: training, reorganization, and process
improvement.

2. C
cab

includes costs of building the core asset base. For
instance, commonality and variability analysis, intro-
duction of development environments, and architectural
design, are considered.

3. C
unique

describes e↵orts of implementing new require-
ments that are unique for a new product.

4. C
reuse

represents costs of reusing features in a variant,
for example, costs for identification, integration, and
testing of assets.

Those cost functions are correlated as shown in Equation 1.
The number of distinct products (p) that will be built is
defined as n.

C
SPL

= C
org

+ C
cab

+
nX

i=1

(C
unique

(p
i

) + C
reuse

(p
i

)) (1)

To decide between product-line or stand-alone develop-
ment, their costs are compared. Thus, SIMPLE defines the
function C

prod

(p
i

) which returns the costs to develop prod-
ucts without reuse. Savings for a software product line are
estimated with Equation 2.

C
savings

=
nX

i=1

C
prod

(p
i

)� C
SPL

(2)

Finally, the return on investment (ROI) is calculated. To
this end, the savings are compared to the required invest-
ments, as shown in Equation 3.

ROI =
C

savings

C
org

+ C
cab

(3)

The basic cost functions only consider the adoption of soft-
ware product lines. SIMPLE also includes life-cycle e↵orts,
which we describe in the following.

Cost Function for Evolution.

In SIMPLE, maintenance costs are described as e↵ort of
releasing new versions (i.e., to fix bugs or extend the function-
ality). They are summarized as costs for evolution (C

evo

), as
illustrated in Equation 4. A new function, C

cabu

(p
i

), is intro-
duced to represent costs of updating the asset base. Changes
to core assets can occur due to bug fixes or adaptations
to a product. Such changes can have side e↵ects on other
variants that share commonalities. Thus, for all products
the possibility of additional costs must be considered even if
they remain unchanged. E↵orts result from changes at the

355

asset base, at product unique code, and for re-integration of
changed assets into variants. For a cost estimation, main-
tenance costs for product-line engineering are compared to
those of single-system development.

C
evo

=
nX

i=1

(C
cabu

(p
i

) + C
unique

(p
i

) + C
reuse

(p
i

)) (4)

In conclusion, SIMPLE describes a set of cost functions.
It enables companies to make a quick cost estimation for
software-product-line development. However, SIMPLE only
defines functions that support identification of costs but does
not implement them. Thus, their calculation is left to the
user. Additionally, SIMPLE is not adjusted accordingly to
the extractive approach while it can still be applied.

3. COSTS OF EXTRACTING SOFTWARE
PRODUCT LINES

In this section, we discuss the basis of cost estimations
for the extractive approach. We first describe an according
scenario and cost curves. Based on this, we analyse at
which points SIMPLE’s cost functions can be applied. For
each of those cost functions, we discuss which additional
characteristics should be taken into account for product-line
extraction. Note, however, that a cost model incorporating
these additional characteristics will be part of future work.

Cost estimations are applied in specific scenarios. For the
extractive approach, we define the following scenario:

A company owns a set of products that were
developed via clone-and-own. To save costs, the
organization considers switching its development
towards software-product-line engineering. Thus,
the company wants to estimate costs and savings
of migrating its legacy systems.

Re-engineering legacy systems into a software product
line requires additional e↵orts (adoption barrier). To eval-
uate whether this is useful, this extraction is compared to
remaining cloning. Thus, if migration pays o↵, a return-
on-investments will be achieved (ROI) after the break-even-
point is reached. This pay-o↵ is achieved either by reduced
costs for development or maintenance, and often reported
for three and more products [42, 45]. In Figure 1, we illus-
trate simplified cost curves for single-system and extractive
product-line development to display this situation. We can
see that extracting a number of products requires additional
costs. Those costs are later compensated by reduced e↵orts
for developing new variants (as we show in Figure 1) or
maintaining the existing ones.

Based on this, we identify three questions a cost model for
the extractive approach needs to answer:

Q-1 How much does extracting legacy systems into a soft-
ware product line cost?

