Don’t Worry About it: Managing Variability On-The-Fly

Sebastian Krieter
Harz University of Applied Sciences
Wernigerode, Germany
Otto-von-Guericke-University
Magdeburg, Germany
skrieter@hs-harz.de

ABSTRACT

Software-product-line engineering (SPLE) has become a widely
adopted concept to implement reusable source code. However, in-
stead of using SPLE from the beginning (the proactive approach),
a software product line (SPL) is often only introduced after a set
of similar systems is already developed (the extractive approach).
This can lead to additional costs, new bugs introduced by refactor-
ing, and an overall inconsistent SPL. In particular, inconsistencies
between the variability implemented in the source code and the
one represented in a variability model can become a major problem.
To address this issue, we propose the concept of variability man-
agement derivation: We aim to (semi-)automatically model features
and their dependencies while developers implement variable source
code to facilitate the initial development, reusability, and later main-
tainability of SPLs, utilizing the reactive approach. In this paper,
we demonstrate our concept by means of preprocessors. However,
we claim that it can be adapted for other SPLE implementation
techniques to facilitate SPL development.

CCS CONCEPTS

« Software and its engineering — Software product lines;

KEYWORDS

Software product line, adoption strategy, reactive development,
variability model

ACM Reference Format:

Sebastian Krieter, Jacob Kriiger, and Thomas Leich. 2018. Don’t Worry About
it: Managing Variability On-The-Fly. In VAMOS 2018: 12th International
Workshop on Variability Modelling of Software-Intensive Systems, February
7-9, 2018, Madrid, Spain. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3168365.3170426

1 INTRODUCTION

Software reuse is one of the most important concepts in software
engineering to reduce development costs [4, 10, 14, 43]. Employing
software reuse results in a set of similar systems that comprise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VAMOS 2018, February 7-9, 2018, Madrid, Spain

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5398-4/18/02. .. $15.00
https://doi.org/10.1145/3168365.3170426

Jacob Kriiger
Harz University of Applied Sciences
Wernigerode, Germany
Otto-von-Guericke-University
Magdeburg, Germany
jkrueger@hs-harz.de

Thomas Leich
Harz University of Applied Sciences
Wernigerode, Germany

tleich@hs-harz.de

Listing 1: Example of C preprocessor code.

void login(charx name, charx pw) {
ifdef HTTPS
login_https(server, name, pw);
endif
ifdef SSH
login_ssh(server, name, pw);
endif
}

00NN U R W N =

shared and unique code alike. For example, copying source code
and adapting parts of it is one of the most simplistic reuse ap-
proaches [19, 38]. This approach is known as copy-and-paste for
smaller code parts and clone-and-own for entire systems [18, 38].
Each derived clone includes modified behavior referred to as vari-
ability. Therefore, the concept of variability is closely connected to
software reuse.

SPLE has been proposed as a more systematic reuse approach
than clone-and-own [4, 13, 14]. Functionality (described as features)
is implemented just once in domain artifacts, which are then reused
to derive customized product variants. In practice, mainly prepro-
cessors are used to implement SPLs [4, 21, 34]. Here, a single code
base exists in which variable source code is marked with annota-
tions and is removed before compilation - if the corresponding
feature is not part of the configuration. We show an example using
the C preprocessor (CPP) [25] in Listing 1. For the CPP, #ifdef
directives mark the beginning and #endif directives the end of a
variable code part. A feature’s name is defined in the condition
that follows an #ifdef, for instance HTTPS (cf. Line 2 in Listing 1).
While our proposed concept is not limited to preprocessors, we
will focus on them in this work to provide a consistent example.
Thus, if we refer to introducing variability with a preprocessors, we
refer to any situation in which a feature is made reusable also, for
example, via cloning or components. However, further adaptations
to our concept are necessary in this context, for example, a strong
integration of the underlying platform in the case of components.

When developers start implementing a system, they may not
think about its reusability. In particular, this applies if they are
unfamiliar with SPLE, develop completely new products, or are
working in a less software-intensive domain. However, at some
point in time, variability in the system can become necessary and
developers start to implement variable code. For example in List-
ing 1, the functionality of logging via HTTPS may have been present
from the beginning, but at some point new requirements led to the
implementation of an SSH feature to improve the security in some
systems. Although the C preprocessor — along with many other
variability mechanisms — benefits from using a feature model, it
does not explicitly require one, which means that developers are

https://doi.org/10.1145/3168365.3170426
https://doi.org/10.1145/3168365.3170426
https://doi.org/10.1145/3168365.3170426

VAMOS 2018, February 7-9, 2018, Madrid, Spain

not forced to model this newly introduced variability. Thus, over
time the knowledge about variable and reusable source code will
fade and needs to be recovered [20, 31], hampering the maintenance
and comprehensibility of the code.

