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 A B S T R A C T

Features are a widely established notion to organize the functionalities of a software system. For instance, 
features are used to define variability and commonalities in product lines; feature-driven development is an 
agile development methodology; and social-coding platforms have explicit support for feature requests. Despite 
the importance of features, we are not aware of extensive research on their life cycles: how and for what reasons 
do developers evolve features? As a result, we lack an understanding of how features come to be, how they 
are evolved, or why they may be removed. To narrow this research gap, we have performed an exploratory 
case study on the evolution of 189 feature requests of the Marlin 3D-printer firmware. We identified the code 
introducing a feature and traced all commits touching that code or the feature, resulting in a collection of 1,940 
unique commits spanning five years of evolution. We have manually inspected all of these commits to classify 
their intentions with respect to the features they change, and created process graphs of the features’ life cycles 
based on these intentions to understand the evolution of features. Our results contribute a first overview and 
detailed examples of evolving features beyond code metrics, showcasing that features are primarily refactored, 
exhibit interdependent evolution, and are rarely removed. Serving as a starting point, these contributions can 
support practitioners in managing features and guide researchers in understanding feature evolution as well 
as in scoping future studies on this matter.
1. Introduction

Many software systems and their development are structured
around features, which have become a widely established notion in 
software-engineering research and practice. For example, software 
product-line engineering (Apel et al., 2013; Pohl et al., 2005; Krüger 
et al., 2020a) or feature-driven software development (Palmer and 
Felsing, 2001) are entire methodologies structured around the notion of 
features. Similarly, developers on social-coding platforms (e.g. GitHub) 
often use features to organize the development of their projects (Stănci-
ulescu et al., 2015; Krüger et al., 2019b). For instance, developers label 
issues as feature requests and refer to these labels in pull requests.

Interestingly, what exactly a feature is and what artifacts or prop-
erties it comprises is an ongoing debate yielding many different def-
initions and specifications (Apel et al., 2013; Classen et al., 2008; 
Berger et al., 2015). In essence, features are an abstract concept, for 
which most developers have an intuitive, but varying, understanding. 
This understanding depends on a developer’s individual expertise and 
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experiences, but typically a feature can be broadly defined as “ a charac-
teristic or end-user-visible behavior of a software system” (Apel et al., 
2013).

While features have become an important notion in software en-
gineering, their life cycles have received little attention in research. 
Mostly, researchers have been concerned with code metrics and con-
figuration options (Fischer, 2021; Passos et al., 2016; Kröher et al., 
2018), limiting our understanding of the intentions with which devel-
opers evolve features. Within this article, we build on the concept 
of intentions to describe the goal due to which developers change a 
feature (Krüger et al., 2023, 2024). The level of intentions is important 
to consider, since features are abstractions of the software and can 
include other artifacts, too. Moreover, code changes alone do typically 
not specify what a developer’s original intentions for a change were, 
can implement these intentions incorrectly, and may tangle multiple 
intentions that do not align with the original one (Krüger et al., 2024). 
For instance, a developer may intend to improve the performance of a 
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feature (goal of a change), but may also refactor variable names in the 
process to make the code more comprehensive (tangled, unintended 
change)—potentially modifying multiple features to achieve different 
goals for each within one change, too. Metrics on feature code and 
changes can also be misleading (Ludwig et al., 2019). For instance, 
removing feature code can mean several things: it could actually be 
removed, be subsumed by another feature, or be moved to a different 
location. These intentions are not visible from code changes alone.

Consequently, focusing only on code can severely limit our under-
standing of how software and its features evolve. We argue that it is 
equally important to understand the intentions for which developers 
evolve features. For example, understanding when and why developers 
decide to deprecate a feature or rework it can help define indicators for 
unnecessary features or for quality problems. Investigating the life cy-
cles of real-world features can yield insights into why features succeed, 
why they become obsolete, or when they may become commodity.

As a step in this direction, we report an exploratory case study 
on the life cycles of 189 pull requests labeled as feature requests 
in the Marlin 3D-printer firmware.1 To elicit the features’ life cy-
cles, we tracked the code changes related to them, covering 2956 
commits (1940 unique commits). We manually reviewed each feature 
request, the respective code, the commits touching that code and 
feature, as well as all connected developer discussions and messages 
to understand why the features were changed (the intended goal). 
Additionally, we analyzed 180 pull requests not labeled as features 
to determine whether these would meet the definition of a feature 
by Apel et al. (2013) to reason on the reliability of feature labels. 
Our findings can support developers in making informed decisions 
while developing and maintaining software features. For example, we 
advise developers to establish and document a change-labeling strategy, 
agree on what a feature comprises, and untangle changes to facilitate 
collaborative development and maintenance. In turn, each developer 
has a shared understanding and access to relevant information when 
working on a feature. Researchers can use our study as a starting point 
for more in-depth analyses of feature life cycles. We publish our data 
and supplementary materials in a persistent open-access repository.2 
Our dataset allows researchers to replicate our work, and is a helpful 
artifact for developing automation for identifying (intentions of) feature 
changes, untangling changes, and studying the underlying causes for 
such changes. Thus, based on our findings and dataset, future work 
can investigate specific feature and change properties in greater detail, 
which also enables expanding to multiple systems.

2. Case-study design

First, we describe the methodology of our exploratory case study, 
which we used to obtain deeper insights into a single case (Yin, 2018). 
We decided for a case study to provide a starting point for further 
investigations on the intention level of feature evolution, which has 
not been researched so far. Inherently, case studies do not aim for 
and are limited regarding generalizability, replicability, and internal 
validity (Ralph et al., 2021). Instead, the focus of case studies, including 
ours, is on transferability, meaning that we aimed to obtain insights 
that can be transferred to other cases in principle and that can inform 
future practice or research on feature evolution.

2.1. Research questions

Our goal was to shed light onto the life cycles of software features, 
focusing on the intentions behind their evolution in a substantial real-
world system (Marlin, cf. Section 2.2). For this purpose, we defined 
three research questions (RQs):

1 https://github.com/MarlinFirmware/Marlin.
2 https://doi.org/10.5281/zenodo.17121913.
2 
RQ1 What feature labeling practices does Marlin employ?
Open-source communities use labels for issues and pull requests. 
We built on such labels as a starting point for investigating 
how features evolve. For this purpose, we first had to obtain 
a detailed understanding of how Marlin developers label their 
issues and pull requests (RQ1.1). This was necessary because we 
noticed in an exploratory investigation that the community used 
a huge variety of labels, not all of which were intuitive. Due 
to the goal of our case study, we paid particular attention to 
the label PR: New Feature (RQ1.2), which we aimed to use as 
starting point for our remaining research questions. For this label 
in particular, we investigated to what extent its respective issues 
or pull requests had potentially tangled changes, for instance, 
asking for a feature and bug fix or refactoring. So, by understand-
ing the labeling practices and change tangling, we informed our 
study design and contribute insights into how Marlin developers 
manage their repository and features.

RQ2 How do Marlin’s software features evolve?
In open-source projects like Marlin, new features are often pro-
posed and developed via issues, fork-based development, and 
pull requests (Gousios et al., 2014; Jiang et al., 2017; Stănci-
ulescu et al., 2015; Krüger et al., 2019b; Zhou et al., 2020). Pull 
requests labeled as feature requests represent a starting point 
for studying feature evolution: They define a clear point in time 
when a new feature is added to a system, and the label implies 
agreement by the community that it is, in their understanding, a 
feature. By tracing later changes to the introduced features, we 
aimed to understand for what reasons these features are changed 
afterwards and to thereby elicit their life cycles.

