
I

The Journal of Systems and Software 231 (2026) 112647

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

The life of software features: An exploratory case study of 189 feature

requests in MarlinI,II

Aron van der Hofstad a , Loek Cleophas a,b , Clemens Dubslaff a , Jacob Krüger a ,∗

a Eindhoven University of Technology, The Netherlands
b Stellenbosch University, South Africa

A R T I C L E I N F O

Keywords:
Software evolution
Features
Marlin

 A B S T R A C T

Features are a widely established notion to organize the functionalities of a software system. For instance,
features are used to define variability and commonalities in product lines; feature-driven development is an
agile development methodology; and social-coding platforms have explicit support for feature requests. Despite
the importance of features, we are not aware of extensive research on their life cycles: how and for what reasons
do developers evolve features? As a result, we lack an understanding of how features come to be, how they
are evolved, or why they may be removed. To narrow this research gap, we have performed an exploratory
case study on the evolution of 189 feature requests of the Marlin 3D-printer firmware. We identified the code
introducing a feature and traced all commits touching that code or the feature, resulting in a collection of 1,940
unique commits spanning five years of evolution. We have manually inspected all of these commits to classify
their intentions with respect to the features they change, and created process graphs of the features’ life cycles
based on these intentions to understand the evolution of features. Our results contribute a first overview and
detailed examples of evolving features beyond code metrics, showcasing that features are primarily refactored,
exhibit interdependent evolution, and are rarely removed. Serving as a starting point, these contributions can
support practitioners in managing features and guide researchers in understanding feature evolution as well
as in scoping future studies on this matter.
1. Introduction

Many software systems and their development are structured
around features, which have become a widely established notion in
software-engineering research and practice. For example, software
product-line engineering (Apel et al., 2013; Pohl et al., 2005; Krüger
et al., 2020a) or feature-driven software development (Palmer and
Felsing, 2001) are entire methodologies structured around the notion of
features. Similarly, developers on social-coding platforms (e.g. GitHub)
often use features to organize the development of their projects (Stănci-
ulescu et al., 2015; Krüger et al., 2019b). For instance, developers label
issues as feature requests and refer to these labels in pull requests.

Interestingly, what exactly a feature is and what artifacts or prop-
erties it comprises is an ongoing debate yielding many different def-
initions and specifications (Apel et al., 2013; Classen et al., 2008;
Berger et al., 2015). In essence, features are an abstract concept, for
which most developers have an intuitive, but varying, understanding.
This understanding depends on a developer’s individual expertise and

I This article is part of a Special issue entitled: ‘Syst.+Sw.ProductLineEng.’ published in The Journal of Systems & Software.
I Editor: Prof Raffaela Mirandola.
∗ Corresponding author.
E-mail addresses: l.g.w.a.cleophas@tue.nl (L. Cleophas), c.dubslaff@tue.nl (C. Dubslaff), j.kruger@tue.nl (J. Krüger).

experiences, but typically a feature can be broadly defined as “ a charac-
teristic or end-user-visible behavior of a software system” (Apel et al.,
2013).

While features have become an important notion in software en-
gineering, their life cycles have received little attention in research.
Mostly, researchers have been concerned with code metrics and con-
figuration options (Fischer, 2021; Passos et al., 2016; Kröher et al.,
2018), limiting our understanding of the intentions with which devel-
opers evolve features. Within this article, we build on the concept
of intentions to describe the goal due to which developers change a
feature (Krüger et al., 2023, 2024). The level of intentions is important
to consider, since features are abstractions of the software and can
include other artifacts, too. Moreover, code changes alone do typically
not specify what a developer’s original intentions for a change were,
can implement these intentions incorrectly, and may tangle multiple
intentions that do not align with the original one (Krüger et al., 2024).
For instance, a developer may intend to improve the performance of a
https://doi.org/10.1016/j.jss.2025.112647
Received 12 February 2025; Received in revised form 17 September 2025; Accepte
vailable online 25 September 2025
164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar
d 22 September 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0009-0001-5556-5653
https://orcid.org/0000-0002-7221-3676
https://orcid.org/0000-0001-5718-8276
https://orcid.org/0000-0002-0283-248X
mailto:l.g.w.a.cleophas@tue.nl
mailto:c.dubslaff@tue.nl
mailto:j.kruger@tue.nl
https://doi.org/10.1016/j.jss.2025.112647
https://doi.org/10.1016/j.jss.2025.112647
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2025.112647&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
feature (goal of a change), but may also refactor variable names in the
process to make the code more comprehensive (tangled, unintended
change)—potentially modifying multiple features to achieve different
goals for each within one change, too. Metrics on feature code and
changes can also be misleading (Ludwig et al., 2019). For instance,
removing feature code can mean several things: it could actually be
removed, be subsumed by another feature, or be moved to a different
location. These intentions are not visible from code changes alone.

Consequently, focusing only on code can severely limit our under-
standing of how software and its features evolve. We argue that it is
equally important to understand the intentions for which developers
evolve features. For example, understanding when and why developers
decide to deprecate a feature or rework it can help define indicators for
unnecessary features or for quality problems. Investigating the life cy-
cles of real-world features can yield insights into why features succeed,
why they become obsolete, or when they may become commodity.

As a step in this direction, we report an exploratory case study
on the life cycles of 189 pull requests labeled as feature requests
in the Marlin 3D-printer firmware.1 To elicit the features’ life cy-
cles, we tracked the code changes related to them, covering 2956
commits (1940 unique commits). We manually reviewed each feature
request, the respective code, the commits touching that code and
feature, as well as all connected developer discussions and messages
to understand why the features were changed (the intended goal).
Additionally, we analyzed 180 pull requests not labeled as features
to determine whether these would meet the definition of a feature
by Apel et al. (2013) to reason on the reliability of feature labels.
Our findings can support developers in making informed decisions
while developing and maintaining software features. For example, we
advise developers to establish and document a change-labeling strategy,
agree on what a feature comprises, and untangle changes to facilitate
collaborative development and maintenance. In turn, each developer
has a shared understanding and access to relevant information when
working on a feature. Researchers can use our study as a starting point
for more in-depth analyses of feature life cycles. We publish our data
and supplementary materials in a persistent open-access repository.2
Our dataset allows researchers to replicate our work, and is a helpful
artifact for developing automation for identifying (intentions of) feature
changes, untangling changes, and studying the underlying causes for
such changes. Thus, based on our findings and dataset, future work
can investigate specific feature and change properties in greater detail,
which also enables expanding to multiple systems.

2. Case-study design

First, we describe the methodology of our exploratory case study,
which we used to obtain deeper insights into a single case (Yin, 2018).
We decided for a case study to provide a starting point for further
investigations on the intention level of feature evolution, which has
not been researched so far. Inherently, case studies do not aim for
and are limited regarding generalizability, replicability, and internal
validity (Ralph et al., 2021). Instead, the focus of case studies, including
ours, is on transferability, meaning that we aimed to obtain insights
that can be transferred to other cases in principle and that can inform
future practice or research on feature evolution.

2.1. Research questions

Our goal was to shed light onto the life cycles of software features,
focusing on the intentions behind their evolution in a substantial real-
world system (Marlin, cf. Section 2.2). For this purpose, we defined
three research questions (RQs):

1 https://github.com/MarlinFirmware/Marlin.
2 https://doi.org/10.5281/zenodo.17121913.
2
RQ1 What feature labeling practices does Marlin employ?
Open-source communities use labels for issues and pull requests.
We built on such labels as a starting point for investigating
how features evolve. For this purpose, we first had to obtain
a detailed understanding of how Marlin developers label their
issues and pull requests (RQ1.1). This was necessary because we
noticed in an exploratory investigation that the community used
a huge variety of labels, not all of which were intuitive. Due
to the goal of our case study, we paid particular attention to
the label PR: New Feature (RQ1.2), which we aimed to use as
starting point for our remaining research questions. For this label
in particular, we investigated to what extent its respective issues
or pull requests had potentially tangled changes, for instance,
asking for a feature and bug fix or refactoring. So, by understand-
ing the labeling practices and change tangling, we informed our
study design and contribute insights into how Marlin developers
manage their repository and features.

RQ2 How do Marlin’s software features evolve?
In open-source projects like Marlin, new features are often pro-
posed and developed via issues, fork-based development, and
pull requests (Gousios et al., 2014; Jiang et al., 2017; Stănci-
ulescu et al., 2015; Krüger et al., 2019b; Zhou et al., 2020). Pull
requests labeled as feature requests represent a starting point
for studying feature evolution: They define a clear point in time
when a new feature is added to a system, and the label implies
agreement by the community that it is, in their understanding, a
feature. By tracing later changes to the introduced features, we
aimed to understand for what reasons these features are changed
afterwards and to thereby elicit their life cycles.

RQ3 To what extent do (labeled) pull requests in Marlin align to the
definition of features by Apel et al. (2013)?
Our research started with pull requests that the developers of
Marlin labeled as feature requests. Consequently, an important
question for contextualizing our findings is to what extent these
labels are accurate or are missing for other pull requests. For this
purpose, we compared pull requests that are labeled as feature
requests to those not labeled as feature requests. This way, we
aimed to understand whether the Marlin developers’ notion of
features aligns to the (broad) one by Apel et al. (2013) that we
use.

By addressing these research questions, we contribute to a better under-
standing of the notion of features and their life cycles to guide future
research and practitioners.

2.2. Case selection and site description

Analyzing developers’ change intentions (Krüger et al., 2024, 2023)
regarding individual software features throughout their entire life cycle
requires an in-depth investigation of various software artifacts. For
this reason, we decided to conduct a manual, exploratory case study
involving one substantial subject system. To select that system, we
compiled a list of the 100 most starred repositories according to the
Gitstar Ranking.3 Then, we removed repositories not representing a
software system but another type of artifact (e.g., lists, tutorials) and
those that have no explicit label for feature requests.

Feature labels are important to improve the quality of feature
location, since mere manual or automated feature location both have
inherent limitations (Wilde et al., 2003; Wang et al., 2011; Krüger et al.,
2019a; Razzaq et al., 2018; Rubin and Chechik, 2013). Specifically, as
for the notion of what a feature is, the code locations belonging to
a specific feature are also subjective. If we would manually recover
(mandatory) feature locations, this would very likely not match the

3 https://gitstar-ranking.com/.

https://github.com/MarlinFirmware/Marlin
https://doi.org/10.5281/zenodo.17121913
https://gitstar-ranking.com/

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
Fig. 1. Anonymized pull request 21255 of the Marlin system (https://github.com/MarlinFirmware/Marlin/pull/21255).
original developers’ understanding of features and feature locations.
For the same reason, existing techniques for automated feature location
are also not reliable. To mitigate such problems, we decided to start
from pull requests labeled as feature requests, building on the reason-
able assumption that these represent features the developers agreed on.
The pull requests also link to the respective feature code.

