
Using Variability Modeling to Support Security Evaluations:
Virtualizing the Right Attack Scenarios

Andy Kenner

METOP GmbH

Magdeburg, Germany

Andy.Kenner@metop.de

Stephan Dassow

METOP GmbH

Magdeburg, Germany

Stephan.Dassow@metop.de

Christian Lausberger

METOP GmbH

Magdeburg, Germany

Christian.Lausberger@metop.de

Jacob Krüger

Otto-von-Guericke University

Magdeburg, Germany

jkrueger@ovgu.de

Thomas Leich

Harz University & METOP GmbH

Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

ABSTRACT
A software system’s security is constantly threatened by vulnerabil-

ities that result from faults in the system’s design (e.g., unintended

feature interactions) and which can be exploited with attacks.While

various databases summarize information on vulnerabilities and

other security issues for many software systems, these databases

face severe limitations. For example, the information’s quality is

unclear, often only semi-structured, and barely connected to other

information. Consequently, it can be challenging for any security-

related stakeholder to extract and understand what information is

relevant, considering that most systems exist in different variants

and versions. To tackle this problem, we propose to design vulnera-
bility feature models that represent the vulnerabilities of a system
and enable developers to virtualize corresponding attack scenarios.

In this paper, we report a first case study on Mozilla Firefox for

which we extracted vulnerabilities and used them to virtualize vul-

nerable instances in Docker. To this end, we focused on extracting

information from available databases and on evaluating the usabil-

ity of the results. Our findings indicate several problems with the

extraction that complicate modeling, understanding, and testing of

vulnerabilities. Nonetheless, the databases provide a valuable foun-

dation for our technique, which we aim to extend with automatic

synthesis and analyses of feature models, as well as virtualization

for attack scenarios in future work.

CCS CONCEPTS
• Security and privacy→ Penetration testing; • Software and
its engineering→ Software product lines.

KEYWORDS
Vulnerability, Exploit, Attack Scenarios, Software Architecture,

Docker-Container, Variability Model, Feature Model

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7501-6/20/02. . . $15.00

https://doi.org/10.1145/3377024.3377026

ACM Reference Format:
AndyKenner, StephanDassow, Christian Lausberger, Jacob Krüger, and Thomas

Leich. 2020. Using Variability Modeling to Support Security Evaluations:

Virtualizing the Right Attack Scenarios. In Proceedings of the 14th Inter-
national Working Conference on Variability Modelling of Software-Intensive
Systems (VaMoS ’20), February 5–7, 2020, Magdeburg, Germany. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3377024.3377026

1 INTRODUCTION
Software systems are constantly threatened by their vulnerabilities

and exploits that are, besides other factors, used to describe the

threat level of a system [20, 29]. Various organizations, govern-

ments, and researchers maintain databases to provide an overview

of vulnerabilities, exploits, and other security issues, for example:

• National Vulnerability Databases (e.g., the US NVD
1
),

• Exploit Database,
2

• Offensive Security Exploit Database,
3

• rapid7 Vulnerability and Exploit Database,
4
and

• rapid7 open research datasets.
5

All of these sources can comprise valuable information on a soft-

ware’s security problems. More precisely, vulnerability databases

allow any security-related stakeholder to search for vulnerabilities

that have been reported for a software system. These problems

may relate to the software itself (e.g., Firefox), a component of the

software (e.g., Firefox plug-ins) or its integration into a larger in-

frastructure (e.g., tools that rely on Firefox to visualize data). So,

the information is highly important for software users, developers,

and researchers to be aware of and tackle security problems. More-

over, many additional stakeholders (e.g., administrators, security

auditors) who are involved in the security management of organi-

zations, software infrastructures, and software systems do benefit

from this information.

However, already for a single system, many pieces of information

may or may not be available in varying granularity, for example,

Common Vulnerabilities and Exposures (CVE)
6
identifiers, descrip-

tions of the vulnerability as well as attack scenarios including the

1
https://nvd.nist.gov/

2
https://www.exploit-db.com/

3
https://www.offensive-security.com/community-projects/the-exploit-database/

4
https://www.rapid7.com/db/

5
https://opendata.rapid7.com/

6
http://cve.mitre.org/cve/identifiers/index.html

https://doi.org/10.1145/3377024.3377026
https://doi.org/10.1145/3377024.3377026
https://nvd.nist.gov/
https://www.exploit-db.com/
https://www.offensive-security.com/community-projects/the-exploit-database/
https://www.rapid7.com/db/
https://opendata.rapid7.com/
http://cve.mitre.org/cve/identifiers/index.html

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Andy Kenner, Stephan Dassow, Christian Lausberger, Jacob Krüger, and Thomas Leich

concrete exploit, and system specifications. The system specifica-

tions can include, for instance, operating systems, platform infor-

mation, versions, and configurations (e.g., what combination of

software causes a vulnerability). For the purpose of identifying

vulnerabilities for a specific system under test, we can consider

all of these specifics as variability. To manage such variability, re-

searchers in the software-product-line engineering domain have

proposed variability models, and especially feature models have

become established in academia and industry [1, 6, 12, 19].

In this paper, we report our first findings of designing our tech-

nique and creating vulnerability feature models. More precisely,

we conducted an exploratory case study on Mozilla Firefox during

which we identified what information we can extract from exist-

ing databases to describe vulnerabilities and exploits. In addition,

we used the information to design a vulnerability feature model

by hand. To prove and verify the extracted information, we virtu-

alized vulnerable systems and attacked them. We conducted this

exploratory case study manually to understand the problems we

may have to tackle with our technique. The results indicate that we

can utilize the available information, but automatically extracting

and synthesizing information into a vulnerability feature model

requires adapted techniques to consider varying quality and avail-

ability of information, and its links throughout different databases.

Still, the model allows us to document threats and to receive the

list of vulnerabilities for a provided system configuration.

2 BACKGROUND
Vulnerabilities. A vulnerability is usually caused by errors or

design flaws in a software that allow attackers to gain access to the

system and manipulate it [16, 22]. For example, the execution of

malicious code on a local system (e.g., via SQL injections [7]) or

remote attacks through compromised links in mails may both allow

an attacker to gain access to the software, its data, or the system

beyond. The most import prerequisite for an attack is the existence

of an exploit, of which more and more are identified every day.

