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ABSTRACT
Developers use version-control systems and software-hosting plat-
forms to manage their software systems. They rely on the provided
branching and forking mechanisms to implement new features, fix
bugs, and develop customized system variants. A particular prob-
lem arises when forked variants are not re-integrated (i.e., merged),
but kept and co-evolved as individual systems. This can cause main-
tenance overheads, due to change propagation and limitations in
simultaneously managing variations in space (variants) and time
(revisions). Thus, most organizations decide to integrate their set of
variants into a single platform at some point, and several techniques
have been proposed to semi-automate such an integration. How-
ever, existing techniques usually consider only a single revision of
each variant and do not merge the revision histories, disregarding
that not only variants (i.e., configuring the features of the system)
but also revisions (i.e., checking out specific versions of the features)
are important. We propose an automated technique, VariantInc, for
analyzing, pruning, and integrating variants of a system that also
merges the revision history of each variant into the resulting plat-
form (i.e., using presence conditions). To validate VariantInc, we
employed it on 160 open-source C systems of various sizes (i.e.,
number of forks, revisions, source code). The results show that
VariantInc works as intended, and allows developers or researchers
to automatically integrate variants into a platform as well as to
perform software analyses.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software version control; Software evolution; Software con-
figuration management and version control systems.
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1 INTRODUCTION
Many organizations and open-source projects develop customized
variants of their software systems, for example, to fulfill varying
hardware specifications or user requirements. To implement such
variant-rich systems, developers usually rely on cloning, a platform,
or a combination of both [5, 17, 36, 39, 46, 57, 65, 69]. Especially
when developers start to reuse and customize an existing system to
derive a new variant, they rely on cloning; that is, creating a copy
of the system and adopting that copy to changed requirements.
Cloning is a cheap and readily available reuse strategy that is well
supported by version-control systems like Git (i.e., branching) and
software-hosting platforms like GitHub (i.e., forking) [24, 36, 43, 49,
65]. For simplicity, we refer mostly to version-control systems and
forks in the remainder of this paper.

Usually, forks are intended for short-term development, for in-
stance, to fix a bug or implement a new feature, and should be
re-integrated into the main system (via pull-requests and merging).
However, many developers use forking to implement separated
variants that are not re-integrated [36, 65, 66], for instance, because
these variants comprise highly innovative features that shall not
be part of the base system at that point in time. In such situations,
it can become drastically more expensive to maintain the indepen-
dent variants, since changes must be propagated and developers can
easily loose their understanding of what features are implemented
in what variants [1, 7, 15, 17, 33, 35, 36, 46, 52, 61].

To tackle these problems, developers often re-engineer their
cloned variants into a platform that integrates features into a com-
mon code base [9, 46, 52, 73]. A platform usually builds on a vari-
ability mechanism, such as the C preprocessor (CPP), that allows
to control the implemented features [5, 23], variability models to
define feature dependencies [14, 56, 62], as well as tools to configure
and automatically derive a variant of the platform [5, 57]. Such a
platform yields reduced development andmaintenance costs, allows
faster delivery of variants, and improves the system quality [36, 69].
However, re-engineering cloned variants is an expensive invest-
ment and may not achieve the expected benefits [11, 38, 63].

This work is licensed under a Creative Commons 
Attribution-ShareAlike International 4.0 License.

https://orcid.org/0000-0001-7077-7091
https://orcid.org/0000-0002-0283-248X
https://orcid.org/0000-0001-9580-7728
https://orcid.org/0000-0001-9576-8474
https://doi.org/10.1145/3579027.3608984
https://doi.org/10.1145/3579027.3608984
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579027.3608984&domain=pdf&date_stamp=2023-08-28


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Sebastian Krieter, Jacob Krüger, Thomas Leich, and Gunter Saake

While the two strategies of cloning and platform engineering
are often clearly distinguished in research, they are actually used
in parallel by most developers [22, 36, 41, 43]. In practice, develop-
ers use a variability mechanism in their base system (i.e., a plat-
form) and use forks to evolve that platform or create highly inno-
vative variants. Consequently, integrating forks of a variant-rich
system is a practically important problem. Several techniques for
analyzing cloned variants [18, 73], supporting developers during
the re-integration [19, 54], and the semi-automated integration of
forks [49, 61, 64] have been proposed [6, 47, 66]. However, current
research also indicates a limitation of such techniques: They do not
allow to (automatically) integrate forks while also re-engineering
the revision histories of individual features (i.e., allowing to trace
the revisions of a specific feature in the integrated platform). To
achieve traceability through time and space [3, 4], researchers have
started to revisit variation-control systems [8, 50], but these require
support for re-engineering variant-rich systems from pure version
control to variation control to facilitate their adoption.

In this paper, we propose VariantInc (Variant Incorporating), a
technique to automatically integrate forks of a variant-rich system
into a platform. A particular property of VariantInc is that it ana-
lyzes and prunes the revision histories of the forks (not only the most
recent revision) to track what variations (e.g., bug fixes, features) were
introduced at what point in time. To manage not only variations of
the different variants (e.g., features) but also their evolution, we add
annotations to control these variations in the platform. We remark
that a fully automated solution on its own is not ideal in practice,
since developers still need to interact and assign features to the code
variations that existed in the forks (i.e., concept assignment and
feature location can only be solved by developers) [10, 49, 70, 71].
VariantInc is supposed to support developers with the following
Use Cases: (UC1) simplify and analyze revision histories of forks;
(UC2) identify variations in forks; (UC3) automatically integrate
forks into a platform; (UC4) configure variations in space and time;
and (UC5) migrate towards variation control (cf. Section 2 for a
more detailed motivation of each use case).

To this end, our contributions in this paper are:

• We propose VariantInc for automatically integrating forked
variants and their version-control histories.

• We validate VariantInc by employing it on 160 variant-rich
systems with varying properties, including systems with
over 6,000 forks, 100,000 revisions, and 10 MLOC.