Q-2 How much does developing new products within the
software product line cost?

Q-3 How much does software-product-line engineering save
during maintenance per period compared to continuing
clone-and-own development?

In the following sections, we discuss those questions and
refine SIMPLE’s cost functions. We describe costs that are
specific for the extractive approach and analyse for which

Figure 1: Simplified cost curves for extractive

software-product-line development

product-line engineering tasks they are of interest. However,
cost estimation involves uncertainty due to risks, such as
market changes, and missing information [51]. We do not
consider those uncertainties in this paper as they are unique
for each company.

3.1 Organizational Costs
Organizational costs are represented in SIMPLE by the

cost function C
org

. Those costs are additional e↵orts that
apply before a product line can be developed. Thus, we
associate them with the first question (Q-1).
Contrarily to development from scratch, the extractive

approach is based on legacy systems. To implement this ap-
proach, previously separated products and maybe developer
teams must be merged. Thus, a first step for a company is
to train participants and improve communication between
them [6, 40, 43]. Furthermore, identical programming and
documentation styles are necessary [46]. Therefore, a com-
pany has to unify, define, document, and follow structured
workflows [6, 40, 43, 45]. In particular, processes and stan-
dards for reusing and merging legacy systems with di↵erent
implementations must be defined. While the future reuse of
artefacts can save e↵orts, this definition requires additional
costs. In addition to those process refinements, a company
may also require new tools [24]. In particular, tools for vari-
ability analysis and re-engineering are required to support
migration processes.

To estimate organizational costs, a company must predict
e↵orts of training employees and resulting benefits. Doing
this precisely is di�cult due to each person’s individuality.
According contextual information is complex and problem-
atic to capture [26, 27, 29]. Thus, this task can hardly be
supported with algorithmic cost models. Instead, estimations
for SIMPLE’s cost function must rely on judgement-based
estimation and experience.

3.2 Costs of Extracting the Asset Base
In SIMPLE, extraction costs are represented with C

cab

.
They summarize all investments that are required to migrate
legacy systems into an asset base. We associate those costs
also with our first question (Q-1). By extracting functionali-
ties of legacy systems into assets, a first software-prdouct-line
instance is generated [2, 36, 41]. Based on the tasks neces-
sary for the extractive approach (cf. Section 2.1), we identify
three steps for a cost estimation:

356

1. Analyse legacy systems for possible features.

2. Estimate re-engineering e↵ort and utility of features.

3. Decide which artefacts shall be migrated.

Following, we describe the three steps as well as their
e↵orts and benefits in the extractive approach.

First, analysis of existing products identifies commonalities
and di↵erences among systems [20]. It provides information
about possible features and their sizes. In contrast to proac-
tive development, this process can be supported with feature
location [18] or code-clone detection [48], which may require
manual work [5, 30, 57]. In the extractive approach, this
task benefits from experience of developers with the software.
They are familiar with code, documentation, and design.
Furthermore, analysis of the domain can be reduced as exist-
ing functionalities fulfil requirements of the corresponding
market. The result of this step is the identification of feature
candidates for extraction.

In the second step, e↵orts and utility of a feature’s extrac-
tion are estimated. Re-engineering costs are influenced by
size, dependencies, and the complexity of artefacts. Existing
implementations with quality issues and outdated versions
can be excluded. The predicted costs are compared to the
utility of an asset. For example, a company can consider
the number of products that contain the feature. This can
be derived from the legacy systems. As a result, the com-
pany obtained an estimation about the costs for each feature
candidate identified in the first step.

In the third step, the company has to decide which features
it migrates. Based on the estimated utility and costs for the
candidates, some of them are selected for extraction. For ex-
ample, the company may only migrate the core features that
are shared among all products. This reduces the investments
compared to a full extraction as fewer migrations and vari-
ability implementations are necessary. However, more code
clones remain and fewer variants can be instantiated. There-
fore, maintenance and development costs may be higher.
Thus, an organization can balance initial investment and
required variability based on the artefacts it extracts. In
conclusion, this steps results in a concrete set of features that
shall be extracted.