An exploit is a systematic way to make use of vulnerabilities in a

system’s architecture [16], forcing a break at the vulnerable part

to gain access to resources, to penetrate the system or to harm the

users in any other way. In this paper, we focus on analyzing the

available information in vulnerability databases and on virtualizing

attackable systems based on Docker containers [4].

CVE Identifiers. Vulnerabilities and exploits are the central ele-

ments that we aim to evaluate and to model for a software system or

landscape. Both are collected in specialized databases to gather all

existing information, which requires a unique identifier to map the

same content throughout the databases. For such an identifier, the

industrial CVE
6
standard became the default and is also established

in academia—with The MITRE Corporation operating the corre-

sponding information system. We display an excerpt of a CVE entry

in Figure 1. A CVE identifier (i.e., CVE-2014-1511
7
) is assigned to

each vulnerability after its discovery and an additional audit [17]. In

addition to the identifier, each CVE entry also comprises at least a

brief description and a list with links to additional information. Such

links can include, for instance, vulnerability databases, community

websites, the developers’ issue- and bug-trackers, and GitHub.

7
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1511

Figure 1: Excerpt of CVE-2014-1511.7

Vulnerability Databases. For each vulnerability, corresponding

databases, such as the national vulnerability databases, report the

weak spot of a system in detail. The provided information include

the required software variant, version, and operating system—also

with its variant and version. However, in most cases, this informa-

tion is in pure textual form.

Exploit Databases. CVE identifiers are also used within exploit

databases. Such databases report how to exploit a vulnerabilty and

provide the malicious code or even detailed guides. The Exploit

Database
2
and the rapid7 Vulnerability and Exploit Database

4
do

belong to the most extensive of such databases.

Attack Scenario Dataset and Framework. A distinct amount of

entries in exploit databases belongs to datasets, which are embed-

ded into frameworks that allow to automatically simulate attack

scenarios for a given vulnerability. One prominent example is the

MetaSploit Framework (MSF) [15], which comprises more than

3,800 modules that allow to run attack scenarios on a software

system. We use the MSF in combination with Docker containers

to virtualize and attack a system, and rely on the aforementioned

databases to verify and enrich the information we identified.

3 THE BIG PICTURE
The different databases provide a variety of information sources

to describe the vulnerabilities of a software system and assess the

security risks it is exposed to. We are only aware of the National

Institute of Standards and Technology to provide a collection of

vulnerabilities for software configurations called Common Config-

uration Enumeration (CCE).
8
However, this includes only a limited

number of systems, seems to be out of date (last updated in 2013

as of 2019), is arguably not flexible enough for highly-configurable

systems or infrastructures, and requires considerable manual effort

to analyze. To overcome these problems, we intend to automatically

analyze vulnerability and exploit databases to extract a vulnerabil-
ity feature model. With a vulnerability feature model, we intend to

describe the vulnerabilities of a software system and their depen-

dencies, similar to a feature model that describes the variability in

a software product line.

To create such a vulnerability feature model, we need to re-

cover and synthesize the information that is provided in different

8
https://nvd.nist.gov/config/cce/index

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1511
https://nvd.nist.gov/config/cce/index

Using Variability Modeling to Support Security Evaluations VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

information sources (i.e., vulnerability databases and the linked

references). Few pieces of information are rather explicit and can

be easily mapped (e.g., CVE identifiers, references). Unfortunately,

most of the actually interesting information (e.g., the actual attack

scenarios, version numbers, configurations) are usually described

in natural language (cf. Figure 1). Consequently, we need to adopt

advanced analysis techniques to not only model and document ex-

plicit information, but also details of the vulnerabilities and to find

side effects (e.g., a vulnerability only mapped to a Firefox plug-in,

but not to Firefox itself).

In contrast to the scattered information provided in the vulnera-

bility databases, a complete vulnerability feature model provides

a homogeneous view on the threat level of a software, facilitates

documentation, and reduces manual analysis efforts. The result-

ing model and its analysis enable security-related stakeholders, for

example, to create and evaluate testing systems, to identify vulner-

abilities of a system by providing its configuration, and to perform

automated analyses of threats. Depending on a stakeholder’s intent

and perspective (e.g., assess the security of the infrastructure), our

model is the basis for customized views and analyses that provide

additional information to the stakeholder.

In summary, our overarching goal is to develop a tech-
nique that: i) automatically extracts and links information from

vulnerability databases; ii) semi-automatically connects the infor-

mation and synthesizes a vulnerability feature model; and iii) pro-

vides all security-related stakeholders the ability to identify the

relevant vulnerabilities and attack scenarios for their purpose. This

technique helps, for instance, to document and model vulnerabili-

ties, understand and address potential security threats in a software

system and infrastructure, and enable penetration testing by virtu-

alizing the configured system to attack it. So, our technique will be

an asset for researchers and practitioners alike.

4 STUDY DESIGN
The threat level of a software system is defined by the number

of its identified vulnerabilities and potential attack scenarios. By

analyzing vulnerabilities, exploits, and attack scenarios, we can

describe connections between a system and possible attacks. To

assess to what extent we can utilize vulnerability databases and

synthesize the information, we conducted a case study. In the fol-

lowing, we report our study design to extract information from the

aforementioned databases and to simulate attacks. Based on the

results, we plan to extend and automate the information extraction

to generate our envisioned vulnerability feature models.

To get an impression on the information provided in vulnerability

databases, we used them to create Docker containers that comprise

an attackable system. Currently, we focused on the MSF [15] to at-

tack the virtualized system, as this framework comprises a database

of directly usable attack scenarios. During our analysis, we found

that most other databases provide additional information, but it

is usually not readily reusable. So, we first aimed to evaluate the

usability of our technique before integrating cost-intensive data

analysis, cleansing, and synthesizing tools.