From the remaining systems, we picked the Marlin 3D-printer
firmware.1 Marlin is primarily implemented in C and C++, using C
preprocessor directives to allow users to configure the software to
their own hardware. It is a substantial system that exists since 2011
and involves more than 369,000 lines of C and C++ code, 20,000
commits, 70 releases, 1100 contributors, 14,000 issues, and 12,600
pull requests. Since Marlin provides a clear labeling system for pull
requests, we could identify a reliable set of features the developers
agreed upon and trace their source code—also for mandatory features.
Moreover, Marlin is open-source software that has a broad community
of contributors, which promises to yield a diverse set of features. Lastly,
we (Krüger et al., 2018, 2019b) and other researchers (Stănciulescu
et al., 2015; Viegener, 2021) have extensively studied Marlin in terms
of its features and its variability. Therefore, we had ample material
for Marlin available to design our case study and to inform our data
analysis. For these reasons, we considered Marlin a feasible subject
system for our exploratory case study. We then continued with ex-
tracting all pull requests and issues from Marlin via the GitHub API
to enable our following analyses. Note that while we knew that Marlin
would be a feasible subject system from our previous work, we followed
a systematic selection procedure to identify whether another subject
system would be even more suited.
3
2.3. Feature-request analysis (RQ1 , RQ2)

In the remainder of this article, we distinguish between pull-request
labels and commit tags, using these highlights to indicate the respective
type. As explained before, the Marlin developers define a pull-request
label to categorize a pull request, as we exemplify in Fig. 1 6 . Commit
tags are codes we assigned to individual commits to specify their
underlying intention (11 tags, explained shortly).
Domain Analysis and Labeling Practices. At first, leading us to
RQ1, we performed an extensive domain analysis of Marlin. For this
purpose, we recapped the related work (cf. Section 6) and investigated
Marlin’s development practices. Specifically, the first author inspected
Marlin’s project website, code, issues, pull requests, commits, developer
discussions, and documentation to understand the processes involved.
We noticed that Marlin used very different labels, which is why we
collected these through the GitHub API and analyzed their purpose.
To this end, we first studied the Marlin documentation to understand
the labels. When we noticed that some were not explained in the
documentation, we investigated examples of these labels and reasoned
on their purposes ourselves.
Identifying Feature Requests. To identify features labeled by the
Marlin developers or users, we iterated through the pull requests of
Marlin, starting with the most recent ones. We considered all pull
requests as relevant for RQ2 that were merged and were labeled as a
feature request through the label PR: New Feature. We used the GitHub
web UI to further inspect these pull requests, as Marlin has a standard

https://github.com/MarlinFirmware/Marlin/pull/21255
https://github.com/MarlinFirmware/Marlin/pull/21255

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
template that we could analyze more easily. As an example, we use pull
request 21255,4 which we depict in anonymized form in Fig. 1.

First, we read the description 1 and comments (discussions below
a pull request) to understand what the feature is about and how
it is supposed to work. Second, we analyzed the requirements that
must be met 2 , for instance that a machine supports RAMPS boards.
Third, the benefits 3 helped us to understand why a feature should
be introduced. Fourth, the configuration entry 4 provides images
or configuration files to explain a feature’s constraints. Fifth, related
items 5 list issues that are solved by the pull request, which then
served as an additional information source. Lastly, on the right side,
a list of labels is present 6 , which provided additional context and
served as a manual cross-check of our automated crawling on whether
we inspected a feature request. Then, to create a concise dataset, we
extracted when the pull request was created and merged, its ID, how
many comments it had, which files were changed, its title, its labels,
and its description.
Tracing Commits. Locating feature code and changes to a feature is
challenging, since features can be scattered and tangled while commits
and pull requests may perform multiple intentions (e.g., a tangled bug
fix or refactoring) (Krüger et al., 2024, 2023; Kirinuki et al., 2014; Dias
et al., 2015; Queiroz et al., 2017; Ludwig et al., 2019; Liebig et al.,
2010). To resolve this problem, we inspected each identified feature
request to locate the respective feature’s code from its commits. Then,
we used scripts and Git commands to download the change history of
every modified file, collecting any commit potentially related to the
feature’s code. We manually inspected these files to identify whether
a commit actually modified the feature code under inspection. Since
this could involve many commits as well as files, and file renames are
(inherently) not perfectly captured by Git, we also collected unique key-
words in each feature’s pull-request code to search for in the commits.
To handle file renaming, we utilized that the respective Git queries
return an error code for files that they do not find (i.e., that have been
renamed and thus removed). In these cases, we queried the added files
in that commit (i.e., the new names) and manually inspected whether
any of these represented the old files. For each change, we documented
the date of the commit and its title in a document for the respective pull
request.

Inspecting Commits. While there are many techniques that attempt
to automatically classify the intentions of commits (Krüger et al., 2024;
Mauczka et al., 2012; Levin and Yehudai, 2017), these are often focused
on certain pieces of commit information and specific categories; such
as the maintenance activities proposed by Swanson (1976). This causes
problems for our study, because these techniques cannot consider the
context between commits, pull requests, and features. As a conse-
quence, they cannot distinguish between what parts of a (tangled)
commit are relevant for a feature, for a different feature, or represent
an unrelated activity (e.g., a refactoring). In turn, the derived tags
would most likely not be the ones we are interested in. Moreover, the
categorizations are often rather abstract (e.g., perfective), and do not
detail what the developers actually intended to do.

For these reasons, we decided to manually inspect each commit,
examining its message and code changes to identify its intention related
to a feature. As an example, a feature to cool lasers has been enhanced
(tag: Enhancement) in one commit to expand its functionality by
enabling it to track the flow of water. We assigned a single tag for each
combination of commit and feature. In case multiple tags would apply,
we used the one we perceived as most relevant based on the feature’s
description and the commit message as well as changes. This way, we
tried to capture the core of a commit’s change intention with respect
to a specific feature. Please note that a commit can nonetheless have
different tags for different features, if that commit modified multiple

4 https://github.com/MarlinFirmware/Marlin/pull/21255.
4
features (i.e., one commit can map to any number of features and their
tags). More specifically, the same commit may modify two features,
and thus will have two tags (potentially the same). Those multiple
tags for one commit represent the difference between the total (2956)
and unique (1940) commits we analyzed, and which we summarize in
Table 1. We executed this process for each pull request and its related
commits before moving to the next pull request.
Establishing Tags. We started our tagging using the classification
proposed by Swanson (1976), but, as we suspected, it was too coarse-
grained to properly capture the relations between pull requests, com-
mits, and features. For this reason, we started to introduce more
detailed tags, employing an open coding to derive these tags. Finally,
we ended up with the following 11 tags to code a commit’s intentions:

1. New Feature describes a commit that introduces a feature into the
code. Interestingly, such commits varied widely in terms of size.
As extreme cases, pull request 268255 involves a single line of
code to define two pins on the control board to enable a new
feature. In contrast, pull request 180716 introduced 16,162 lines
of code for a new UI library of a specific printer.

2. Removal specifies that a feature is removed (i.e., all lines are
deleted without being added somewhere else), signaling the end
of life of that feature. One example is pull request 24229,7 which
removes the feature introduced in pull request 24074.8

3. Rework documents that a commit essentially re-implements a fea-
ture. For instance, a feature for laser graphics on LCD screens
introduced in pull request 160689 was completely reworked in
pull request 15335.10

4. Revert means that a commit undoes a previous commit, which
was happening especially when larger changes were merged but
contained many bugs.

5. Bug Fix commits correct unintended or erroneous behavior of Mar-
lin.

6. Enhancement specifies that a commit adds functionality to a fea-
ture or broadens its support on the firmware. For example, pull
request 2648511 changes the code of the feature introduced in
pull request 2632812 to make it work on another platform.

7. Refactor documents that a commit changes the code of a feature,
for instance, to optimize performance, but does not alter its
functionality.

8. Cleanup commits remove code of a feature but do not alter its
functionality (e.g., removing dead code).

9. Formatting means that a commit changes only the spacing of the
code to change its layout.

10. Comment describes that a commit changes only comments, but no
actual code.

11. Whitespace commits change only whitespaces.

5 https://github.com/MarlinFirmware/Marlin/pull/26825.
6 https://github.com/MarlinFirmware/Marlin/pull/18071.
7 https://github.com/MarlinFirmware/Marlin/pull/24229.
8 https://github.com/MarlinFirmware/Marlin/pull/24074.
9 https://github.com/MarlinFirmware/Marlin/pull/16068.
10 https://github.com/MarlinFirmware/Marlin/pull/15335.
11 https://github.com/MarlinFirmware/Marlin/pull/26485.
12 https://github.com/MarlinFirmware/Marlin/pull/26328.

https://github.com/MarlinFirmware/Marlin/pull/21255
https://github.com/MarlinFirmware/Marlin/pull/21255
https://github.com/MarlinFirmware/Marlin/pull/26825
https://github.com/MarlinFirmware/Marlin/pull/18071
https://github.com/MarlinFirmware/Marlin/pull/24229
https://github.com/MarlinFirmware/Marlin/pull/24074
https://github.com/MarlinFirmware/Marlin/pull/16068
https://github.com/MarlinFirmware/Marlin/pull/15335
https://github.com/MarlinFirmware/Marlin/pull/26485
https://github.com/MarlinFirmware/Marlin/pull/26328
https://github.com/MarlinFirmware/Marlin/pull/26825
https://github.com/MarlinFirmware/Marlin/pull/18071
https://github.com/MarlinFirmware/Marlin/pull/24229
https://github.com/MarlinFirmware/Marlin/pull/24074
https://github.com/MarlinFirmware/Marlin/pull/16068
https://github.com/MarlinFirmware/Marlin/pull/15335
https://github.com/MarlinFirmware/Marlin/pull/26485
https://github.com/MarlinFirmware/Marlin/pull/26328

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
Overall, the first seven tags (1. to 7.) are the most important changes to
us, since they modify the feature code or its behavior. The last four tags
(8. to 11.) are behavior-preserving adjustments, which we still tagged
for completeness. Again, please note that we refer to label if we mean
the developer specified labels on GitHub, and tags if we refer to the
above tags we assigned to commits.
Validating Tags. Any qualitative and manual analysis of software
changes with their respective developer comments is prone to subjec-
tive interpretations. Aiming to keep the tagging consistent, the first
author performed a full tagging of all commits regarding the features
involved. For this purpose, the first author started by performing an
initial tagging, discussing the respective findings and problematic cases
with the last author. Then, the first author continued with the tagging
independently, again clarifying any occurring problems or potential
confusions (e.g., regarding the types of tags) with the last author.
To identify subjectivity bias and assess to what extent our data is
reasonable, the third author performed an independent validation in
the end. Note that the third author was not involved in the initial
tagging or discussions of problematic cases, so that they could execute
a fully independent assessment. For this purpose, the third author
picked a random sample of 100 tagged commits (6%) from our dataset,
inspected them on GitHub, and tagged them themselves according to
the strategy described above. Overall, the third author fully agreed
with 85 of the first author’s tags and disagreed with seven of the tags.
For eight commits, the tagging differed for slight nuances between
Enhancement and Refactor, but we considered both tags as reason-
able. Thus, the first and third author agreed on 93% of the commits,
improving our confidence in the reliability of the tagging.