To address this problem, we propose the concept of variability
management derivation to support developers in managing reusable
code. The idea of this concept is to semi-automatically generate
and refine variability models [7, 11, 15] whenever developers add
variability to their code. This exceeds current capabilities of SPLE,
its tools, and corresponding implementation techniques that either
do not use models (e.g., preprocessors) or require a full model
defined by the developer (e.g., feature-oriented programming [37]).
Currently, we envision to extend a development environment to
support developers by semi-automatically defining dependencies
of new features as soon as they are implemented. However, even
further improvements can be achieved by a stronger integration of
this concept into respective programming languages, resulting in
more and more variability managing being handled automatically.
Thus, later on variability management derivation may also comprise
other aspects of reuse and variability, for instance, deriving and
customizing test cases to configurations.

2 SOFTWARE PRODUCT LINE ADOPTION

In this section, we describe the three adoption strategies for SPLs
introduced by Krueger [28]. For each, we motivate how variability
management derivation can support the adoption strategy. To do so,
we rely on the terms problem space, referring to an abstracted view
(e.g., based on variability models) on the domain, and solution space,
referring to the actually implemented domain artifacts [4, 14].

2.1 Proactive Adoption

Proactive development is often considered to be the ideal adoption
strategy for SPLE: While requiring the highest upfront investment,
the break-even point can be reached faster [12, 30, 40]. For proactive
adoption, the SPL is developed from scratch and fully designed
before its implementation. Thus, the complete problem space is
scoped and then a corresponding solution space is derived.

In this context, variability management derivation can help dur-
ing the development, as even in a modeled problem space some new
features may be added during the implementation or maintenance
phase. Here, our concept supports the developer in managing, doc-
umenting, and mapping newly added functionality. Furthermore,
different code constructs, for example the nesting of preproces-
sor directives, could contradict or imply different variability than
defined in the problem space [33, 35, 42]. With our concept, we
can already then identify such cases and call for the developer’s
attention to update the model or source code to ensure consistency.

2.2 Extractive Adoption

Far more common in practice than the proactive approach is the
extractive adoption strategy [4, 6, 34]. In this case, a set of often
cloned systems, comprising commonalities and variabilities, exist.
These are than migrated into an SPL. Thus, different solution spaces
preexist and have to be joined as well as mapped into a single
problem space [31].

Sebastian Krieter, Jacob Kriiger, and Thomas Leich

Here, variability management derivation can help during the
extraction process to ensure that the resulting SPL is consistent and
to prevent faults in the mappings. Thus, we facilitate and support
the developer while refactoring the cloned systems, reducing the
costs and risks of extractions [12, 30]. Furthermore, we can support
the step of locating features and deriving a variability model, which
can only be semi-automated [9, 23, 31, 32].

2.3 Reactive Adoption

Finally, the reactive approach refers to situations in which a single
system is developed and later extended towards an SPL. Thus, vari-
ability may already be planned from the beginning, integrating the
proactive approach, or just be added whenever it seems appropriate.
For instance, in preprocessor-based systems, features can simply
be added and made configurable by including corresponding an-
notations. Still, these changes in the solution space are often not
mapped to the problem space, resulting in outdated documenta-
tions, variability models, and mappings — ultimately requiring to
locate features again during maintenance.

We propose variability management derivation especially for this
adoption strategy to facilitate the introduction of variability on-
the-fly. Thus, whenever a developer adds a feature, for example
by including preprocessor annotations, we immediately analyze
the code, trying to automatically identify its dependencies and
map it to the variability model. Still, this is hardly possible in all
situations, wherefore we propose to raise the developers’ awareness
for the newly introduced variability at this point. Our concept can
help to facilitate the management of reuse and variability while
implementing code by proposing changes to or even automatically
updating the variability model.

We remark that we base our following concept on feature mod-
els as they are commonly used in practice and academia [7, 11].
Nonetheless, other variability models can also be used or are even
necessary for specific implementation techniques. For example, for
delta-oriented programming the corresponding delta models have
to be used [39].

3 PROBLEM STATEMENT

The variability of an SPL is provided by both, feature modeling
(problem space) and variation points in the source code (solution
space). While the feature model explicitly defines valid configura-
tions, the source code implicitly defines valid products due to its
data and control dependencies.

We call an SPL consistent, if the variability that is intended by the
developers is reflected in the source code and enforced by the feature
model. Otherwise we call the SPL inconsistent. More precisely, for
an SPL to be consistent, we require certain properties of feature
model and source code. The source code should facilitate developers
to understand the implemented behavior — which represents one
of the main activities of developers [46, 47] — and, thus, comprise
the following properties:

o comprehensibility,

o meaningful variability, and

o feature traceability.
Consequentially, to be easily comprehensible, the source code needs
to have an appropriate annotation structure (i.e., nesting) and must

Don’t Worry About it: Managing Variability On-The-Fly

reflect the variability in the feature model rather than declaring all
features as optional. Furthermore, each code block must be mapped
to at least one feature in the feature model to achieve reasonable
feature traceability. Simultaneously, the feature model should forbid
configurations that could result in:

e duplicated products,
e syntactical errors, and
e semantical faults.