Extracting Information. We started by analyzing the attack-sce-

nario modules in the MSF and manually extracted information on

versions, variants, platforms, and dependencies that are affected by

a vulnerability. This information is available through a module’s

description and its additional meta-information. To refine the infor-

mation on versions, variants, and platforms, we analyzed the CVE

identifiers as well as referenced vulnerability and exploit databases.

Creating a Vulnerability Feature Model. We used the identified

and synthesized information that we extracted in the first step to

manually create a vulnerability feature model. For this purpose, we

relied only on the basic concepts of feature models and included

all vulnerabilities we identified. The resulting model allows to con-

figure a system and, for now, can be used to automatically create a

list of all relevant vulnerabilities for that configuration.

Defining Docker Images. Based on the extracted information, we

defined an attackable system. We used the platform information to

select an image that is provided either by the Docker community or

the developer of the operating system. Furthermore, we determined

what sources provided the correct versions and variants of a system.

We manually analyzed additional dependencies for each system

and integrated them into the Docker image.

Executing Attack Scenarios. Every attack scenario in the MSF is

a separate module with specific parameters, such as an IP address

and a web-link that contains the malicious code. We needed to exe-

cute the code while the MSF documented the interaction between

our attackable system and attacker. The documentations showed

whether the scenarios were successful, and provided hints on poten-

tial sources for faults. To execute attacks, we virtualized the system

that we defined as a Docker image and analyzed its behavior. This

allowed us to check whether we investigated all needed properties

and to verify the reliability of the extracted information.

5 CASE STUDY
As an initial proof for our technique, we used Mozilla Firefox as

victim and explored suitable attack scenarios in the MSF. To avoid

technical and legal restrictions, we decided to select Linux-based

operating systems for our case study. In particular, the Docker

community already provides several basic images for Linux that

facilitate our setup and the installation of Firefox. Based on those

requirements, we systematically identified 18 exploit modules of

the MSF by following the folder structure and by searching for the

phrase “Firefox” in the GitHub repository.
9
Each of these modules

encapsulates the definition of a single attack scenario. We used

this as a starting point for our investigations to create vulnerable

Docker images based on the extracted information. In the remaining

paper, we name these modules S01 to S18 (Scenarios). We provide a

summary of the most important facts of the attack scenarios in Ta-

ble 1, including the relevant software, version numbers, operating

systems, and CVE identifiers that correspond to each scenario. As

success (✓), we classified each vulnerability that we were able to

exploit while running the attack scenario. Otherwise, we classified

the attack scenario as a failure (✗). A failure may be caused in any

step of the working process of a scenario, from the definition of

the Docker image to the exploitation within the attack script of the

MSF. Whatever the reason, the result remained that we could not

successfully replicate the attack scenario.

9
https://github.com/rapid7/metasploit-framework

https://github.com/rapid7/metasploit-framework

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Andy Kenner, Stephan Dassow, Christian Lausberger, Jacob Krüger, and Thomas Leich

Table 1: Attack scenarios and their characteristics that we
extracted for Mozilla Firefox.

ID Version Operating system CVE Success

Firefox-related

S01 35.0 - 36.0.4 (FF)

Linux CVE-2015-0816

✓
(Ubuntu 12.04 - 14.10) CVE-2015-0802

S02 5.0 - 15.0.1 (FF)

undefined

CVE-2012-3993 ✓
(Ubuntu 10.04 - 12.04)

S03 31.0 - 34.0.5 (FF)

undefined CVE-2014-8636

✓
(Ubuntu 12.04 - 14.04) CVE-2015-0802

S04 1.5.0 (FF)

Linux

CVE-2006-0295 ✗
(Ubuntu 4.1 - 5.10)

S05 17.0 - 17.0.1 (FF)

undefined

CVE-2013-0757 ✓
(Ubuntu 10.04 - 12.10)

S06 15.0 - 22.0 (FF)

undefined

CVE-2013-1710 ✓
(Ubuntu 12.04)

S07 22.0 - 27.0.1 (FF)

undefined CVE-2014-1510

✓
(Ubuntu 12.04 - 13.10) CVE-2014-1511

S08 ≤ 42.0
✝
(FF)

undefined

No identifier ✓
(Ubuntu)

Adobe Flash-related

S09

33.0 (FF), Linux Mint 17.1

CVE-2015-5119 ✓
11.2.202.468 (F) “Rebecca”

S10.1

33.0 (FF), Linux Mint 17.1 CVE-2015-3043

✓
11.2.202.466 (F) “Rebecca” CVE-2015-3113

S10.2

35.01 (FF),

Ubuntu 14.04

CVE-2015-3043

✓
11.2.202.466 (F) CVE-2015-3113

S11.1

33.0 (FF), Linux Mint 17.1

CVE-2015-0336 ✗
11.2.202.424 (F) “Rebecca”

S11.2

33.0 (FF),

Ubuntu 14.04 CVE-2015-0336 ✗
11.2.202.442 (F)

S12

33.0 (FF), Linux Mint 17.1 CVE-2015-3043

✓
11.2.202.350 (F) “Rebecca” CVE-2015-0515

S13

33.0 (FF), Linux Mint 17.1 CVE-2015-3043

✓
11.2.202.460 (F) “Rebecca” CVE-2015-3105

S14

33.0 (FF), Linux Mint 17.1 CVE-2015-3043

✓
11.2.202.457 (F) “Rebecca” CVE-2015-3090

S15

33.0 (FF), Linux Mint 17.1 CVE-2015-3043

✓
11.2.202.424 (F) “Rebecca” CVE-2015-0311

Java-related

S16

undefined (FF), Linux (x86)

CVE-2011-3544 ✗
7 (J), ≤ 6U27 (J) (Ubuntu 10.04 - 11.10)

S17

undefined (FF), Linux (x86)

CVE-2012-4681 ✗
7 (J) (not Ubuntu/Mint)

✜

S18

1.5.0 - 1.5.0.4 (FF), Linux (x86)

CVE-2006-3677 ✓/✗✭
undefined (J) (Ubuntu 5.10 - 6.06)

(FF) - Mozilla Firefox; (F) - Adobe Flash; (J) - Java

✝ Manually identified range 3.6.16 - 42.0

✜ Not vulnerable on Ubuntu or Mint, examplary tested by reusing S16.