2.4. Feature-labeling reliability (RQ3)

To check the reliability of the feature labels defined by the Marlin
developers and their alignment to the definition of a feature by Apel
et al. (2013), we compared the 189 labeled pull requests we collected
for RQ2 to that definition. We also aimed to check whether other
pull requests for Marlin introduce features according to the definition
by Apel et al., but without being labeled as such. This comparison
allows us to reason about the context of our findings and to understand
different notions that exist among developers.

For this purpose, we first collected all pull requests spanning the
same time period as our previous sample (i.e., June 11th, 2019–July
28th, 2024). Then, we removed all pull requests that are labeled as PR:
New Feature or were not merged. Furthermore, we excluded all pull
requests that were labeled as bug fixes or clean ups, which according
to our insights were not connected to new features. From the remaining
dataset, we identified the six labels from our previous analysis that
are most commonly associated with our tag New Feature (number of
remaining pull requests between parentheses): PR: Improvement (765),
C: LCD & Controllers (472), A: STM32 (174), C: Calibration (110), C:
Motion (89), and C: Peripherals (81). For each of these six labels, we
randomly selected 30 of the remaining pull requests, resulting in a total
of 180 pull requests, and thus a similar sample size as the feature-
request one (i.e., 189). Finally, we inspected each of these pull requests
with its associated artifacts (e.g., commits, code, discussions, messages)
to decide whether we would consider it to represent a new feature or
not.

3. Results and discussion

In the following, we present and discuss our results for each research
question individually.

3.1. Marlin labeling practices (RQ1)

We finalized our data collection on July 28th, 2024. At this point,
the Marlin repository contained 12,528 pull requests, of which 9114
5
were merged and 3414 were not merged. We found a total of 662
merged pull requests labeled PR: New Feature.
Marlin Labels (RQ1.1). In total, we found 80 labels for issues and
pull requests in Marlin. Unfortunately, the Marlin documentation we
found did not explain all of them. To obtain a better understanding
of the system and its pull requests, we inspected each label, the docu-
mentation, respective pull requests, and their associated code changes.
Explanations for all labels are in our dataset,2 but essentially Marlin
uses nine prefixes to categorize labels (cf. 6 in Fig. 1). Unfortunately,
these prefixes were also not explained in the documentation, and five
labels had no prefix. Through our inspection, we derived the meanings
of the prefixes as follows (numbers indicate how many pull requests
with the label exist in total in Marlin):

A: (498) represents Architecture, since it is used in combination with
labels linked to different microcontrollers.

Bug/Bug? (425) are used to label issues and pull requests on known
or suspected software Bugs.

C: (4656) stands for Code and is used to refer to general topics on the
Marlin codebase.

F: (1246) means Feature, and is used to call out an existing feature of
Marlin.

K: (73) refers to Kinematics, and thus to the specific motion systems
used in Marlin.

Needs: (455) is used to indicate that administrative tasks must be
addressed for a pull request.

PR: (6890) stands for Pull Request and specifies the type of pull re-
quest, such as PR: New Feature for introducing a feature.

S: (350) has remained vague to us. Some of the labels describe actions
concerning a pull request, while others describe the state of a
pull request, which would align to the abbreviation.

T: (752) stands for Topic, and the respective pull requests are not
necessarily related to the code of Marlin.

Moreover, 4656 pull requests had no label and 14 had a label that did
not fit into this categorization.
Labeling Practices (RQ1.1). In our understanding, the prefix-based
distinction of categories has become quite established and clear within
Marlin. Today, most pull requests that get merged have at least one la-
bel with the prefix “ PR:.” For example, pull request 2697913 has a label
PR: Bug Fix and revolves around fixing a typo. We also observed that
the Marlin maintainers started labeling a majority of the pull requests
in 2015. Since then, the ratio of new pull requests without labels has
decreased. Overall, the most common labels are PR: Bug Fix (3105), PR:
Improvement (2351), C; LCD & Controllers (1416), C: Board/Pins (1006),
PR: General Cleanup (846), and PR: New Feature (662). We remark
that we noticed inconsistencies regarding these numbers between the
GitHub API (which we used) and the GitHub UI. In Section 5, we discuss
these inconsistencies in more detail.

We retrieved 3146 unlabeled pull requests. Inspecting these, we
noticed roughly three categories. First, there are pull requests that
contain no further information and may have been mistakes, since
they are quickly deleted by the contributor or a maintainer. Second,
some changes proposed by contributors are discarded by the Marlin

13 https://github.com/MarlinFirmware/Marlin/pull/26979.

https://github.com/MarlinFirmware/Marlin/pull/26979
https://github.com/MarlinFirmware/Marlin/pull/26979

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
maintainers, typically with an explanation. Finally, very small changes
(e.g., typo fixes) are accepted quickly without labeling the pull request.
Discussion. The Marlin developers have established a clear set of labels
for specifying the intentions of pull requests. Nonetheless, around 25%
(3146 of 12,528) of the pull requests in Marlin do not have a label. This
is due to old pull requests, very small changes being rapidly integrated,
or erroneous pull requests being ignored. We argue that this underpins
a well-established labeling practice and a structured development pro-
cess, since most merged pull requests in Marlin today are labeled ones.
Bug fixes and improvements being by far the most common labels is not
surprising, since these represent typical maintenance activities. Based
on our insights, we argue that establishing labels is a good practice
for larger software projects with many contributors. Practitioners may
utilize Marlin’s experiences and practices, while it is an interesting
research direction to identify what labeling practices and information
may be more helpful to developers. Especially the idea of introducing
a higher level categorization (prefixes) that is refined through further
keywords seems to be a helpful concept. However, problems may arise
if the categorization is not intuitive and not documented, hampering
developers’ ability to obtain knowledge they may need (Krüger and
Hebig, 2024; Krüger et al., 2020b). Based on our experiences of analyz-
ing Marlin pull requests, we argue that documentation about labeling
practices and processes is important to avoid confusion and errors
(e.g., considering the prefix S:).
RQ1.1 Marlin’s Labeling Practices
Over time, Marlin has established clear labels and labeling practices
for issues and pull requests to coordinate contributions, but there
seems to be no (external) documentation of these practices. Other
projects with many contributors may benefit from adapting such
labeling practices and documenting them for contributors.

Label PR: New Feature (RQ1.2). A highly important label for our case
study is PR: New Feature, since it should indicate that a new feature
is introduced. Thus, this label represents the starting point for us to
investigate a feature’s life cycle. PR: New Feature represents around 5%
(662 of 12,528) of all pull requests and around 7% (662 of 9382) of the
labeled ones. After inspecting our sample of 189 pull requests labeled
as PR: New Feature in Marlin, we are confident that these introduce new
features that are either a characteristic or an end-user-visible behavior
of the system, aligning to the definition by Apel et al. (2013).

In parallel, the pull requests and consequent features are very di-
verse, covering a wide range of functionalities. Some add configuration
options to adjust the behavior of Marlin, others add commands to
enable new functionalities. Consequently, some pull requests are large
and complicated, while others are small and simple. For instance, pull
request 1425114 introduced a simple feature that can be enabled to
leave heaters on after a print is aborted (i.e., end-user visible behavior).
A larger and more complex feature was introduced in pull request
18071. It added the LVLGL GUI library for the MKS Robin Nano to
Marlin. Lastly, pull request 2094015 added a “ more” menu in the user
interface to allow end users to store up to seven custom commands.

Not surprisingly, we noticed that the label PR: New Feature occurs
often in combination with other labels. Most prominently, 36% of the
pull requests labeled as S: Experimental and 35% of those labeled F:
CNC/Laser are also labeled as PR: New Feature. The former label is
intuitively linked to new functionalities, often leading to a new or
improved feature being introduced (e.g., pull request 311016 imple-
menting an alternative for LCD-based manual movement). The latter
label represents the introduction of CNC and laser capabilities into

14 https://github.com/MarlinFirmware/Marlin/pull/14251.
15 https://github.com/MarlinFirmware/Marlin/pull/20940.
16 https://github.com/MarlinFirmware/Marlin/pull/3110.
6
the formerly purely 3D-printing Marlin firmware. Conversely, other
labels also occur often among the 662 ones labeled PR: New Feature,
for example, PR: Improvement (88; 13%), C: LCD & Controllers (86;
13%), and F: Calibration (64; 10%). These results showcase that, despite
the established labeling practices, changes often involve tangled or
ambiguous intentions.

We further identified a label T: Feature Request being used in 20
pull requests. However, this label is intended for issues only and not
pull requests. In fact, we did not observe it occurring in a pull request
after September 26th, 2017, in pull request #7755.17 As an important
note, only six of the 20 pull requests labeled T: Feature Request have
also been labeled as PR: New Feature. To cross-check, we retrieved
the 35 issues with the label T: Feature Request that are directly linked
to a pull request, of which again only six had the label PR: New
Feature. When inspecting issues labeled T: Feature Request without a
linked pull request, we noticed the same picture. Despite these pull
requests missing the label PR: New Feature, this label often shows up
in the comments of the pull requests. For instance, issue 2492818 asks
about adding a new option for a command to disable input shaping,
which is actually introduced in pull request 2495119 together with
some other changes—being labeled as C: Motion, PR Bug Fix, and PR:
Improvement. Lastly, we noticed that many issues labeled T: Feature
Request did actually not propose new features, but rather bug fixes or
improvements according to the maintainers of Marlin. Together with
our previous insights, this underpins that relying solely on labels, code,
and automated analysis to study the evolution of features can easily
introduce biases and inconsistencies.
Discussion. Even if labeling practices have been established, they may
still be understood differently or used inconsistently by developers. In
addition, a lack of documentation and the ability of every developer to
simply add multiple labels to issues or pull requests may promote their
tangling. This is problematic, since the idea of such labels is to represent
the intention of the involved changes and thereby ease comprehension.
So, labels could serve as a means to check that only one intention
is addressed in a pull requests, keeping it manageable and concise.
Instead, the tangling of changes (represented by multiple labels) occur-
ring in real-world pull requests hinders comprehension and analyses.
We had to invest substantial manual effort to comprehend what code
in a pull request was related to a new feature in cases where multiple
labels were involved. For these reasons, we advise practitioners and
contributors to avoid unnecessary tangling of different changes and
intentions. Research on automated untangling of changes or ensuring
that a change only addresses a single intention could help mitigate such
cases (Krüger et al., 2023).
RQ1.2 New Features and Tangled Changes
In Marlin, feature requests have often been tangled with other
(labeled) change intentions, and are sometimes linked to a similar
label intended for a different artifact. This reduces comprehension
and challenges automated analyses, which is why such tangling
should be avoided and techniques to resolve it would be helpful.