As not all variability concepts of a feature model can be perfectly
represented by all implementation techniques, our definition of
consistency serves more as a guideline than a measurable property.
Still, we find it suitable as foundation of our concept of variability
management derivation.

The goal of this concept is to support developers in implement-
ing such a consistent SPL, keeping feature model and source code
aligned to ensure that the implemented variability represents the
intended one. This alignment is necessary to fulfill the aforemen-
tioned properties that support developers differently in their tasks.
On the one hand, properly representing variability in the code
facilitates feature location, traceability, and code comprehension.
On the other hand, a consistent feature model provides a simpler
overview of the SPL’s structure, enforces dependencies that cannot
completely be represented in the code, is necessary to prevent that
invalid configurations are instantiated, and enables model-based
analysis. Thus, consistently representing variability throughout the
SPL (i.e., in both code and feature model) provides several benefits.

4 RUNNING EXAMPLE

Throughout the paper, we use an example SPL of a cloud-storage
client that contains seven features: Client, Crypto, Encryption,
Signing, Login, HTTPS, and SSH. We represent the feature model of
this example SPL as a feature diagram in Figure 1. The features
Encryption and Signing are in an or-relationship, which means
that if their parent feature Crypto is selected, at least one of both
must be selected, too. Similarly, the features HTTPS and SSH are in
an alternative-relationship, meaning that exactly one of them must
be selected if their parent Login is selected. This is always the case,
as Login is a mandatory child of the root feature Client.

To exemplify potential inconsistencies between this model and
its implementation according to our definition and motivate vari-
ability management derivation, assume the following: Considering
our preprocessor example in Listing 1 and only the annotations
for HTTPS and SSH, we can get the impression that both features
are optional and independent from one another. However, when
we take a deeper look at the source code, we notice that configu-
rations in which both or none of the features are selected do not
make sense, as there is either no login or the login is executed
twice, respectively. Thus, we would model an alternative between
both features, as we show in the feature model in Figure 1, and
generate variable code, which we display in Listing 2. This clarifies
the developer’s intentions for others and, at the same time, en-
forces the intended variability via the feature model by prohibiting
meaningless product configurations.

With our concept of variability management derivation, we strive
to resolve such inconsistencies already during development, to
improve the management of SPLs and avoid maintenance problems,

VAMOS 2018, February 7-9, 2018, Madrid, Spain

Client Legend:
o Mandatory
o Optional
Crypto Login ™= Or
/'\ M < Alternative

Encryption Signing HTTPS SSH

Figure 1: Feature model of the example cloud SPL.

Listing 2: Login method with generated annotations.

#ifdef Login
void login(charx name, charx pw) {
ifdef HTTPS
login_https(server, name, pw);
elif SSH
login_ssh(server, name, pw);
else
error "Invalid configuration!"
endif

= O 00NN U R W N =

}
#endif

—_

as well as unnecessary or faulty analyses. One of our methods is to
reflect the variability of the feature model within the source code,
which introduces redundancies (cf. Line 8 at Listing 2). While this
may seem counterintuitive at first, these additional information can
help developers to properly understand the variability at certain
parts of the code and facilitate feature location [20]. Using tool
support, we aim to keep the accruing implementation overhead for
the developers to a minimum.

5 VARIABILITY MANAGEMENT DERIVATION

In order to resolve inconsistencies between the feature model and
the source code, we first need to consider the feature modeling
process. Feature modeling consists of two main tasks: Identifying
distinct features and specifying their dependencies [4]. When using
feature diagrams as feature model representations, feature depen-
dencies can be displayed by both, the tree structure and additional
cross-tree constraints. Thus, we have to consider three activities
with our approach to promote a consistent feature model:

(1) identifying features,

(2) modeling the tree structure, and

(3) adding cross-tree constraints.
With variability management derivation, we intend to support the
developer in these activities by (partly) deriving the feature model
from variation points within the source code. Our main goal is
to automatize each activity as far as possible. Furthermore, if au-
tomation is not possible or not reasonable, we still want to guide
developers by providing meaningful suggestions and calling for
their attention. In this section, we describe each activity and how
we intend to support it in more detail.

5.1 Identifying Features

One of the biggest challenges is to identify features within the
source code. In particular, feature identification and location is hard
to automate, as a tool doesn’t know a developer’s intentions [9, 23].

VAMOS 2018, February 7-9, 2018, Madrid, Spain

Identifying Variant Features. We plan to provide tool support for
the reactive approach in the following way: Alternatively to adding
a preprocessor annotation, developers can simply mark a code block
and assign a feature via a command (e.g., context menu, hot key,
...). The tool then creates a new feature in the feature model and
generates the corresponding source code annotations. With this, we
achieve two goals: Assigning a feature to a code block (potentially
by creating a new one in the feature model) and enabling variability
within the code, while requiring equal or even less effort from the
developer. In contrast, if a developer manually defines a variation
point in the code, the feature name may be automatically derived
(e.g., based on the preprocessor directive) and mapped to the model.
For both cases, the developer may need to define dependencies
of the newly introduced feature, which we aim to support with
automatic suggestions.