• We provide an open-access repository with the source code
of our prototype and validation data.1

With VariantInc, we aim to support developers during variant inte-
gration processes. Moreover, we intend to provide a basis for future
research on software evolution and re-engineering, particularly
from pure version control towards variation control.

2 STATE-OF-THE-ART AND MOTIVATION
In this section, we provide the background needed to understand
VariantInc. We further describe the related work, based on which
we motivate the five primary use cases for VariantInc in more detail.

1https://doi.org/10.5281/zenodo.8048579

2.1 Background
Version-control systems and software-hosting platforms are estab-
lished tools for managing the evolution of software systems [12, 43,
65]. While there are conceptional differences between individual
tools, the core ideas are similar. A system is managed in a repository,
which developers clone into a local copy to implement, commit,
and push changes back into the repository. Each commit creates
a new revision of the system, allowing developers the option to
restore a specific state of that system by selecting a revision. So,
version-control systems enable developers to configure a system
by selecting specific revisions with their corresponding features—
representing variations in time [3, 4, 8]. Most version-control sys-
tems provide even more advanced functionalities. In particular,
developers can fork a repository to create a separated clone of their
system. While forks are often used to implement a new feature
and re-integrated into the original repository, they are also used to
maintain separate variants of the system, for instance, for specific
releases or customers [24, 36, 43, 49, 65, 74]. At this point, differ-
ent forks may comprise new or customized features—representing
variations in space [3, 4, 8].

Managing a variant-rich system based on cloning easily increases
development and maintenance costs, requires developers to prop-
agate changes between variants, and hampers the understanding
of existing features and variants [7, 17, 33, 35, 36, 38, 46, 52, 61].
Consequently, most organizations at some point adopt software
platforms by re-engineering the cloned variants [52, 73]. For this
purpose, they adopt principles of software product-line engineering
to establish their configurable platform [5, 41, 57, 69]. However,
despite extensive research on re-engineering platforms form cloned
variants, it remains a challenging and costly process [6, 11]. With
the increasing use of version-control systems, more and more plat-
forms are adopted by integrating previously separated forks. Such
an integration is fundamentally different from simple merges in
version-control systems and challenges a consistent evolution (e.g.,
matching revision histories of features before and after the integra-
tion) of a variant-rich system.

2.2 Related Work
Some researchers have been concerned with manual variant inte-
gration [1, 15, 25, 27, 44, 46] or the re-engineering of a single variant
into a platform [13, 28, 51, 68]. Moreover, several techniques have
been proposed to facilitate or automate parts of the integration
of variants and particularly forks. However, existing reviews of
the literature [6, 20, 47] show that most of such techniques focus
on the analysis (e.g., feature identification [74] and feature loca-
tion [16, 60]), with few tackling the actual integration of cloned
variants into a platform. For instance, Rubin et al. [61] propose
a framework that builds on seven operators that define how to
re-engineer clones into a platform, but these have not been imple-
mented. Similarly, Martinez et al. [54] and Fischer et al. [21] propose
frameworks for analyzing and re-integrating cloned variants. In
the same direction, we [34, 42, 64] have proposed techniques for
supporting the merging of forked variants, for instance, by focusing
on their test cases or providing visualizations. Other researchers,
for example, Fenske et al. [19], Alves et al. [2], or Xue [72] describe
concrete refactorings for integrating cloned variants. Closest to

https://doi.org/10.5281/zenodo.8048579
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our technique is the work of Lillack et al. [49]. They implemented
INCLINE to support developers during the variant integration by
guiding their decisions of how to perform the integration of specific
code blocks (i.e., variations) based on intentions.

In contrast to such works, we are concerned with automating
the integration of variants implemented in forks, while also uncov-
ering the revision histories of the integrated variations. None of
the existing techniques we are aware of combines such an analysis
of variations in space and time. Moreover, most existing techniques
and refactorings focus on supporting specialized mechanisms, such
as feature-oriented programming [58], aspect-oriented program-
ming [31], or the CPP. With our technique, we aim to support
any system that is managed in a version-control system, indepen-
dent of its properties. However, due to its predominance in prac-
tice [5, 26, 48], we follow the same idea as Lillack et al. [49] to
support particularly the CPP, and building on its concept of pres-
ence conditions to record what variations our technique integrates
into the platform. A presence condition is an established concept
for variant-rich systems that consists of a propositional formula
over the features in a variability model, determining whether a vari-
ational element (i.e., a file) is present under a certain configuration
(i.e., a configured variant) [5, 29, 45, 50, 55].

2.3 Goal and Use Cases
With VariantInc, we aim to facilitate the integration of co-evolving
forks into a platform, which can then be maintained in the version-
control or a variation-control system. Consequently, we aim to
support any system that is developed in a version-control system,
comprising variations in time (i.e., revisions) as well as potentially
different variations in space (i.e., forks and a variability mechanism).
The mixture of these different variations, for instance, a feature that
was already implemented in the repository using the CPP and has
been revised in multiple forks, challenges the variant integration
into a platform and the merging of revision histories (cf. Section 4.2).
Moreover, while manually integrating only the latest revisions has
been the idea of most existing works, this does not scale with the nu-
merous forks that exist for variant-rich systems—some comprising
changes affecting the same code or even identical changes [65]. Sim-
ply merging the forks automatically does not ensure a reasonable
system, since integration conflicts must be resolved manually [49],
and ignores the revision histories (i.e., considering only the most re-
cent revisions). To tackle these issues, we propose VariantInc, which
supports developers by pruning and merging revision histories, in-
tegrating the existing variations in space and time, and providing
presence conditions that allow to configure these variations in the
resulting platform. Developers can use VariantInc to integrate se-
lected forks, to automatically analyze and simplify revision histories
in terms of variations, or to perform an automated integration and
revise the resulting platform (i.e., assign features to the integrated
variations). Concretely, we defined five use cases for VariantInc.

Prune and Analyze Revision Histories of Forks (UC1). To
integrate variations in space and time, we need to analyze, simplify,
and merge the revision histories of different forks. The immediate
result is an overview of when what variations have been introduced
and a comparison between forks, allowing developers to understand
their evolution. For instance, developers can see what lines of code

from what forks belong to what existing variation, and how these
changed over time, revealing potential alternative implementations
in different forks.