✭ - Firefox crashes successfully, Docker restriction closes container, too

In the first section of Table 1, we describe the scenarios S01

to S08, which comprise exploits that address Firefox itself as the

victim and try to use the vulnerability of a specific version or a

range of versions as a gateway for attacks. Within the second and

third section, we display scenarios with exploits that occur due to

interactions of Firefox with its plug-ins: The scenarios S09 to S15

describe exploits that are based on Abobe Flash, which is installed as

a Firefox extension for Flash-related content of websites. S16 to S18

cover vulnerabilities that are caused by the run-time environment

for Java code and the specific Firefox extension through which Java

code is executed and embedded in web-pages as an applet.

Overall, we manually defined 48 Docker images. We needed this

number of Docker images to test the specified version as well as

the following and previous ones to assess the borders of the version

ranges. In the following, we report the details of our case study.

5.1 Extracting Information
For browser-related attacks, each MSF entry defines a structured

part for data and meta-data that stores, among others, the following:

• Description: A textual description of the vulnerability in a

software system, including the affected versions, the under-

lying operating system, and the activities that are needed to

execute the attack; and thus exploit the vulnerability.

• References: Links to additional information sources, such

as one or multiple CVE identifiers and other sources that

document the vulnerability.

• Targets: Defines the platform in detail as a listing, usually

the operating systems (e.g., Windows, Linux, MacOS) in-

cluding specific derivatives of Linux (e.g., Ubuntu, Mint),

on which the attack scenario is executed, comprising ver-

sion numbers, variants (e.g., x86, x64), and sometimes patch

versions (e.g., Service Pack 1 for Windows).

• Browser Requirements: Defines an MSF specific function,

which is used to check that all requirements of the script

are fulfilled. These requirements include the browser (i.e.,

Firefox), supported versions (e.g., minimum, maximum), and

versions of additional dependencies (e.g., Adobe Flash, Java).

In addition to the MSF, we also investigated the referenced CVE

identifiers and vulnerability databases to verify and synthesize the

information we extracted.

We show all this extracted information for our case study in Ta-

ble 1. In the column Version, we display the version numbers for

Firefox (FF), Adobe Flash (F), and Java (J). The column Operating

System comprises the version numbers and variants for the Linux

operating system or its distributions. To allow traceability and

replicability, we also present the corresponding CVE identifiers.

Insights. For our manual extraction from different information

sources, we experienced the following:

• Analyzing MSF Entries: An MSF entry encapsulates the

attack scenario, the attack script as a main part, and a pre-

defined set of meta-information. The fields description, tar-

gets, and browser requirements comprise various types of

information. We found plain text for the description, a free-

selection list of supported OS-targets, and a ruby-based code

fragment in the browser requirements. This code fragment

is executed at the beginning of a script and restricts the exe-

cution to defined versions of the operating system, Firefox,

and optionally for the additional Adobe Flash or Java.

In ideal cases (e.g., S10.1, S10.2), the provided information is

detailed and didn’t require any further investigation. How-

ever, in other cases, the information about Firefox and/or

Using Variability Modeling to Support Security Evaluations VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

the operating system was missing. As we show in the col-

umn Version in Table 1, we were able to extract the correct

versions for most scenarios, except for S16–18. Here, the

information for versions of Firefox (S16, S17) or Java (S18)

was missing. For the column Operating System in particular,

we can see a high variance in the details documented in an

MSF entry, for example, we found no specification for six

scenarios (S02, S03, S05–S08). Five other entries contained

only a general description (e.g., Linux) as requirement for

the operating system (S01, S04, S16–S18).

• Missing, Imprecise Information:We needed to perform

additional, manual analyses of referenced sources for sup-

plementary information. In particular, we followed the CVE

identifiers for each scenario and analyzed the main entries

contained in the US NVD.
1
We used the referenced links (cf.

Figure 1), which guide to other websites or archives focusing

on the same topic, to fill most of the information gaps.

During our investigation, we identified a tendency towards

Ubuntu and Mint as the underlying operating system, with

other candidates like SUSE Linux, Red Hat Linux or Gentoo

appearing, too. Since this study is about general feasibility,

we have restricted the OS to Ubuntu and Mint. This helped

us in the next steps of our case study, as this restriction

facilitated the definition of Docker images.

For six scenarios, the information of the operating system

was not described, another five entries provided only general

values. In Table 1, we show the manually gathered informa-

tion as additional data about the Ubuntu versions in brackets

in the column Operating System. S17 represents a special

case: We aimed to identify more precise information than

the basic entry Linux (x86), but we were not able to find a

reference to Ubuntu or Mint, only to other Linux-based op-

erating systems. Due to a strong similarity to S16, we tested

whether we could use the same setup as for S17.

• Additional Investigations: After we were able to collect

almost all information in a sufficiently concrete form, addi-

tional investigations were still necessary. For the scenarios

S08, S16, and S17, we had to test Firefox versions manually.

Considering S08, we identified a range from 3.6.16 up to

42.0 by sampling the versions using the Docker definition of

other scenarios within a range lower than Firefox version

42.0. In the cases of S16 and S17, we considered versions 5.0

until 35.0.1 the same way as for S08. As mentioned before,

we reused the setup from S16 in S17 to check whether the

vulnerability was existing.

As we describe in the next sections, we used this information to

design a vulnerability feature model and to derive Docker images.