In summary, the estimation of extraction costs supports a
company’s decision which artefacts are extracted. It provides
essential information on the domain engineering and its costs.
Those costs represent e↵orts in the domain application. An
according cost model should be able to display di↵erent
extraction scenarios and, thus, estimate costs for single assets.

3.3 Costs for New Products
We consider costs for new products within our second

question (Q-2). SIMPLE separates costs to develop new
code (C

unique

) from costs to reuse assets (C
reuse

). Still,
both are required to describe the overall e↵orts for a new
product. In this context, it is important to consider costs for
a new variant with individual functions. Instantiating the
same software frequently requires almost no e↵ort [2]. Based
on product requirements, the company identifies new features
that must be developed. Those features can either remain
stand-alone or are integrated into the asset base. In most
cases, one additional asset provides a set of new variations.
Due to this increase of possible configurations, it becomes
di�cult to manage variability [17]. In addition, assets are
selected to instantiate the variant which results in costs for

reuse. Still, the cost estimation is the same as for proactive
development. However, information from legacy systems can
support estimators, for instance with ratios of unique and
reused code.
Due to those descriptions, we consider that costs for new

products occur during two tasks:

• Domain engineering results in costs of developing new
features. They do not remain stand-alone but are added
to the asset base and, thus, belong to the domain.

• Application engineering results in costs for implement-
ing unique code, reuse, configuration, and testing.

Thus, an algorithmic cost model should work on the level of
individual features to di↵erentiate between the development
of unique product parts and core assets.

3.4 Maintenance Costs
Often, the main reason for a company to migrate its cloned

product into a product line is to reduce maintenance costs [2].
Thus, estimating those costs is essential for the extractive
approach. This is represented by our third question (Q-3)
and summarized in the evolutionary cost function in SIMPLE
(C

evo

). To estimate maintenance savings, a company has to
compare the respective e↵orts for single-system and software-
product-line development. Those savings are determined for
a number of products and a period of time to estimate when
investments in a product line are compensated[10, 15, 37].
An organization may decide against migration if it only pays
o↵ after a long time. Some companies fear or cannot a↵ord
investments that do not provide savings early. Others may
not plan for a long period or focus on keeping their products
successful instead of introducing reuse [19].

An important point to address for the extractive approach
is the quality of legacy systems. They may contain flaws in
design and implementation. A company can remove those
during adoption, but this requires additional investments. Al-
ternatively, problems are fixed during maintenance. However,
the implementation of variability increases the complexity
of code and can result in new flaws [21] and removing er-
rors becomes more expensive. Thus, a cost model for the
extractive approach also needs to consider design flaws in
particular. For example, they can be represented by cost
drivers for additional tests or refactoring.
Despite its importance, only few existing cost models for

product lines consider the life-cycle phase [1]. However,
extracting a product line is often motivated by reduced
maintenance costs. Thus, estimating those savings is essential
for the extractive approach and must be considered in a
suitable cost model.

3.5 Cost Estimation in the Software-Product-
Line Development Process

This far, we described adaptations on cost estimations
for the extractive approach. Following, we match those
costs with the product-line-engineering process. We apply
a nomenclature and clusters as we show in Figure 2. In
the center (highlighted with grey background), we illustrate
domain and application engineering based on Czarnecki and
Eisenecker [16]. The other clusters illustrate the costs we
described (without background colouring). As we show, the
organizational cost estimation considers costs that occur
before any development is done. The domain cost estimation
cluster includes e↵orts for migration of legacy systems and

357

Figure 2: Cost estimation for the extractive approach, framed in blue. In the center, highlighted in grey, we

show the product-line-engineering process adopted from Czarnecki and Eisenecker [16].

developing new assets. Extraction can be based on domain
analyses and feature location while new features can be
identified during the domain design. Those two clusters cover
investments before a product line is usable. We consider costs
for instantiating a product as application cost estimation.
Those costs focus on configuring and testing a new variant.
After the product line is extracted, maintenance costs occur.
We summarize them in the life-cycle cost estimation cluster.
Those costs consider the asset base and unique product
parts. In conclusion, the described costs cover the software-
product-line-engineering process. Thus, a cost model for the
extractive approach must take them into account.

