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ABSTRACT

Cloud-based technologies play an increasing role in software engi-

neering because of their scalability, availability, and cost efficiency.

However, due to privacy issues, developers and organizations still

hesitate to host applications that handle sensitive data on servers

of external cloud providers. Modern hardware extensions, such as

Intel’s Software Guard Extensions (SGX), are an attempt to pro-

vide confidentiality and integrity for applications running on ex-

ternal hardware. Still, enabling SGX in cloud systems poses new

challenges considering scalability and flexibility. In this paper, we

propose an approach to address these issues by employing concepts

from the domain of Dynamic Software Product Lines (DSPLs). We

aim to enable applications running on SGX-based cloud systems

to be securely reconfigurable and extendable during runtime. In

particular, we describe properties that such an approach should

fulfill and discuss corresponding challenges.
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1 MOTIVATION

Modern systems increasingly comprise sets of resources, includ-

ing hardware and software, that are distributed among different

locations. In addition, these resources are often managed by third-

party providers and shared to organizations that can utilize them

on-demand to scale them to their current workload. This concept

is often referred to as cloud computing [2, 14] and facilitates a
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cost-efficient infrastructure for all kinds of services. However, host-

ing own data at an external cloud provider induces several secu-

rity issues, as organizations release their potentially sensitive data

into environments they do not control. Especially with more and

more privacy-critical domains, reaching from medical monitoring

to communications and storing of business data [5], applying cloud-

computing, critical questions arise [2, 22], for example:

• Where is the data stored?

• Who has access to data and resources?

• How to ensure confidentiality and integrity of data?

To address these security issues, modern hardware technologies,

such as Intel’s SGX [6, 13], seem suitable. SGX aims to protect

data and applications even from entities with physical access to the

main memory, such as cloud providers. For this, the CPU extensions

reserve and protect parts of themainmemory, called enclaves, which

can contain both, application code and regular data. Thus, even

while executing application code or performing computations on

others’ data, the confidentiality and integrity of everything inside

an enclave is ensured by SGX.

Enclaves are located in their own integrity-checked and en-

crypted area, called Enclave Page Cache (EPC), which has a size of

128 MiB. While enclaves can be up to 64 GiB in size, they may not

fit into the EPC at once, due to complex code requirements and the

memory usage of the data to be processed. Although SGX supports

swapping pages between EPC and main memory, this comes with

a substantial performance overhead [3] and, thus, small enclaves

are preferable. This issue hampers the efficient usage of SGX for

secure cloud computing, as certain tasks, such as dynamic scaling of

resources and redistribution of services are difficult to achieve. Con-

sequently, novel approaches are required to properly enable SGX

in the context of such distributed and shared systems.

We propose a combination of an SGX-enabled cloud and DSPLs

in an attempt to solve these issues. In addition, besides scaling in the

cloud, we offer scalability on another level: DSPLs allow to modify

the behavior of an application during runtime by enabling or dis-

abling parts of its functionality [9, 10]. Using techniques for DSPLs,

we aim to overcome SGX’s spatial limitation by only including

parts of an application that are currently needed for a given task.

Furthermore, we aim to increase the efficiency of applications run-

ning in an SGX-enabled cloud by avoiding rebuilding the enclave

whenever an application must be modified during runtime.

In particular, our goal is to transform any regular application into

aDSPL that can run inside an enclave and is able to reconfigure itself

in order to execute user-specified tasks. To this end, we require (1)

a method that supports developers in partitioning their application
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Figure 1: Sketch of the envisioned approach for scalable SGX in distributed systems.

into variable parts, (2) an adaptation mechanism that is compatible

with the SGX environment, and (3) a configurator that is able to

find a suitable configuration for a given task.

Compared to current techniques for SGX [4, 12, 23], in addition

to providing protection for all code and data against unauthorized

access, such an approach enables:

• Flexible control over application functionality at runtime.

• Scalability to include only necessary code into the enclave.

• Dynamic loading of third-party services at runtime.

In summary, we envision to apply DSPLs to SGX-enabled clouds in

order to achieve secure, yet scalable applications. With this paper,

we sketch our envisioned approach, discuss each step, and address

the corresponding challenges.

2 ENVISIONED PROPERTIES

Our overarching goal is to improve the security of applications and

data, while we can still utilize the scalability and availability of

cloud systems. For this purpose, we aim to achieve the following

properties:

P1 Protecting the entire code base from unauthorized access.

We aim to prevent any kind of unauthorized access or manip-

ulation of application code and data. To this end, we either

keep currently needed code and data inside an enclave or

store it securely in other parts of the memory (cf. Section 3.1).

P2 Running sliced applications within the enclave.

If an application does not completely fit into the SGX-secured

memory, we partition its functionality and only include those

parts that are currently needed (cf. Section 3.1).

P3 Enabling dynamic loading of variable application parts.

We require a mechanism to exchange parts of an application

at runtime to avoid rebuilding the enclave and restarting

the application. This way, we aim to prevent downtime and

increase flexibility of the application (cf. Section 3.2.1).