5.2 Vulnerability Feature Model
We used the information we extracted manually from the MSF and

vulnerability databases to model and document all attack scenarios

into a vulnerability feature model. In Figure 2, we show an initial

version of our model (excluding any cross-tree constraints) that de-

scribes the threats we summarize in Table 1. As the attack scenarios

exploit vulnerabilities caused by specific versions of the operating

system, Firefox, and its plug-ins, these are our primary entities in

Mint 17.1 [Rebecca]

33 [FF] - 11.2.202.457 [F]

33 [FF] - 11.2.202.350 [F]

Linux x86

33 [FF] - 11.2.202.466 [F]

33 [FF] - 11.2.202.460 [F]

1.5.0 - 1.5.0.4 [FF] - undefined [J]

Ubuntu 10.10

Ubuntu 12.10

Ubuntu 14.10

Ubuntu 5.10

Ubuntu 6.06

Ubuntu 11.04

33

Ubuntu

33 [FF] - 11.2.202.468 [F]

undefined [FF] - 7 [J]
undefined Firefox

OS

1.5.0 [FF]

Mint

33 [FF] - 11.2.202.442 [F]

35.0 - 36.0.4 [FF]

3.6.16 - 42.0 [FF]

Firefox

Ubuntu 11.10

15.0 - 22.0 [FF]

Ubuntu 13.10

35.0.1 [FF] - 11.2.202.466 [F]

undefined [FF] - 7 [J] <= 6U27 [J]

17.0 - 17.0.1 [FF]

31.0 - 34.0.5 [FF]

Ubuntu 4.10

22.0 - 27.0.1 [FF]

Ubuntu 5.04

Ubuntu 10.04

33 [FF] - 11.2.202.424 [F]

5.0 - 15.0.1 [FF]

Ubuntu 14.04

base

Ubuntu 12.04

Legend:

Mandatory
Optional
Alternative Group
Abstract Feature
Concrete Feature

Figure 2: Vulnerability feature model for our case study.

the model at this point. We remark that this model is an initial con-

cept to illustrate the usability of the information we extracted in our

case study: Other information may be incorporated (e.g., modeling

the attacks) and will influence a model’s form, and potentially the

modeling technique we use (e.g., extended feature models, decision

models) [3, 6, 27]. This strongly depends on the information an

organization wants to include at the end, and is influenced by the

range of applications included. Also, we did not follow guidelines

or principles to derive, model, and organize features, so far [12, 19].

We use the leaf features and 24 cross-tree constraints tomodel the

relations between operating systems and Firefox. The constraints

restrict the variation space in order to allow only those configura-

tions that we found to be vulnerable (cf. Table 1). Most constraints

are implications to model the intersections of operating systems and

Firefox in the attack scenarios. As we omit the cross-tree constraints

in Figure 2 to improve readability, we provide a fully functioning

model in an open-source repository (cf. Section 8).

Based on the vulnerability feature model, we may be able to con-

figure systems in such a style that they are vulnerable according to

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Andy Kenner, Stephan Dassow, Christian Lausberger, Jacob Krüger, and Thomas Leich

the attack scenarios in Table 1. For instance, almost all child features

of feature “33” can only be selected if the feature “Mint 17.1 Re-

becca” is also selected. This covers the scenarios S09–S15, which all

require this particular configuration. The concrete features—which

comprise the related CVE identifiers—below the feature “Firefox”

are selected automatically, due to their constraints. We can then

create a list of vulnerabilities that are relevant for our configuration.

Insights. As we can see in Figure 2, we used mainly the features

“Firefox” and “OS” to structure the feature model. Currently, we use

the feature “Firefox” to actually represent all attack scenarios, but

do not add features for Adobe Flash or Java. Moreover, the features

in this branch of the model represent the column Version in Table 1,

which may not be ideal. Nonetheless, we can configure the feature

model to obtain a list of attack scenarios, and thus of all CVE

identifiers, that are relevant for that configuration. So, we argue

that our vulnerability feature model is a helpful means to document

and analyze vulnerabilities for a configurable system, but its final

representation will most likely vary from the one we selected for

this case study. For example, the branch below the feature “OS”

groups the variants and versions of the operating systems defined

in the attack scenarios. While, for now, we separated between

individual versions, attributed feature models may be a helpful

means to improve the structure.

5.3 Defining Docker Images
To define the Docker images, we first selected and set up the operat-

ing system’s version—or an equally old one if the original one was

not available. We relied on images that are provided by the Docker

community. For most scenarios, we were able to use either Ubuntu

12.04 or Ubuntu 14.04 as basic image for the Docker definition. The

scenarios S04, S08, S16, and S18 require an Ubuntu version that

has been released earlier or has not been defined in detail. Since

there were no basic images for earlier versions (≤ 11.10) in Docker,

we tried to implement them with Ubuntu 12.04, which seems to be

suitable for S08. An image for Mint 17.1 was also not available in

the Docker community. Using guided modifications, we rebuilt a

fully valid image based on an existing Ubuntu image.

In order to install the correct Firefox version for the scenario, we

used external sources that allowed us to derive the corresponding

installation packages. Precisely, Firefox versions are available as

Debian packages in special archiving version databases.
10

While

defining the Docker images, we used dkpg (Debian package man-

ager) to install the specific Firefox version manually. To install the

Debian package successfully, we had to determine every additional

library, which is a necessary requirement for the browser. Despite

the usual way to install Firefox in Ubuntu with the help of apt,
which installs a software including all of its dependencies, at this

point we had to choose the manual installation. That way, we man-

aged to install older versions of Firefox as well as Adobe Flash and

Java, independent from the repositories behind apt. Those reposi-
tories are restricted to newer versions to prevent the installation of

software releases that are known to be vulnerable.

We had to manually determine all dependencies and, with addi-

tional effort in debugging, resolve installation errors. A repetitive,

10
https://sourceforge.net/projects/ubuntuzilla/files/mozilla/apt/pool/main/f/firefox-

mozilla-build/

step-wise procedure of adding a required library to the installation

and retrying the manual installation of Firefox led us to a complete

list of first-order dependencies. To be sure to meet every other

entity of the dependency tree, we used an apt-based installation of

the list we determined before. We were able to reuse this part of

the Docker definition with minimal adjustments for all scenarios.

By using the Docker framework, we aimed to reach a high level

of automation. This should result in Docker images that are fully

defined and may be used directly as an attack victim without any

further activities. To reach this goal, for S09–S15, we also needed

installation packages for Adobe Flash, more precisely the Adobe

Flash plug-in. Unfortunately, we are not aware of any centralized

databases providing different versions of the plug-in, but we were

able to retrieve them from other sources as shared object files (.so).
In order to install the required plug-in in an older version, we had

to investigate and perform the following steps:

• Identify how to integrate plug-ins in the user folder.

• Create the required folder structure within the user profile.