RQ3 To what extent do (labeled) pull requests in Marlin align to the 
definition of features by Apel et al. (2013)?
Our research started with pull requests that the developers of 
Marlin labeled as feature requests. Consequently, an important 
question for contextualizing our findings is to what extent these 
labels are accurate or are missing for other pull requests. For this 
purpose, we compared pull requests that are labeled as feature 
requests to those not labeled as feature requests. This way, we 
aimed to understand whether the Marlin developers’ notion of 
features aligns to the (broad) one by Apel et al. (2013) that we 
use.

By addressing these research questions, we contribute to a better under-
standing of the notion of features and their life cycles to guide future 
research and practitioners.

2.2. Case selection and site description

Analyzing developers’ change intentions (Krüger et al., 2024, 2023) 
regarding individual software features throughout their entire life cycle 
requires an in-depth investigation of various software artifacts. For 
this reason, we decided to conduct a manual, exploratory case study 
involving one substantial subject system. To select that system, we 
compiled a list of the 100 most starred repositories according to the 
Gitstar Ranking.3 Then, we removed repositories not representing a 
software system but another type of artifact (e.g., lists, tutorials) and 
those that have no explicit label for feature requests.

Feature labels are important to improve the quality of feature 
location, since mere manual or automated feature location both have 
inherent limitations (Wilde et al., 2003; Wang et al., 2011; Krüger et al., 
2019a; Razzaq et al., 2018; Rubin and Chechik, 2013). Specifically, as 
for the notion of what a feature is, the code locations belonging to 
a specific feature are also subjective. If we would manually recover 
(mandatory) feature locations, this would very likely not match the 

3 https://gitstar-ranking.com/.
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Fig. 1. Anonymized pull request 21255 of the Marlin system (https://github.com/MarlinFirmware/Marlin/pull/21255).
original developers’ understanding of features and feature locations. 
For the same reason, existing techniques for automated feature location 
are also not reliable. To mitigate such problems, we decided to start 
from pull requests labeled as feature requests, building on the reason-
able assumption that these represent features the developers agreed on. 
The pull requests also link to the respective feature code.

From the remaining systems, we picked the Marlin 3D-printer 
firmware.1 Marlin is primarily implemented in C and C++, using C 
preprocessor directives to allow users to configure the software to 
their own hardware. It is a substantial system that exists since 2011 
and involves more than 369,000 lines of C and C++ code, 20,000 
commits, 70 releases, 1100 contributors, 14,000 issues, and 12,600 
pull requests. Since Marlin provides a clear labeling system for pull 
requests, we could identify a reliable set of features the developers 
agreed upon and trace their source code—also for mandatory features. 
Moreover, Marlin is open-source software that has a broad community 
of contributors, which promises to yield a diverse set of features. Lastly, 
we (Krüger et al., 2018, 2019b) and other researchers (Stănciulescu 
et al., 2015; Viegener, 2021) have extensively studied Marlin in terms 
of its features and its variability. Therefore, we had ample material 
for Marlin available to design our case study and to inform our data 
analysis. For these reasons, we considered Marlin a feasible subject 
system for our exploratory case study. We then continued with ex-
tracting all pull requests and issues from Marlin via the GitHub API 
to enable our following analyses. Note that while we knew that Marlin 
would be a feasible subject system from our previous work, we followed 
a systematic selection procedure to identify whether another subject 
system would be even more suited.
3 
2.3. Feature-request analysis (RQ1 , RQ2)

In the remainder of this article, we distinguish between pull-request
labels and commit tags, using these highlights to indicate the respective 
type. As explained before, the Marlin developers define a pull-request 
label to categorize a pull request, as we exemplify in Fig.  1 6 . Commit 
tags are codes we assigned to individual commits to specify their 
underlying intention (11 tags, explained shortly).
Domain Analysis and Labeling Practices. At first, leading us to 
RQ1, we performed an extensive domain analysis of Marlin. For this 
purpose, we recapped the related work (cf. Section 6) and investigated 
Marlin’s development practices. Specifically, the first author inspected 
Marlin’s project website, code, issues, pull requests, commits, developer 
discussions, and documentation to understand the processes involved. 
We noticed that Marlin used very different labels, which is why we 
collected these through the GitHub API and analyzed their purpose. 
To this end, we first studied the Marlin documentation to understand 
the labels. When we noticed that some were not explained in the 
documentation, we investigated examples of these labels and reasoned 
on their purposes ourselves.
Identifying Feature Requests. To identify features labeled by the 
Marlin developers or users, we iterated through the pull requests of 
Marlin, starting with the most recent ones. We considered all pull 
requests as relevant for RQ2 that were merged and were labeled as a 
feature request through the label PR: New Feature. We used the GitHub 
web UI to further inspect these pull requests, as Marlin has a standard 
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template that we could analyze more easily. As an example, we use pull 
request 21255,4 which we depict in anonymized form in Fig.  1.

First, we read the description 1  and comments (discussions below 
a pull request) to understand what the feature is about and how 
it is supposed to work. Second, we analyzed the requirements that 
must be met 2 , for instance that a machine supports RAMPS boards. 
Third, the benefits 3  helped us to understand why a feature should 
be introduced. Fourth, the configuration entry 4  provides images 
or configuration files to explain a feature’s constraints. Fifth, related 
items 5  list issues that are solved by the pull request, which then 
served as an additional information source. Lastly, on the right side, 
a list of labels is present 6 , which provided additional context and 
served as a manual cross-check of our automated crawling on whether 
we inspected a feature request. Then, to create a concise dataset, we 
extracted when the pull request was created and merged, its ID, how 
many comments it had, which files were changed, its title, its labels, 
and its description.
Tracing Commits. Locating feature code and changes to a feature is 
challenging, since features can be scattered and tangled while commits 
and pull requests may perform multiple intentions (e.g., a tangled bug 
fix or refactoring) (Krüger et al., 2024, 2023; Kirinuki et al., 2014; Dias 
et al., 2015; Queiroz et al., 2017; Ludwig et al., 2019; Liebig et al., 
2010). To resolve this problem, we inspected each identified feature 
request to locate the respective feature’s code from its commits. Then, 
we used scripts and Git commands to download the change history of 
every modified file, collecting any commit potentially related to the 
feature’s code. We manually inspected these files to identify whether 
a commit actually modified the feature code under inspection. Since 
this could involve many commits as well as files, and file renames are 
(inherently) not perfectly captured by Git, we also collected unique key-
words in each feature’s pull-request code to search for in the commits. 
To handle file renaming, we utilized that the respective Git queries 
return an error code for files that they do not find (i.e., that have been 
renamed and thus removed). In these cases, we queried the added files 
in that commit (i.e., the new names) and manually inspected whether 
any of these represented the old files. For each change, we documented 
the date of the commit and its title in a document for the respective pull 
request.

Inspecting Commits. While there are many techniques that attempt 
to automatically classify the intentions of commits (Krüger et al., 2024; 
Mauczka et al., 2012; Levin and Yehudai, 2017), these are often focused 
on certain pieces of commit information and specific categories; such 
as the maintenance activities proposed by Swanson (1976). This causes 
problems for our study, because these techniques cannot consider the 
context between commits, pull requests, and features. As a conse-
quence, they cannot distinguish between what parts of a (tangled) 
commit are relevant for a feature, for a different feature, or represent 
an unrelated activity (e.g., a refactoring). In turn, the derived tags 
would most likely not be the ones we are interested in. Moreover, the 
categorizations are often rather abstract (e.g., perfective), and do not 
detail what the developers actually intended to do.