3.2. RQ2: Feature evolution

After understanding Marlin and its labeling practices, we analyzed
and tagged 2956 commits connected to the features introduced via 189
pull requests labeled PR: New Feature. Specifically, these 189 are the
pull requests merged from June 11th 2019 until the end of our data
collection (covering roughly five years). For the same period, another
39 pull requests labeled PR: New Feature were rejected and 14 were still
open, and thus not part of our analysis.

17 https://github.com/MarlinFirmware/Marlin/pull/7755.
18 https://github.com/MarlinFirmware/Marlin/issues/24928.
19 https://github.com/MarlinFirmware/Marlin/pull/24951.

https://github.com/MarlinFirmware/Marlin/pull/14251
https://github.com/MarlinFirmware/Marlin/pull/18071
https://github.com/MarlinFirmware/Marlin/pull/20940
https://github.com/MarlinFirmware/Marlin/pull/3110
https://github.com/MarlinFirmware/Marlin/pull/14251
https://github.com/MarlinFirmware/Marlin/pull/20940
https://github.com/MarlinFirmware/Marlin/pull/3110
https://github.com/MarlinFirmware/Marlin/pull/7755
https://github.com/MarlinFirmware/Marlin/issues/24928
https://github.com/MarlinFirmware/Marlin/pull/24951
https://github.com/MarlinFirmware/Marlin/pull/7755
https://github.com/MarlinFirmware/Marlin/issues/24928
https://github.com/MarlinFirmware/Marlin/pull/24951

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
Table 1
Overview of the tags we assigned to commits (total: tag-commit combination
covering a commit multiple times if it changed different features; unique:
removed the duplicate commits from total; New Feature + tags: number of
commits with the tag New Feature and at least one other tag).
 Tag Commits

 Total Unique New Feature+tags
 New Feature 189 189 79
 Removal 2 2 0
 Rework 18 18 4
 Revert 19 10 1
 Bug Fix 353 321 2
 Enhancement 367 316 39
 Refactor 1779 902 89
 Cleanup 51 44 0
 Comment 101 86 12
 Formatting 63 43 2
 Whitespace 14 9 0
 sum 2956 1940 (𝑢𝑛𝑖𝑞𝑢𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑠)79

In Table 1, we provide an overview of our tags. We show the total
number of commits, how many of these are unique (i.e., not counting
multiple occurrences among the 189 features), and to what extent
commits with the tag New Feature are tangled with other tags. The
numbers underpin again that changes often impact multiple features at
the same time. In fact, some commits occurred in a substantial share
of the 189 features. By far the largest example is the one commit
of pull request 25908,20 which involves 950 lines of code. With this
change, the developers removed the two widely used macros EITHER
and BOTH. This impacted 62 of the 189 features we identified from
pull requests. Afterwards, the numbers drop strongly, with the next
four commits touching between 26 and 21 features each. Interestingly,
these four commits are not associated with a pull request themselves,
but have been committed by maintainers. The scattered nature of
features causes tangled changes and redesigns that cause essentially
global changes—again complicating comprehension, evolution, and
(functional) correctness.

By computing metrics on the commits, we found that each feature
was on average (mean values) impacted by 15.6 commits (median 9,
standard deviation 20). However, we also remark that this number can
vary heavily between individual features. For instance, 98 features have
one to nine commits associated to them, while seven connect to more
than sixty commits. Not surprisingly, features with more commits also
change many more lines of code. For example, the 24 features with 15
to 19 commits change on average 531 lines of code, while the seven
features with 60 or more commits change around 3592 lines of code
on average. Considering the actual time, we found that all 189 features
together are impacted by a commit every 168 days on average. Again,
there are strong differences between different features, ranging from
intervals of 21 up to 398 days. This underpins the diversity and varying
importance of the features in our sample.
Tags. As we can see in Table 1, we mostly tagged commits as Refactor,
contributing roughly 60% (1779 of 2956) of all changes to features.
These are also the commits that touch multiple features most often by
far, namely in around 49% of the cases (877 commits occur multiple
times, difference between total and unique). The tags Enhancement
and Bug Fix represent the next largest shares. That these three cate-
gories occur most often in a feature’s life cycle is logical, since they
represent common maintenance activities.

The tag New Feature is quite intuitive, and we essentially tagged
only the one commit that actually introduced a feature into Marlin
with it (i.e., the merge of the pull requests labeled PR: New Feature).
Conversely, the most interesting tag to us is Removal, which indicates

20 https://github.com/MarlinFirmware/Marlin/pull/25908.
7
Fig. 2. DFG of pull request 16452 (https://github.com/marlinfirmware/
marlin/pull/16452).

that a feature was actually removed from Marlin. We expected this to be
a rare case, and it only occurred twice across all 189 features. First, pull
request 2422921 removed a feature on the same day it was introduced
(after a bit more than five hours).22 Essentially, this was a revert; how-
ever, the feature was formally introduced and then removed because it
did not work as intended on Apple’s MacOS. Since then, it seems that
the feature has not been reintroduced into Marlin. Second, pull request
2442723 removed the support for a series of stepper drivers.24 Interest-
ingly, that feature was a re-implementation of a previous feature that
was specific to certain drivers and generalized these to work on the
entire family of stepper drivers.25 Lastly, there was one more commit
that dropped support for a platform from Marlin.26 However, this did
not remove a feature, but only parts of its functionality.
Feature Life Cycles. For analyzing the evolution of all 189 features
we identified, we performed process mining on the tagged commit
traces of every feature using the tool pm4py (Berti et al., 2023). The
resulting Directly Follows Graphs (DFGs) (van der Aalst, 2019) provide a
visualization of the life cycles of sets of features. Here, nodes represent
tagged activities and edges the transitions between them, with the
numbers indicating how often we observed each node and transition
for that feature. As one example from our dataset, we depict the
DFG of pull request 1645224 in Fig. 2. We can see that the DFG
is centered around the tag Refactor, which represents 28 of the 50
commits touching the feature. Further, we can see that refactoring is
the only type of commit connected to every other type of commit and
often transitions to itself. Consequently, the life cycle of this feature
is connected primarily to refactorings following refactorings. This is
in line with the general ratio of refactorings (cf. Table 1) and life
cycles of other features. The life cycle of this feature slightly deviates
from the average regarding enhancements (overrepresented), bug fixes
(underrepresented), and its removal (exceptional). This feature also
includes a commit tagged as Revert, a tag that is often connected to
hardware. In this case, the hardware abstraction layer structure was
refactored to apply the singleton design pattern, but then reverted due
to that solution having too many problems as well.

We further created a synthesis of all 189 DFGs, which we display in
Fig. 3. Please note that we have simplified this figure for readability by

21 https://github.com/MarlinFirmware/Marlin/pull/24229.
22 https://github.com/MarlinFirmware/Marlin/pull/24074.
23 https://github.com/MarlinFirmware/Marlin/pull/24427.
24 https://github.com/MarlinFirmware/Marlin/pull/16452.
25 https://github.com/MarlinFirmware/Marlin/pull/13498.
26 https://github.com/MarlinFirmware/Marlin/pull/20153.

https://github.com/MarlinFirmware/Marlin/pull/25908
https://github.com/MarlinFirmware/Marlin/pull/25908
https://github.com/marlinfirmware/marlin/pull/16452
https://github.com/marlinfirmware/marlin/pull/16452
https://github.com/marlinfirmware/marlin/pull/16452
https://github.com/MarlinFirmware/Marlin/pull/24229
https://github.com/MarlinFirmware/Marlin/pull/24427
https://github.com/MarlinFirmware/Marlin/pull/16452
https://github.com/MarlinFirmware/Marlin/pull/24229
https://github.com/MarlinFirmware/Marlin/pull/24074
https://github.com/MarlinFirmware/Marlin/pull/24427
https://github.com/MarlinFirmware/Marlin/pull/16452
https://github.com/MarlinFirmware/Marlin/pull/13498
https://github.com/MarlinFirmware/Marlin/pull/20153

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
Fig. 3. Synthesis of all DFGs from process mining the 189 pull requests labeled PR: New Feature. We have removed transitions that occurred only once for
readability. For the same reason, we have merged the four tags that represent commits with behavior-preserving adjustments (8.–11. in Section 2.3). The thicker
arrows are, the more subsequent commits have the target tag. To improve readability, we omit large self-loops and indicate the number of consecutive equivalent
tags in parentheses: (𝑥 → 𝑦) stands for 𝑥 tags from which 𝑦 are not changing.
removing all transitions occurring only once and merging the commits
representing behavior-preserving adjustments (i.e., Cleanup, Format-
ting, Comment, Whitespace). In general, we can see that features are
primarily refactored or otherwise maintained, exhibiting a typical soft-
ware life cycle. More precisely, the features we analyzed were mostly
changed through refactoring, with around two thirds of the refactorings
also following another refactoring. Interactions between other tags
and refactoring are those that include enhancements, bug fixes, or
behavior-preserving adjustments. Other types of change intentions and
transitions between them were much rarer.

This provides a key insight and implication for the developers of
Marlin. If a feature is not affected by many refactorings, that feature
deviates from a major pattern exhibited for typical Marlin features.
Hence, the developers may have to take a closer look at this feature to
either include it in future refactorings, remove the feature as obsolete,
or simply verify that everything is in order. Likewise, deviations from
this typical life cycle provide interesting cases for practitioners and
researchers alike. They represent outliers that may be more challenging
for practitioners and may help identify quality problems that exist in
features. In particular, reverts, reworks, and removals occurred rarely.
As we discussed before, reverts typically happen right after another
commit in cases when bugs were introduced. Studying such cases may
be helpful to identify typical errors developers make when evolving
features. Reworks of features can shed light into why and how features
are modernized. Lastly, removals are very rare (occurring only twice),
but highly interesting. To the best of our knowledge, deprecating or
removing features (or entire product lines) has rarely been studied (Cor-
tiñas et al., 2023). Open-source systems with feature removals are a
great opportunity to study this phenomenon outside of confidential
industry collaborations to shed light into the causes and consequences.
Discussion. Features are constantly evolving. Typically, this involves
maintaining them with few deviations. However, particularly these
8
deviations are the most interesting cases for research and likely de-
velopers, too. For instance, reworks or removals are rare cases, but
understanding their causes could be very helpful for practitioners and
guide the development of automated detection as well as support
techniques. This also means that features are typically long-living,
which, however, may be specific to Marlin, embedded software, or
open-source software. The features we analyzed for Marlin were mostly
implemented and then maintained; we found few indications of sub-
stantial changes like feature removals or larger reworks. Thus, it is an
interesting direction for future research to analyze whether features in
other variability-rich systems or product lines also remain relatively
stable after these have been developed and cover the domain well.