• Manually install the plug-in as .so file.

After performing these steps, we successfully installed the Adobe

Flash plug-in and could automatically load it.

For the Java plug-in, we had to install the Java Runtime Environ-

ment (JRE) first. To this end, we manually installed the required

package by using a deb package in the dkpg manager. The Java

plug-in is a part of the JRE installation and has to be embedded into

the Firefox folder structure, identical to the aforementioned Adobe

Flash plug-in. Based on these steps, we created a fully specified

Docker image, including all components needed to execute the

attack scenarios we identified.

Insights. For defining the Docker images for our attack scenarios,

we experienced the following:

• Installation Packages: We had to retrieve the installation

packages for Firefox, Adobe Flash, and Java manually, which

partly required a lot of effort. The sources containing these

packages differ in many ways and are neither standardized

nor centralized.

• Standard Libraries: Software packages have dependencies
to other packages, which are standard libraries in most cases.

We had to identify dependencies to standard libraries and

resolve them appropriately. For our case study, we chose the

manual way of repeatedly creating and testing the Docker

images with a step-wise procedure.

• Additional steps for Adobe Flash and Java: Software in-
teractions (e.g., plug-ins) demand additional activities that

vary depending on the application. The scenarios S09–S18

need additional plug-ins that are integrated into Firefox and,

in the case of Java, the installation of a complete runtime

environment. For the integration into Firefox, we had to per-

form additional steps to install the corresponding plug-ins

in a proper way.

These problems highlight that it is not only challenging to extract

the information needed to define a virtualization for testing, but

also to instantiate that virtualization. Despite these problems, we

were able to create Docker images for each scenario, albeit in a

slightly modified form, to attack them in the next step.

https://sourceforge.net/projects/ubuntuzilla/files/mozilla/apt/pool/main/f/firefox-mozilla-build/
https://sourceforge.net/projects/ubuntuzilla/files/mozilla/apt/pool/main/f/firefox-mozilla-build/

Using Variability Modeling to Support Security Evaluations VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

5.4 Executing Attack Scenarios
We parameterized the MSF scripts according to the scenario and

attacked each virtualized system, instantiated as a Docker con-

tainer, to exploit the specific vulnerability. All scenarios of our case

study describe remote-based exploits that enable an attacker to

manipulate the attacked system after access has been gained. The

parameters themselves included setting the attack target, defining

the payload, and providing the manipulated data on the frame-

work’s internal server. For our case study, we used Linux-specific

remote access via reverse shells as payload, through which we had

a connection to the attacked Docker container after the exploit was

successful. After gaining full access to a system, an attacker can

potentially execute any action. The MSF integrates simple mecha-

nisms, for example, reading the browser history or stored passwords.

We did not perform any additional actions, as we were focusing on

the usability of our technique.

As we show in Table 1 (cf. column Success), we could not execute

all attack scenarios successfully. 13 of the 18 attacks we performed

did exploit the defined vulnerability. We identified the following

reasons causing failures:

• S04 / S16 / S17: We were not able to provide the required

Ubuntu version (S04/S16) or limited our case study regarding

other Linux variants (S17).

• S11.1 / S11.2: The Adobe Flash plug-in was rejected by the

attack script, due to an incorrect version.

• S18: This scenario illustrated an additional problem with the

virtualization and the definition of the Docker image. The

attack was successful, as the scenario did crash Firefox, and

thus executed code. However, the crash also resulted in the

Docker container closing and only a manual repetition of

the scenario revealed its actual success—but the expected

code execution was missing. Restructuring the definition of

the Docker image and choosing a different way to create

the container instance may resolve this problem, but using a

newer Ubuntu version has apparently no influence.

Besides these cases, we did not experience particular problems in

executing the attack scenarios.

Insights. Some reasons for failing attack scenarios (i.e., we could

not exploit a vulnerability) seem to be the aforementioned problems

with imprecise or incomplete information, technical limitations,

missing packages and libraries, as well as run-time errors in the

attack scenarios. Additional investigations seem necessary to evalu-

ate what information was missing and fromwhere we could recover

it in order to reach a more complete and reliable information base.

Still, we were able to show that the available information can be

used to successfully virtualize attack scenarios for evaluating a

system’s security. Due to the identified problems and variability,

we argue that our vulnerability feature model is a step in the right

direction to facilitate security evaluations.

6 PROSPECTS
In this paper, we showed our first findings of designing our tech-

nique and creating vulnerability feature models. As we described

in Section 3, many information sources that summarize vulnerabili-

ties of software systems exist. Our vulnerability feature model is

intended to unify all existing perspectives arising from these infor-

mation sources. Due to the diversity and the strategic directions of

the sources and security-related stakeholders, these perspectives

vary heavily. Based on our vulnerability feature models, we see

many possible prospects in research and practice for the concept

and ideas we presented in this paper. In the following we summarize

some of them.

Determining the threat level. The mapping of a vulnerability fea-

ture model to a software system or landscape, for example, of an

organization, allows an assessment of the threat level that the sys-

tem is currently exposed to. This allows to develop strategies in

order to deal with the resulting risk. A software system or landscape

can be secured or at least protected from known vulnerabilities

by concrete measures, such as installing patches or switching to

alternative software and operating systems. In addition, our vulner-

ability feature model could help to detect further dependencies and

vulnerabilities between different software systems, which do not

emerge from a pure separate consideration of a single system.

Dealing with disclosures of system and landscape information. In
order to use a vulnerability feature model to estimate the threat

level, an organization needs to partly disclose its system and land-

scape information. We expect real-world systems and landscapes

to provide further input to improve the model. However, disclosure

is an important aspect that will definitely be of particular relevance

for future use. For example, highly critical infrastructures or the

application of principles like defense in depth may contradict such

disclosures without certain security assurances [13, 28].