For these reasons, we decided to manually inspect each commit, 
examining its message and code changes to identify its intention related 
to a feature. As an example, a feature to cool lasers has been enhanced 
(tag: Enhancement) in one commit to expand its functionality by 
enabling it to track the flow of water. We assigned a single tag for each 
combination of commit and feature. In case multiple tags would apply, 
we used the one we perceived as most relevant based on the feature’s 
description and the commit message as well as changes. This way, we 
tried to capture the core of a commit’s change intention with respect 
to a specific feature. Please note that a commit can nonetheless have 
different tags for different features, if that commit modified multiple 

4 https://github.com/MarlinFirmware/Marlin/pull/21255.
4 
features (i.e., one commit can map to any number of features and their 
tags). More specifically, the same commit may modify two features, 
and thus will have two tags (potentially the same). Those multiple 
tags for one commit represent the difference between the total (2956) 
and unique (1940) commits we analyzed, and which we summarize in 
Table  1. We executed this process for each pull request and its related 
commits before moving to the next pull request.
Establishing Tags. We started our tagging using the classification 
proposed by Swanson (1976), but, as we suspected, it was too coarse-
grained to properly capture the relations between pull requests, com-
mits, and features. For this reason, we started to introduce more 
detailed tags, employing an open coding to derive these tags. Finally, 
we ended up with the following 11 tags to code a commit’s intentions:

1. New Feature describes a commit that introduces a feature into the 
code. Interestingly, such commits varied widely in terms of size. 
As extreme cases, pull request 268255 involves a single line of 
code to define two pins on the control board to enable a new 
feature. In contrast, pull request 180716 introduced 16,162 lines 
of code for a new UI library of a specific printer.

2. Removal specifies that a feature is removed (i.e., all lines are 
deleted without being added somewhere else), signaling the end 
of life of that feature. One example is pull request 24229,7 which 
removes the feature introduced in pull request 24074.8

3. Rework documents that a commit essentially re-implements a fea-
ture. For instance, a feature for laser graphics on LCD screens 
introduced in pull request 160689 was completely reworked in 
pull request 15335.10

4. Revert means that a commit undoes a previous commit, which 
was happening especially when larger changes were merged but 
contained many bugs.

5. Bug Fix commits correct unintended or erroneous behavior of Mar-
lin.

6. Enhancement specifies that a commit adds functionality to a fea-
ture or broadens its support on the firmware. For example, pull 
request 2648511 changes the code of the feature introduced in 
pull request 2632812 to make it work on another platform.

7. Refactor documents that a commit changes the code of a feature, 
for instance, to optimize performance, but does not alter its 
functionality.

8. Cleanup commits remove code of a feature but do not alter its 
functionality (e.g., removing dead code).

9. Formatting means that a commit changes only the spacing of the 
code to change its layout.

10. Comment describes that a commit changes only comments, but no 
actual code.

11. Whitespace commits change only whitespaces.

5 https://github.com/MarlinFirmware/Marlin/pull/26825.
6 https://github.com/MarlinFirmware/Marlin/pull/18071.
7 https://github.com/MarlinFirmware/Marlin/pull/24229.
8 https://github.com/MarlinFirmware/Marlin/pull/24074.
9 https://github.com/MarlinFirmware/Marlin/pull/16068.
10 https://github.com/MarlinFirmware/Marlin/pull/15335.
11 https://github.com/MarlinFirmware/Marlin/pull/26485.
12 https://github.com/MarlinFirmware/Marlin/pull/26328.
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Overall, the first seven tags (1. to 7.) are the most important changes to 
us, since they modify the feature code or its behavior. The last four tags 
(8. to 11.) are behavior-preserving adjustments, which we still tagged 
for completeness. Again, please note that we refer to label if we mean 
the developer specified labels on GitHub, and tags if we refer to the 
above tags we assigned to commits.
Validating Tags. Any qualitative and manual analysis of software 
changes with their respective developer comments is prone to subjec-
tive interpretations. Aiming to keep the tagging consistent, the first 
author performed a full tagging of all commits regarding the features 
involved. For this purpose, the first author started by performing an 
initial tagging, discussing the respective findings and problematic cases 
with the last author. Then, the first author continued with the tagging 
independently, again clarifying any occurring problems or potential 
confusions (e.g., regarding the types of tags) with the last author. 
To identify subjectivity bias and assess to what extent our data is 
reasonable, the third author performed an independent validation in 
the end. Note that the third author was not involved in the initial 
tagging or discussions of problematic cases, so that they could execute 
a fully independent assessment. For this purpose, the third author 
picked a random sample of 100 tagged commits (6%) from our dataset, 
inspected them on GitHub, and tagged them themselves according to 
the strategy described above. Overall, the third author fully agreed 
with 85 of the first author’s tags and disagreed with seven of the tags. 
For eight commits, the tagging differed for slight nuances between
Enhancement and Refactor, but we considered both tags as reason-
able. Thus, the first and third author agreed on 93% of the commits, 
improving our confidence in the reliability of the tagging.

2.4. Feature-labeling reliability (RQ3)

To check the reliability of the feature labels defined by the Marlin 
developers and their alignment to the definition of a feature by Apel 
et al. (2013), we compared the 189 labeled pull requests we collected 
for RQ2 to that definition. We also aimed to check whether other 
pull requests for Marlin introduce features according to the definition 
by Apel et al., but without being labeled as such. This comparison 
allows us to reason about the context of our findings and to understand 
different notions that exist among developers.

For this purpose, we first collected all pull requests spanning the 
same time period as our previous sample (i.e., June 11th, 2019–July 
28th, 2024). Then, we removed all pull requests that are labeled as PR: 
New Feature or were not merged. Furthermore, we excluded all pull 
requests that were labeled as bug fixes or clean ups, which according 
to our insights were not connected to new features. From the remaining 
dataset, we identified the six labels from our previous analysis that 
are most commonly associated with our tag New Feature (number of 
remaining pull requests between parentheses): PR: Improvement (765),
C: LCD & Controllers (472), A: STM32 (174), C: Calibration (110), C: 
Motion (89), and C: Peripherals (81). For each of these six labels, we 
randomly selected 30 of the remaining pull requests, resulting in a total 
of 180 pull requests, and thus a similar sample size as the feature-
request one (i.e., 189). Finally, we inspected each of these pull requests 
with its associated artifacts (e.g., commits, code, discussions, messages) 
to decide whether we would consider it to represent a new feature or 
not.

3. Results and discussion

In the following, we present and discuss our results for each research 
question individually.

3.1. Marlin labeling practices (RQ1)

We finalized our data collection on July 28th, 2024. At this point, 
the Marlin repository contained 12,528 pull requests, of which 9114 
5 
were merged and 3414 were not merged. We found a total of 662 
merged pull requests labeled PR: New Feature.
Marlin Labels (RQ1.1). In total, we found 80 labels for issues and 
pull requests in Marlin. Unfortunately, the Marlin documentation we 
found did not explain all of them. To obtain a better understanding 
of the system and its pull requests, we inspected each label, the docu-
mentation, respective pull requests, and their associated code changes. 
Explanations for all labels are in our dataset,2 but essentially Marlin 
uses nine prefixes to categorize labels (cf. 6  in Fig.  1). Unfortunately, 
these prefixes were also not explained in the documentation, and five 
labels had no prefix. Through our inspection, we derived the meanings 
of the prefixes as follows (numbers indicate how many pull requests 
with the label exist in total in Marlin):

A: (498) represents Architecture, since it is used in combination with 
labels linked to different microcontrollers.

Bug/Bug? (425) are used to label issues and pull requests on known 
or suspected software Bugs.