RQ2: How Marlin’s Features Evolve

After their introduction, the Marlin features we analyzed were
primarily maintained, most prominently refactored followed by
enhancements, bug fixes, and behavior-preserving adjustments. In
contrast, they were rarely reworked or removed after their intro-
duction, but these are interesting cases for future research to elicit
problems and derive recommendations for practitioners.

3.3. RQ3 : Reliability of feature labels

For RQ3, we wanted to reflect on the reliability of feature labels,
especially because the notion of a feature is not well-defined, and
thus developers can have varying understandings of what a feature
is Classen et al. (2008) and Berger et al. (2015). It is important to
elicit these understandings to identify agreements and disagreements.
By doing so, we can develop a unified notion, while also identifying
gaps between research and practice that may pose validity threats to
feature-oriented research.

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
Due to Marlin’s established labeling practices, it was not surprising
that we considered all 189 pull requests labeled as PR: New Feature
to represent features. Conversely, we also inspected a sample of 180
pull requests that were not labeled as PR: New Feature, but whose tags
were otherwise typically associated with that label (cf. Section 2.4).
Specifically, we randomly picked 30 pull requests for each of the
following labels (with total numbers of pull requests from which we
sampled): PR: Improvement (765), C: LCD & Controllers (472), A: STM32
(174), C: Calibration (110), C: Motion (89), and C: Peripherals (81). As
we explained in Section 2.4, we previously filtered out pull requests
labeled PR: New Feature, PR: Bug Fix, or PR: General Cleanup. In the
following, we discuss our findings of investigating these 180 pull
requests, particularly regarding whether they introduce new features
according to our understanding of the definition by Apel et al. (2013).
PR: Improvement. We would consider 14 of the 30 pull requests we
analyzed for this label to propose a feature. As an example, pull
request 1539427 adds support for the M997 command on the STM32
platform. This allows Marlin to flash firmware on those boards. Pull
request 2376428 adds support for probe temperature compensation to
all commands for which this would be useful. In contrast, pull request
2250429 fixes a problem that occurred after changing tooling, which
could cause unexpected extruder moves. Interestingly, while this is a
bug fix of unintended behavior (and clearly not the introduction of a
new feature), the pull request was not labeled as PR: Bug Fix.
C: LCD & Controllers. After inspecting them, we would consider 13
of the 30 pull requests to propose a new feature, despite missing the
label. For example, pull request 1832630 introduces a feature for the
MKS UI to display the remaining time after using the M73 command on
the screen—which is end-user-visible behavior. Similarly, pull request
2659631 introduces the I3DBEE TECH Beez Mini 12864 screen to Mar-
lin. In contrast to these two, pull request 1549832 cleans up the function
LCDPRINT and removes nonfunctional code. This is a cleanup, and not
introducing a new feature.
A: STM32. We would consider 14 of the 30 pull requests to propose
a new feature. An example is pull request 14539,33 which allows users
to configure pins for stepper drives through their own configuration.
Before, these pins were hard-coded in the Marlin source files. Pull
request 2476034 adds support for the Creality V5.2.1 control board
to the firmware. In contrast, pull request 2253735 simplified #ifdef
directives, but without changing any behavior of the system. Thus, we
considered this pull request to be a refactoring.
C: Calibration. We would consider 12 of the 30 pull requests of this
label to propose a new feature. For instance, pull request 1537636 intro-
duced the command M290 to report the current printer status via serial,
meaning that the respective printer does not need a screen. Pull request
2303337 adds new features for probe temperature compensation so that
it can function with more probes and allows configuring. The different
probes represent individual features that become characteristics of the
system. In contrast, pull request 2265738 improves the usability of the

27 https://github.com/MarlinFirmware/Marlin/pull/15394.
28 https://github.com/MarlinFirmware/Marlin/pull/23764.
29 https://github.com/MarlinFirmware/Marlin/pull/22504.
30 https://github.com/MarlinFirmware/Marlin/pull/18326.
31 https://github.com/MarlinFirmware/Marlin/pull/26596.
32 https://github.com/MarlinFirmware/Marlin/pull/15498.
33 https://github.com/MarlinFirmware/Marlin/pull/14539.
34 https://github.com/MarlinFirmware/Marlin/pull/24760.
35 https://github.com/MarlinFirmware/Marlin/pull/22537.
36 https://github.com/MarlinFirmware/Marlin/pull/15376.
37 https://github.com/MarlinFirmware/Marlin/pull/23033.
38 https://github.com/MarlinFirmware/Marlin/pull/22657.
9
tramming wizard. This is done by clearing up text and making values
less ambiguous, but is not adding a feature.
C: Motion. We would consider 10 of the 30 pull requests with this label
to propose a feature. For example, pull request 1873639 enables users to
define an explicit sequence for the nozzle wipe. This is end-user-visible
behavior as Marlin will perform a specific sequence of physical actions.
Pull request 2468440 adds support for advanced linear movement to
ESP32 boards. In contrast, pull request 1834241 fixes a bug on the
CoreXY platform caused by duplicate code. So, this pull request fixed
a feature that was already introduced, but did not propose a new one.
Interestingly, this pull request was also not labeled as PR: Bug Fix.
C: Peripherals. We would consider 16 of the 30 pull requests to
propose a feature. For instance, pull request 1466742 introduces the
ability to control two separate strips of neopixel LEDs at the same
time. Pull request 2616343 adds a feature to re-initialize the power
supply, which allows to handle cases in which screens get corrupted. In
contrast, pull request 2181144 fixed that Marlin could not be built with
CASE_LIGHT_USE_RGB_LED enabled. So, this pull request fixed a
build error, but it was also not labeled as PR: Bug Fix.
Discussion. Based on our manual inspection, we argue that if the
Marlin developers assign a label to a pull request, that label is typically
reliable. In fact, all 189 feature requests we studied were features from
our point of view. However, it seems that many pull request miss
relevant labels, as we have exemplified above not only for new features
but also bug fixes. Of course, the notion of a feature is somewhat vague,
subjective, and differs between developers (Classen et al., 2008; Berger
et al., 2015). So, our numbers for new features may differ when asking
the original developers or other researchers. Nonetheless, we consid-
ered 79 of the 180 sampled pull requests (≈44%) to propose a feature.
Even if others would not consider all of these to represent feature
requests, a considerable number of pull requests missing relevant labels
would remain. This emphasizes that it is important to fully capture
what different developers consider to represent a feature to agree on
a common understanding. Otherwise, confusions or missing labels may
occur, not only challenging the developers, but also researchers trying
to research features or other changes based on developers’ labeling and
according to their understanding.

Something we noticed again is that the Marlin developers are appar-
ently not consistent with their labeling of pull requests. For instance,
some pull requests labeled A: STM32 add control boards to Marlin and
are not labeled as PR: New Feature. However, there are examples of pull
requests, such as 20711,45 that are labeled PR: New Feature and add
support for boards, too. This is not consistent and threatens manual as
well as automated analyses. Identically, we already exemplified that
bug fixes are often not labeled as such. Of the 180 pull requests we
sampled, this actually accounts to 31 pull requests.

RQ3: Marlin Features and Scientific Definition

Labels assigned to Marlin’s pull requests seem reliable, and thus
feature requests are representing new features. On the contrary,
pull requests often miss relevant labels, meaning that their labels
are incomplete. Particularly for missing feature-request labels, a
problem seems to arise from lacking a precise definition of a feature
and developers having different notions about it. Research utilizing
such labels and automated analyses must take missing labels into
account to avoid threats.

39 https://github.com/MarlinFirmware/Marlin/pull/18736.
40 https://github.com/MarlinFirmware/Marlin/pull/24684.
41 https://github.com/MarlinFirmware/Marlin/pull/18342.
42 https://github.com/MarlinFirmware/Marlin/pull/14667.
43 https://github.com/MarlinFirmware/Marlin/pull/26163.
44 https://github.com/MarlinFirmware/Marlin/pull/21811.
45 https://github.com/MarlinFirmware/Marlin/pull/20711.

https://github.com/MarlinFirmware/Marlin/pull/15394
https://github.com/MarlinFirmware/Marlin/pull/23764
https://github.com/MarlinFirmware/Marlin/pull/22504
https://github.com/MarlinFirmware/Marlin/pull/18326
https://github.com/MarlinFirmware/Marlin/pull/26596
https://github.com/MarlinFirmware/Marlin/pull/15498
https://github.com/MarlinFirmware/Marlin/pull/14539
https://github.com/MarlinFirmware/Marlin/pull/24760
https://github.com/MarlinFirmware/Marlin/pull/22537
https://github.com/MarlinFirmware/Marlin/pull/15376
https://github.com/MarlinFirmware/Marlin/pull/23033
https://github.com/MarlinFirmware/Marlin/pull/22657
https://github.com/MarlinFirmware/Marlin/pull/15394
https://github.com/MarlinFirmware/Marlin/pull/23764
https://github.com/MarlinFirmware/Marlin/pull/22504
https://github.com/MarlinFirmware/Marlin/pull/18326
https://github.com/MarlinFirmware/Marlin/pull/26596
https://github.com/MarlinFirmware/Marlin/pull/15498
https://github.com/MarlinFirmware/Marlin/pull/14539
https://github.com/MarlinFirmware/Marlin/pull/24760
https://github.com/MarlinFirmware/Marlin/pull/22537
https://github.com/MarlinFirmware/Marlin/pull/15376
https://github.com/MarlinFirmware/Marlin/pull/23033
https://github.com/MarlinFirmware/Marlin/pull/22657
https://github.com/MarlinFirmware/Marlin/pull/18736
https://github.com/MarlinFirmware/Marlin/pull/24684
https://github.com/MarlinFirmware/Marlin/pull/18342
https://github.com/MarlinFirmware/Marlin/pull/14667
https://github.com/MarlinFirmware/Marlin/pull/26163
https://github.com/MarlinFirmware/Marlin/pull/21811
https://github.com/MarlinFirmware/Marlin/pull/20711
https://github.com/MarlinFirmware/Marlin/pull/18736
https://github.com/MarlinFirmware/Marlin/pull/24684
https://github.com/MarlinFirmware/Marlin/pull/18342
https://github.com/MarlinFirmware/Marlin/pull/14667
https://github.com/MarlinFirmware/Marlin/pull/26163
https://github.com/MarlinFirmware/Marlin/pull/21811
https://github.com/MarlinFirmware/Marlin/pull/20711