We illustrate our described technique in the example given in
Listing 3. Here, we can imagine that a developer is implementing
an upload method, which uploads some packages to the cloud
server. At the beginning, the developer is just implementing the
non-highlighted parts without considering any variability. To this
end, the feature model is almost empty, containing only the root
feature Client. Later on, the developer is adding the variable code
highlighted in yellow. Each of the three highlighted lines comprises
a different variation point. The crypto library added in Line 1 is used
in Line 3 and 4 to sign or encrypt the given package, respectively.
Instead of adding annotations manually, the developer marks each
line and specifies a feature. Then, the tool automatically generates
annotations in the code and adds the corresponding feature to the
feature model. We depict the final source code in Listing 4 and the
resulting feature model on the left side of Figure 2.

Identifying Core Features. Another issue concerning feature iden-
tification is the mapping of source code to core features (i.e., fea-
tures that are present in every valid product [5]). While using our
proposed concept, developers can easily assign features to certain
variable parts of the source code and identify all variant features
(i.e., features that are present in only some valid products [5]). Still,
the question arises how to induce the developer to also model core
features. Arguably, this may be unnecessary if we only aim to con-
sistently model variability. However for maintenance purposes and
later adaptations (e.g., making a core feature optional), we argue
that these tasks can be facilitated if all features are mapped to the
code and their dependencies are defined. Then, it is not necessary
during an update to recover feature locations and investigate its
dependencies, which can be costly tasks [20, 26, 30, 48].

With our tool, we plan to automatically provide suggestions to
the developers to define features for new computational units, such
as, classes and methods. Thus, if performed consistently, all parts of
the code are mapped to a certain feature. The default suggestions
could be to map core functionality to the root feature of the feature
model or, if existing, the feature of a larger encapsulating unit, for
instance of a class including a considered method. Alternatively, our
tools may propose to create a new feature for classes, for example
based on the class name. The developer can agree with a sugges-
tion or add the unit to another feature. For example, in Listing 4,
we may suggest to map the non-variable parts of the method to

Sebastian Krieter, Jacob Kriiger, and Thomas Leich

Listing 3: Upload method with highlighted variable code.

#include <crypto_ lib.h>

void upload(charx package) {
package = crypto_sign(package);
package = crypto_encrypt(package);
upload_to_server(server, package);

}

[S R N O

Listing 4: Upload method with generated annotations.

1 #ifdef Crypto

2 # include <crypto_lib.h>

3 #endif

4 void upload(char* package) {

5 # ifdef Signing

6 package = crypto_sign(package);

7 # endif

8 # ifdef Encryption

9 package = crypto_encrypt(package);
10 # endif

11 upload_to_server(server, package);
12}

Listing 5: Upload method with generated annotations.

#ifdef Client

#ifdef Crypto

include <crypto_lib.h>

#endif

void upload(charx package) {

ifdef Crypto

ifdef Signing

package = crypto_sign(package);
endif

ifdef Encryption

package = crypto_encrypt(package);
endif

endif

14 upload_to_server(server, package);

[RN R B N O

HH O OHH KR

endif

=
=N
3

the root feature Client (i.e., Line 4, 11, and 12). If accepted, cor-
responding annotations are added, as we show in Listing 5. This
way, traceability of any kind of feature is supported, facilitating the
comprehension of a system. However, we may not use preprocessor
directives for this purpose, but lightweight documentation anno-
tations, for example as proposed by Ji et al. [20]—thus, avoiding
additional configuration options that would increase complexity.

5.2 Modeling Feature Dependencies

After identifying features within the source code, we need to model
their dependencies.

Defining Alternatives. One possibility to define a feature relation-
ship is by introducing an alternative variation point in the code and
reflecting it in the model. By now, we only consider variation points
that add functionality to the source code. However, we can also
use variation points that provide alternative implementations of
the same functionality. Similar to additions, a developer can mark
the relevant code blocks and define them as alternative. Another
possible method is that the developer marks just one code block and
then implements the alternative code block(s) on-the-fly. Again, the

Don’t Worry About it: Managing Variability On-The-Fly

Client
Client
Crypto
Crypto Signing Encryption ’\
Encryption Signing

Figure 2: Feature model of the example cloud SPL.

Listing 6: Login method with highlighted variable code.

1 void login(charx name, charx pw) {
2 login_https(server, name, pw);

3 login_ssh(server, name, pw);
4

tool would generate annotations in the source code and restructure
the feature model accordingly.

