The Journal of Systems and Software 217 (2024) 112170

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

t.)

Check for

Evolution patterns of software-architecture smells: An empirical study of | e
intra- and inter-version smells™
Philipp Gnoyke ", Sandro Schulze ¢, Jacob Kriiger ¢

a Otto-von-Guericke University Magdeburg, Magdeburg, Germany

b KSB SE & Co. KGaA, Pegnitz, Germany

¢ Anhalt University of Applied Sciences, Kothen, Germany

d Eindhoven University of Technology, Eindhoven, The Netherlands

ARTICLE INFO ABSTRACT

Keywords:

Software quality
Technical debt
Architecture smells
Cyclic dependencies
Empirical study
Evolutionary analysis

Architecture smells are a widely established concept to describe symptoms of software degradation by
measuring perceived violations of software-design principles. As such, architecture smells can help developers
assess and understand the architectural quality of their software system. However, research has rarely been
concerned with how architecture smells evolve and whether they actually foster software degradation during
a system’s evolution. Building on our previous work in this direction, we present extended techniques for
measuring architecture smells, novel visualizations, as well as an empirical study of how architecture smells
evolve and what typical patterns they exhibit in 485 releases of 14 open-source systems. Among others, the
results of our study indicate that especially cyclic dependencies on the class-level are prone to becoming highly
complex over time, with one of the reasons being the continued merging of smells, most often resulting in
tangled multi-hubs. Moreover, we found unstable dependencies to mostly grow slowly over time, whereas hub-
like dependencies remain rather stable during a system’s evolution. These findings are valuable for practitioners
to identify and tackle system degeneration, as well as for researchers to scope new research on managing
architecture smells and technical debt.

1. Introduction a metaphor in the context of software degradation in which the symp-

toms of degradation (e.g., smells) are considered as an interest rate of

Long-living software systems are often degrading over time (also
known as aging or decaying), meaning that the changes to a system
are likely to worsen that system’s design, architecture, or structure,
thus reducing its internal quality (Belady and Lehman, 1976; Par-
nas, 1994; Izurieta and Bieman, 2007; Ahmed et al., 2015; ISO/IEC
25010:2011(E), 2011). Consequently, evolving a software system
through new features, bug fixes, or redesigns can make that system
less maintainable and reliable, resulting in future changes becoming
more tedious and time-consuming (Zazworka et al., 2011; Olbrich et al.,
2009; Khomh et al., 2009; Besker et al., 2018, 2019). To facilitate
the management of software degradation, researchers and practitioners
have proposed various concepts, most prominently code smells, architec-
ture smells, and technical debt. Code smells (Fowler, 2019; Lacerda et al.,
2020) and architecture smells (Garcia et al., 2009b,a) are intended to
describe symptoms of software degradation, helping to locate perceived
negative effects in a system and enabling countermeasures, such as
refactoring (Fowler, 2019; Lippert and Roock, 2006; Lacerda et al.,
2020). Technical debt has recently gained more and more attention as

e

> Editor: Gabriele Bavota.

postponing design decisions or software improvements (Cunningham,
1992; Kruchten et al., 2012; Li et al., 2015).

Code smells and technical debt have been researched extensively
regarding their longevity, impact on maintenance efforts, or usefulness
to represent software degradation (Lacerda et al., 2020; Santos et al.,
2018; Cairo et al., 2018; Zhang et al., 2011; Besker et al., 2018, 2019).
Despite this research, the empirical evidence regarding the relevance
of code smells for software degradation is not fully conclusive (San-
tos et al., 2018; Zhang et al., 2011; Sjgberg et al., 2012). Similarly,
researchers have studied detection techniques, the impact, and refac-
toring of architecture smells (Garcia et al., 2009b,a; Arcelli Fontana
etal., 2017; Azadi et al., 2019; Rizzi et al., 2018), but little research has
studied their evolution and impact on software degradation (Sas et al.,
2019, 2022b; Rangnau, 2020; Roveda et al., 2018a). To improve on this
situation, we (Gnoyke et al., 2021, 2023) have previously conducted an
empirical study on the evolution of architecture smells in open-source
software systems. Primarily, we tackled the question to what extent and

* Corresponding author at: Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
E-mail addresses: philipp.gnoyke@t-online.de (P. Gnoyke), sandro.schulze@hs-anhalt.de (S. Schulze), j.kruger@tue.nl (J. Kriiger).