Analyzing risks and viability. For every vulnerability, the Com-

mon Vulnerability Scoring System (CVSS) defines two metrics to

rate them [9, 18]. This leads to a very detailed description of a

vulnerability’s nature, containing a vector that defines an attack’s

details and its effect on the confidentiality, integrity, and availabil-

ity of the attacked system. In addition, the CVSS metrics rate the

severity of the weak spot based on a ranking from zero to ten, with

ten being the highest rank and the scale reaching from none to

critical. This information can also be included into the modeling

process to assign additional properties to the features, for exam-

ple, using extended feature models [3]. Risk estimations as well as

viability analyses based on the CVSS can be addressed by using

such extensions. Optimization problems arise in this area as we

need to consider non-functional properties. Existing research on

extended feature models and non-functional properties seems a

good opportunity to advance in this direction [2, 8].

Optimizing through alternative configurations. An existing con-

figuration of a software system or landscape that is derived from a

vulnerability feature model may be optimized from different points

of view. In addition to simply switching to a newer version of the

software system, other changes and optimizations can be highly

valuable, for example, if updates are not possible or the risk is not

sufficiently reduced. Alternatives may include changing the operat-

ing system (e.g., Linux instead of Windows), replacing or removing

parts of the software stack (e.g., HTML5 instead of Adobe Flash),

and switching to alternative software systems in the same appli-

cation spectrum (e.g., Google Chrome instead of Mozilla Firefox).

Extensions to the basic feature-modeling concepts and research on

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Andy Kenner, Stephan Dassow, Christian Lausberger, Jacob Krüger, and Thomas Leich

optimization techniques of configurations form the fundamentals

that we could reuse [21, 26].

Tailoring penetration testing. Configuring a software system or

landscape based on a vulnerability feature model allows to create

penetration tests that are customized for this use case. Software

systems and landscapes that have been hardened according to the

threat level can be subsequently investigated for the success of the

security hardening. Automatically generated attack scenarios can

be used to determine the real effects and to include them in the risk

assessment. So far, only known attacks are considered, unknown

vulnerabilities and attacks remain unnoticed. At this point, many

techniques can help to create more advanced penetration tests. For

example, considering the history and evolution of vulnerabilities

and the corresponding vulnerability feature model, investigating de-

pendencies or side effects that have only been determined through

the model, and even artificial mutations. With such techniques, the

existence of previously unknown, related vulnerabilities may be

detected early on in other software systems or landscapes.

Tailoring vulnerable victim systems. Similar to the tailoring of

penetration tests, we can support the creation of intentionally vul-

nerable systems. This may be in the form of a simple list or guideline

for the manual implementation of a victim system, for instance,

based on the Docker framework we used in our case study. A fully

automated technique is quite conceivable and also presents a mul-

titude of challenges in many areas, including those we highlighted

in this paper concerning data collection and synthesis as well as

appropriate means and techniques for variant generation.

Managing model evolution. Entries of vulnerability databases

arise with a high frequency and are subject to constant changes and

extensions. This defines a life cycle that affects the vulnerability fea-

ture model and causes changes. In addition, systems and processes

based on it are influenced. To be aware of the effects of edits in

the vulnerability feature model, a suitable tracing and management

technique for changes has to be established.

7 RELATEDWORK
We are aware of related works, but none of them aims to model the

variations in a system’s design to evaluate its security.

Vulnerable Virtual Machines. In the research areas of security

and penetration testing, several virtual machines (VMs) have been

developed to analyze older software and vulnerabilities. The most

prominent ones may be the MSF 2/3 VM, on which we relied, or

the VMs of the vulnhub platform that provide numerous prepared

virtualized systems [15, 23]. To create variations within such vul-

nerable VMs, Schreuders and Ardern [23] define a generator. This

shall prevent that usual VMs have always the same attack surface.

Cyber-Security Information Extraction. Currently, we started
with a manual extraction of information that we plan to automate

in the future to assess the threat level of a system in its whole

variability. Arnav et al. [10] describe an architecture that aims to

extract and connect several datasets on cyber-security. A proto-

typical assessment framework that focuses on cloud computing

is defined by Kamongi et al. [11]. They limit their work only on

the extraction and classification of cloud-specific systems and their

vulnerability information. In contrast to these works, we plan to

model vulnerabilities of any system and provide capabilities for

automated analysis as well as virtualization for testing.

Reverse Engineering. Numerous techniques have been proposed

to reverse engineer information from software systems [5]. Some

techniques, especially on reverse engineering and synthesizing fea-

ture models [24, 25] and natural-language processing of documents

comprising variability information [14], are closely related and rel-

evant for our technique. We intend to build on such techniques

to facilitate and improve the technique we proposed in this paper.

However, none of the works we are aware of does tackle the anal-

ysis and synthesis of models from various information sources to

evaluate the security of a software system. So, we can reuse existing

techniques, but need to adopt them to automate our technique and

assess how well they solve the problems we identified.

8 CONCLUSION
Security vulnerabilities in software systems are extensively stored

in several sources, providing detailed information on the vulnera-

bilities’ characteristics, how to exploit them, and attack scenarios.

Our case study showed that the information is suitable to virtualize

vulnerable systems in Docker containers. With these containers,

we have been able to evaluate and analyze the Firefox architecture

under attack. However, our extraction and analysis also showed

that further automation and the inclusion of other information

sources are necessary. In particular, we argue that it can be highly

beneficial for the evaluation of system architectures and infras-

tructures to model the variations of the existing information in

a vulnerability feature model. This would allow every security-

related stakeholder, such as administrators, to assess their actual

setup, including variability and versions.

For our future work, we will focus on the process of extracting

and processing the information in order to build vulnerability fea-

ture models. In the long run, we plan to define and automatically

extract vulnerability feature models to describe existing threats

of systems, allowing their analysis and assessment. Moreover, we

aim to automatically perform risk and viability assessments, and

to recommend architectural restructurings to address vulnerabili-

ties, for example, by exchanging servers or operating systems. We

also intend to consider patch behavior, risk evolution, and the im-

pact of architectural variability. Moreover, we will consider various

optimization potentials as well as the automation for generating

penetration tests as well as vulnerable victim systems. As part of

our overarching goal of managing vulnerabilities based on our tech-

nique, we need to effectively and comprehensibly trace changes

and their consequences.