3.6 Cost Factors in the Cost Curve
As described in Section 3.2, a company specifies a set of

assets it wants to extract from its legacy systems. This has
not only impact on the investments but also on the resulting
product line. In this section, we match this description
with economic theory. Costs are often seperated into two
categories [55]:

• Fixed costs (C
f

) summarize all costs that are indepen-
dent of the number of developed products. Thus, they
remain constant during production. For example, fixed
costs include investments for machinery or buildings.
However, those costs are only fixed for a defined period.
Additional investments might be necessary to increase
production.

• Variable costs (C
v

) cover the e↵ort to develop a number
of products. For instance, they include wages and costs
for resources for each new product.

In Equation 5 we illustrate those basic costs (top) in com-
parison to SIMPLE’s cost functions (bottom). We see that
the costs for organizational activities (C

org

) and asset base
(C

cab

) are not influenced by the number of developed prod-
ucts. Thus, they represent fixed, respectively adoption, costs

to set up a software product line [45]. E↵orts for reused
(C

reuse

) and unique (C
unique

) parts depend on the number
of developed variants. Thus, they belong to the variable
costs.

C =

C
SPL

=

C
f

z }| {

C
org

+ C
cab

+

+

C
v

⇤ n
z }| {
nX

i=1

(C
unique

(p
i

) + C
reuse

(p
i

))
(5)

We see that fixed costs describe the adoption barrier, as
shown in Figure 1. They represent the gap between retaining
single systems and migrating towards a product line. The
di↵erence in variable costs is represented by the return-on-
investment. However, organizations can vary their invest-
ments. Those have impact on e↵orts for development and
during the life-cycle [9]. We consider fixed and variable costs
as exchangeable economic goods. We can therefore display
them as an indi↵erence curve [44]. This means, that we can
reduce investments at the expense of variable costs and vice
versa. However, a full substitution is not possible. Conse-
quently, companies face the following question: Which is
the optimal ratio between investment and resulting variable
costs? Due to uncertainties and unreliable data, predicting
this ratio is problematic [51].
Another impact on the ratio has the selected implemen-

tation technique. Lightweight strategies require less invest-
ment than heavyweight ones but also increase the e↵ort for
new variants [42]. Thus, it is challenging to reliably define
an investment that satisfies a specific quality. Instead, an
organization may calculate several scenarios to consider un-
certainties and migration strategies. For our example from
Section 3.2, costs can be estimated for extracting all, or only
some, legacy systems. In Figure 3, we show possible cost
curves for extracted product lines with di↵erent investments
(�

f

). Due to the changing variable costs (�
v

), the break-
even points move. Some strategies are inappropriate for a

358

company (red lines). For example, high investment costs
(I) may require too many new products compared to other
migration strategies. In contrast, low fixed costs (II) may
never pay o↵ because of insu�cient benefits.

Figure 3: Possible scenarios for varying investments

for the extractive approach

In this section, we described the basis of a cost model for
the extractive approach. To do this, we discussed the cost
function provided by SIMPLE. We refined those function
to consider software-product-line extraction in more detail.
In addition, we put them into context with product-line
engineering. Finally, we connected the cost functions with
economic theory and discussed coherence between them.

4. OPEN CHALLENGES
In this work, we described cost factors for the extractive

software-product-line approach. There are several topics
for cost estimation that are of interest and require further
research.