When we consider our first example of the method login, we
can show an application of this technique. In Listing 6, we depict
the source code without annotations, again highlighting the vari-
able parts in yellow. The developer would mark both lines, assign
a feature to each of them and define them as alternative imple-
mentations. Subsequently, the tool would generate annotations and
add the new features and their dependencies to the feature model.
When creating an alternative group, the tool requires a correspond-
ing parent feature. In this example, we assume that the developer
creates a new feature Login. Analogous to Listing 5, we can wrap
the annotations of the child features. However, as the entire method
body consists only of variable code, we can extend the annotation
to encapsulate the whole login method. We show the resulting code
in Listing 2 and the final feature model in Figure 1. If an alternative
to an already existing feature is implemented, we can ideally auto-
matically reflect this in the model, as we know the parent and child
features. Still, our tool will report an inconsistency if other features
are defined below the parent, which requires either to assign the
alternative group to another parent or assign the existing features
to the implemented alternatives.

Analyzing the Source Code. Regarding the feature tree structure,
we aim to utilize source code analysis, for example for preprocessor-
based variability [35], to extract feature dependencies. Additional
metrics, variability mechanics (e.g., #else directives, nesting, or
boolean operators for preprocessors), and naming conventions can
be used to refine the results or identify further dependencies. Still,
automatically extracting all dependencies is hardly possible and
user support will be necessary.

In our previous example in Listing 4, we identified the three
involved features Crypto, Encryption, and Signing. However, cur-
rently all of them are optional, which is represented on the left side
of Figure 2 but differs from the intended variability that we can see
in the source code. Both, Encryption as well as Signing require the
inclusion of the crypto library by the feature Crypto. Thus, there
is a clear relationship (Encryption V Signing) — Crypto. We can
simply model this relationship within the feature tree by making
Crypto the parent of Encryption and Signing.

VAMOS 2018, February 7-9, 2018, Madrid, Spain

In addition, we have the relation Crypto — (Encryption V
Signing), as it does not make sense to include the Crypto library if
neither signing nor encryption is intended. Thus, the tool support
will suggest a corresponding restructuring of the diagram, which
we show on the right side of Figure 2. Additionally, the tool will
update the source code by generating an additional annotation,
such that the relationship of the three features is also clear from the
code. In Listing 5, we can see the new annotation at Line 6, which
is encapsulating the variation points for signing and encryption.

5.3 Adding Cross-Tree Constraints

For cross-tree constraints, the same automatic analyses as for the
previous steps can be helpful. Additional metrics can help to identify
dependencies that are not represented in the tree structure, for
example:

e Local control flow dependencies (within a method/class)

o Global control flow dependencies (entire system)

e Data flow analysis

o Architectural dependencies (e.g., packages, namespaces)
However, cross-tree constraints are even more challenging to auto-
matically identify than the tree structure. Thus, these constraints
heavily rely on the developer to be manually specified. To sup-
port this, our approach will suggest dependencies based on static
analysis of the source code and verify newly defined dependencies.
Similar, to alternatives and additions, we can also reflect cross-tree
constraints to the source code by using expression in the annota-
tions.

5.4 Special Cases

As we already indicated, there exist some special cases of adding
variability that we need to consider within our concept. In this
section, we briefly describe some of these cases and how we address
them using variability management derivation.

Distributed Alternative Code. In contrast to our small example in
Listing 2, there might also be alternative code blocks that need to
be implemented at different locations within the code (e.g, in an-
other class or method). Here, we cannot use a simple #ifdef-#else
structure. However, instead of using #ifdef with a single directive,
we can introduce a more complex expression in the respective an-
notations that also reflects the intended variability, for instance,
#if defined SSH && !defined HTTPS.

Manual Annotating. If the developer chooses to just add anno-
tations without the mechanism we provide, we can automatically
identify that variability is introduced due to the preprocessor di-
rectives. We then can also identify the feature’s name by analyzing
the macro definition and even match whether it is already defined
in the model or not. In the first case, the tool can check for incon-
sistencies between the intended and implemented variability using
existing approaches [22, 35], asking the developer to resolve issues.
For the second case, we aim to propose the developer to include
the feature in the model and potentially propose a suitable position,
for example, depending on the nesting of annotations. Even if the
developer chooses not to include the feature, we can still add it as
an optional one to at least represent it in the model. Thus, we aim
to prevent inconsistencies between model and source code.

VAMOS 2018, February 7-9, 2018, Madrid, Spain

Sebastian Krieter, Jacob Kriiger, and Thomas Leich

~
Variability Management Derivation
Developer Tool
Choose/Create Parent J [Code Analysis J
Mark Code Block Adaption Proposal
Mark Alternative Code]'7 -
- [Feature Model Restructuring]
Implement Alternative Code]‘7 Feature Model
[Annotation Generation]
Choose Existing Feature
Annotated Code
Create New Feature Create Addition @
J

Figure 3: Envisioned workflow of variability management derivation (activity diagram).

Changing Presence Condition. Changing the presence conditions
of a variable code block can lead to broken dependencies. We aim
to address this issues within our tool as follows: When an analysis
detects a problem introduced by the modified variable code, we
either warn the developer or, if possible, generate an appropriate
constraint that fixes the problem by reducing the problem space.
Again, if the developer manually changes such a presence condition
without using the provided mechanism, we derive and propose
solutions for the identified issues to the developer.

