
FeatureIDE: Empowering Third-Party Developers
Sebastian Krieter
Marcus Pinnecke

sebastian.krieter@ovgu.de
marcus.pinnecke@ovgu.de

Otto-von-Guericke-University
Magdeburg, Germany

Jacob Krüger
jacob.krueger@ovgu.de

Otto-von-Guericke-University
Magdeburg, Germany

Harz University of Applied Sciences
Wernigerode, Germany

Joshua Sprey
Christopher Sontag

Thomas Thüm
j.sprey@tu-braunschweig.de

c.sontag@tu-braunschweig.de
t.thuem@tu-braunschweig.de

Technische Universität
Braunschweig, Germany

Thomas Leich
tleich@hs-harz.de

Harz University of Applied Sciences
Wernigerode, Germany

Gunter Saake
gunter.saake@ovgu.de

Otto-von-Guericke-University
Magdeburg, Germany

ABSTRACT
FeatureIDE is a popular open-source tool for modeling, im-
plementing, configuring, and analyzing software product lines.
However, FeatureIDE’s initial design was lacking mechanisms
that facilitate extension and reuse of core implementations.
In current releases, we improve these traits by providing a
modular concept for core data structures and functionali-
ties. As a result, we are facilitating the usage of external
implementations for feature models and file formats within
FeatureIDE. Additionally, we provide a Java library con-
taining FeatureIDE’s core functionalities, including feature
modeling and configuration. This allows developers to use
these functionalities in their own tools without relying on
external dependencies, such as the Eclipse framework.

CCS CONCEPTS
• Software and its engineering → Software product lines;

KEYWORDS
Software product line, feature-oriented software development,
feature modeling, configuration
ACM Reference format:
Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey,
Christopher Sontag, Thomas Thüm, Thomas Leich, and Gunter
Saake. 2017. FeatureIDE: Empowering Third-Party Developers. In
Proceedings of SPLC ’17, Sevilla, Spain, September 25-29, 2017,
4 pages.
https://doi.org/10.1145/3109729.3109751

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the aut-
hor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SPLC ’17, September 25-29, 2017, Sevilla, Spain
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5119-5/17/09. . . $15.00
https://doi.org/10.1145/3109729.3109751

1 INTRODUCTION
FeatureIDE [11, 16] is a collection of open-source plug-ins for
the Eclipse IDE.1 To this point, it supports several aspects
for feature-oriented software development [3, 4] that are com-
parable to industrial tools, for example, feature modeling,
type checking, or testing [2, 13, 14]. Overall, FeatureIDE
provides competitive functionality and usability compared
to other tools [6, 10]. With its open-source license, Featu-
reIDE became a popular tool for researchers and practitioners
alike [1, 5, 6, 9].

Due to ongoing research, new feature-oriented approaches
are developed regularly to support, for instance, cost models,
feature-modeling techniques, and automated testing. Howe-
ver, rather than extending or reusing FeatureIDE, many
developers still implement tools and techniques from scratch
to address such new topics. Two main reasons for this seem to
be FeatureIDE’s complex structure, which hampers usability
and extensions, and the dependency on Eclipse, which ham-
pers the integration into other tools and IDEs. To address
these points, we developed the following two extensions:

∙ We introduce an abstract factory pattern into Fea-
tureIDE that facilitates extending FeatureIDE’s core
data structures. Hence, developers can integrate their
own algorithms and extensions into FeatureIDE more
easily.

∙ We restructured FeatureIDE’s core architecture to pro-
vide a library that is independent of Eclipse. Thus, we
enable developers to use FeatureIDE’s functions for
feature modeling and analyses in their own tools.

The source code of FeatureIDE, along with documentation
for users and developers can be found at GitHub.2

2 FEATURE MODELING IN FEATUREIDE
The feature model [3, 7] is the core data structure within
FeatureIDE to enable feature-oriented software development.
It is essential for each product line in FeatureIDE and it
1https://www.eclipse.org/
2https://github.com/FeatureIDE/FeatureIDE

https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/3109729.3109751
https://www.eclipse.org/
https://github.com/FeatureIDE/FeatureIDE

SPLC ’17, September 25-29, 2017, Sevilla, Spain S. Krieter et al.

is required for most operations, for instance, configuration,
analysis, and source-code traceability. The feature model
primarily defines the features of a product line and their
interdependencies. This includes a tree-based feature diagram
and cross-tree constraints, which define dependencies outside
of the hierarchical tree structure. Furthermore, the model
also contains information about the feature order, feature
descriptions, and additional properties.