Replication. To enable others to replicate this study, we provided

the full list of attack scenarios we considered and their details in Ta-

ble 1. Moreover, we created an open-access repository that com-

prises our complete vulnerability feature model, example Docker

containers, and an attack scenario.
11

ACKNOWLEDGMENTS
This research is partly supported by the German Federal Ministry

of Education and Research (16KIS0526) and the German Research

Foundation (LE 3382/2-3, SA 465/49-3).

11
https://bitbucket.org/akenner/vamos-2020

https://bitbucket.org/akenner/vamos-2020

Using Variability Modeling to Support Security Evaluations VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2016. Feature-

Oriented Software Product Lines. Springer.
[2] Mohsen Asadi, Samaneh Soltani, Dragan Gasevic, Marek Hatala, and Ebrahim

Bagheri. 2014. Toward Automated Feature Model Configuration with Optimizing

Non-Functional Requirements. Information and Software Technology 56, 9 (2014),

1144–1165.

[3] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated Rea-

soning on Feature Models. In International Conference on Advanced Information
Systems Engineering (CAiSE). Springer, 491–503.

[4] David Bernstein. 2014. Containers and Cloud: From Lxc to Docker to Kubernetes.

IEEE Cloud Computing 1, 2 (2014), 81–84.

[5] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. 2011. Achievements

and Challenges in Software Reverse Engineering. Communications of the ACM
54, 4 (2011), 142–151.

[6] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej

Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variabil-

ity Modeling Approaches. In International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS). ACM, 173–182.

[7] William G Halfond, Jeremy Viegas, and Alessandro Orso. 2006. A Classification

of SQL-Injection Attacks and Countermeasures. In International Symposium on
Secure Software Engineering (SSSE). IEEE, 13–15.

[8] Fatima Z Hammani. 2014. Survey of Non-Functional Requirements Modeling and

Verification of Software Product Lines. In International Conference on Research
Challenges in Information Science (RCIS). IEEE, 1–6.

[9] Siv H Houmb, Virginia N L Franqueira, and Erlend A Engum. 2010. Quantifying

Security Risk Level from CVSS Estimates of Frequency and Impact. Journal of
Systems and Software 83, 9 (2010), 1622–1634.

[10] Arnav Joshi, Ravendar Lal, Tim Finin, and Anupam Joshi. 2013. Extracting

Cybersecurity Related Linked Data from Text. In International Conference on
Semantic Computing (ICSC). IEEE, 252–259.

[11] Patrick Kamongi, Srujan Kotikela, Krishna Kavi, Mahadevan Gomathisankaran,

and Anoop Singhal. 2013. VULCAN: Vulnerability Assessment Framework for

Cloud Computing. In International Conference on Software Security and Reliability
(SERE). IEEE, 218–226.

[12] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer

Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report. Carnegie-Mellon University.

[13] David Kuipers and Mark Fabro. 2006. Control Systems Cyber Security: Defense in
Depth Strategies. Technical Report. Idaho National Laboratory.

[14] Yang Li, Sandro Schulze, and Gunter Saake. 2017. Reverse Engineering Vari-

ability from Natural Language Documents: A Systematic Literature Review. In

International Systems and Software Product Line Conference. ACM, 133–142.

[15] David Maynor. 2011. Metasploit Toolkit for Penetration Testing, Exploit Develop-
ment, and Vulnerability Research. Elsevier.

[16] Gary McGraw. 2006. Software Security: Building Security in. Addison-Wesley.

[17] Peter Mell, Karen Scarfone, and Sasha Romanosky. 2006. Common Vulnerability

Scoring System. IEEE Security and Privacy Magazine 4, 6 (2006), 85–89.
[18] Peter Mell, Karen Scarfone, and Sasha Romanosky. 2007. A Complete Guide to

the Common Vulnerability Scoring System Version 2.0. Technical Report.
[19] Damir Nešić, Jacob Krüger, Stefan Stănciulescu, and Thorsten Berger. 2019. Prin-

ciples of Feature Modeling. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 62–73.

[20] Hiroyuki Okamura, Masataka Tokuzane, and Tadashi Dohi. 2013. Quantitative

Security Evaluation for Software System from Vulnerability Database. Journal of
Software Engineering and Applications 6, 4 (2013), 15–23.

[21] Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof Czarnecki. 2014.

Comparison of Exact and Approximate Multi-Objective Optimization for Soft-

ware Product Lines. In International Software Product Line Conference (SPLC).
ACM, 92–101.

[22] Charles P Pfleeger and Shari L Pfleeger. 2002. Security in Computing. Prentice
Hall.

[23] Z Cliffe Schreuders and Lewis Ardern. 2015. Generating Randomised Virtualised

Scenarios for Ethical Hacking and Computer Security Education: SecGen Im-

plementation and Deployment. In UK Workshop on Cybersecurity Training &
Education.

[24] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof

Czarnecki. 2011. Reverse Engineering Feature Models. In International Conference
on Software Engineering (ICSE). ACM, 461–470.

[25] Steven She, Uwe Ryssel, Nele Andersen, Andrzej Wąsowski, and Krzysztof Czar-

necki. 2014. Efficient Synthesis of Feature Models. Information and Software
Technology 56, 9 (2014), 1122–1143.

[26] Norbert Siegmund. 2019. Challenges and Insights from Optimizing Configurable

Software Systems. In International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS). ACM, 2:1–2:2.

[27] Marco Sinnema and Sybren Deelstra. 2007. Classifying Variability Modeling

Techniques. Information and Software Technology 49, 7 (2007), 717–739.

[28] Martin R Stytz. 2004. Considering Defense in Depth for Software Applications.

IEEE Security & Privacy 2, 1 (2004), 72–75.

[29] Su Zhang, Doina Caragea, and Xinming Ou. 2011. An Empirical Study on Us-

ing the National Vulnerability Database to Predict Software Vulnerabilities. In

International Conference on Database and Expert Systems Applications (DEXA).
Springer, 217–231.

	Abstract
	1 Introduction
	2 Background
	3 The Big Picture
	4 Study Design
	5 Case Study
	5.1 Extracting Information
	5.2 Vulnerability Feature Model
	5.3 Defining Docker Images
	5.4 Executing Attack Scenarios

	6 Prospects
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