https://doi.org/10.1016/j.jss.2024.112170

Received 22 December 2023; Received in revised form 23 June 2024; Accepted 26 July 2024

Available online 7 August 2024

0164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:philipp.gnoyke@t-online.de
mailto:sandro.schulze@hs-anhalt.de
mailto:j.kruger@tue.nl
https://doi.org/10.1016/j.jss.2024.112170
https://doi.org/10.1016/j.jss.2024.112170
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112170&domain=pdf
http://creativecommons.org/licenses/by/4.0/

P. Gnoyke et al.

under what circumstances architecture smells contribute to software
degradation. For this purpose, we connected the evolution of different
architecture smells with technical debt as a measure for degradation,
and studied which types of architecture smells have a greater impact
on software degradation under what circumstances.

In this article, we advance on existing work by contributing sophis-
ticated techniques for measuring the evolution of architecture smells,
proposing new ones for visualizing this evolution, and using our ad-
vanced tooling to conduct a new empirical study on how architecture
smells themselves evolve. Consequently, instead of studying the im-
pact of architecture smells on system degradation as in our previous
work (Gnoyke et al., 2021), we are researching the architecture smells
themselves in this article. Moreover, while some research questions
such as the evolution of smell properties bear similarity to related
work (Sas et al., 2022b), we study aspects of architecture smell evo-
lution from different perspectives and with added context, for example
by looking at different quantiles of properties and the age of smells.
Throughout this study, we link the (inter-)related concepts of archi-
tecture smells and technical debt. This provides a more holistic and
therefore accurate view of software evolution and system degradation.
Smells (and specifically architecture smells) are often regarded as an
indicator of technical debt (Suryanarayana et al., 2014; Zazworka et al.,
2014; Martini et al., 2018; Nayebi et al., 2019; Rachow and Riebisch,
2022; Das et al., 2022; Sas et al.,, 2022a). Studying the impact of
architecture smells on software maintainability and quality without
taking technical debt into account would thus be incomplete.

More precisely, we contribute the following in this article:

+ We propose techniques for tracking, visualizing, and measur-
ing architecture smells, with which we advance on our previ-
ous work (Gnoyke et al., 2021). Specifically, neither our pre-
vious work nor related work included the concept of different
transition types or visualizations for cyclic-dependency evolu-
tion graphs along with the underlying dependency structures.
Moreover, we are generally expanding on explanations of our
techniques, aiming to better convey the reasoning of how we
set up this study, increase reproduceability, and spark further
developments in evolutionary analyses of architecture smells.
We report an empirical study with which we shed light into
the evolution of architecture smells in real-world software sys-
tems and discuss the implications of our findings. Our research
questions within this study are completely different and focus
on different aspects of architecture-smell evolution compared to
our previous work (Gnoyke et al., 2021). In summary, we look
at different system and smell properties and we go into more
detail as well as beyond descriptive statistics. Specifically, while
we had already established cyclic-dependency evolution graphs,
merges, and splits, we merely used them for determining smell
introductions, removals, and lifespans. Now, we are fully study-
ing the patterns and implications of complex cyclic dependency
families, as well as the impact of merges and splits on aspects like
shape changes. Furthermore, we previously investigated how the
values of each smell property related to its remaining lifespan. In
this study, we are instead observing how properties change with
increasing smell ages, including their overall range and extreme
values. Lastly, we previously studied the evolution of technical
debt via descriptive statistics. Now, we are specifically looking
for compounding trends in different quantitative metrics using
statistical tests.

We share our techniques as open-source software and the study
results in a persistent repository.! This repository contains our
previous work, our toolchain including the employed queries,
additional charts, and a readme that details how to use the
repository.

L https://zenodo.org/records/12507338

The Journal of Systems & Software 217 (2024) 112170

The results of our study provide new insights into how architecture
smells evolve within a software system, indicating that some types are
particularly cumbersome to deal with. So, our contributions can help
practitioners identify, understand, and address system degradation,
and provide a foundation for researchers to build upon in terms of
techniques, as well as open research directions.

The remainder of this article is structured as follows. We introduce
the general background on software quality and architecture smells in
Section 2. Then, we describe our techniques for tracking, visualizing,
and measuring architecture smells in Section 3. In Section 4, we specify
the design of our study, the results of which we present and discuss in
Section 5. Afterwards, we summarize the related work in Section 6 and
the threats to validity in Section 7, before concluding this article in
Section 8.