FeatureIDE provides many functions, for instance, mo-
deling, configuring, and testing [2, 13, 14]. A demonstration
of most functionalities can be found online on our YouTube
channel.3 In the context of this paper, we are focusing on fea-
ture modeling. To this point, FeatureIDE’s feature-modeling
functionalities include:

∙ Creating and editing a feature model
∙ Analyzing a feature model and calculating statistics
∙ Converting a feature model to different file formats
∙ Configuring a feature model
∙ Automatically generating products

With the improvements presented in this paper, we facilitate
the reuse of these functionalities within third-party tools.
Furthermore, we encourage third-party developers to extend
FeatureIDE with their own feature model implementations,
for example to support non-functional properties.

3 FEATURE-MODELING EXTENSIONS
FeatureIDE is one of more than 100 research prototypes
and industrial tools that cover different phases and tasks
of feature-oriented software development [5, 10, 12]. This
large number is a result of many researchers and companies
implementing their own tools, fitting to their specific requi-
rements. However, most of those tools are specialized in one
particular task or are implemented only as a proof of concept
for particular research. Thus, they often lack useful functi-
ons, have to rely on other tools to support a full integrated
development process, or become outdated due to a lack of
maintenance. In addition, most tools internally use different
implementations of feature models and features. This is often
done to store specialized data within a specific structure to
support the tools’ task. Even file formats to store feature-
model data vary, including, FAMA, GUIDSL, Velvet, Dimacs,
and several XML formats such as SXFM. Thus, most tools
are incompatible to one another.

Problem Statement. FeatureIDE’s community approach is
to offer a wide range of functionalities, to regularly incor-
porate current research, and to cooperate with institutions
and companies to remain up-to-date. However, in order to
use FeatureIDE’s functionality, until now data must first be
converted to its internal feature-modeling format. This might
be unfeasible as it would be necessary to re-implement either
FeatureIDE or the third-party tool or to switch between both.

Solution. To address the described diversity, our goal is
to allow the usage of external implementations for feature
models within FeatureIDE. In detail, we offer the following:
3https://www.youtube.com/channel/UC0xYesZDzhFUbq6GUKtr3uA

Constraint

Feature

FeatureModel

FMFactoryManager

- factories : List<IFeatureModelFactory>

+ getFactory(ID) : IFeatureModelFactory
+ getFactory(Path) : IFeatureModelFactory

IConstraint

IFeature

IFeatureModelFactory

+ createFeatureModel() : IFeatureModel
+ createFeature() : IFeature
+ createConstraint() : IConstraint

DefaultFeatureModelFactory

IFeatureModel

Figure 1: Classes of FeatureIDE’s feature-model framework.

∙ We allow the usage of external implantations of feature
models, single features, and constraints by providing
interfaces to these classes.

∙ We enable dynamic instantiation of different implemen-
tations via the abstract factory pattern.

∙ We provide extensibility via Eclipse extension points.
We achieve these improvements by providing interfaces to
FeatureIDE’s classes for feature model, feature, and constraint
and a factory framework to create concrete instances. In
Java, interfaces can be added to an existing class (e.g., from
other tools) by implementing their declared functions. Thus,
interfaces provide the possibility to integrate external source
code without changing the original implementation. Where
possible, classes can also inherit from FeatureIDE’s default
interface implementations, which further eases integration.

A particular challenge regarding these modifications of
FeatureIDE is that we had to modularize the feature-model
class and its dependent source code. Furthermore, we had to
enable the instantiation of different interface implementations
during runtime.

Implementation. For the implementation, we use the well-
known abstract factory pattern [8]. Thus, interfaces encap-
sulate all functions that are necessary to create a concrete
factory for a specific kind of feature model and its correspon-
ding elements (i.e., features and constraints). We depict this
structure and the main classes of FeatureIDE in Figure 1. In
detail, we use the three interfaces IFeatureModel, IFeature,
and IConstraint, which abstract functions of the classes
FeatureModel, Feature, and Constraint, respectively. Con-
crete instances of classes implementing these interfaces are
derived with a factory that implements the interface IFea-
tureModelFactory. All methods inside FeatureIDE only use
references to these interfaces, therefore every instance can be
passed to the internal functions. Hence, developers can easily
integrate other notations for feature models as they only have
to develop classes that implement the interfaces. This allows
them to rely on FeatureIDE while being able to adding own
functions without changing the core implementation.