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
4. Recommendations and prospects

To briefly summarize our key findings and their implications for
practitioners (P) and researchers (R):

P: Establish and Document a Labeling Strategy. Marlin uses an ex-
tensive labeling strategy, building on 80 labels and nine prefixes.
Since this has evolved over time with Marlin becoming larger,
more established, and maintained by a growing community, we
argue that a labeling strategy is important to manage growing
software and communities. Specifically, we argue that practi-
tioners can take Marlin’s labels with its prefixes as a starting
point for defining their own strategy (cf. Section 3.1). However,
we also found various inconsistencies in the labeling, which we
argue relates to a lack of documentation and awareness. Conse-
quently, we strongly advise practitioners to document and share
their labeling strategy with each other, for which they should
avoid typical knowledge-sharing pitfalls identified in previous
research (Krüger et al., 2020b; Steinmacher et al., 2015; Riege,
2005; Krüger and Hebig, 2024). In turn, labels of issues and
feature requests would be more reliable. This would benefit
practitioners by avoiding confusions and making it easier to, for
example, identify and assign tasks (e.g., good first issues). For
researchers, an established, documented, and reliable labeling
strategy would support manual analyses and enable reliable
automation. Otherwise, using automation on labels will pose a
threat to validity.

P/R: Agree on a Notion of Feature. Despite widespread use, the no-
tion of a feature is still not well-defined and most practitioners
as well as researchers have a varying understanding depending
on their intuition (cf. Section 3.3. This can cause misunderstand-
ings among developers, result in missing labels, and challenge
(automated) analyses. For practitioners, it is therefore helpful to
agree on a notion among each other. By unifying the notion of
features, it will become easier for practitioners to communicate
and to onboard to new projects. As steps in this direction, we
advise developers to collaboratively identify and document what
a feature should represent for them (e.g., domain abstraction
versus configuration options (Nešić et al., 2019)), a definition
that applies in this context, and to scope what and what not
a feature entails (e.g., code, models, requirements). Particularly
the boundaries of one feature to another are important to clarify
and document. To support practitioners, researchers have to
further explore how to unify the notion of features, particularly
to align their work with practitioners’ needs and understandings.
Otherwise, any study on features that goes beyond configurable
code can easily be threatened by conflicting understandings and
the practical relevance of the research may be limited.

P/R: Untangle Changes. The changes we analyzed often involved
multiple intentions at once, a well-known problem in research
(Krüger et al., 2024). It essentially makes it impossible to exe-
cute automated analyses reliably, and threatens our understand-
ing of developers’ work. Moreover, we argue that this is also a
problem for practitioners. For instance, if a developer submits
a pull requests to add a feature that also involves refactorings
and optimizations, other developers (e.g., reviewers) will find
it more difficult to understand the change. Also, reviewers may
reject the changes due to the tangling, thus causing additional
workload for developers and maintainers alike. A problem in
this regard is the lack of a usable definition of change intentions.
Existing proposals are often rather abstract (Krüger et al., 2024),
and we found them infeasible for our purpose. For this reason,
we defined more fine-grained and hopefully reusable tags for
research and practice (cf. Section 2.3) that can serve as a foun-
dation for refining labeling strategies and scoping changes to
untangle them.
10
R: Reflect on Feature Refactoring. We found that features are
mostly changed due to refactorings, followed by enhancements,
bug fixes, and behavior-preserving changes (cf. Section 3.2).
There are very few cases in which larger or more drastic changes
are implemented, such as feature removals, reworks, and re-
verts. This situation implies to us that features seem to be often
redesigned to make them more comprehensive or maintainable.
In turn, we are wondering whether all of these refactorings
were necessary if practitioners would have (or would be aware
of) design principles, patterns, or best practices for designing
features. Thus, for researchers, several avenues for future work
arise, for instance, identifying the causes and consequences of
feature refactorings, performing focused studies on more drastic
changes, and defining as well as communicating design practices
for features. This could lead to helpful guides for practitioners,
for example, criteria that help decide whether a feature needs
to be removed or reworked.

R: Be Careful with GitHub Analyses. There can be inconsistencies
between GitHub API and UI (cf. Section 5). So, when using these,
researchers have to be careful and reflect on potential threats
arising from, for instance, deleted data being retrieved. This is a
serious threat to mining studies that rely on author information,
in which cases “ ghost” (i.e., deleted accounts that still account
for contributions to a project) accounts pose a problem.46

We hope that these insights are valuable for researchers and practition-
ers alike, guiding communication in developer communities and future
research.

5. Threats to validity

Marlin is an open-source project implemented with C and C++.
Moreover, it is embedded software that runs on very specific hard-
ware: 3D-printers and related devices. So, the external validity of our
work is limited, but this is an inherent limitation of a case study.
However, inherently, a case study does not focus on generalizability,
but on obtaining detailed, in-principle transferable insights into a phe-
nomenon (Yin, 2018; Ralph et al., 2021). Consequently, our case study
is also not generalizable and limited regarding its external validity.
Instead of focusing on external validity, we focus on transferability:
obtaining insights that can be useful for other developers and systems.
By inspecting Marlin as a substantial case in detail, we argue that we
achieved this goal and that our findings can be helpful (in adjusted
form) in other contexts as well.

The results of our case study depend on our interpretation of
features (and our versus the developers’ definition of a feature) and
other developers’ code as well as natural-language texts. While we
proceeded with care and used continuous checks, discussions, as well
as a validation, it remains a threat that we may have misunderstood
something, and thus derived incorrect data. Similarly, our case study is
inherently incomplete due to the sheer size of the available data. Some
of our results may have been different if we would have considered
more feature requests or a longer time period. We aimed to mitigate
such internal threats through a thorough manual analysis of a large
temporary sample of pull requests.

Lastly, during our study, we noticed differences between the data
we retrieved from the GitHub API and what is reported in the GitHub
UI. For instance, the UI reported 652 pull requests with the label PR:
New Feature, while the GitHub API retrieved 662. In fact, of the 10
labels occurring most often in Marlin, not a single one had the same
number of pull requests in the API and the UI. As one example, we
could not find pull request 481147 in the UI. We could only access this

46 https://github.com/ghost.
47 https://github.com/MarlinFirmware/Marlin/pull/4811.

https://github.com/MarlinFirmware/Marlin/pull/4811
https://github.com/ghost
https://github.com/MarlinFirmware/Marlin/pull/4811

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
pull request by manually filling in the URL in a browser. In this case, the
problem seems to be that the pull request involves a “ ghost” account. A
ghost account46 represents an account that has been deleted, which also
deletes any data connected to that account’s repositories (aligning to
privacy and data-protection regulations). However, contributions (pull
requests, issues, comments) to the repositories of others are kept, and
apparently (partly) hidden in the UI—but not in the API. Similarly, we
experienced that some pull requests were listed in the UI, but it was
not possible for us to open them. While this seems to be a temporary
problem, we still noticed that the GitHub API was more reliable and
retrieved all data. We are not aware of a previous study reporting this
issue, which is why we elaborate it here.

The differences between GitHub API and UI are important to keep
in mind, since they may threaten the internal validity. Developers
have the right to remove their personal data (and accounts) from
social-coding platforms, and the platform’s host as well as researchers
have to respect these rights (Broneske et al., 2024). Apparently, the
API is still reliably recovering anonymized artifacts contributed to
others’ repositories, and thus should be used to retrieve data. How-
ever, it is important to note that according to GitHub’s policies, an
unknown number of developers may be referred to as “ ghosts,” and
thus author-based metrics can be biased.

6. Related work

Software features are extensively researched in the areas of product-
line engineering and variability-rich systems, as well as connected
topics like configuring, feature models, or feature forks (Apel et al.,
2013; Liebig et al., 2010; Mortara and Collet, 2021; Benavides et al.,
2010; Czarnecki et al., 2012; Nešić et al., 2019; Stănciulescu et al.,
2015; Zhou et al., 2018). In this context, the problem that features are
not well-defined has been raised repeatedly, with several attempts at
coming up with a more unified view on this notion (Apel et al., 2013;
Classen et al., 2008; Berger et al., 2015). Still, such works also show
that developers have varying notions and a fully unified definition is
hard to achieve. For this reason, existing studies on feature evolution
typically focused on optional features (i.e., configuration options) and
code metrics, sometimes in connection with other artifacts like feature
models (Fischer, 2021; Passos et al., 2016; Kröher et al., 2018; Schulze
et al., 2023; Ludwig et al., 2019). For instance, we have previously
performed manual feature identification and feature location on Marlin
to compute code metrics and to explain static feature facets (Krüger
et al., 2019b, 2018). Another study investigated forking of Marlin,
including the identification of feature forks (Stănciulescu et al., 2015).
The focus on configurable features, forked variants, and code make
it easier to elicit hard metrics, but they ignore the fact that features
represent an abstract notion in developers’ minds. Our case study
complements such research by investigating the evolution of features,
including mandatory ones, on the level of change intentions (Krüger
et al., 2023, 2024). So, in contrast to most other works, we are not
interested in code metrics, but the intentions for which features evolve.

In relation to parts of our findings, many researchers have identified
and studied the issue of commits tangling different concerns (Herzig
et al., 2016; Kirinuki et al., 2014; Dias et al., 2015; Sothornprapakorn
et al., 2018; Krüger et al., 2024, 2023). For example, Herbold et al.
(2022) contribute a dataset of bug fixes (i.e., the concern) that are
tangled with other changes. Herbold et al. motivate their work by the
fact that if researchers build on tangled changes, their findings may
not actually study the intended concern but a tangled one. The authors
estimate that a large share (up to 47%) of commits labeled as bug
fixes may also involve changes with other intentions. We observed the
same problem, which is why we introduced our tagging strategy and
employed a manual analysis. Identically to the related work we also
advise to untangle changes to support researchers and practitioners. So,
we complement this previous work by focusing on a different concern:
software features.
11
7. Conclusion

In this article, we reported the results of an exploratory case study
of 189 feature requests and 180 additional pull requests in Marlin.
We found that Marlin developers follow a defined labeling process to
coordinate. However, feature requests and changes to features are often
tangled with different intentions and other features, which can com-
plicate the comprehension of how a feature evolves. Regarding their
life cycles, features are primarily maintained, including refactorings,
enhancements, and bug fixes. It seems rare that they are functionally
reworked or removed. Regarding the labeling of features, we found
that the label PR: New Feature seems very accurate, but quite some
pull requests that seem to involve features miss it. Together with
inconsistencies we found between the GitHub API and UI (cf. Section 5),
this causes hurdles for reliable (automated) analyses.