4.1 A Cost Model for the Extractive Approach
Existing cost models for software product lines rarely con-

sider legacy systems [34]. Thus, for the extractive approach
companies must rely on expert knowledge. However, individ-
ual intuition, knowledge, and experiences can lead to varying
results [26, 27, 29]. In contrast, algorithmic cost models pro-
vide a comprehensible and replicable result. They provide
a structured way to predict e↵orts and can be repeated for
several scenarios. Hence, an algorithmic cost model for the
extractive approach is needed in practice. In current and
further research we aim to develop such a model [38].

4.2 Data Extraction and Variability Mining
Variability mining provides semi-automatic tool support

to analyze legacy systems [30]. Thus, it is possible to identify
reliable data for cost estimations. Some examples for such
data can be:

• Source code comments which can rate the documenta-
tion and, thus, understandability of code [53]. However,
specialized tools for analyses and merging of multiple
variants are required.

• Re-usable source code reduces migration e↵orts. For
this purpose, numerous metrics exist [46]. Still, it is
necessary to determine which can be helpful considering
multiple legacy systems.

• Code similarities can help identifying feature candi-
dates. In addition, predicting code size reductions
is possible, which has the most impact on cost sav-
ings [10, 15]. However, a fully automatically approach
to detect features and their sizes seems not realis-
tic [5, 30]. Still, cross-product clone detection can
provide clues [20, 58].

Identifying this data can provide helpful information not
only for cost estimations but also the extraction itself. How-
ever, more research and specialized tool support is necessary.

4.3 Evaluation of SPL Cost Models
The evaluation of cost estimation approaches is a challeng-

ing task. In particular, there is a lack of reliable and suitable
data [28, 31, 39, 43]. Often this can be explained as the
publication of business data is critical for most organizations
[34, 56]. Also, results gained from a single case study or with
limited information cannot be generalized [1]. Evaluating
cost estimations with experts is an alternative but in many
cases their expertise and reliability is unclear [11, 27]. In the
literature, several evaluation strategies are used but some
approaches are not validated at all [1]. For example, Khurum
et al. [31] compared 19 papers about software-product-line
economics. Of those, only six were evaluated with case
studies and eight used simplified or fictional data.

To overcome such problems, the authors propose a strategy
for a systematic evaluation. At the beginning, an approach
is applied in controlled experiments on replicable data. The
results are discussed with experts and used for fine tuning.
Afterwards, models are suitable for practical validation in
case studies. While this is a first proposal for evaluation,
the process requires more details and refinements. New
evaluation methods, especially for comparing cost models,
can provide further improvements.

5. RELATED WORK
In the context of our work, we focus on two related topics.

First, economic descriptions of adoption strategies for prod-
uct lines. Second, cost models for software product lines and
their attributes.

Economic Comparison of Product Line Adoption.

Schmid and Verlage [51] compare the reactive and proactive
adoption approaches for software product lines. They define
di↵erent situations, in which these approaches are applied.
The situations also take legacy systems into consideration.
However, they do not focus on economic descriptions for
those situations but provide an overview. By contrast, our
work analyses costs factors of the extractive approach in
detail.
Knauber et al. [33] define seven hypotheses on economic

benefits of software product lines and quantify them. They
describe savings that occur in general, such as reduced devel-
opment e↵orts, but do not focus on a single adoption strategy.
Contrarily, we only analyse specific costs for the extractive
approach.
Clements and Krueger [12] discuss and compare benefits

of approaches towards software-product-line adoption. They

359

argue on advantages and disadvantages of the proactive and
extractive approach. However, they do not focus on cost
factors for product line adoption. This distinguishes their
work from ours. We analyse the costs for the extractive
approach in more detail.

Cost Models for Software Product Lines.

Ali et al. [1] categorize several cost models for software
product lines. They provide a detailed overview on attributes
and the cost factors. We also consider some of those at-
tributes in our work, for example, consideration of the life-
cycle and market analyses. However, their work only names
these factors without analysing them in detail.
Heradio et al. [25] conducted a literature survey on the

usage of feature models for cost estimations. They conclude,
that considering the number of products which use a par-
ticular feature is essential to accurately estimate costs. We
also emphasize the consideration of features instead of whole
products. While we derive this argument from the extractive
approach, they propose to use it to overcome simplifying
assumptions.