⇒ VariantInc provides a novel overview understanding of a
system’s evolution, offering developers ameans to better analyze
and compare co-evolving variants.

Identify Variations in Forks (UC2). By analyzing revision histo-
ries, VariantInc automatically identifies variations as well as their
alternatives and redundancies, helping developers to understand
the intention of a specific change (e.g., bug fixes, new features). For
example, Zhou et al. [74] proposed a technique to identify features
that have been implemented in a fork. As they showed, correctly
identifying features requires a developer to decide on whether an
identified variation represents an actual feature of the system. Vari-
antInc automatically identifies variations, is not limited to features,
and handles alternative as well as redundant changes, providing
additional means to developers. The results can be enriched with
specialized techniques (e.g., by Zhou et al.) or mapped by developers,
for instance, to actual features or bugs.

⇒ VariantInc provides an advanced analysis of the variations
introduced among different forks to help developers decide
which are relevant for a platform.

Automatically Integrate Forks into a Platform (UC3). Building
on the previous two analyses, VariantInc can address our overarch-
ing goal by fully automatically integrating variations and annotat-
ing them with presence conditions that reflect their variability in
space (i.e., the forks variations stem from) and time (i.e., their revi-
sions). Since feature identification [74] and location [10, 60, 70, 71]
in code cannot be fully automated [37], developers will need to
review the integration, for example, to assign proper feature iden-
tifiers or assign variations to previously existing features. Still,
VariantInc is a helpful means to derive a platform with presence
conditions that developers can build upon.

⇒ VariantInc provides the ability to fully automatically inte-
grate variations of forks into a configurable platform, facilitat-
ing manual integration processes.

Configure Variations in Space and Time (UC4). The platform
we derive with VariantInc includes presence conditions for varia-
tions in space and time, allowing developers to immediately con-
figure the variations of specific forks and different revisions. So,
developers can immediately restore any of the integrated forks
and configure new combinations. Particularly, they can try to com-
bine specific feature revisions to understand their interactions with
the remaining system. This greatly facilitates the integration of
variations into a single platform and the introduction of a platform.

⇒ VariantInc provides a platform that developers can configure
based on variations in space and time, ensuring that all existing
(and potentially new) variants can be instantiated.

Migrate towards Variation Control (UC5). Variation-control
systems [50] aim to manage variations in space and time simul-
taneously, for instance, by building on feature revisions instead
of system revisions [3, 4]. Any system may be migrated towards
variation control to facilitate the management and evolution of its
variations.While we have not implemented thismigration ourselves
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Prune Commit Graph
Identify Relevant Commits
Construct Commit Graph

2) Analyze Commit Graph

VariantInc Graph

1) Prepare Repository

VariantInc Platform

3) Analyze Commit Content

Convert VCS Variability
Convert Existing Variability

Build Variability Model

Figure 1: Overview of the process for constructing Vari-
antInc’s two core data structures, the graph and the platform.

(it would be highly tool-specific), VariantInc provides a configurable
platform and all information on revision histories that are needed
for such a migration.

⇒VariantInc provides the artifacts required tomigrate a system
and its forks towards variation control.

3 VARIANTINC
In this section, we introduce VariantInc and its two core data struc-
tures. Moreover, we describe how each of the data structures aligns
to the described use cases. We display an overview of the process
for constructing VariantInc in Figure 1, and describe the details of
this process in Section 4.

3.1 Overview
We aim to support developers during the mentioned use cases by ex-
tracting information from the version-control system and variability
mechanism of a system into VariantInc. The automated process
to build this platform consists of three major steps, 1) preparing
the system repository, 2) analyzing the commit graph, and subse-
quently 3) analyzing the commit contents. Steps 2 and 3 each yield a
data structure containing information about the system. In Step 2,
VariantInc produces an intermediate data structure, the VariantInc
commit graph, which can already be used to support (UC1). Per-
forming Step 3 yields the VariantInc platform, which provides the
additional information to support (UC2) – (UC5). In the following,
we describe these two data structures and explain how they are
used to support the respective use cases.

3.2 VariantInc Commit Graph
The VariantInc commit graph is a modified representation of a
commit graph of a version-control system including all forks and
branches. It differs from a regular commit graph in twomajor points.
First, the VariantInc commit graph contains only commits relevant
for the use cases of VariantInc—and which commits are considered
relevant depends on the setup of the build process, whichwe explain
in Section 4. Note that the content of omitted commits is not lost, as
it is preserved in the computed difference between the remaining,
relevant commits. Second, each commit in the VariantInc commit
graph references its successors and predecessors, instead of only
its predecessors. This allows for efficient backwards and forwards
traversal of the revisions kept in the VariantInc commit graph.

Prune and Analyze Revision Histories of Forks (UC1). As
the VariantInc commit graph does contain relevant commits only
(i.e., those representing variations), it effectively hides irrelevant
information from the developer. This makes it easy to spot forks that
contain actual variations. It also highlights which commits exist that
are not yet integrated into other variants. These variations can then
be propagated by the developer by integrating the corresponding
commits into another variant. Furthermore, commits in the graph
that have multiple successors indicate a common code base between
two or more revisions that could be inspected further to understand
what variations have been introduced.

3.3 VariantInc Platform
The VariantInc platform incorporates all forks and branches of a
system in a single data structure. It contains the contents of all
files from all commits in the VariantInc commit graph, including
the files’ histories. In addition, the platform comprises a variability
model that maps all commits in the VariantInc commit graph (i.e.,
variations in time) and all changes of all versions of the system (i.e.,
variations in space). Every commit is represented by a new feature
in the variability model, and their dependencies are derived from
their relationships in the VariantInc commit graph. The variability
model has twomain purposes. First, to specify all possible variations
of the variants of the system (i.e., combinations of commits and
features). Second, to determine the dependencies between these
variations in the platform, for example, to decide which features
in which commits can be checked out together to represent a valid
(i.e., error-free) configuration of a specific variant.