C: (4656) stands for Code and is used to refer to general topics on the 
Marlin codebase.

F: (1246) means Feature, and is used to call out an existing feature of 
Marlin.

K: (73) refers to Kinematics, and thus to the specific motion systems 
used in Marlin.

Needs: (455) is used to indicate that administrative tasks must be 
addressed for a pull request.

PR: (6890) stands for Pull Request and specifies the type of pull re-
quest, such as PR: New Feature for introducing a feature.

S: (350) has remained vague to us. Some of the labels describe actions 
concerning a pull request, while others describe the state of a 
pull request, which would align to the abbreviation.

T: (752) stands for Topic, and the respective pull requests are not 
necessarily related to the code of Marlin.

Moreover, 4656 pull requests had no label and 14 had a label that did 
not fit into this categorization.
Labeling Practices (RQ1.1). In our understanding, the prefix-based 
distinction of categories has become quite established and clear within 
Marlin. Today, most pull requests that get merged have at least one la-
bel with the prefix “ PR:.” For example, pull request 2697913 has a label
PR: Bug Fix and revolves around fixing a typo. We also observed that 
the Marlin maintainers started labeling a majority of the pull requests 
in 2015. Since then, the ratio of new pull requests without labels has 
decreased. Overall, the most common labels are PR: Bug Fix (3105), PR: 
Improvement (2351), C; LCD & Controllers (1416), C: Board/Pins (1006),
PR: General Cleanup (846), and PR: New Feature (662). We remark 
that we noticed inconsistencies regarding these numbers between the 
GitHub API (which we used) and the GitHub UI. In Section 5, we discuss 
these inconsistencies in more detail.

We retrieved 3146 unlabeled pull requests. Inspecting these, we 
noticed roughly three categories. First, there are pull requests that 
contain no further information and may have been mistakes, since 
they are quickly deleted by the contributor or a maintainer. Second, 
some changes proposed by contributors are discarded by the Marlin 

13 https://github.com/MarlinFirmware/Marlin/pull/26979.
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maintainers, typically with an explanation. Finally, very small changes 
(e.g., typo fixes) are accepted quickly without labeling the pull request.
Discussion. The Marlin developers have established a clear set of labels 
for specifying the intentions of pull requests. Nonetheless, around 25% 
(3146 of 12,528) of the pull requests in Marlin do not have a label. This 
is due to old pull requests, very small changes being rapidly integrated, 
or erroneous pull requests being ignored. We argue that this underpins 
a well-established labeling practice and a structured development pro-
cess, since most merged pull requests in Marlin today are labeled ones. 
Bug fixes and improvements being by far the most common labels is not 
surprising, since these represent typical maintenance activities. Based 
on our insights, we argue that establishing labels is a good practice 
for larger software projects with many contributors. Practitioners may 
utilize Marlin’s experiences and practices, while it is an interesting 
research direction to identify what labeling practices and information 
may be more helpful to developers. Especially the idea of introducing 
a higher level categorization (prefixes) that is refined through further 
keywords seems to be a helpful concept. However, problems may arise 
if the categorization is not intuitive and not documented, hampering 
developers’ ability to obtain knowledge they may need (Krüger and 
Hebig, 2024; Krüger et al., 2020b). Based on our experiences of analyz-
ing Marlin pull requests, we argue that documentation about labeling 
practices and processes is important to avoid confusion and errors 
(e.g., considering the prefix S:).
RQ1.1 Marlin’s Labeling Practices
Over time, Marlin has established clear labels and labeling practices 
for issues and pull requests to coordinate contributions, but there 
seems to be no (external) documentation of these practices. Other 
projects with many contributors may benefit from adapting such 
labeling practices and documenting them for contributors.

Label PR: New Feature (RQ1.2). A highly important label for our case 
study is PR: New Feature, since it should indicate that a new feature 
is introduced. Thus, this label represents the starting point for us to 
investigate a feature’s life cycle. PR: New Feature represents around 5% 
(662 of 12,528) of all pull requests and around 7% (662 of 9382) of the 
labeled ones. After inspecting our sample of 189 pull requests labeled 
as PR: New Feature in Marlin, we are confident that these introduce new 
features that are either a characteristic or an end-user-visible behavior 
of the system, aligning to the definition by Apel et al. (2013).

In parallel, the pull requests and consequent features are very di-
verse, covering a wide range of functionalities. Some add configuration 
options to adjust the behavior of Marlin, others add commands to 
enable new functionalities. Consequently, some pull requests are large 
and complicated, while others are small and simple. For instance, pull 
request 1425114 introduced a simple feature that can be enabled to 
leave heaters on after a print is aborted (i.e., end-user visible behavior). 
A larger and more complex feature was introduced in pull request 
18071. It added the LVLGL GUI library for the MKS Robin Nano to 
Marlin. Lastly, pull request 2094015 added a “ more” menu in the user 
interface to allow end users to store up to seven custom commands.

Not surprisingly, we noticed that the label PR: New Feature occurs 
often in combination with other labels. Most prominently, 36% of the 
pull requests labeled as S: Experimental and 35% of those labeled F: 
CNC/Laser are also labeled as PR: New Feature. The former label is 
intuitively linked to new functionalities, often leading to a new or 
improved feature being introduced (e.g., pull request 311016 imple-
menting an alternative for LCD-based manual movement). The latter 
label represents the introduction of CNC and laser capabilities into 

14 https://github.com/MarlinFirmware/Marlin/pull/14251.
15 https://github.com/MarlinFirmware/Marlin/pull/20940.
16 https://github.com/MarlinFirmware/Marlin/pull/3110.
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the formerly purely 3D-printing Marlin firmware. Conversely, other 
labels also occur often among the 662 ones labeled PR: New Feature, 
for example, PR: Improvement (88; 13%), C: LCD & Controllers (86; 
13%), and F: Calibration (64; 10%). These results showcase that, despite 
the established labeling practices, changes often involve tangled or 
ambiguous intentions.

We further identified a label T: Feature Request being used in 20 
pull requests. However, this label is intended for issues only and not 
pull requests. In fact, we did not observe it occurring in a pull request 
after September 26th, 2017, in pull request #7755.17 As an important 
note, only six of the 20 pull requests labeled T: Feature Request have 
also been labeled as PR: New Feature. To cross-check, we retrieved 
the 35 issues with the label T: Feature Request that are directly linked 
to a pull request, of which again only six had the label PR: New 
Feature. When inspecting issues labeled T: Feature Request without a 
linked pull request, we noticed the same picture. Despite these pull 
requests missing the label PR: New Feature, this label often shows up 
in the comments of the pull requests. For instance, issue 2492818 asks 
about adding a new option for a command to disable input shaping, 
which is actually introduced in pull request 2495119 together with 
some other changes—being labeled as C: Motion, PR Bug Fix, and PR: 
Improvement. Lastly, we noticed that many issues labeled T: Feature 
Request did actually not propose new features, but rather bug fixes or 
improvements according to the maintainers of Marlin. Together with 
our previous insights, this underpins that relying solely on labels, code, 
and automated analysis to study the evolution of features can easily 
introduce biases and inconsistencies.
Discussion. Even if labeling practices have been established, they may 
still be understood differently or used inconsistently by developers. In 
addition, a lack of documentation and the ability of every developer to 
simply add multiple labels to issues or pull requests may promote their 
tangling. This is problematic, since the idea of such labels is to represent 
the intention of the involved changes and thereby ease comprehension. 
So, labels could serve as a means to check that only one intention 
is addressed in a pull requests, keeping it manageable and concise. 
Instead, the tangling of changes (represented by multiple labels) occur-
ring in real-world pull requests hinders comprehension and analyses. 
We had to invest substantial manual effort to comprehend what code 
in a pull request was related to a new feature in cases where multiple 
labels were involved. For these reasons, we advise practitioners and 
contributors to avoid unnecessary tangling of different changes and 
intentions. Research on automated untangling of changes or ensuring 
that a change only addresses a single intention could help mitigate such 
cases (Krüger et al., 2023).
RQ1.2 New Features and Tangled Changes
In Marlin, feature requests have often been tangled with other 
(labeled) change intentions, and are sometimes linked to a similar 
label intended for a different artifact. This reduces comprehension 
and challenges automated analyses, which is why such tangling 
should be avoided and techniques to resolve it would be helpful.