5.5 Envisioned Work-Flow

Summing up the previously described activities, we now describe
our envisioned work-flow of variability management derivation.
We depict this work-flow — considering that the developer uses
the functionalities of our tool and does not solely rely on its on-
the-fly analysis — as an activity diagram in Figure 3. On the left
side, we show all activities and decisions that require input from a
developer. Analogous, on the right side, we show the activities that
are executed by the development environment.

The developers start by marking a code block that they consider
as variable. Next, they assign a feature to the code block and can
either choose an existing feature from the feature model or provide a
name to add a new, optional feature to the feature model. Afterwards,
the developers have to choose whether the variable code block is
an addition to the remaining code or part of an alternative imple-
mentation of a feature. In case of an addition, the developers are
effectively done, though they could specify additional dependencies.
Otherwise, they have to specify the alternative implementation by
either marking an existing code block or by implementing a new one
in the editor. In addition, they have to define a parent feature for
the alternative group in the feature model. Just as previously, they
can either choose an existing feature or create a new one.

After the developers provided their input, the remaining activi-
ties are executed by the tool to refine feature model and source code.
First, the tool performs a static code analysis, considering data and
control flow, dependencies, and variable code structures. Based on

this analysis, the tool provides a list of proposals for adapting the
feature model and source code. If there is more than one proposal,
the developer can choose which one the tool should apply. Second,
using the results of the source code analysis, the tool restructures
the feature model accordingly, arranging the features in groups or
adding necessary cross-tree constraints. Finally, the tool generates
annotations in the source code. Each step of the implementation
and analysis work-flow interacts with the developer, showing in-
between results and issues that call for the developers’ attention.

Using the described work-flow, the developer creates a consistent
product line and benefits from its feature traceability and compre-
hensible code structure (cf. Section 3). It also forces developers to
reason about their variability decisions, which helps to derive a
feature model that represents the developers intentions. While this
work-flow may seem to introduce some overhead, in general, we
aim to reduce the implementation effort for developers as the tool
support helps them to write annotations, adapt the feature model,
and find feature interactions. The automatic derivation of struc-
tures facilitates development while the included analyses facilitate
maintenance by ensuring consistency.

5.6 Implementation Concept

In the following, we describe our initial thoughts on a potential
implementation of variability management derivation. Rather than
implementing a standalone tool, we plan to integrate our approach
into FeatureIDE [45], which is an extensible open-source frame-
work for feature-oriented software development written in Java.
By extending FeatureIDE, we benefit from its already implemented
functionality, including feature modeling, source code navigation
and highlighting, and variability analyses.

In order to minimize the overhead introduced by variability
management derivation, we intend to employ incremental execution
of included analyses wherever possible. That is, whenever a new
piece of variability is introduced, rather than performing a complete
analysis of the entire code, we build on previous results and only
analyze code parts that are affected by the most recent change.

Don’t Worry About it: Managing Variability On-The-Fly

6 RELATED WORK

While, in our paper, we mainly aim to support the reactive approach
of SPLE, we are also considering the extractive approach and corre-
sponding analyses, which have been extensively analyzed. For ex-
ample, reverse engineering feature models has been investigated by
several authors, relying on different input artifacts, such as source
code, propositional formulas, or product descriptions [1, 16, 41].
Not all of the existing approaches can be applied in our concept,
due to some artifacts potentially missing. Nonetheless, other ap-
proaches can be fully adopted to support automation and we can
derive additional ideas from all of these works for our incremental
analyses in the reactive approach.

Other works consider type-checking of certain SPLs implemen-
tation techniques [17, 22, 44]. As these works aim to ensure type
safety, they have to perform static analysis of the systems [24]. We
can utilize similar ideas to ensure consistency and type safety in
SPLs developed with our concept. For this, we can adopt these ap-
proaches, depending on the underlying implementation technique,
and use them in the incremental analysis.

There exist some integrated development environments for SPLE,
such as FeatureIDE [45], Gears [29], or Pure::Variants [8], that sup-
port automation of different steps. They can identify inconsistencies
in the variability model, for example, dead features or redundant
dependencies. However, this is only done when the model is al-
ready fully designed. Thus, errors and inconsistencies can only be
exploited and repaired during the testing phase, when derived vari-
ants contain syntax errors or behave faulty. In contrast, our main
goal is to support developers in preventing inconsistencies from
the beginning, while they develop their SPL. Still, we aim to rely
on FeatureIDE, implementing our concept as one of its extensions.

Besides fully-fledged tools, some implementation techniques
for SPLE, such as feature-oriented programming [37], force the
developer to design a variability model. However, this does not
account for far more used techniques that employ, for example,
preprocessors, plug-ins, or components [4, 34]. In addition, even
when a variability model is required, its consistency (especially with
the source code) is not validated by the implementation technique.
Thus, we support any SPLE approach by checking for consistency
during development and improving readability of the source code.
Due to the enforced model and underlying mechanisms, additional
analysis may be available to further automate our approach.