To tackle such problems, we advise developer communities to agree
on a definition of features, to define and document a respective labeling
strategy, and to keep changes with different intentions separated from
each other. For researchers, we found that the problems we identified
can threaten studies, particularly because (feature) labels are not fully
reliable. However, by inspecting the evolution of features on the level
of intentions, we have also identified interesting changes to focus on
in future research (i.e., removals, reworks, reverts) to derive quality
criteria and guidelines for practice.

In the future, we want to substantiate our findings by expanding
our study to other systems and longer time periods. To achieve this,
feasible automated analyses and mining techniques are an important
means. This case study and our dataset provide the foundations for
developing such techniques. Lastly, we have focused on how features
evolve, categorizing different types of changes. We plan to investigate
the underlying causes in more detail, for which larger analyses and a
focus on specific changes (e.g., removals) across different systems are
necessary.

CRediT authorship contribution statement

Aron van der Hofstad: Writing – review & editing, Writing – orig-
inal draft, Visualization, Validation, Methodology, Investigation, Con-
ceptualization. Loek Cleophas: Writing – review & editing. Clemens
Dubslaff: Writing – review & editing, Visualization. Jacob Krüger:
Writing – review & editing, Validation, Supervision, Methodology,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

A link to a persistent Zenodo repository with our data is in the
article.

References

Apel, S., Batory, D., Kästner, C., Saake, G., 2013. Feature-Oriented Software Product
Lines. Springer, http://dx.doi.org/10.1007/978-3-642-37521-7.

Benavides, D., Segura, S., Ruiz-Cortés, A., 2010. Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35 (6), 615–636. http://dx.doi.org/
10.1016/j.is.2010.01.001.

Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik, M.,
Czarnecki, K., 2015. What is a feature? A qualitative study of features in industrial
software product lines. In: International Software Product Line Conference . SPLC,
ACM, pp. 16–25. http://dx.doi.org/10.1145/2791060.2791108.

Berti, A., van Zelst, S., Schuster, D., 2023. PM4Py: A process mining library for Python.
Softw. Impacts 17, 1–7. http://dx.doi.org/10.1016/j.simpa.2023.100556.

http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1145/2791060.2791108
http://dx.doi.org/10.1016/j.simpa.2023.100556

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
Broneske, D., Kittan, S., Krüger, J., 2024. Sharing software-evolution datasets: Practices,
challenges, and recommendations. Proc. ACM Softw. Eng. 1 (FSE), http://dx.doi.
org/10.1145/3660798.

Classen, A., Heymans, P., Schobbens, P.-Y., 2008. What’s in a feature: A requirements
engineering perspective. In: International Conference on Fundamental Approaches
To Software Engineering . FASE, Springer, pp. 16–30. http://dx.doi.org/10.1007/
978-3-540-78743-3_2.

Cortiñas, A., Krüger, J., Lamas, V., Luaces, M.R., Pedreira, O., 2023. How to retire and
replace a software product line. In: International Systems and Software Product
Line Conference. SPLC, ACM, pp. 275–286. http://dx.doi.org/10.1145/3579027.
3609004.

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A., 2012. Cool
features and tough decisions: A comparison of variability modeling approaches.
In: International Workshop on Variability Modelling of Software-Intensive Systems
. VaMoS, ACM, pp. 173–182. http://dx.doi.org/10.1145/2110147.2110167.

Dias, M., Bacchelli, A., Gousios, G., Cassou, D., Ducasse, S., 2015. Untangling fine-
grained code changes. In: International Conference on Software Analysis, Evolution
and Reengineering . SANER, IEEE, pp. 341–350. http://dx.doi.org/10.1109/saner.
2015.7081844.

Fischer, S., 2021. A case study on the evolution of configuration options of a highly-
configurable software system. In: International Conference on Software Analysis,
Evolution and Reengineering . SANER, IEEE, pp. 630–635. http://dx.doi.org/10.
1109/saner50967.2021.00079.

Gousios, G., Pinzger, M., van Deursen, A., 2014. An exploratory study of the pull-based
software development model. In: International Conference on Software Engineering
. ICSE, ACM, pp. 345–355. http://dx.doi.org/10.1145/2568225.2568260.

Herbold, S., Trautsch, A., Ledel, B., Aghamohammadi, A., Ghaleb, T.A., Chahal, K.K.,
Bossenmaier, T., Nagaria, B., Makedonski, P., Ahmadabadi, M.N., Szabados, K.,
Spieker, H., Madeja, M., Hoy, N., Lenarduzzi, V., Wang, S., Rodríguez-Pérez, G.,
Colomo-Palacios, R., Verdecchia, R., Singh, P., Qin, Y., Chakroborti, D., Davis, W.,
Walunj, V., Wu, H., Marcilio, D., Alam, O., Aldaeej, A., Amit, I., Turhan, B.,
Eismann, S., Wickert, A.-K., Malavolta, I., Sulír, M., Fard, F., Henley, A.Z.,
Kourtzanidis, S., Tuzun, E., Treude, C., Shamasbi, S.M., Pashchenko, I., Wyrich, M.,
Davis, J., Serebrenik, A., Albrecht, E., Aktas, E.U., Strüber, D., Erbel, J., 2022. A
fine-grained data set and analysis of tangling in bug fixing commits. Empir. Softw.
Eng. 27, 1–49. http://dx.doi.org/10.1007/s10664-021-10083-5.

Herzig, K., Just, S., Zeller, A., 2016. The impact of tangled code changes on defect
prediction models. Empir. Softw. Eng. 21 (2), 303–336. http://dx.doi.org/10.1007/
s10664-015-9376-6.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L., 2017. Why and how
developers fork what from whom in GitHub. Empir. Softw. Eng. 22 (1), 547–578.
http://dx.doi.org/10.1007/s10664-016-9436-6.

Kirinuki, H., Higo, Y., Hotta, K., Kusumoto, S., 2014. Hey! Are you committing tangled
changes? In: International Conference on Program Comprehension . ICPC, ACM,
pp. 262–265. http://dx.doi.org/10.1145/2597008.2597798.

Kröher, C., Gerling, L., Schmid, K., 2018. Identifying the intensity of variability changes
in software product line evolution. In: International Systems and Software Product
Line Conference . SPLC, ACM, pp. 54–64. http://dx.doi.org/10.1145/3233027.
3233032.

Krüger, J., Berger, T., Leich, T., 2019a. Features and how to find them - a survey of
manual feature location. In: Software Engineering for Variability Intensive Systems.
CRC Press, pp. 153–172. http://dx.doi.org/10.1201/9780429022067-9.

Krüger, J., Gu, W., Shen, H., Mukelabai, M., Hebig, R., Berger, T., 2018. Towards a
better understanding of software features and their characteristics. In: International
Workshop on Variability Modelling of Software-Intensive Systems. VaMoS, ACM,
pp. 105–112. http://dx.doi.org/10.1145/3168365.3168371.

Krüger, J., Hebig, R., 2024. To memorize or to document: A survey of developers’
views on knowledge availability. In: International Conference on Product Focused
Software Process Improvement. PROFES, Springer, pp. 39–56. http://dx.doi.org/10.
1007/978-3-031-49266-2_3.

Krüger, J., Li, Y., Lossev, K., Zhu, C., Chechik, M., Berger, T., Rubin, J., 2024. A
meta-study of software-change intentions. ACM Comput. Surv. 56 (12), 300:1–41.
http://dx.doi.org/10.1145/3661484.

Krüger, J., Li, Y., Zhu, C., Chechik, M., Berger, T., Rubin, J., 2023. A vision
on intentions in software engineering. In: Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE,
ACM, pp. 2117–2121. http://dx.doi.org/10.1145/3611643.3613087.

Krüger, J., Mahmood, W., Berger, T., 2020a. Promote-pl: A round-trip engineering
process model for adopting and evolving product lines. In: International Systems
and Software Product Line Conference. SPLC, ACM, pp. 2:1–12. http://dx.doi.org/
10.1145/3382025.3414970.

Krüger, J., Mukelabai, M., Gu, W., Shen, H., Hebig, R., Berger, T., 2019b. Where is my
feature and what is it about? A case study on recovering feature facets. J. Syst.
Softw. 152, 239–253. http://dx.doi.org/10.1016/j.jss.2019.01.057.

Krüger, J., Nielebock, S., Heumüller, R., 2020b. How can I contribute? A qualitative
analysis of community websites of 25 Unix-like distributions. In: International
Conference on Evaluation and Assessment in Software Engineering. EASE, ACM,
pp. 324–329. http://dx.doi.org/10.1145/3383219.3383256.
12
Levin, S., Yehudai, A., 2017. Boosting automatic commit classification into mainte-
nance activities by utilizing source code changes. In: International Conference on
Predictive Models and Data Analytics in Software Engineering. PROMISE, ACM, pp.
97–106. http://dx.doi.org/10.1145/3127005.3127016.

Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M., 2010. An analysis of the
variability in forty preprocessor-based software product lines. In: International
Conference on Software Engineering. ICSE, ACM, pp. 105–114. http://dx.doi.org/
10.1145/1806799.1806819.

Ludwig, K., Krüger, J., Leich, T., 2019. Covert and phantom features in annotations:
Do they impact variability analysis? In: International Systems and Software Product
Line Conference . SPLC, ACM, pp. 218–230. http://dx.doi.org/10.1145/3336294.
3336296.

Mauczka, A., Huber, M., Schanes, C., Schramm, W., Bernhart, M., Grechenig, T., 2012.
Tracing your maintenance work – A cross-project validation of an automated
classification dictionary for commit messages. In: International Conference on
Fundamental Approaches To Software Engineering. FASE, Springer, pp. 301–315.
http://dx.doi.org/10.1007/978-3-642-28872-2_21.

Mortara, J., Collet, P., 2021. Capturing the diversity of analyses on the Linux kernel
variability. In: International Systems and Software Product Line Conference. SPLC,
ACM, pp. 160–171. http://dx.doi.org/10.1145/3461001.3471151.

Nešić, D., Krüger, J., Stănciulescu, Ş., Berger, T., 2019. Principles of feature modeling.
In: Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering . ESEC/FSE, ACM, pp. 62–73. http://dx.doi.
org/10.1145/3338906.3338974.

Palmer, S.R., Felsing, M., 2001. A Practical Guide to Feature-Driven Development.
Pearson.