P4 Supporting self-adaptive reconfiguring of applications.

Instead of configuring the application manually, we want it

to reconfigure itself to adapt to a given task. Thus, the appli-

cation should be able to decide which features are required

for the current task (cf. Section 3.2.2).

P5 Utilizing the scalability and availability of cloud computing.

Our envisioned approach allows for secure and scalable exe-

cution of applications on a single cloud node. However, in

the context of distributed computing, performance is scaled

by utilizing several nodes, which we have to enable for our

concept. Thus, we have to ensure that an application can be

securely and consistently configured across different nodes

(cf. Section 3.2.3).

P6 Including and securing third-party services.

A central concept of cloud computing is to provide third-

party services to its users. To reuse such services, we have

to provide mechanisms to integrate them dynamically into

the application by extending the set of variable parts (cf. Sec-

tion 3.2.4).

By fulfilling these properties, we aim to increase the security, flexi-

bility, and availability of applications that are running in an SGX-

enabled cloud. In the following section, we sketch our approach by

considering the development of a secure DSPL, its reconfiguration

during runtime, and the utilization of distributed resources.

3 SECURE CLOUD PRODUCT LINES

In our approach, we aim to combine three different concepts: Cloud

computing, DSPLs, and SGX. Cloud computing ensures scalabil-

ity and availability of applications, due to access to distributed

resources. Combining this with SGX and DSPLs aims to guarantee

security and flexibility of applications on a single cloud node. A

combination of DSPLs and an SGX-enabled cloud, means we have to

develop applications that can run and reconfigure themselves inside

an enclave. Consequently, we propose a two-phase approach: First,

an initial transformation of an application into a DSPL. Second,

the execution and adaptation of the application within the SGX-

enabled cloud node. We depict our envisioned approach in Figure 1

and discuss the displayed steps and components in this section,

emphasizing the arising challenges of combining these concepts.

3.1 Developing an Application

In order to transform an application into a DSPL, we need to apply

three modifications: First, we need to define variability within the

source code. In other words, we have to slice or partition the appli-

cation into separated parts, called features, of which each comprises

a single functionality. This can be done with different software-

product-line techniques, such as annotating or modularizing the

source code [1, 8]. Second, we have to define interdependencies of

these variable parts within a variability model [19]. Each configura-

tion of the application must be in accordance with this variability

model to guarantee correct and secure behavior. Third, we need

to specify an adaption mechanism that implements the runtime

variability of the DSPL [18]. Such an adaption mechanism is respon-

sible for loading and binding features of the software product line

during runtime and discarding features that are no longer needed.
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This mechanism is a crucial part as it must be interleaved with

the SGX functionalities, including runtime decryption and integrity

checking. In Figure 1, we display the original application on the

left side. During development, it is sliced into features that can be

dynamically configured and included into the enclave.

Utilizing the aforementioned modifications, the DSPL still needs

to be reconfigured externally, for instance by a developer. To cope

with changing application tasks, resources, and services as they

appear in the cloud, we also require self-adaptation of the software

product line to react to such changes. For this case, we need to

provide an additional configurator unit, which is able to find a valid

configuration that corresponds to the changed context. In particular,

the configuration has to ensure the quality of the reconfiguration

to avoid any security breaches, which is a problem in sensitive and

safety-critical systems [11].

We consider the first two steps, identifying meaningful features

and specifying their interdependencies, as a particularly challenging

task. Since a feature should comprise a single, distinct functionality,

in most cases, it requires the expertise of a developer and, thus, is

hard to fully automatize. Thus, one of the main challenges is to

define heuristics that support the developer in identifying suitable

features. Possible methods are, amongst others, static dependency

analyses or analyzing natural language documents, such as, source

code documentation or commit messages.

Challenge:

How can we identify meaningful features within an unsliced applica-

tion?

3.2 Running in the Cloud

Once we have build a DSPL, we have to run it on an SGX-enabled

cloud node and ensure its scalability. We depict this part of our

approach on the right side of Figure 1.

3.2.1 Variability in the Enclave. While there exist approaches [4,

12, 23] to run parts of and even full applications in an SGX-enabled

cloud, these are not dynamic. Thus, in case the application must

be modified, it is necessary to rebuild the enclave and manually

specify changes. As we aim to include features into the enclave

on-demand, we need to develop an adaption mechanism, which

we call variability manager (marked in orange in Figure 1). While

a DSPL allows for dynamic changes, we need a variability manager

to control this runtime variability within the SGX enclave. The

variability manager performs communications between the enclave

and the remaining memory. It is responsible to load features, in-

cluding decryption and integrity checking, and removing features

from the enclave.

Challenge:

How can we efficiently load single features of a DSPL into an enclave?

3.2.2 Self-Adaption at Runtime. Due to the high availability

that cloud services promise and that are necessary in many modern

environments, such as cyber-physical systems or health monitor-

ing, the current practice of configuration at design-time seems

unsuitable [11, 17]. Any halt of the application to apply changes

stops all computations that are performed. Thus, we aim to enable

each DSPL to work within the enclave and reconfigure itself at

runtime to fulfill its current task.