Some works address analysis and testing of inconsistencies in
the variability model as well as between model and source code [2,
3, 27, 33, 36]. Still, most of these works are performed on already
developed SPLs and, thus, require a complete variability model for
checking consistency. We can utilize such approaches by adopting
them to our work-flow and incremental on-the-fly modeling of
variability. As a result, we complement these works by adopting
them for a use case that can already ensure consistency during
development, instead of checking consistency afterwards.

7 CONCLUSION

In this paper, we presented our vision of a tool to support especially
the reactive approach towards SPLE. We aim to help developers
implementing their intended variability in the source code and map
them in a corresponding feature model. We discussed the activities

VAMOS 2018, February 7-9, 2018, Madrid, Spain

necessary to define variability in the code, to design a feature model,
and indicated how these tasks can be facilitated by appropriate
tool support. Furthermore, we claim that by using our approach,
developers can benefit from several advantages: The source code
does reflect the intended variability of the developer, increasing its
comprehensibility and, by this, decreasing the chance of introducing
bugs when modifying or maintaining the code. Each line in the
source code is mapped to at least one feature to improve traceability.
The feature model does correspond to the developers’ intentions,
avoiding modeling faults and unwanted product variants.

In future work, we plan to implement our described approach
and evaluate its usefulness in user studies. Here, we aim to compare
development efforts but also maintainability and comprehensibility
of the resulting SPLs. Furthermore, we want to incorporate and
improve already known techniques for code analysis and automated
feature modeling. An interesting question is, whether different
implementation techniques are easier to integrate and for which
our approach may facilitate SPL development more than for others.

ACKNOWLEDGMENTS

This research is supported by DFG grants LE 3382/2-1 and LE 3382/3,
and Volkswagen Financial Services AG.

REFERENCES

[1] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles Van-
beneden, Philippe Collet, and Philippe Lahire. 2012. On Extracting Feature Models
from Product Descriptions. In International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS). ACM, 45-54.

[2] Mustafa Al-Hajjaji, Fabian Benduhn, Thomas Thiim, Thomas Leich, and Gunter
Saake. 2016. Mutation Operators for Preprocessor-Based Variability. In Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems (VaMoS).
ACM, 81-88.

[3] Mustafa Al-Hajjaji, Jacob Kruger, Fabian Benduhn, Thomas Leich, and Gunter
Saake. 2017. Efficient Mutation Testing in Configurable Systems. In International
Workshop on Variability and Complexity in Software Design (VACE). IEEE, 2-8.

[4] Sven Apel, Don Batory, Christian Kastner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615-636.

[6] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,

Krzysztof Czarnecki, and Andrzej Wasowski. 2013. A Survey of Variability

Modeling in Industrial Practice. In International Workshop on Variability Modelling

of Software-Intensive Systems (VaMoS). ACM, 1-8.

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof

Czarnecki. 2013. A Study of Variability Models and Languages in the Systems

Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611—

1640.

Danilo Beuche. 2012. Modeling and Building Software Product Lines with

Pure::Variants. In International Systems and Software Product Line Conference

(SPLC). ACM, 255-255.

Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. 1994. Program

Understanding and the Concept Assignment Problem. Commun. ACM 37, 5

(1994), 72-82.

Barry W. Boehm, Chris Abts, and Sunita Chulani. 2000. Software Development

Cost Estimation Approaches - A Survey. Annals of Software Engineering 10, 1

(2000), 177-205.

[11] Lianping Chen and Muhammad Ali Babar. 2011. A Systematic Review of Evalua-

tion of Variability Management Approaches in Software Product Lines. Informa-

tion and Software Technology 53, 4 (2011), 344-362.

Paul C. Clements and Charles W. Krueger. 2002. Point/Counterpoint: Being

Proactive Pays Off/Eliminating the Adoption Barrier. IEEE Software 19, 4 (2002),

28-30.

[13] Paul C. Clements and Linda M. Northrop. 2002. Software Product Lines. Addison-

Wesley.
[14] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley.

4

[

[o

[10

[12

VAMOS 2018, February 7-9, 2018, Madrid, Spain

[15] Krzysztof Czarnecki, Paul Griinbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wasowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS). ACM, 173-182.

[16] Krzysztof Czarnecki and Andrzej Wasowski. 2007. Feature Diagrams and Logics:
There and Back Again. In International Software Product Line Conference (SPLC).
IEEE, 23-34.

[17] Benjamin Delaware, William R Cook, and Don Batory. 2009. Fitting The Pieces

Together: A Machine-Checked Model of Safe Composition. In Joint Meeting of
The European Software Engineering Conference and The ACM SIGSOFT Symposium
on The foundations of Software Engineering (ESEC/FSE). ACM, 243-252.

[18] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 25-34.

[19] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Develop-
ing Software Variants. In International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 391-400.

[20] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In International
Systems and Software Product Line Conference (SPLC). ACM, 61-70.