In more detail, the content of each file that is part of a speci-
fied variant depends on the features configured in the VariantInc
platform. While configuring, each feature can be either selected or
deselected, including or excluding files and their contents that do
not fulfill the presence conditions of the resulting configuration. So,
the VariantInc platform allows developers to immediately configure
and checkout (at least) the integrated variants.

Unfortunately, similar to most version-control systems, config-
uring all different kinds of file types on the same granularity is
hardly possible. For instance, binary files can only be present in
their entirety, and thus we store their revisions similarly to Git.
Consequently, while we focus on human-readable text files (i.e.,
source code that is configurable line-by-line), we also consider bi-
nary files and store them as single byte arrays. Every file within the
VariantInc platform is uniquely identified by its path in the original
version-control repository. To determine whether a file is present
in a certain variation, and whether it is binary or textual, each file
has a propositional presence condition.

Other variable elements in the VariantInc platforms are the actual
lines of textual files and byte arrays of binary files. Every line and
byte array is assigned a presence condition as well. For textual
files, the presence conditions of single lines incorporate not only
the history from the version-control system, but represent also the
variability of any existing variability mechanism, such as the CPP.
That means, a presence condition of a line is true under a given
configuration only if the line is present in the configured variation
and the configured variant. We describe how we compute presence
conditions in Section 4.
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Figure 2: Initial commit graph.

Identify Variations in Forks (UC2). By combining the VariantInc
commit graph with the platform, we can now compare the contents
of forks. Thus, developers can focus their analysis on the actually
relevant variations in the source code, as VariantInc again hides
irrelevant content (e.g., intermediate changes, reverted commits).
Moreover, it is easier to trace changes to specific revisions and forks,
helping developers to identify where a variation stems from.

Automatically Integrate Forks Into a Platform (UC3). After
constructing the VariantInc platform, all forks are integrated into
a single platform. Developers can then review and change that
platform, for example, to assign proper feature names, remove
unwanted variations, or define dependencies between variations
(e.g., avoiding that unintended or faulty configurations are possible).

Configure Variations in Space and Time (UC4). Previously
existing variations in time are for now encoded as variations in
space, allowing us to unify the variability mechanism used. For
instance, instead of checking out a revision of a system in a specific
fork and then configuring its CPP, developers can now decide to
integrate all variations into the CPP.

Migrate Towards Variation Control (UC5). The VariantInc plat-
form also provides the basis for migrating towards variation control.
Specifically, instead of having revisions only for the full system, we
now have variation points that align to the revisions of variations.
So, by analyzing and parsing those, the platform could be migrated
towards a variation-control system.

4 BUILDING VARIANTINC
To enable the automated integration of variants, we need to extract
information about features and their revisions from an existing
version-control system. Since we are concerned with a fully au-
tomated process for constructing VariantInc, our technique can
naturally be improved by taking domain knowledge of a systems’
developers into account. Therefore, we provide opportunities for
developers to control the intermediate steps of the process. In the fol-
lowing, we explain the individual steps of that process, for which we
provide an overview in Figure 1.We remark that we focus onGit and
GitHub with their branching and forking strategies, respectively.
However, the concepts of our process can be adopted for other ver-
sion control systems and platforms with their specific mechanisms.

4.1 Prepare Repository
In the preparation step, we collect all necessary information to
transform a system into a VariantInc platform. As initial input for
constructing VariantInc, we require the repository of a software
system. This repository must contain all relevant commits and
branch labels. This also includes all commits and branch labels of
any external fork deemed relevant. Furthermore, one branch must
be declared as the main branch, which is required for integrating
forks and handling orphan branches later on. Some platforms, such
as GitHub, allow us to extract all of this information automatically
(see Section 5 for further details). However, for other version-control
systems, not all of the required information may be available. Thus,
it is also possible to specify this information manually.

4.2 Analyze Commit Graph
The second major step in the automated VariantInc build process is
to construct the VariantInc commit graph. We divide this step into
three consecutive substeps: 1) constructing the initial commit graph,
2) identifying relevant commits, and 3) pruning the graph.

4.2.1 Construct Initial Commit Graph. We start constructing the
commit graph by collecting all variants of the system and their
corresponding branches in the Git repository. In our automated
process, we pick every branch within the repository that contains
at least one commit that has not been merged into the main branch,
yet. Furthermore, when analyzing software systems with forks
(i.e., from GitHub), we determine all publicly available forks of
the system, and analyze the corresponding main branch as well.
Developers can narrow down this selection by excluding branches
or forks that do not contain relevant commits (e.g., branches for bug
fixing). Moreover, developers can also specify additional branches
from other forks of the repository by providing an URL pointing to
the fork and the tag of the branch.

From the collected branches, we extract one starting commit per
branch. In the automated process, we use the most recent commit
of each branch. For each of these commits, we traverse their previ-
ous commits until we find a common predecessors with the main
branch (i.e., a merge base). Based on this traversal, we then build a
bi-directional commit graph of all commits between the starting
commits and the merge base. Due to orphan branches in Git, it is
possible to have more than one root commit in one repository. Thus,
it may be impossible to find a single merge base for all starting
commits. In such cases, we exclude all commits that do not share at
least one commit that we can reach from the most recent commit
of the repository’s main branch (i.e., orphan commits). In addition,
we also consider all commits that are predecessors of the merge
base as orphan commits, as it is not possible to reach the merge
base from these commits by backwards traversal.

We illustrate our automated construction process using a small
example, for which we depict the initial commit graph in Figure 2.
In this example, we depict all commits of a system, with the most
recent commits displayed on the right. The commits are labeled
with numbers (for the main branch) and letters (for branches and
forks comprising variants), and are connected to their predecessors
(and consequently also their successors). We highlight all commits
that are considered starting commits for the construction process
in cyan (i.e., commits 5, c, e, t, v, and z). As we can see, commit 5 is
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Figure 3: Pruning the commit graph from Figure 2.

the most recent commit in the main branch. Yellow commits are
considered orphans, since they have no predecessors from the main
branch (i.e., commits 0, w, x, y, and z). Disregarding the orphan
commits, we compute that commit 1 (highlighted in red) is the
merge base (i.e., the most recent common predecessor) for the set
of all starting commits.