While the variability manager can load features from outside

into the enclave, the actual decision, which features are needed

at which point in time, must be handled by another component,

the configurator (marked blue in Figure 1). In order to apply on-

demand changes, the configurator needs to analyze the task at-hand

and identify which features need to be included in the enclave to

fulfill a task. This way, we aim to ensure scalability by ensuring

that only necessary parts are within the enclave. For this purpose,

it is necessary to provide feature and task specifications to the

configurator. By matching these specifications, the configurator is

empowered to decide which features are required and which can

be discarded.

Challenges:

What are meaningful heuristics for self-adaptation?

Especially, at which point should features be removed from the en-

clave?

3.2.3 Utilizing the Cloud. We argue that the described approach

ensures secure and scalable program execution on a single cloud

node. However, using only one node is not the intended scenario

of cloud computing, which scales applications among its shared

and distributed resources. Thus, we also need to consider that

our approach may has to be moved to another node, for example

if the current one crashes, or that the application uses parallel

computation on multiple nodes, for example as in map-reduce [7].

While most cloud providers guarantee a high uptime in their ser-

vice level agreements, a temporary downtime is still possible [17].

In addition, the running services are partly redistributed to scale to

changing demands. Thus, our approach must be able to switch the

application and enclave to another cloud node. At this point, it is

necessary to ensure consistent and secure storing of the applica-

tion’s current configuration to prevent any security breaches.

Distributed computation with SGX just started to gain attention

by researchers [16, 20]. Considering our approach, we need to de-

velop techniques that can ensure secure and efficient distribution

of code and data among enclaves on different cloud nodes. Here,

problems arise due to the variable configuration that is used by

the DSPL. In contrast to the self-adaptive behavior that we con-

sidered before, we now require one application to coordinate the

distributed computation. More precisely, this application has to

ensure that all others use the same configuration, provide the in-

put data to them, and merge the results. Thus, we have to partly

discard the self-adaptive behavior of our approach while different

applications work on the same task.

Challenges:

How can we efficiently store and transfer the internal configuration

of running DSPL among different nodes?

How can we efficiently apply distributed computation in different

DSPLs among different nodes?

3.2.4 Integrating Cloud Services. Another aspect of cloud com-

puting is to provide different services to use them in own applica-

tions. Thus, instead of developing everything from scratch, existing

implementations can be reused. However, as we use DSPL to enable

dynamic loading, further challenges arise.

As first question arises, how we can include third-party services

into an application. Here, problems are connected to the size of a ser-

vice and its inclusion into the DSPL.While an advantage of DSPLs is
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their adaptability to new functionality at runtime, the specification

of a service may be unknown and has to be dynamically included.

Furthermore, the service may require slicing in order to reduce

its size. Both may be challenging if the service’s developer does

not provide a partitioned version, which seems unlikely. Thus, we

need to apply approaches for program slicing and provide suitable

interfaces to include required parts into a DSPL.

When we can include a service or its parts into the enclave, the

next question is, how we can ensure security of our data. SGX en-

sures the security of everything that is within its enclave. However,

if we include corrupted or manipulated code and data, we still face a

security problem. Mainly, we see the issue that services may inject

code to monitor data within the enclave. As we cannot verify their

source code, but still need the service, additional security means

seem necessary.

Challenges:

How can we efficiently include third-party services into our DSPL?

How can we efficiently check the integrity of services and their parts?

4 RELATEDWORK

In previous research, systems that load full applications into an

enclave have emerged. SCONE [3] and Haven [4] allow running

unmodified Linux and Windows applications inside SGX, respec-

tively. Graphene-SGX [23] furthermore enables dynamic linking for

enclave applications. The cost of system calls in enclaves has been

decreased by Panoply [21] and Eleos [15]. However, those projects

always load the full application and have a loader or library OS

inside the enclave. Eleos also enables user-level paging of enclave

data but not code, a feature we aim to provide.

The approach closest to our own is Glamdring [12], which aims to

slice applications into security-sensitive and non-security-sensitive

features. Glamdring (1) requires annotations for security-sensitive

data that has to be protected and (2) is application-dependent. Con-

trarily, we aim to secure all computation, which increases the effort

but allows to include any application.

Considering these characteristics, we have to considerably ex-

tend existing approaches and introduce dynamic SGX slicing.

5 CONCLUSION AND FUTUREWORK

Cloud-computing has become a central part of software engineer-

ing to ensure scalability and availability of services. However, con-

fidentially and integrity of the outsourced data plays an equally

important role. For a way to combine the advantages of both worlds,

we propose an approach utilizing DSPLs in an SGX-enabled cloud

and identified several challenges that need to be addressed in order

to achieve this goal. In our opinion, investigating these challenges

and developing corresponding solutions is the key to combine three

promising concepts – enabling secure, scalable, and flexible com-

puting in the cloud. During our future research we, will implement

our approach and compare it to others.
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