[21] Christian Késtner and Sven Apel. 2008. Integrating Compositional and Annota-

tive Approaches for Product Line Engineering. In Workshop on Modularization,
Composition and Generative Techniques for Product Line Engineering (McGPLE).
University of Passau, 35-40.

[22] Christian Kastner, Sven Apel, Thomas Thiim, and Gunter Saake. 2012. Type
Checking Annotation-based Product Lines. ACM Transactions on Software Engi-
neering and Methodology 21, 3 (2012), 14:1-14:39.

[23] Christian Késtner, Alexander Dreiling, and Klaus Ostermann. 2014. Variability
Mining: Consistent Semi-Automatic Detection of Product-Line Features. IEEE
Transactions on Software Engineering 40, 1 (2014), 67-82.

[24] Andy Kenner, Christian Késtner, Steffen Haase, and Thomas Leich. 2010. Type-
Chef: Toward Type Checking #Ifdef Variability in C. In International Workshop
on Feature-Oriented Software Development (FOSD). ACM, 25-32.

[25] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language.
Prentice Hall.

[26] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006.
An Exploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (2006), 971-987.

[27] Matthias Kowal, Sofia Ananieva, and Thomas Thiim. 2016. Explaining Anomalies

in Feature Models. In International Conference on Generative Programming and
Component Engineering (GPCE). ACM, 132-143.

[28] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In International Workshop on Software Product-Family Engineering (PFE). Springer,
282-293.

[29] Charles W. Krueger. 2007. BigLever Software Gears and the 3-Tiered SPL Method-
ology. In ACM SIGPLAN Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA). ACM, 844-845.

[30] Jacob Kriiger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference (SPLC). ACM, 354—
361.

[31] Jacob Kriiger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In International Systems and Software

Sebastian Krieter, Jacob Kriiger, and Thomas Leich

Product Line Conference (SPLC). ACM, 65-72.

Jacob Kriiger, Marcus Pinnecke, Andy Kenner, Christopher Kruczek, Fabian
Benduhn, Thomas Leich, and Gunter Saake. 2017. Composing Annotations
Without Regret? Practical Experiences using FeatureC. Software: Practice and
Experience (2017).

Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. 2013. Validating
Consistency Between a Feature Model and Its Implementation. In International
Conference on Software Reuse (ICSR). Springer, 1-16.

Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
2015. The Love/Hate Relationship with the C Preprocessor: An Interview Study.
In European Conference on Object-Oriented Programming (ECOOP), Vol. 37. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 495-518.

Sarah Nadi, Thorsten Berger, Christian Késtner, and Krzysztof Czarnecki. 2015.
Where Do Configuration Constraints Stem From? An Extraction Approach and an
Empirical Study. IEEE Transactions on Software Engineering 41, 8 (2015), 820-841.

Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej
Wasowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolu-
tion of Variability Models and Related Software Artifacts. Empirical Software
Engineering 21, 4 (2016), 1744-1793.

Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In European Conference on Object-Oriented Programming (ECOOP). Springer, 419—
443.

Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-
aging Forked Product Variants. In International Systems and Software Product
Line Conference (SPLC). ACM, 156-160.

Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella. 2010.
Delta-Oriented Programming of Software Product Lines. In International Systems
and Software Product Line Conference (SPLC). Springer, 77-91.

Klaus Schmid and Martin Verlage. 2002. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software 19, 4 (2002), 50-57.

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In International Conference
on Software Engineering (ICSE). IEEE, 461-470.

[42] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schroder-

Preikschat. 2011. Efficient Extraction and Analysis of Preprocessor-Based Vari-
ability. ACM SIGPLAN Notices 46, 2 (2011), 33-42.

Thomas A. Standish. 1984. An Essay on Software Reuse. IEEE Transactions on
Software Engineering SE-10, 5 (1984), 494-497.

Sahil Thaker, Don Batory, David Kitchin, and William Cook. 2007. Safe Compo-
sition of Product Lines. In International Conference on Generative Programming
and Component Engineering (GPCE). ACM, 95-104.

Thomas Thiim, Christian Kistner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming 79 (2014),
70-85.

Rebecca Tiarks. 2011. What Maintenance Programmers Really Do: An Observa-
tional Study. In Workshop Software Reengineering (WSR). 36-37.

Anneliese von Mayrhauser, A. Marie Vans, and Adele E. Howe. 1997. Program
Understanding Behaviour During Enhancement of Large-Scale Software. Journal
of Software Maintenance: Research and Practice 9, 5 (1997), 299-327.

Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Devel-

opers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study. Journal of Software: Evolution and Process 25, 11 (2013),
1193-1224.

	Abstract
	1 Introduction
	2 Software Product Line Adoption
	2.1 Proactive Adoption
	2.2 Extractive Adoption
	2.3 Reactive Adoption

	3 Problem Statement
	4 Running Example
	5 variability management derivation
	5.1 Identifying Features
	5.2 Modeling Feature Dependencies
	5.3 Adding Cross-Tree Constraints
	5.4 Special Cases
	5.5 Envisioned Work-Flow
	5.6 Implementation Concept

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