4.2.2 Identify Relevant Commits. The initial commit graph con-
tains every commit from the original version-control repository
and also its forks. This may include commits that do not or only
partly introduce variability-related changes. Thus, we remove all
commits that are not considered relevant for our uses cases. In
the automated building process, we decide whether a commit is
relevant or not by using a simple strategy: We consider a commit
as relevant, if it is not an orphan commit and is either a starting
commit or has at least two successors (i.e., variations have been
introduced after the commit). Users may modify this selection by
manually marking further commits as relevant or irrelevant.

Naturally, we mark the starting commits as relevant, because
they contain the latest variants of the system. From there, we are
interested in commonalities between these variants. A commit that
has two or more successors can be seen as a partial merge base for
some of the starting commits, and thus probably contains a common
code base. In contrast, for a commit with just one successor, there
exists at least one commit (e.g., the successor), which contains more
information and is either a starting commit or a partial merge base.
For orphan commits, we can typically not find a merge base with
other commits, which is why these also do not contribute to a
common code base.

4.2.3 Prune Commit Graph. After identifying all relevant commits
in the initial commit graph, we remove all non-relevant commits by
pruning the graph. We begin by removing all orphan commits from
the graph. As an example, we depict the resulting commit graph
for Figure 2 after this first pruning in Figure 3 on the left.

Next, we repeatedly apply two steps until VariantInc reaches a
fix point. In the first step, we remove certain transitive connections
in the graph. For every commit, we traverse backwards through the
graph and check whether one of the commit’s direct predecessors
can also be reached via a different path. If so, we remove the direct
(i.e., transitive) connection from the commit to its predecessor. In
the second step, we mark commits as not relevant according to our
strategy presented earlier. Then, we remove all marked commits
from the graph. When removing a commit, we keep all transitive

connections between all other commits by replacing the connec-
tions of the commit’s predecessors and successors. In detail, we
replace all connections that point to the removed commit as a suc-
cessor with connections to the commit’s former successors and
we replace all connections that point to the removed commit as
a predecessor with connections to the commit’s former predeces-
sors. Removing a transitive connection may result in new commits
with only one successor, which is considered non-relevant by our
strategy. Similarly, removing a commit may lead to more direct
transitive edges that can be removed. Thus, we apply both steps
repeatably until the graph does not change any further.

We depict the process of pruning the commit graph in Figure 3.
On the left side, wemarked the direct transitive connection between
commit q and commit r, as it is possible to reach q from r via u.
In the middle, we display the graph without this connection and
marked all non-relevant commits (i.e., commits 2, 3, a, d, q, r, and
s). On the right side, we depict the final commit graph with all
non-relevant commits removed.

4.3 Analyze Commit Content
After constructing the VariantInc commit graph, the next step is to
build the VariantInc platform. Again, we divide this step into three
substeps: 1) converting variability from the version-control system
into presence conditions, 2) integrating variability from an existing
variability mechanism into the presence conditions, and 3) building
the variability model.

4.3.1 Convert VCS Variability. To integrate the variability of the
version-control system into the VariantInc platform, we collect all
variable elements (i.e., files, lines, and byte arrays) in all variants
from the VariantInc commit graph and compute their presence con-
ditions. We begin by checking out the merge base commit from the
version-control system to get all variable elements from the initial
code base of the system. We add every file from the code base to the
platform by storing its file path as a variable element. In addition,
we determine for each file whether it is binary or textual in order to
store its contents as variable elements as well (i.e., as a byte array or
line-by-line, respectively). We assign a presence condition to each
of these variable elements. During this initial stage, every presence
condition consist of only the merge-base commit. We later update
the presence condition when processing the next commits.

Next, we traverse the commit graph forwards in a breadth-first
manner to iteratively build up the platform. For every commit in the
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graph, we add new variable elements and update existing presence
conditions (e.g., when an element is deleted in a commit). Processing
each commit results in a partial, yet already configurable, state of the
VariantInc platform. For every commit, we compute the difference
compared to the current state. The current state can be derived by
configuring the platform and by selecting the predecessors of the
current commit. Given a configuration, the current state consist
of all active variable elements for this configuration. An element
is active, if its presence condition evaluates to true for the given
configuration, otherwise it is inactive.

The computed difference of the two states is file-based, which
leads to three possible cases for every file. Each file was either
added, deleted, or modified:

Adding a File. Analogous to the initial stage, we store the file path
of the new file and either its binary or textual content. Every
new presence condition consist of the current commit.

Deleting a File. When a file has been deleted, we do not remove it
from the platform, but update its presences condition. In de-
tail, we replace the old presence condition by a conjunction
of the old presence condition and not the current commit.
This ensures that if the current commit is selected in a con-
figuration, the new presence condition will evaluate to false.
Further, we update the presence conditions of all active vari-
able elements of the file in the same way (i.e., deleting its
lines or its byte array).

Modifying a File. For modifying a file, we update the presence
conditions of its active variable elements. Modifying a file
can be split into deleting and adding variable elements to a
file. For binary files, we change the presence condition of
its byte array by replacing it with a conjunction of the old
presence condition and not the current commit (analogous
to deleting a file). Further, we add the new byte array and
create a new presence condition consisting of the current
commit (analogous to adding a file). For textual files, we
first iterate through all active lines and update the presence
conditions of deleted lines accordingly. Next, we insert all
added lines and update the presence conditions.

Via these means, we can represent the presence conditions for
any variation in space and time that is caused by evolution in a
version-control system.