6. CONCLUSIONS
In practice, companies often own a set of cloned legacy

systems [2, 19, 23, 32]. To save costs they consider migrat-
ing those systems towards a product line. This is called
the extractive approach to software-product-line adoption
[36]. Still, this strategy is risky and requires investments.
Cost models support companies in predicting chances of suc-
cess. However, for the extractive approach a detailed and
algorithmic cost model is still missing.

In this work, we discussed the basis for such an algorithmic
cost model. To this end, we identified economic factors for
software product lines with regard to the extractive approach.
Considering legacy systems has not only impact on develop-
ment e↵orts but also on cost estimation processes. Thus, we
identified two main challenges. First, cost models must be
adapted to the extractive scenario. Second, semi-automated
analyses can provide more accurate input than estimating
e↵orts based on expert judgement. Additionally, we matched
our descriptions with product-line development and economic
theory.

7. ACKNOWLEDGMENTS
This work is partly based on the first author’s Master’s

thesis [38]. This research was partly supported by DFG
grants LE 3382/2-1, SA 465/49-1, and BMBF grant 01IS14
017A.

References
[1] M. S. Ali, M. A. Babar, and K. Schmid. A Comparative

Survey of Economic Models for Software Product Lines.
In SEAA, pages 275–278. IEEE, 2009.

[2] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-
Oriented Software Product Lines. Springer, 2013.

[3] W. K. G. Assunção and S. R. Vergilio. Feature Location
for Software Product Line Migration: A Mapping Study.
In SPLC, pages 52–59. ACM, 2014.

[4] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. W ,asowski. A Survey of Variability
Modeling in Industrial Practice. In VaMoS, pages 7:1–
7:8. ACM, 2013.

[5] T. J. Biggersta↵, B. G. Mitbander, and D. Webster. The
Concept Assignment Problem in Program Understand-
ing. In ICSE, pages 482–498. IEEE, 1993.

[6] G. Böckle, J. B. Muñoz, P. Knauber, C. W. Krueger,
J. C. S. do Prado Leite, F. J. van der Linden, L. M.
Northrop, M. Stark, and D. M. Weiss. Adopting and
Institutionalizing a Product Line Culture. In G. J.
Chastek, editor, SPLC, pages 49–59. Springer, 2002.

[7] G. Böckle, P. C. Clements, J. D. McGregor, D. Muthig,
and K. Schmid. Calculating ROI for Software Product
Lines. IEEE Softw., 21(3):23–32, 2004.

[8] G. Böckle, P. C. Clements, J. D. McGregor, D. Muthig,
and K. Schmid. A Cost Model for Software Product
Lines. In F. J. van der Linden, editor, PFE, pages
310–316. Springer, 2004.

[9] B. W. Boehm. Software Engineering Economics. IEEE
Trans. Softw. Eng., SE-10(1):4–21, 1984.

[10] B. W. Boehm, A. W. Brown, R. Madachy, and Y. Yang.
A Software Product Line Life Cycle Cost Estimation
Model. In ISESE, pages 156–164. IEEE, 2004.

[11] F. Bolger and G. Wright. Assessing the Quality of
Expert Judgment: Issues and Analysis. Decis. Support
Syst., 11:1–24, 1994.

[12] P. C. Clements and C. W. Krueger. Point / Coun-
terpoint: Being Proactive Pays O↵ / Eliminating the
Adoption Barrier. IEEE Softw., 19(4):28–31, 2002.

[13] P. C. Clements and L. M. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2006.

[14] P. C. Clements, J. D. McGregor, and S. G. Cohen. The
Structured Intuitive Model for Product Line Economics
(SIMPLE). Technical Report CMU/SEI-2005-TR-003,
Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 2005.

[15] S. G. Cohen. Predicting When Product Line Investment
Pays. Technical Report CMU/SEI-2003-TN-017, Soft-
ware Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2003.