To create a particular instance, the corresponding factory
must be called. However, often this must be done dynami-
cally, as the usage depends on different aspects, such as the
file format or user requirements. Therefore, factories are ma-
naged by the class FMFactoryManager. The factory manager

https://www.youtube.com/channel/UC0xYesZDzhFUbq6GUKtr3uA

FeatureIDE: Empowering Third-Party Developers SPLC ’17, September 25-29, 2017, Sevilla, Spain

JavaFileSystem

EclipseFileSystem

IFileSystemFileSystem

- fileSystem : IFileSystem

+ exists(Path) : void
+ write(Path, byte[]) : void
+ read(Path) : void
+ ...

Figure 2: Classes of FeatureIDE’s file system framework.

associates a factory with certain file paths, file formats, or
the factory’s identifier. For example, FeatureIDE uses the Ex-
tendedFeatureModel implementation of IFeatureModel for
all files that are loaded from the Velvet format [15], which
can store additional feature properties. The different formats
are managed via the interface IFeatureModelFormat that
contains methods for saving and loading a feature model.

Usage. To use an external feature model, feature, or con-
straint within FeatureIDE, it must implement the corre-
sponding interface. Furthermore, there must be a factory
implementing IFeatureModelFactory that instantiates the
corresponding classes. Additionally, FeatureIDE has to be
made aware of the new classes before these can be used.
Developers can do this in two ways: First, factories can be
integrated by defining an extension via the Eclipse extension-
point framework. In this case, the developers’ implementation
is loaded upon startup of FeatureIDE’s fm.core plug-in. Al-
ternatively, factories can also be added programmatically
during runtime. To do this, the developers have to call the
method addExtension of the factory manager and provide
an instance of the implemented factory. Additionally, associ-
ations of factories to specific file formats or file paths can be
created and modified during runtime.

To use a specific factory, a developer requests an instance
from the factory manger by specifying the factory’s identifier
or the path of the feature model on the file system. For con-
venience, FeatureIDE provides methods for loading feature
models that determine the corresponding factory automati-
cally (e.g., readFromFile in class FeatureModelManager).

4 FEATURE-MODELING LIBRARY
Previously, we explained FeatureIDE’s new extensibility using
externally developed feature-model classes. This might not
be suitable for developers that only want to include certain
parts of FeatureIDE’s functionality in their own tools.

Problem Statement. When using FeatureIDE as a library,
dependencies to Eclipse may become a liability as in most
cases they are unnecessary, memory inefficient, and might
cause problems when used with older Eclipse versions.

Solution. We provide a library for FeatureIDE’s feature-
modeling functionality that does not require the Eclipse
framework, but instead relies on native Java. Most of Featu-
reIDE’s functions already use solely native Java. However,
there is a certain number of classes that rely on Eclipse’s
functionality, which have to be resolved. In particular, these
include: Interaction with the underlying file system (i.e.,
Eclipse I/O framework), management of external extensions

LongRunningThread<T>

LongRunningJob<T>

IRunner<T>

- method : LongRunningMethod<T>

+ shedule() : void
+ getResults() : T
+ ...

LongRunningEclipse

+ getRunner() : LongRunningJob<T>

LongRunningCore

+ getRunner() : LongRunningThread<T>

LongRunningMethod<T>

+ execute() : T

LongRunningWrapper

- runnerProvider : LongRunningCore

+ runMethod(LongRunningMethod<T>) : T
+ getRunner(LongRunningMethod<T>) : IRunner<T>

Figure 3: Classes for parallel execution in FeatureIDE.

(i.e., Eclipse extension point framework), and parallel compu-
ting (i.e., Eclipse job framework). All of these functions are
crucial parts of FeatureIDE. Furthermore, when employing
FeatureIDE as an Eclipse plug-in, using the Eclipse functi-
onalities offers some advantages over native Java regarding
UI interactions. For instance, an Eclipse job enables parallel
computing similar to a Java thread, but is also capable of
displaying its progress and being canceled by the user.