3.2. RQ2: Feature evolution

After understanding Marlin and its labeling practices, we analyzed 
and tagged 2956 commits connected to the features introduced via 189 
pull requests labeled PR: New Feature. Specifically, these 189 are the 
pull requests merged from June 11th 2019 until the end of our data 
collection (covering roughly five years). For the same period, another 
39 pull requests labeled PR: New Feature were rejected and 14 were still 
open, and thus not part of our analysis.

17 https://github.com/MarlinFirmware/Marlin/pull/7755.
18 https://github.com/MarlinFirmware/Marlin/issues/24928.
19 https://github.com/MarlinFirmware/Marlin/pull/24951.
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Table 1
Overview of the tags we assigned to commits (total: tag-commit combination 
covering a commit multiple times if it changed different features; unique: 
removed the duplicate commits from total; New Feature + tags: number of 
commits with the tag New Feature and at least one other tag).
 Tag Commits

 Total Unique New Feature+tags  
 New Feature 189 189 79  
 Removal 2 2 0  
 Rework 18 18 4  
 Revert 19 10 1  
 Bug Fix 353 321 2  
 Enhancement 367 316 39  
 Refactor 1779 902 89  
 Cleanup 51 44 0  
 Comment 101 86 12  
 Formatting 63 43 2  
 Whitespace 14 9 0  
 sum 2956 1940 (𝑢𝑛𝑖𝑞𝑢𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑠)79  

In Table  1, we provide an overview of our tags. We show the total 
number of commits, how many of these are unique (i.e., not counting 
multiple occurrences among the 189 features), and to what extent 
commits with the tag New Feature are tangled with other tags. The 
numbers underpin again that changes often impact multiple features at 
the same time. In fact, some commits occurred in a substantial share 
of the 189 features. By far the largest example is the one commit 
of pull request 25908,20 which involves 950 lines of code. With this 
change, the developers removed the two widely used macros EITHER
and BOTH. This impacted 62 of the 189 features we identified from 
pull requests. Afterwards, the numbers drop strongly, with the next 
four commits touching between 26 and 21 features each. Interestingly, 
these four commits are not associated with a pull request themselves, 
but have been committed by maintainers. The scattered nature of 
features causes tangled changes and redesigns that cause essentially 
global changes—again complicating comprehension, evolution, and 
(functional) correctness.

By computing metrics on the commits, we found that each feature 
was on average (mean values) impacted by 15.6 commits (median 9, 
standard deviation 20). However, we also remark that this number can 
vary heavily between individual features. For instance, 98 features have 
one to nine commits associated to them, while seven connect to more 
than sixty commits. Not surprisingly, features with more commits also 
change many more lines of code. For example, the 24 features with 15 
to 19 commits change on average 531 lines of code, while the seven 
features with 60 or more commits change around 3592 lines of code 
on average. Considering the actual time, we found that all 189 features 
together are impacted by a commit every 168 days on average. Again, 
there are strong differences between different features, ranging from 
intervals of 21 up to 398 days. This underpins the diversity and varying 
importance of the features in our sample.
Tags. As we can see in Table  1, we mostly tagged commits as Refactor, 
contributing roughly 60% (1779 of 2956) of all changes to features. 
These are also the commits that touch multiple features most often by 
far, namely in around 49% of the cases (877 commits occur multiple 
times, difference between total and unique). The tags Enhancement
and Bug Fix represent the next largest shares. That these three cate-
gories occur most often in a feature’s life cycle is logical, since they 
represent common maintenance activities.

The tag New Feature is quite intuitive, and we essentially tagged 
only the one commit that actually introduced a feature into Marlin 
with it (i.e., the merge of the pull requests labeled PR: New Feature). 
Conversely, the most interesting tag to us is Removal, which indicates 

20 https://github.com/MarlinFirmware/Marlin/pull/25908.
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Fig. 2. DFG of pull request 16452 (https://github.com/marlinfirmware/
marlin/pull/16452).

that a feature was actually removed from Marlin. We expected this to be 
a rare case, and it only occurred twice across all 189 features. First, pull 
request 2422921 removed a feature on the same day it was introduced 
(after a bit more than five hours).22 Essentially, this was a revert; how-
ever, the feature was formally introduced and then removed because it 
did not work as intended on Apple’s MacOS. Since then, it seems that 
the feature has not been reintroduced into Marlin. Second, pull request 
2442723 removed the support for a series of stepper drivers.24 Interest-
ingly, that feature was a re-implementation of a previous feature that 
was specific to certain drivers and generalized these to work on the 
entire family of stepper drivers.25 Lastly, there was one more commit 
that dropped support for a platform from Marlin.26 However, this did 
not remove a feature, but only parts of its functionality.
Feature Life Cycles. For analyzing the evolution of all 189 features 
we identified, we performed process mining on the tagged commit 
traces of every feature using the tool pm4py (Berti et al., 2023). The 
resulting Directly Follows Graphs (DFGs) (van der Aalst, 2019) provide a 
visualization of the life cycles of sets of features. Here, nodes represent 
tagged activities and edges the transitions between them, with the 
numbers indicating how often we observed each node and transition 
for that feature. As one example from our dataset, we depict the 
DFG of pull request 1645224 in Fig.  2. We can see that the DFG 
is centered around the tag Refactor, which represents 28 of the 50 
commits touching the feature. Further, we can see that refactoring is 
the only type of commit connected to every other type of commit and 
often transitions to itself. Consequently, the life cycle of this feature 
is connected primarily to refactorings following refactorings. This is 
in line with the general ratio of refactorings (cf. Table  1) and life 
cycles of other features. The life cycle of this feature slightly deviates 
from the average regarding enhancements (overrepresented), bug fixes 
(underrepresented), and its removal (exceptional). This feature also 
includes a commit tagged as Revert, a tag that is often connected to 
hardware. In this case, the hardware abstraction layer structure was 
refactored to apply the singleton design pattern, but then reverted due 
to that solution having too many problems as well.

We further created a synthesis of all 189 DFGs, which we display in 
Fig.  3. Please note that we have simplified this figure for readability by 

21 https://github.com/MarlinFirmware/Marlin/pull/24229.
22 https://github.com/MarlinFirmware/Marlin/pull/24074.
23 https://github.com/MarlinFirmware/Marlin/pull/24427.
24 https://github.com/MarlinFirmware/Marlin/pull/16452.
25 https://github.com/MarlinFirmware/Marlin/pull/13498.
26 https://github.com/MarlinFirmware/Marlin/pull/20153.
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Fig. 3. Synthesis of all DFGs from process mining the 189 pull requests labeled PR: New Feature. We have removed transitions that occurred only once for 
readability. For the same reason, we have merged the four tags that represent commits with behavior-preserving adjustments (8.–11. in Section 2.3). The thicker 
arrows are, the more subsequent commits have the target tag. To improve readability, we omit large self-loops and indicate the number of consecutive equivalent 
tags in parentheses: (𝑥 → 𝑦) stands for 𝑥 tags from which 𝑦 are not changing.
removing all transitions occurring only once and merging the commits 
representing behavior-preserving adjustments (i.e., Cleanup, Format-
ting, Comment, Whitespace). In general, we can see that features are 
primarily refactored or otherwise maintained, exhibiting a typical soft-
ware life cycle. More precisely, the features we analyzed were mostly 
changed through refactoring, with around two thirds of the refactorings 
also following another refactoring. Interactions between other tags 
and refactoring are those that include enhancements, bug fixes, or 
behavior-preserving adjustments. Other types of change intentions and 
transitions between them were much rarer.