4.3.2 Integrate Existing Variability. For integrating the variability
of an existing variability mechanism, we again analyze every varia-
tion from the VariantInc commit graph. We traverse the commit
graph forwards with a breadth-first traversal and checkout every
variation by configuring the platform. For every variation, we ana-
lyze the preprocessor annotations of every textual file. This allows
us to determine presence conditions for every line regarding the
preprocessor features. We then combine this new presence condi-
tion with the presence condition for the corresponding line. For
every variation, we build a propositional implication, where the
commit implies the preprocessor presence condition. If we did not
yet add any implications to the old presence condition, we just add
it by conjunction. Otherwise, we still add it, but update the other
implications first by adding and not the current commit to the left
side of every previous implication. This procedure guarantees that

every line has the correct preprocessor presence condition for every
configured variation.

4.3.3 Build Variability Model. The complete variability model of
the VariantInc platform consists of a conjunction of several models.
First, we construct an initial variability model from the VariantInc
commit graph. For every commit, we add a feature and a constraint
that this commit implies its predecessors. Second, for every com-
mit in the commit graph, we extract the corresponding variability
model of the system. With these models, we then build and add im-
plications to the VariantInc variability model, similar to integrating
preprocessor presence conditions. Every model is implied by its
commit and not any more recent commit that changes the model.

5 IMPLEMENTATION
We implemented VariantInc as an open-source prototype in Java. In
this section, we describe the technological details of our prototype
and its implementation that are independent of VariantInc itself.

Dependencies. Our prototype relies on external open-source li-
braries for analyzing forks and integrating them into a single plat-
form. In detail, we use:

• JGit2 for analyzing and traversing Git repositories;
• Eclipse EGit GitHub Connector3 for communicating with
the GitHub API;

• FeatureIDE4 [32, 67], an open-source framework for creating
propositional formulas for presence conditions; and

• FeatureCoPP5 [53], which comprises a lightweight static
analysis for extracting presence conditions of the CPP.

Our prototype is available via GitHub.1

Preparing Repositories. The first step for using VariantInc is to
prepare the repository of the system for which forks shall be inte-
grated (cf. Figure 1). To his end, we clone a system’s Git repository,
all publicly available branches and forks, and collect the required
information. Instead of cloning each fork individually, technologi-
cally, we add each fork’s remote to the repository and fetch its main
branch. This allows us to access forks as if they were branches.

Handling Binary Files. A repository may include binary files,
which are difficult to handle. In particular, due to Git replacing
binary files completely after changes, we cannot analyze their in-
dividual variations, which would actually drastically increase the
required memory space. To avoid such problems, we currently use
a white list of file-extensions and a Git-like binary-file identifica-
tion technique. We white list files with the following extensions,
assuming that they represent text that VariantInc can analyze for
variations in detail (recall that we focus on C systems): c, h, cxx,
hxx, cpp, hpp, txt, xml, and html.

If a file does not match this white list, we try to automatically
detect whether a file is a text or a binary file. For this purpose, we
use JGit’s internal heuristic that works similar to Git itself. We plan
to extend our prototype so that a user can provide a custom white
or black list to ensure a suitable identification of binary files.

2https://www.eclipse.org/jgit/
3https://github.com/eclipse/egit-github
4https://featureide.github.io/
5https://github.com/ldwxlnx/FeatureCoPP

https://www.eclipse.org/jgit/
https://github.com/eclipse/egit-github
https://featureide.github.io/
https://github.com/ldwxlnx/FeatureCoPP


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Sebastian Krieter, Jacob Krüger, Thomas Leich, and Gunter Saake

Extracting Variability Models. The last step of the VariantInc
construction process requires to extract the variability model of
a system for every variation. Since extracting a variability model
from a system is heavily dependent on the system’s configuration
mechanism, we were not able to implement a general automated
extraction process. Thus, currently, we rely on the developers to
provide an automated method for extracting their variability model.

Other Technical Limitations. We implemented our prototype of
VariantInc focusing on Git and especially GitHub as version-control
system, since it enables us to automatically collect all required infor-
mation through libraries. So, while VariantInc itself can be applied
to other version-control systems, our current prototype is not de-
signed for this purpose. Besides this limitation of our prototype
itself, some other problems may be caused by specifics of other
version-control systems and could require individual solutions.

As we experienced during our validation (cf. Section 6), our pro-
totype has a high memory consumption, particularly if VariantInc
must create many and complex presence conditions. Consequently,
our current implementation may run out of memory for extremely
complex and large systems that exhibit too many forks (e.g., the
Linux Kernel). However, this is not a limitation of VariantInc, but
our current prototype, which has some potential to be optimized
in this regard.

6 VALIDATION
We validated VariantInc by applying it on 160 open-source C sys-
tems. In this section, we describe our validation setup, the results
we obtained, and discuss the outcomes.

6.1 Setup
Subject Systems.While implementing our prototype of VariantInc,
we experimented with five subject systems (i.e., clamav, MPSolve,
openvpn, subversion, and tcl) that have previously been used by
Zhou et al. [74] for evaluating their technique for identifying fea-
tures in forks. Using these five systems, we tested and optimized
VariantInc. However, to show its feasibility and validate its behav-
ior, we decided to use a variety of systems with different properties,
particularly varying numbers of forks that could be integrated. For
this purpose, we added GitHub projects to our analysis that use
mainly C/C++ as programming language and had the most stars
overall early in 2020. We remark that we had to exclude some sys-
tems with particularly many forks (e.g., Linux, Marlin) because we
could not manage the number of forks on the hard drive we used.
Precisely, we excluded systems with over 4,000 forks. Furthermore,
we added the top 100 C/C++ system with most stars that had no
more than 1,000 forks. In the end, we included 160 systems , for
which we show examples and a statistical summary in Table 1 (the
full overview is available in our repository1).

We can see that the systems we used for our validation span
a wide range of properties, including smaller systems with few
forks (e.g., axtls: 6 variants, 55 KLOC) up to large-scale systems
(e.g., hhvm: 2,839 variants, 118 MLOC). The revision histories we
analyzed range from 130 (i.e., HarmonyOS) up to 150,562 (i.e., tcl)
commits. Moreover, we included systems from various domains,
such as networking (e.g., openvpn), text editors (e.g., notepad-plus-
plus), virtual machines (e.g., busybox), and version-control systems

(e.g., subversion). So, our subject systems have diverse properties
and are suitable to validate the feasibility of VariantInc for auto-
matically integrating forks of different sizes and complexities into
a configurable platform.