[16] K. Czarnecki and U. W. Eisenecker. Generative Pro-
gramming: Methods, Tools, and Applications. Addison-
Wesley, 2005.

[17] S. Deelstra, M. Sinnema, and J. Bosch. Product Deriva-
tion in Software Product Families: A Case Study. J.
Syst. Software, 74(2):173–194, 2005.

[18] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature Location in Source Code: A Taxonomy and
Survey. J. Softw. Evol. and Proc., 25(1):53–95, 2013.

[19] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An Exploratory Study of
Cloning in Industrial Software Product Lines. In CSMR,
pages 25–34. IEEE, 2013.

[20] S. Duszynski, J. Knodel, and M. Becker. Analyzing the
Source Code of Multiple Software Variants for Reuse
Potential. In WCRE, pages 303–307. IEEE, 2011.

[21] W. Fenske and S. Schulze. Code Smells Revisited: A
Variability Perspective. In VaMoS, pages 3–10. ACM,
2015.

[22] W. Fenske, T. Thüm, and G. Saake. A Taxonomy of
Software Product Line Reengineering. In VaMoS, pages
4:1–4:8. ACM, 2014.

[23] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed. Enhancing Clone-and-Own with Systematic
Reuse for Developing Software Variants. In ICSME,
pages 391–400. IEEE, 2014.

360

[24] P. Gacek, Cristina amd Knauber, K. Schmid, and P. C.
Clements. Successful Software Product Line Develop-
ment in a Small Organization: A Case Study. Technical
Report 013.01/E, Fraunhofer IESE, Kaiserslautern, Ger-
many, 2001.

[25] R. Heradio, D. Fernandez-Amoros, J. A. Cerrada, and
I. Abad. A Literature Review on Feature Diagram
Product Counting and its Usage in Software Product
Line Economic Models. Int. J. Soft. Eng. Knowl. Eng.,
23(8):1177–1204, 2013.

[26] M. Jørgensen. A Review of Studies on Expert Estimation
of Software Development E↵ort. J. Syst. Software, 70
(1):37–60, 2004.

[27] M. Jørgensen. Forecasting of Software Development
Work E↵ort: Evidence on Expert Judgement and Formal
Models. Int. J. Forecast., 23(3):449–462, 2007.

[28] M. Jørgensen and M. Shepperd. A Systematic Review of
Software Development Cost Estimation Studies. IEEE
Trans. Softw. Eng., 33(1):33–53, 2007.

[29] M. Jørgensen, B. W. Boehm, and S. Rifkin. Software De-
velopment E↵ort Estimation: Formal Models or Expert
Judgment? IEEE Softw., 26(2):14–19, 2009.

[30] C. Kästner, A. Dreiling, and K. Ostermann. Variabil-
ity Mining: Consistent Semi-Automatic Detection of
Product-Line Features. IEEE Trans. Softw. Eng., 40(1):
67–82, 2014.

[31] M. Khurum, T. Gorschek, and K. Pettersson. Systematic
Review of Papers About Economic Solutions for Product
Lines. In MESPUL, pages 277–284. IEEE, 2008.

[32] P. Knauber, D. Muthig, K. Schmid, and T. Widen.
Applying Product Line Concepts in Small and Medium-
Sized Companies. IEEE Softw., 17(5):88–95, 2000.

[33] P. Knauber, J. Bermejo, G. Böckle, J. C. S.
do Prado Leite, F. J. van der Linden, L. M. Northrop,
M. Stark, and D. M. Weiss. Quantifying Product Line
Benefits. In F. J. van der Linden, editor, PFE, pages
155–163. Springer, 2002.

[34] H. Koziolek, T. Goldschmidt, T. de Gooijer, D. Domis,
S. Sehestedt, T. Gamer, and M. Aleksy. Assessing Soft-
ware Product Line Potential: An Exploratory Industrial
Case Study. Empir. Software Eng., pages 1–38, 2015.

[35] C. W. Krueger. Software Reuse. ACM Comput. Surv.,
24(2):131–183, 1992.