To create an Eclipse-independent library, we first have to
replace Eclipse functionality with native Java code. In addi-
tion, this native Java code should only be used in the library
but not while running FeatureIDE as an Eclipse plug-in,
requiring two different variants. To reduce the effort of deve-
loping the FeatureIDE plug-in and its corresponding library,
we aim to generate both from the same source code. Hence,
we have to adapt our conceptual development approach to
avoid developing both in parallel.

Implementation. Considering our prior mentioned requi-
rements, we employ the well-known bridge pattern [8] to
exchange the implementation of important functionalities.
This means, we use two implementations either based on an
Eclipse or native Java API.

In detail, for I/O operations we use the abstract class
FileSystem and adapted classes that fulfill a corresponding
interface. We display the structure of this source code part
in Figure 2. Every class within FeatureIDE that accesses the
file system calls the corresponding method in an object of the
abstract type FileSystem. Internally, this concrete object
forwards calls to one of the respective implementations of the
interface IFileSystem. While the class JavaFileSystem uses
only native Java classes (e.g., java.nio.file.Path, java.nio.file.
Files), the class EclipseFileSystem employs the respective
I/O operations from Eclipse (e.g., org.eclipse.core.runtime.
IPath, org.eclipse.core.resources.IResource).

Loading extensions works similar to accessing the file sy-
stem. When a sub class of the abstract class ExtensionMana-
ger (e.g., FMFactoryManager) is instantiated, it calls an in-
stance of IExtensionLoader to get all extensions (e.g., facto-
ries) specified by the developer. While the Eclipse implemen-
tation (i.e., EclipseExtensionLoader) asks the platform’s
registry for all extensions that implement the given extension
point, the Java implementation (i.e., JavaExtensionLoader)

SPLC ’17, September 25-29, 2017, Sevilla, Spain S. Krieter et al.

simply refers to a specified list of extensions. In both ca-
ses, the class ExtensionManager allows adding extensions
during runtime, making it easier for developers to use lazy
loading of their classes. This enables developers to directly
integrate their own approaches into FeatureIDE by creating
a corresponding extension, without adapting their base code.

Regarding parallel computing, we use the interface Long-
RunningMethod to define methods that can be executed in
a separate thread. This includes analyses, checking confi-
gurations, and long lasting file operations. In Figure 3, we
depict the involved classes. Most of the shown classes are
parametrized with the type parameter T, which refers to the
return value of LongRunningMethod. With the class Long-
RunningWrapper every instance of LongRunningMethod can
be executed either in-place, in a separated thread, or as an
Eclipse job. We encapsulate the functionality of both, threads
and jobs, within the interface IRunner, including methods for
starting and canceling, requesting the current status, adding
listeners, and retrieving the final results. The implementation
of this interface is either LongRunningThread, inheriting the
Java class java.lang.Thread or LongRunningJob, inheriting
the Eclipse class org.eclipse.core.runtime.jobs.Job. A
concrete instance of IRunner is returned by the method get-
Runner of LongRunningWrapper. The concrete instance retur-
ned depends on the field runnerProvider of the class Long-
RunningWrapper. This field is either an instance of LongRun-
ningCore, which returns LongRunningThread or an instance
of LongRunningEclipse, which returns LongRunningJob.

Usage. In practice, for all mentioned interfaces the Java
implementation is used as default when loading the respective
classes. In an Eclipse environment, during the startup routine
of FeatureIDE’s fm.core plug-in, the instances are replaced
by their corresponding counterparts. This means that the
user does not need to worry about using the correct API, but
it is handled automatically.

When building the library, only classes that do not use
Eclipse dependencies are included. The result is the JAR
file de.ovgu.featureide.lib.fm.jar, which is not executable (i.e.,
does not include a user interface), but can be used as library
in any Java application. Besides containing the compiled
classes, it also includes the corresponding source files, as well
as a text file specifying the version number and checksum of
the current build.