This provides a key insight and implication for the developers of 
Marlin. If a feature is not affected by many refactorings, that feature 
deviates from a major pattern exhibited for typical Marlin features. 
Hence, the developers may have to take a closer look at this feature to 
either include it in future refactorings, remove the feature as obsolete, 
or simply verify that everything is in order. Likewise, deviations from 
this typical life cycle provide interesting cases for practitioners and 
researchers alike. They represent outliers that may be more challenging 
for practitioners and may help identify quality problems that exist in 
features. In particular, reverts, reworks, and removals occurred rarely. 
As we discussed before, reverts typically happen right after another 
commit in cases when bugs were introduced. Studying such cases may 
be helpful to identify typical errors developers make when evolving 
features. Reworks of features can shed light into why and how features 
are modernized. Lastly, removals are very rare (occurring only twice), 
but highly interesting. To the best of our knowledge, deprecating or 
removing features (or entire product lines) has rarely been studied (Cor-
tiñas et al., 2023). Open-source systems with feature removals are a 
great opportunity to study this phenomenon outside of confidential 
industry collaborations to shed light into the causes and consequences.
Discussion. Features are constantly evolving. Typically, this involves 
maintaining them with few deviations. However, particularly these 
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deviations are the most interesting cases for research and likely de-
velopers, too. For instance, reworks or removals are rare cases, but 
understanding their causes could be very helpful for practitioners and 
guide the development of automated detection as well as support 
techniques. This also means that features are typically long-living, 
which, however, may be specific to Marlin, embedded software, or 
open-source software. The features we analyzed for Marlin were mostly 
implemented and then maintained; we found few indications of sub-
stantial changes like feature removals or larger reworks. Thus, it is an 
interesting direction for future research to analyze whether features in 
other variability-rich systems or product lines also remain relatively 
stable after these have been developed and cover the domain well.

RQ2: How Marlin’s Features Evolve

After their introduction, the Marlin features we analyzed were 
primarily maintained, most prominently refactored followed by 
enhancements, bug fixes, and behavior-preserving adjustments. In 
contrast, they were rarely reworked or removed after their intro-
duction, but these are interesting cases for future research to elicit 
problems and derive recommendations for practitioners.

3.3. RQ3 : Reliability of feature labels

For RQ3, we wanted to reflect on the reliability of feature labels, 
especially because the notion of a feature is not well-defined, and 
thus developers can have varying understandings of what a feature 
is Classen et al. (2008) and Berger et al. (2015). It is important to 
elicit these understandings to identify agreements and disagreements. 
By doing so, we can develop a unified notion, while also identifying 
gaps between research and practice that may pose validity threats to 
feature-oriented research.
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Due to Marlin’s established labeling practices, it was not surprising 
that we considered all 189 pull requests labeled as PR: New Feature
to represent features. Conversely, we also inspected a sample of 180 
pull requests that were not labeled as PR: New Feature, but whose tags 
were otherwise typically associated with that label (cf. Section 2.4). 
Specifically, we randomly picked 30 pull requests for each of the 
following labels (with total numbers of pull requests from which we 
sampled): PR: Improvement (765), C: LCD & Controllers (472), A: STM32
(174), C: Calibration (110), C: Motion (89), and C: Peripherals (81). As 
we explained in Section 2.4, we previously filtered out pull requests 
labeled PR: New Feature, PR: Bug Fix, or PR: General Cleanup. In the 
following, we discuss our findings of investigating these 180 pull 
requests, particularly regarding whether they introduce new features 
according to our understanding of the definition by Apel et al. (2013).
PR: Improvement. We would consider 14 of the 30 pull requests we 
analyzed for this label to propose a feature. As an example, pull 
request 1539427 adds support for the M997 command on the STM32 
platform. This allows Marlin to flash firmware on those boards. Pull 
request 2376428 adds support for probe temperature compensation to 
all commands for which this would be useful. In contrast, pull request 
2250429 fixes a problem that occurred after changing tooling, which 
could cause unexpected extruder moves. Interestingly, while this is a 
bug fix of unintended behavior (and clearly not the introduction of a 
new feature), the pull request was not labeled as PR: Bug Fix.
C: LCD & Controllers. After inspecting them, we would consider 13 
of the 30 pull requests to propose a new feature, despite missing the 
label. For example, pull request 1832630 introduces a feature for the 
MKS UI to display the remaining time after using the M73 command on 
the screen—which is end-user-visible behavior. Similarly, pull request 
2659631 introduces the I3DBEE TECH Beez Mini 12864 screen to Mar-
lin. In contrast to these two, pull request 1549832 cleans up the function
LCDPRINT and removes nonfunctional code. This is a cleanup, and not 
introducing a new feature.
A: STM32. We would consider 14 of the 30 pull requests to propose 
a new feature. An example is pull request 14539,33 which allows users 
to configure pins for stepper drives through their own configuration. 
Before, these pins were hard-coded in the Marlin source files. Pull 
request 2476034 adds support for the Creality V5.2.1 control board 
to the firmware. In contrast, pull request 2253735 simplified #ifdef
directives, but without changing any behavior of the system. Thus, we 
considered this pull request to be a refactoring.
C: Calibration. We would consider 12 of the 30 pull requests of this 
label to propose a new feature. For instance, pull request 1537636 intro-
duced the command M290 to report the current printer status via serial, 
meaning that the respective printer does not need a screen. Pull request 
2303337 adds new features for probe temperature compensation so that 
it can function with more probes and allows configuring. The different 
probes represent individual features that become characteristics of the 
system. In contrast, pull request 2265738 improves the usability of the 