Validation System. To conduct our validation, we used a laptop
with the following specifications: CPU : Intel Core i5-8350U, RAM:
16GB, OS: Manjaro (Arch Linux), Java: OpenJDK 1.8.0_242, JVM
Memory: Xmx: 14GB, Xms: 2GB.

Measurements. To validate VariantInc, we first checked that we
could restore each of the previous forks by configuring the platform
(UC4) created fully automatically by VariantInc. More precisely,
we configured the variations of each included fork and analyzed
whether the resulting code base would be the same (i.e., we em-
ployed a line-by-line diff analysis). We did not measure the perfor-
mance of VariantInc, since it is not our main concern and heavily
depends on the system setup. For further validation and to provide
an understanding how VariantInc can facilitate developers’ tasks
considering the use cases we motivated in Section 2.3, we measured
several properties of each system—summarized in Table 1:

(1) We first show the Variants VariantInc analyzed, comprising
the number of Forks (only the main branches of those) and
Branches of the original repository. Moreover, we show the
number of unique Variations that VariantInc identified, and
the Ratio of these variations compared to all analyzed forks
and branches. This ratio provides an intuition of how many
actual variations exist for the analyzed systems in relation
to its variants. Using this ratio, we can show to what extent
our technique can facilitate the analysis of changes that may
be integrated into a platform (UC2).

(2) We display an overview of the Commits, including the num-
ber of Total commits that existed for each system, the number
of NoOrphan commits, and the number of Pruned commits
that VariantInc identified to be relevant for the integration.
These measurements indicate to what extent VariantInc sim-
plifies and helps analyze revisions (UC1).

(3) We provide an overview of the KLOC of the systems and
their forks. We show again the Total size of each system
before the integration. Moreover, we show how many KLOC
are Active on average in each possible configuration after
the integration. The last value is a Ratio that indicates how
similar the code of the systems and their forks actually is.
So, a higher value indicates that the KLOC that are active in
each configured variant comprise more variations identified
in the total KLOC.

(4) We compare the File Size of eachGit repositorywith all forks
to the size of the platform created by VariantInc. The varying
sizes provide an intuition about the integration VariantInc
performs, and is mainly increasing if complex presence con-
ditions must be added to the code base.

Using those measurements, we aimed to validate that VariantInc
and its use cases are feasible for any system.

6.2 Results & Discussion
Now, we describe and discuss the measurements for all 160 systems
we show in Table 1 according to the use cases we defined. Moreover,
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Table 1: Examples and statistics of the 160 open-source systems on which we validated VariantInc.

Variants Commits KLOC FileSize (MB)System Name
Forks Branches Variations Ratio Total NoOrphans Pruned Total ∅ Active Ratio Git VariantInc

axtls 2 4 3 2.000 144 7 4 55.026 54.885 0.002 2.595 3.844
busybox 314 34 65 0.108 17,258 12,652 125 927.763 302.846 0.673 48.890 34.126
HarmonyOS 2,573 1 23 0.000 130 112 33 1,043.501 1,042.999 0.000 25.409 564.939
hhvm 2,733 106 266 0.038 45,412 44,614 522 18,155.693 3,036.375 0.832 494.865 1,775.119
notepad-plus-plus 2,707 1 223 0.000 5,423 3,376 384 1,216.568 441.953 0.636 260.512 1,104.383
openvpn 1,713 7 98 0.004 4,137 3,315 179 546.094 133.601 0.755 24.214 5.740
subversion 122 890 637 7.295 141,587 77,368 1,265 6,086.572 775.392 0.872 249.914 3,818.883
tcl 85 932 387 10.964 150,562 121,825 1,123 13,096.924 875.941 0.933 236.304 848.532
v8 2,859 3,592 1,933 1.256 106,143 86,392 3,986 11,194.959 2,706.649 0.758 963.755 575.645
Min 2 1 1 0.0002 27 1 1 2.228 1.727 0.0 0.144 0.027
Median 698.0 6.0 55.5 0.009 3,038.0 2,274.5 98.0 449.756 122.560 0.711 48.021 80.461
Mean 1,088.3 55.3 95.3 0.168 8,243.6 6,100.6 178.9 1,420.907 350.016 0.666 206.774 541.870
Max 3,944 3,592 1,933 10.964 150,562 121,825 3,986 2,1562.320 7,822.253 0.988 6,563.407 11,522.601

we discuss two hypotheses that relate to previous works, and which
we could derive from the results we obtained using VariantInc. We
remark that these hypotheses require additional studies and are not
the focus of this paper, they only highlight the analysis use cases
of using VariantInc.

Prune and Analyze Revision Histories of Forks (UC1). As we
can see in Table 1, the number of commits varies drastically between
different systems and their forks. For example, tcl has 1,017 forks
with 150,562 commits in total, whereas notepad-plus-plus has 2,707
forks with only 5,423 commits. A previous analysis of Marlin [65]
shows that many forks of that system are inactive, used only for
changing configuration files, and are rarely synchronized. So, for
developers, but also for researchers, it is challenging to analyze
such large numbers of forked systems and understand whether they
comprise relevant variations. While GitHub intends to manage this
complexity with pull-requests that can be submitted by developers
of forks, this solution has limitations for organizations or projects
that have to integrate a large number of forks, do not have such a
mechanism, or develop a fork themselves.

VariantInc provides new capabilities for analyzing the revision
histories, allowing developers and researchers to gain additional
insights. For instance, considering the study of Stănciulescu et al.
[65] and seeing our measurements, we could argue that forks may
not be a good indicator for variations (and thus new features). More
precisely, we can see in Table 1 that systems with a large number of
variations also exhibit a large number of branches (e.g., subversion).
In Figure 4, we compare the ratio of forks to branches in a system
with the ratio of variations these exhibit for the system. So, dots
on the left side of Figure 4 indicate systems with a higher number
of branches compared to forks. For these systems, the number of
variations is higher compared to such systems that exhibit more
forks compared to branches.