5 CONCLUSIONS
In this paper, we described two improvements of FeatureIDE:
An abstract factory for the central feature-modeling classes
and a separated library containing FeatureIDE’s core functi-
onalities. Both allow developers to extend FeatureIDE or to
use its functionalities in their own tools. Hence, we hope to
empower third-party developers to reuse existing functiona-
lity rather than starting from scratch when implementing a
research or industrial tool.

Still, despite being a complex tool and depending on the
Eclipse framework, we are aware of several academic and

industrial developers that already rely on FeatureIDE, espe-
cially for feature modeling. Different surveys and case studies
confirm this and illustrate the popularity and usability of
FeatureIDE in both areas [1, 5, 6, 9]. For this reason, our new
contributions seem useful to empower especially companies
in using feature-oriented software development. In coopera-
tion with an industrial partner, we currently integrate their
feature-modeling technique into FeatureIDE to customize
the tool to their requirements. Thus, we tailor existing tool-
ing to their needs instead of forcing them to rely on our
implementation.

ACKNOWLEDGMENTS
This research is supported by DFG grants LE 3382/2-1, SA
465/49-1, and Volkswagen Financial Services AG.

REFERENCES
[1] Mathieu Acher, Roberto E. Lopez-Herrejon, and Rick Rabiser.

2013. A Survey on Teaching of Software Product Lines. In VaMoS.
ACM, 3:1–3:8.

[2] Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, Reimar
Schröter, Thomas Thüm, Thomas Leich, and Gunter Saake. 2016.
Tool Demo: Testing Configurable Systems with FeatureIDE. In
GPCE. ACM, 173–177.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake.
2013. Feature-Oriented Software Product Lines. Springer.

[4] Sven Apel and Christian Kästner. An Overview of Feature-
Oriented Software Development. 8, 5 (????), 49–84.

[5] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee,
Martin Becker, Krzysztof Czarnecki, and Andrzej Wąsowski. 2013.
A Survey of Variability Modeling in Industrial Practice. In VaMoS.
ACM, 7:1–7:8.

[6] Kattiana Constantino, Juliana Alves Pereira, Juliana Padilha,
Priscilla Vasconcelos, and Eduardo Figueiredo. 2016. An Empirical
Study of Two Software Product Line Tools. In ENASE. SciTePress,
164–171.

[7] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus
Schmid, and Andrzej Wąsowski. 2012. Cool Features and Tough
Decisions: A Comparison of Variability Modeling Approaches. In
VaMoS. ACM, 173–182.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley.

[9] Daniela Lettner, Klaus Eder, Paul Grünbacher, and Herbert Pr-
ähofer. 2015. Feature Modeling of Two Large-Scale Industrial
Software Systems: Experiences and Lessons Learned. In MODELS.
IEEE, 386–395.

[10] Liana Barachisio Lisboa, Vinicius Cardoso Garcia, Daniel Lucré-
dio, Eduardo Santana de Almeida, Silvio Romero de Lemos Meira,
and Renata Pontin de Mattos Fortes. 2010. A Systematic Review
of Domain Analysis Tools. Information and Software Technology
52, 1 (2010), 1–13.

[11] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. 2017. Mastering Software
Variability with FeatureIDE. Springer. To appear.

[12] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
and Gunter Saake. 2014. An Overview on Analysis Tools for
Software Product Lines. In SPLC. ACM, 94–101.

[13] Jens Meinicke, Thomas Thüm, Reimar Schröter, Sebastian Krie-
ter, Fabian Benduhn, Gunter Saake, and Thomas Leich. 2016.
FeatureIDE: Taming the Preprocessor Wilderness. In ICSE. ACM,
629–632.

[14] Juliana Alves Pereira, Kattiana Constantino, and Eduardo Figuei-
redo. 2015. A Systematic Literature Review of Software Product
Line Management Tools. In ICSR. Springer, 73–89.

[15] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gun-
ter Saake. 2011. Multi-Dimensional Variability Modeling. In
VaMoS. ACM, 11–22.

[16] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Mei-
nicke, Gunter Saake, and Thomas Leich. 2014. FeatureIDE: An
Extensible Framework for Feature-Oriented Software Develop-
ment. Science of Computer Programming 79 (2014), 70–85.

	Abstract
	1 Introduction
	2 Feature Modeling in FeatureIDE
	3 Feature-Modeling Extensions
	4 Feature-Modeling Library
	5 Conclusions
	References