27 https://github.com/MarlinFirmware/Marlin/pull/15394.
28 https://github.com/MarlinFirmware/Marlin/pull/23764.
29 https://github.com/MarlinFirmware/Marlin/pull/22504.
30 https://github.com/MarlinFirmware/Marlin/pull/18326.
31 https://github.com/MarlinFirmware/Marlin/pull/26596.
32 https://github.com/MarlinFirmware/Marlin/pull/15498.
33 https://github.com/MarlinFirmware/Marlin/pull/14539.
34 https://github.com/MarlinFirmware/Marlin/pull/24760.
35 https://github.com/MarlinFirmware/Marlin/pull/22537.
36 https://github.com/MarlinFirmware/Marlin/pull/15376.
37 https://github.com/MarlinFirmware/Marlin/pull/23033.
38 https://github.com/MarlinFirmware/Marlin/pull/22657.
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tramming wizard. This is done by clearing up text and making values 
less ambiguous, but is not adding a feature.
C: Motion. We would consider 10 of the 30 pull requests with this label 
to propose a feature. For example, pull request 1873639 enables users to 
define an explicit sequence for the nozzle wipe. This is end-user-visible 
behavior as Marlin will perform a specific sequence of physical actions. 
Pull request 2468440 adds support for advanced linear movement to 
ESP32 boards. In contrast, pull request 1834241 fixes a bug on the 
CoreXY platform caused by duplicate code. So, this pull request fixed 
a feature that was already introduced, but did not propose a new one. 
Interestingly, this pull request was also not labeled as PR: Bug Fix.
C: Peripherals. We would consider 16 of the 30 pull requests to 
propose a feature. For instance, pull request 1466742 introduces the 
ability to control two separate strips of neopixel LEDs at the same 
time. Pull request 2616343 adds a feature to re-initialize the power 
supply, which allows to handle cases in which screens get corrupted. In 
contrast, pull request 2181144 fixed that Marlin could not be built with
CASE_LIGHT_USE_RGB_LED enabled. So, this pull request fixed a 
build error, but it was also not labeled as PR: Bug Fix.
Discussion. Based on our manual inspection, we argue that if the 
Marlin developers assign a label to a pull request, that label is typically 
reliable. In fact, all 189 feature requests we studied were features from 
our point of view. However, it seems that many pull request miss 
relevant labels, as we have exemplified above not only for new features 
but also bug fixes. Of course, the notion of a feature is somewhat vague, 
subjective, and differs between developers (Classen et al., 2008; Berger 
et al., 2015). So, our numbers for new features may differ when asking 
the original developers or other researchers. Nonetheless, we consid-
ered 79 of the 180 sampled pull requests (≈44%) to propose a feature. 
Even if others would not consider all of these to represent feature 
requests, a considerable number of pull requests missing relevant labels 
would remain. This emphasizes that it is important to fully capture 
what different developers consider to represent a feature to agree on 
a common understanding. Otherwise, confusions or missing labels may 
occur, not only challenging the developers, but also researchers trying 
to research features or other changes based on developers’ labeling and 
according to their understanding.

Something we noticed again is that the Marlin developers are appar-
ently not consistent with their labeling of pull requests. For instance, 
some pull requests labeled A: STM32 add control boards to Marlin and 
are not labeled as PR: New Feature. However, there are examples of pull 
requests, such as 20711,45 that are labeled PR: New Feature and add 
support for boards, too. This is not consistent and threatens manual as 
well as automated analyses. Identically, we already exemplified that 
bug fixes are often not labeled as such. Of the 180 pull requests we 
sampled, this actually accounts to 31 pull requests.

RQ3: Marlin Features and Scientific Definition

Labels assigned to Marlin’s pull requests seem reliable, and thus 
feature requests are representing new features. On the contrary, 
pull requests often miss relevant labels, meaning that their labels 
are incomplete. Particularly for missing feature-request labels, a 
problem seems to arise from lacking a precise definition of a feature 
and developers having different notions about it. Research utilizing 
such labels and automated analyses must take missing labels into 
account to avoid threats.

39 https://github.com/MarlinFirmware/Marlin/pull/18736.
40 https://github.com/MarlinFirmware/Marlin/pull/24684.
41 https://github.com/MarlinFirmware/Marlin/pull/18342.
42 https://github.com/MarlinFirmware/Marlin/pull/14667.
43 https://github.com/MarlinFirmware/Marlin/pull/26163.
44 https://github.com/MarlinFirmware/Marlin/pull/21811.
45 https://github.com/MarlinFirmware/Marlin/pull/20711.
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4. Recommendations and prospects

To briefly summarize our key findings and their implications for 
practitioners (P) and researchers (R):

P: Establish and Document a Labeling Strategy. Marlin uses an ex-
tensive labeling strategy, building on 80 labels and nine prefixes. 
Since this has evolved over time with Marlin becoming larger, 
more established, and maintained by a growing community, we 
argue that a labeling strategy is important to manage growing 
software and communities. Specifically, we argue that practi-
tioners can take Marlin’s labels with its prefixes as a starting 
point for defining their own strategy (cf. Section 3.1). However, 
we also found various inconsistencies in the labeling, which we 
argue relates to a lack of documentation and awareness. Conse-
quently, we strongly advise practitioners to document and share 
their labeling strategy with each other, for which they should 
avoid typical knowledge-sharing pitfalls identified in previous 
research (Krüger et al., 2020b; Steinmacher et al., 2015; Riege, 
2005; Krüger and Hebig, 2024). In turn, labels of issues and 
feature requests would be more reliable. This would benefit 
practitioners by avoiding confusions and making it easier to, for 
example, identify and assign tasks (e.g., good first issues). For 
researchers, an established, documented, and reliable labeling 
strategy would support manual analyses and enable reliable 
automation. Otherwise, using automation on labels will pose a 
threat to validity.

P/R: Agree on a Notion of Feature. Despite widespread use, the no-
tion of a feature is still not well-defined and most practitioners 
as well as researchers have a varying understanding depending 
on their intuition (cf. Section 3.3. This can cause misunderstand-
ings among developers, result in missing labels, and challenge 
(automated) analyses. For practitioners, it is therefore helpful to 
agree on a notion among each other. By unifying the notion of 
features, it will become easier for practitioners to communicate 
and to onboard to new projects. As steps in this direction, we 
advise developers to collaboratively identify and document what 
a feature should represent for them (e.g., domain abstraction 
versus configuration options (Nešić et al., 2019)), a definition 
that applies in this context, and to scope what and what not 
a feature entails (e.g., code, models, requirements). Particularly 
the boundaries of one feature to another are important to clarify 
and document. To support practitioners, researchers have to 
further explore how to unify the notion of features, particularly 
to align their work with practitioners’ needs and understandings. 
Otherwise, any study on features that goes beyond configurable 
code can easily be threatened by conflicting understandings and 
the practical relevance of the research may be limited.

P/R: Untangle Changes. The changes we analyzed often involved 
multiple intentions at once, a well-known problem in research
(Krüger et al., 2024). It essentially makes it impossible to exe-
cute automated analyses reliably, and threatens our understand-
ing of developers’ work. Moreover, we argue that this is also a 
problem for practitioners. For instance, if a developer submits 
a pull requests to add a feature that also involves refactorings 
and optimizations, other developers (e.g., reviewers) will find 
it more difficult to understand the change. Also, reviewers may 
reject the changes due to the tangling, thus causing additional 
workload for developers and maintainers alike. A problem in 
this regard is the lack of a usable definition of change intentions. 
Existing proposals are often rather abstract (Krüger et al., 2024), 
and we found them infeasible for our purpose. For this reason, 
we defined more fine-grained and hopefully reusable tags for 
research and practice (cf. Section 2.3) that can serve as a foun-
dation for refining labeling strategies and scoping changes to 
untangle them.
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R: Reflect on Feature Refactoring. We found that features are
mostly changed due to refactorings, followed by enhancements, 
bug fixes, and behavior-preserving changes (cf. Section 3.2). 
There are very few cases in which larger or more drastic changes 
are implemented, such as feature removals, reworks, and re-
verts. This situation implies to us that features seem to be often 
redesigned to make them more comprehensive or maintainable. 
In turn, we are wondering whether all of these refactorings 
were necessary if practitioners would have (or would be aware 
of) design principles, patterns, or best practices for designing 
features. Thus, for researchers, several avenues for future work 
arise, for instance, identifying the causes and consequences of 
feature refactorings, performing focused studies on more drastic 
changes, and defining as well as communicating design practices 
for features. This could lead to helpful guides for practitioners, 
for example, criteria that help decide whether a feature needs 
to be removed or reworked.