[36] C. W. Krueger. Easing the Transition to Software Mass
Customization. In F. J. van der Linden, editor, PFE,
pages 282–293. Springer, 2002.

[37] C. W. Krueger. Towards a Taxonomy for Software
Product Lines. In F. J. van der Linden, editor, PFE,
pages 323–331. Springer, 2004.

[38] J. Krüger. A Cost Estimation Model for the Extratcive
Software-Product-Line Approach. Master’s thesis, Otto-
von-Guericke-Univerity Magdeburg, 2016.

[39] H. K. N. Leung and Z. Fan. Software Cost Estimation.
In Handbook of Software Engineering and Knowledge
Engineering, pages 307–324. World Scientific Publishing,
2002.

[40] J. Mansell. Experiences and Expectations Regarding
the Introduction of Systematic Reuse in Small- and
Medium-Sized Companies. In T. Käköla and J. Duenas,
editors, Software Product Lines, pages 91–124. Springer,
2006.

[41] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and
Y. Le Traon. Bottom-Up Adoption of Software Product

Lines: A Generic and Extensible Approach. In SPLC,
pages 101–110. ACM, 2015.

[42] J. D. McGregor, L. M. Northrop, S. Jarrad, and K. Pohl.
Guest editors’ introduction: Initiating software product
lines. IEEE Softw., 27(3):16–21, 2002.

[43] L. M. Northrop. SEI’s Software Product Line Tenets.
IEEE Softw., 19(4):32–40, 2002.

[44] V. Pareto. Manuale di Economia Politica. Societa
Editrice, 1906.

[45] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, 2005.

[46] J. S. Poulin. Measuring Software Reusability. In ICSR,
pages 126–138. IEEE, 1994.

[47] J. S. Poulin. The Economics of Software Product Lines.
Int. J. Appl. Softw. Technol., 3(1):20–34, 1997.

[48] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and Evaluation of Code Clone Detection Techniques and
Tools: A Qualitative Approach. Sci. Comput. Program.,
74(7):470–495, 2009.

[49] J. Rubin and M. Chechik. A Survey of Feature Location
Techniques. In I. Reinhartz-Berger, A. Sturm, T. Clark,
S. G. Cohen, and J. Bettin, editors, Domain Engineering,
pages 29–58. Springer, 2013.

[50] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik.
Managing Forked Product Variants. In SPLC, pages
156–160. ACM, 2012.

[51] K. Schmid and M. Verlage. The Economic Impact of
Product Line Adoption and Evolution. IEEE Softw., 19
(4):50–57, 2002.

[52] S. Stanciulescu, S. Schulze, and A. Wasowski. Forked
and Integrated Variants in an Open-Source Firmware
Project. In ICSME, pages 151–160. IEEE, 2015.

[53] D. Steidl, B. Hummel, and E. Juergens. Quality Analysis
of Source Code Comments. In ICPC, pages 83–92. IEEE,
2013.

[54] A. Tang, W. Couwenberg, E. Scheppink, N. A. de Burgh,
S. Deelstra, and H. van Vliet. SPL Migration Tensions:
An Industry Experience. In KOPLE, pages 1–6. ACM,
2010.

[55] J. Viner. Cost Curves and Supply Curves. Zeitschrift
für Nationalökonomie, 3(1):23–46, 1932.

[56] K. Yoshimura, D. Ganesan, and D. Muthig. Defining
a Strategy to Introduce a Software Product Line Using
Existing Embedded Systems. In EMSOFT, pages 63–72.
ACM, 2006.

[57] K. Yoshimura, D. Ganesan, and D. Muthig. Assessing
Merge Potential of Existing Engine Control Systems
into a Product Line. In SEAS, pages 61–67. ACM, 2006.

[58] T. Ziadi, L. Frias, M. A. A. d. Silva, and M. Ziane.
Feature Identification from the Source Code of Product
Variants. In CSMR, pages 417–422. IEEE, 2012.

361