We used Kendall’s 𝜏 with the R statistics suite [59] to test whether
this observation is meaningful. For this purpose, we compared the
number of i) forks and ii) branches with the ratio of variations intro-
duced by both together (i.e., Variations/(Forks + Branches)). Our null
hypotheses were that neither forks nor branches would correlate
with variations. Both tests yielded significant results (p-values <

0.001), indicating a negative tendency for forks (𝜏 = -0.221) and a
positive tendency for branches (𝜏 = 0.256). While we can reject the
null hypothesis, the effect sizes are small, wherefore we should not
over-interpret the meaning. Still, it is interesting that the tendencies
are opposing, indicating that branches may be were actual varia-
tions, such as new features and bug fixes, are implemented. This
could indicate systems developed by an organization or a larger
open-source community, or different development processes, for
instance, branch-based (driven by the original developers) versus
fork-based (driven by an open community) development. However,
we require, and VariantInc provides the basis for, further analyses
to investigate this hypothesis in more detail.

Our results indicate that there may be a difference in branch-
based and fork-based development, since particularly branches
seem to cause variations in a system.

Hypothesis 1: branches versus forks

Identify Variations in Forks (UC2).We can see in Table 1 that
VariantInc identified far fewer actual Variations than the number of
forks and branches may have indicated, resulting in a relative small
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Figure 4: Comparing the ratio of forks to branches of a system
with the ratio of variations VariantInc identified within these
(logarithmic scale).
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Figure 5: Comparing the number of identified variations with
the ratio of variable KLOC.

Ratio. This again highlights that many forks and branches may not
be actually developed, but only used as private copies. Moreover,
considering the KLOC that are Active on average within a variant,
we can see large differences. For instance, for axtls the variants
mostly comprise the complete code base, resulting in a low ratio of
variability. In contrast, a variant of tcl comprises on average 875
KLOC of the initially over 13 MLOC, resulting in a high variability
ratio of 0.933.

Using VariantInc for such an analysis can help developers and
researchers understand the complexity of variations that appear in
forks. For instance, Liebig et al. [48] analyzed CPP usage in 40 sys-
tems, finding that the ratio of variability implemented with the CPP
correlates to a system’s size. Considering variations from forks and
branches, it would not be surprising that a larger number of forks
also results in more variations (even though our previous analysis
puts this into perspective). However, aligning to the study of Liebig
et al., it may be more interesting to understand how the system size
relates to the possible variability after integrating variations.

In Figure 5, we compare the number of variations VariantInc
identified in a system with the ratio of variability comprised in the
resulting platform. We can see that both values seem to correlate,
but except for a few outliers at the beginning, the effect does not
seem to be strong. To analyze this observation, we again used
Kendall’s 𝜏 to test this hypothesis, with the null hypothesis being
again that there is no correlation. The test reveals a significant (p
< 0.001) positive tendency (𝜏 = 0.358). So, while more variations
result, not surprisingly, in more variability, it is interesting that the
value seems to be rather stable except for some outliers.

Our results indicate that the percentage of variability introduced
by integrating forks remains relatively stable compared to a the
systems’ sizes.

Hypothesis 2: ratio of variability

Automatically Integrate Forks into a Platform (UC3). For
now, we successfully validated that our technique can integrate
all existing forks and branches of a system into a new platform.
An adaptation for a version-control system is possible, since our
variant integration works as intended.

Configure Variations in Space and Time (UC4). We config-
ured the resulting VariantInc platform of each system to derive

each of the previously existing forks. A diff analysis of each of the
configured variants showed that they were all identical to their
original forks (i.e., after integrating all variations, we can still de-
rive the integrated system variants), confirming that VariantInc
integrates all variations as intended. So, the resulting VariantInc
platform could be used directly, but arguably developers should
first assign proper feature names to the presence conditions, adapt
the variability mechanism (e.g., integrate new features into their
configurator tool), and refactor some code changes. Still, these are
expected activities to improve the quality of a re-engineered soft-
ware system [1, 15, 33, 35, 41, 46], and our technique considerably
facilitates such processes.
Migrate towards Variation Control (UC5). As motivated, we did
not validate this use case, due to its technical restrictions. However,
considering the previous results, we can see that our technique does
provide all artifacts required to migrate systems towards variation
control. We aim to address this migration in future work.

7 CONCLUSION
In this paper, we presented VariantInc, a technique for analyzing
and integrating forks of a variant-rich system into a platform that
also considers revision histories. Moreover, VariantInc extends ex-
isting analysis methods for forked systems and their revisions,
allowing for novel analyses of software-engineering practices. We
validated that VariantInc works properly and as intended by em-
ploying it on 160 open-source systems. Based on the results, we
discussed VariantInc’s feasibility for five different use cases that
have not been well supported before. In summary, we show that:

• VariantInc allows for novel analyses of revision histories of
variant-rich systems that can be used to reveal new insights
regarding the evolution of such systems.

• VariantInc can help developers to identify and locate the
unique variations that exist in different forks.

• VariantInc is feasible to integrate the forks of a wide range
of highly complex systems form various domains.

• VariantInc results in a configurable platform that can be used
directly to derive system variants, even though refinements
by developers are needed to align the platform to established
processes (e.g., assign features).

VariantInc is available as an open-source prototype1 and may be ex-
tended and integrated into other tools. We hope that our technique
can help practitioners in facilitating the management of variant-
rich systems, and researchers in providing new analysis methods
and research opportunities.

In future work, we plan to integrate VariantInc into tool frame-
works for managing variant-rich systems, providing interfaces to
different version-control and variation-control systems. We aim to
conduct empirical evaluations and user studies of how VariantInc
can support developers in the different use cases we described, and
are particularly interested in advancing the support for variation-
control. Moreover, we found that VariantInc can be used for novel
analyses that could reveal interesting and important properties of
variant-rich systems and their development. So, we aim to study
such properties in more detail and based on larger sets of systems,
also involving other types of empirical studies to confirm our find-
ings qualitatively and quantitatively.
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