R: Be Careful with GitHub Analyses. There can be inconsistencies 
between GitHub API and UI (cf. Section 5). So, when using these, 
researchers have to be careful and reflect on potential threats 
arising from, for instance, deleted data being retrieved. This is a 
serious threat to mining studies that rely on author information, 
in which cases “ ghost” (i.e., deleted accounts that still account 
for contributions to a project) accounts pose a problem.46

We hope that these insights are valuable for researchers and practition-
ers alike, guiding communication in developer communities and future 
research.

5. Threats to validity

Marlin is an open-source project implemented with C and C++. 
Moreover, it is embedded software that runs on very specific hard-
ware: 3D-printers and related devices. So, the external validity of our 
work is limited, but this is an inherent limitation of a case study. 
However, inherently, a case study does not focus on generalizability, 
but on obtaining detailed, in-principle transferable insights into a phe-
nomenon (Yin, 2018; Ralph et al., 2021). Consequently, our case study 
is also not generalizable and limited regarding its external validity. 
Instead of focusing on external validity, we focus on transferability: 
obtaining insights that can be useful for other developers and systems. 
By inspecting Marlin as a substantial case in detail, we argue that we 
achieved this goal and that our findings can be helpful (in adjusted 
form) in other contexts as well.

The results of our case study depend on our interpretation of 
features (and our versus the developers’ definition of a feature) and 
other developers’ code as well as natural-language texts. While we 
proceeded with care and used continuous checks, discussions, as well 
as a validation, it remains a threat that we may have misunderstood 
something, and thus derived incorrect data. Similarly, our case study is 
inherently incomplete due to the sheer size of the available data. Some 
of our results may have been different if we would have considered 
more feature requests or a longer time period. We aimed to mitigate 
such internal threats through a thorough manual analysis of a large 
temporary sample of pull requests.

Lastly, during our study, we noticed differences between the data 
we retrieved from the GitHub API and what is reported in the GitHub 
UI. For instance, the UI reported 652 pull requests with the label PR: 
New Feature, while the GitHub API retrieved 662. In fact, of the 10 
labels occurring most often in Marlin, not a single one had the same 
number of pull requests in the API and the UI. As one example, we 
could not find pull request 481147 in the UI. We could only access this 

46 https://github.com/ghost.
47 https://github.com/MarlinFirmware/Marlin/pull/4811.

https://github.com/MarlinFirmware/Marlin/pull/4811
https://github.com/ghost
https://github.com/MarlinFirmware/Marlin/pull/4811
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pull request by manually filling in the URL in a browser. In this case, the 
problem seems to be that the pull request involves a “ ghost” account. A 
ghost account46 represents an account that has been deleted, which also 
deletes any data connected to that account’s repositories (aligning to 
privacy and data-protection regulations). However, contributions (pull 
requests, issues, comments) to the repositories of others are kept, and 
apparently (partly) hidden in the UI—but not in the API. Similarly, we 
experienced that some pull requests were listed in the UI, but it was 
not possible for us to open them. While this seems to be a temporary 
problem, we still noticed that the GitHub API was more reliable and 
retrieved all data. We are not aware of a previous study reporting this 
issue, which is why we elaborate it here.

The differences between GitHub API and UI are important to keep 
in mind, since they may threaten the internal validity. Developers 
have the right to remove their personal data (and accounts) from 
social-coding platforms, and the platform’s host as well as researchers 
have to respect these rights (Broneske et al., 2024). Apparently, the 
API is still reliably recovering anonymized artifacts contributed to 
others’ repositories, and thus should be used to retrieve data. How-
ever, it is important to note that according to GitHub’s policies, an 
unknown number of developers may be referred to as “ ghosts,” and 
thus author-based metrics can be biased.

6. Related work

Software features are extensively researched in the areas of product-
line engineering and variability-rich systems, as well as connected 
topics like configuring, feature models, or feature forks (Apel et al., 
2013; Liebig et al., 2010; Mortara and Collet, 2021; Benavides et al., 
2010; Czarnecki et al., 2012; Nešić et al., 2019; Stănciulescu et al., 
2015; Zhou et al., 2018). In this context, the problem that features are 
not well-defined has been raised repeatedly, with several attempts at 
coming up with a more unified view on this notion (Apel et al., 2013; 
Classen et al., 2008; Berger et al., 2015). Still, such works also show 
that developers have varying notions and a fully unified definition is 
hard to achieve. For this reason, existing studies on feature evolution 
typically focused on optional features (i.e., configuration options) and 
code metrics, sometimes in connection with other artifacts like feature 
models (Fischer, 2021; Passos et al., 2016; Kröher et al., 2018; Schulze 
et al., 2023; Ludwig et al., 2019). For instance, we have previously 
performed manual feature identification and feature location on Marlin 
to compute code metrics and to explain static feature facets (Krüger 
et al., 2019b, 2018). Another study investigated forking of Marlin, 
including the identification of feature forks (Stănciulescu et al., 2015). 
The focus on configurable features, forked variants, and code make 
it easier to elicit hard metrics, but they ignore the fact that features 
represent an abstract notion in developers’ minds. Our case study 
complements such research by investigating the evolution of features, 
including mandatory ones, on the level of change intentions (Krüger 
et al., 2023, 2024). So, in contrast to most other works, we are not 
interested in code metrics, but the intentions for which features evolve.

In relation to parts of our findings, many researchers have identified 
and studied the issue of commits tangling different concerns (Herzig 
et al., 2016; Kirinuki et al., 2014; Dias et al., 2015; Sothornprapakorn 
et al., 2018; Krüger et al., 2024, 2023). For example, Herbold et al. 
(2022) contribute a dataset of bug fixes (i.e., the concern) that are 
tangled with other changes. Herbold et al. motivate their work by the 
fact that if researchers build on tangled changes, their findings may 
not actually study the intended concern but a tangled one. The authors 
estimate that a large share (up to 47%) of commits labeled as bug 
fixes may also involve changes with other intentions. We observed the 
same problem, which is why we introduced our tagging strategy and 
employed a manual analysis. Identically to the related work we also 
advise to untangle changes to support researchers and practitioners. So, 
we complement this previous work by focusing on a different concern: 
software features.
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7. Conclusion

In this article, we reported the results of an exploratory case study 
of 189 feature requests and 180 additional pull requests in Marlin. 
We found that Marlin developers follow a defined labeling process to 
coordinate. However, feature requests and changes to features are often 
tangled with different intentions and other features, which can com-
plicate the comprehension of how a feature evolves. Regarding their 
life cycles, features are primarily maintained, including refactorings, 
enhancements, and bug fixes. It seems rare that they are functionally 
reworked or removed. Regarding the labeling of features, we found 
that the label PR: New Feature seems very accurate, but quite some 
pull requests that seem to involve features miss it. Together with 
inconsistencies we found between the GitHub API and UI (cf. Section 5), 
this causes hurdles for reliable (automated) analyses.

To tackle such problems, we advise developer communities to agree 
on a definition of features, to define and document a respective labeling 
strategy, and to keep changes with different intentions separated from 
each other. For researchers, we found that the problems we identified 
can threaten studies, particularly because (feature) labels are not fully 
reliable. However, by inspecting the evolution of features on the level 
of intentions, we have also identified interesting changes to focus on 
in future research (i.e., removals, reworks, reverts) to derive quality 
criteria and guidelines for practice.

In the future, we want to substantiate our findings by expanding 
our study to other systems and longer time periods. To achieve this, 
feasible automated analyses and mining techniques are an important 
means. This case study and our dataset provide the foundations for 
developing such techniques. Lastly, we have focused on how features 
evolve, categorizing different types of changes. We plan to investigate 
the underlying causes in more detail, for which larger analyses and a 
focus on specific changes (e.g., removals) across different systems are 
necessary.
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