Passos, L., Teixeira, L., Dintzner, N., Apel, S., Wąsowski, A., Czarnecki, K., Borba, P.,
Guo, J., 2016. Coevolution of variability models and related software artifacts: A
fresh look at evolution patterns in the Linux Kernel. Empir. Softw. Eng. 21 (4),
1744–1793. http://dx.doi.org/10.1007/s10664-015-9364-x.

Pohl, K., Böckle, G., van der Linden, F.J., 2005. Software Product Line Engineering.
Springer, http://dx.doi.org/10.1007/3-540-28901-1.

Queiroz, R., Passos, L., Valente, M.T., Hunsen, C., Apel, S., Czarnecki, K., 2017. The
shape of feature code: An analysis of twenty C-preprocessor-based systems. Int. J.
Softw. Syst. Model. 16 (1), 77–96. http://dx.doi.org/10.1007/s10270-015-0483-z.

Ralph, P., bin Ali, N., Baltes, S., Bianculli, D., Diaz, J., Dittrich, Y., Ernst, N.,
Felderer, M., Feldt, R., Filieri, A., de França, B.B.N., Furia, C.A., Gay, G., Gold, N.,
Graziotin, D., He, P., Hoda, R., Juristo, N., Kitchenham, B., Lenarduzzi, V.,
Martínez, J., Melegati, J., Mendez, D., Menzies, T., Molleri, J., Pfahl, D., Robbes, R.,
Russo, D., Saarimäki, N., Sarro, F., Taibi, D., Siegmund, J., Spinellis, D., Staron, M.,
Stol, K., Storey, M.-A., Taibi, D., Tamburri, D., Torchiano, M., Treude, C.,
Turhan, B., Wang, X., Vegas, S., 2021. Empirical standards for software engineering
research. arXiv:2010.03525. URL: https://arxiv.org/abs/2010.03525.

Razzaq, A., Wasala, A., Exton, C., Buckley, J., 2018. The state of empirical evaluation
in static feature location. ACM Trans. Softw. Eng. Methodol. 28 (1), 2:1–58.
http://dx.doi.org/10.1145/3280988.

Riege, A., 2005. Three-Dozen knowledge-sharing barriers managers must consider. J.
Knowl. Manag. 9 (3), 18–35. http://dx.doi.org/10.1108/13673270510602746.

Rubin, J., Chechik, M., 2013. A survey of feature location techniques. In: Domain
Engineering. Springer, pp. 29–58. http://dx.doi.org/10.1007/978-3-642-36654-3_2.

Schulze, S., Engelke, P., Krüger, J., 2023. Evolutionary feature dependencies: Analyzing
feature Co-changes in C systems. In: International Working Conference on Source
Code Analysis and Manipulation . SCAM, IEEE, pp. 84–95. http://dx.doi.org/10.
1109/SCAM59687.2023.00019.

Sothornprapakorn, S., Hayashi, S., Saeki, M., 2018. Visualizing a tangled change
for supporting its decomposition and commit construction. In: Annual Computer
Software and Applications Conference. COMPSAC, IEEE, pp. 74–79. http://dx.doi.
org/10.1109/compsac.2018.00018.

Steinmacher, I.F., Graciotto Silva, M.A., Gerosa, M.A., Redmiles, D.F., 2015. A system-
atic literature review on the barriers faced by newcomers to open source software
projects. Inf. Softw. Technol. 59, 67–85. http://dx.doi.org/10.1016/j.infsof.2014.
11.001.

Stănciulescu, Ş., Schulze, S., Wąsowski, A., 2015. Forked and integrated variants
in an open-source firmware project. In: International Conference on Software
Maintenance and Evolution. ICSME, IEEE, pp. 151–160. http://dx.doi.org/10.1109/
icsm.2015.7332461.

Swanson, E.B., 1976. The dimensions of maintenance. In: International Conference on
Software Engineering. ICSE, IEEE, pp. 492–497.

van der Aalst, W.M.P., 2019. A practitioner’s guide to process mining: Limitations of
the directly-follows graph. Procedia Comput. Sci. 164, 321–328. http://dx.doi.org/
10.1016/j.procs.2019.12.189.

Viegener, S., 2021. Empirical Evaluation of Feature Trace Recording on the Edit History
of Marlin (Bachelor’s thesis). University Ulm.

Wang, J., Peng, X., Xing, Z., Zhao, W., 2011. An exploratory study of feature
location process: Distinct phases, recurring patterns, and elementary actions. In:
International Conference on Software Maintenance . ICSM, IEEE, pp. 213–222.
http://dx.doi.org/10.1109/icsm.2011.6080788.

Wilde, N., Buckellew, M., Page, H., Rajlich, V., Pounds, L., 2003. A comparison of
methods for locating features in legacy software. J. Syst. Softw. 65 (2), 105–114.
http://dx.doi.org/10.1016/s0164-1212(02)00052-3.

http://dx.doi.org/10.1145/3660798
http://dx.doi.org/10.1145/3660798
http://dx.doi.org/10.1145/3660798
http://dx.doi.org/10.1007/978-3-540-78743-3_2
http://dx.doi.org/10.1007/978-3-540-78743-3_2
http://dx.doi.org/10.1007/978-3-540-78743-3_2
http://dx.doi.org/10.1145/3579027.3609004
http://dx.doi.org/10.1145/3579027.3609004
http://dx.doi.org/10.1145/3579027.3609004
http://dx.doi.org/10.1145/2110147.2110167
http://dx.doi.org/10.1109/saner.2015.7081844
http://dx.doi.org/10.1109/saner.2015.7081844
http://dx.doi.org/10.1109/saner.2015.7081844
http://dx.doi.org/10.1109/saner50967.2021.00079
http://dx.doi.org/10.1109/saner50967.2021.00079
http://dx.doi.org/10.1109/saner50967.2021.00079
http://dx.doi.org/10.1145/2568225.2568260
http://dx.doi.org/10.1007/s10664-021-10083-5
http://dx.doi.org/10.1007/s10664-015-9376-6
http://dx.doi.org/10.1007/s10664-015-9376-6
http://dx.doi.org/10.1007/s10664-015-9376-6
http://dx.doi.org/10.1007/s10664-016-9436-6
http://dx.doi.org/10.1145/2597008.2597798
http://dx.doi.org/10.1145/3233027.3233032
http://dx.doi.org/10.1145/3233027.3233032
http://dx.doi.org/10.1145/3233027.3233032
http://dx.doi.org/10.1201/9780429022067-9
http://dx.doi.org/10.1145/3168365.3168371
http://dx.doi.org/10.1007/978-3-031-49266-2_3
http://dx.doi.org/10.1007/978-3-031-49266-2_3
http://dx.doi.org/10.1007/978-3-031-49266-2_3
http://dx.doi.org/10.1145/3661484
http://dx.doi.org/10.1145/3611643.3613087
http://dx.doi.org/10.1145/3382025.3414970
http://dx.doi.org/10.1145/3382025.3414970
http://dx.doi.org/10.1145/3382025.3414970
http://dx.doi.org/10.1016/j.jss.2019.01.057
http://dx.doi.org/10.1145/3383219.3383256
http://dx.doi.org/10.1145/3127005.3127016
http://dx.doi.org/10.1145/1806799.1806819
http://dx.doi.org/10.1145/1806799.1806819
http://dx.doi.org/10.1145/1806799.1806819
http://dx.doi.org/10.1145/3336294.3336296
http://dx.doi.org/10.1145/3336294.3336296
http://dx.doi.org/10.1145/3336294.3336296
http://dx.doi.org/10.1007/978-3-642-28872-2_21
http://dx.doi.org/10.1145/3461001.3471151
http://dx.doi.org/10.1145/3338906.3338974
http://dx.doi.org/10.1145/3338906.3338974
http://dx.doi.org/10.1145/3338906.3338974
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb31
http://dx.doi.org/10.1007/s10664-015-9364-x
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/s10270-015-0483-z
http://arxiv.org/abs/2010.03525
https://arxiv.org/abs/2010.03525
http://dx.doi.org/10.1145/3280988
http://dx.doi.org/10.1108/13673270510602746
http://dx.doi.org/10.1007/978-3-642-36654-3_2
http://dx.doi.org/10.1109/SCAM59687.2023.00019
http://dx.doi.org/10.1109/SCAM59687.2023.00019
http://dx.doi.org/10.1109/SCAM59687.2023.00019
http://dx.doi.org/10.1109/compsac.2018.00018
http://dx.doi.org/10.1109/compsac.2018.00018
http://dx.doi.org/10.1109/compsac.2018.00018
http://dx.doi.org/10.1016/j.infsof.2014.11.001
http://dx.doi.org/10.1016/j.infsof.2014.11.001
http://dx.doi.org/10.1016/j.infsof.2014.11.001
http://dx.doi.org/10.1109/icsm.2015.7332461
http://dx.doi.org/10.1109/icsm.2015.7332461
http://dx.doi.org/10.1109/icsm.2015.7332461
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb43
http://dx.doi.org/10.1016/j.procs.2019.12.189
http://dx.doi.org/10.1016/j.procs.2019.12.189
http://dx.doi.org/10.1016/j.procs.2019.12.189
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00316-4/sb45
http://dx.doi.org/10.1109/icsm.2011.6080788
http://dx.doi.org/10.1016/s0164-1212(02)00052-3

A. van der Hofstad et al. The Journal of Systems & Software 231 (2026) 112647
Yin, R.K., 2018. Case Study Research and Applications: Design and Methods. Sage.
Zhou, S., Stănciulescu, Ş., Leßenich, O., Xiong, Y., Wąsowski, A., Kästner, C., 2018.

Identifying features in forks. In: International Conference on Software Engineering.
ICSE, ACM, pp. 106–116. http://dx.doi.org/10.1145/3180155.3180205.
13
Zhou, S., Vasilescu, B., Kästner, C., 2020. How has forking changed in the last 20
years? A study of hard forks on GitHub. In: International Conference on Soft-
ware Engineering . ICSE, ACM, pp. 445–456. http://dx.doi.org/10.1145/3377811.
3380412.

http://refhub.elsevier.com/S0164-1212(25)00316-4/sb48
http://dx.doi.org/10.1145/3180155.3180205
http://dx.doi.org/10.1145/3377811.3380412
http://dx.doi.org/10.1145/3377811.3380412
http://dx.doi.org/10.1145/3377811.3380412

	The life of software features: An exploratory case study of 189 feature requests in Marlin
	Introduction
	Case-Study Design
	Research Questions
	Case Selection and Site Description
	Feature-Request Analysis (lst9004 , lst9005)
	Feature-Labeling Reliability (lst9006)

	Results and Discussion
	Marlin Labeling Practices (lst9004)
	lst9005: Feature Evolution
	lst9006 : Reliability of Feature Labels

	Recommendations and Prospects
	Threats to Validity
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