2. Background

In this section, we summarize the general background on software
quality, architecture smells, and technical debt. Our aim is to define
the central technical terms, explain the relevance and major properties
of each subject, and how it relates to the other subjects. Specifically,
we consider software quality as the overarching motivation of studying
smells and technical debt. While smells are our main research focus
in this article, we create a link to technical debt throughout it, as a
focus on both of these related subjects provides a more holistic view
on software quality (cf. Section 1).

2.1. Software quality and architecture

According to the ISO/IEC 25010:2011(E) (2011), the quality of a
(software) system refers to the extent to which that system provides
value by fulfilling its stakeholders’ specified and implied needs. This
definition highlights that quality assurance is essential to ensure that
investments into software development and maintenance provide a
benefit—in the short and long run (Naik and Tripathy, 2008). The
product quality model defines a set of factors that contribute to soft-
ware quality, which are: functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability, and porta-
bility (ISO/IEC 25010:2011(E), 2011). While some of these factors
are rather discernible, straightforward to assess after a release, and
usually explicitly stated by stakeholders; maintainability can easily
be overlooked and is harder to grasp, as it contributes to internal
quality. Typically, a lack of maintainability is not immediately visible to
stakeholders, and impairs software quality only after a longer period of
time. The ISO/IEC 25010:2011(E) (2011) defines maintainability as the
extent to which a system can be effectively and efficiently modified by
its intended maintainers. Thus, a system is maintainable if it is “easy”
to understand, change, extend, reuse, and test (Bass et al., 2013; Lippert
and Roock, 2006; Suryanarayana et al., 2014).

Decades of software-engineering practice and research have resulted
in best practices for ensuring software quality. These can be formal-
ized as design principles and design rules, which involve guidelines for
structuring code on various levels of abstraction, often targeting a high
maintainability (Martin, 2000). The software architecture represents the
highest level of abstraction and is defined by Taylor et al. (2010) as the
set of principles for deciding on the design of a system during its devel-
opment and evolution. For instance, such design decisions include how
the system is structured into modules (or components) and how these
interact with each other. In object-oriented systems, components can
constitute classes, packages, subsystems, or layers, while interactions
between them can be function calls, classes having an attribute whose
type is a different class, or inheritance, among others (Bass et al., 2013).
We summarize all of these interactions as dependencies. A well-designed,
non-monolithic architecture is typically perceived to ensure reusability
and extensibility—to which the principle of modularity refers (Meyer,
1997).

https://zenodo.org/records/12507338

P. Gnoyke et al.

incoming / afferent
edge for B

O
A depends on B

Changes in B affect A

outgoing / efferent
edge for B

)
B depends on C

Changes in C affect B

®

Fig. 1. Concept of dependencies between components and the effect of changes as a
graph.

When designing a software architecture, a major goal is usually to
ensure a high cohesion within the same component and a low coupling
between different components (Bass et al., 2013; Lippert and Roock,
2006; Stevens et al., 1974). In other words, a component should, on
the one hand, have a single concern, with its elements being closely
related to one another (single responsibility principle). On the other hand,
there should only be few connections (i.e., dependencies) with little
data flow to other components. This is also expressed via design rules
like few interfaces and small interfaces (Meyer, 1997). Coupling should
be reduced to avoid that changes to one component force adaptations to
other components that depend on it (Gorton, 2011; Lippert and Roock,
2006; Suryanarayana et al., 2014). We visualize this idea in Fig. 1 with
components as vertices and dependencies as edges, which is also how
we depict dependency structures of architecture smells in this article.

If a software architecture violates design principles and rules,
changes to components can induce disproportionate efforts due to
the necessary updates to other components; potentially requiring mul-
tiple iterations. This is referred to as ripple effects (Gorton, 2011).
To avoid such problems and facilitate maintenance, several design
principles have been proposed. For example, according to the acyclic
dependency principle, components should depend on each other in tree-
like structures, while circular references should be avoided. The stable
dependency principle demands that components should only depend on
components that are at least as stable (i.e., not prone to changes, cf.
Section 2.2) as they are themselves (Lippert and Roock, 2006).

2.2. Architecture smells

The term smell was originally coined as part of the term code smell,
which according to Fowler (2006) is an indicator at the surface that
hints at deeper problems within a system. In other words, smells are
symptoms of violated design principles and rules (Azadi et al., 2019).
They indicate the need for refactoring, which aims to improve code for
maintainability without altering user-perceived functionality (Fowler,
2019). While evaluating a system’s conformity with design principles
and rules per se can be complex, it is usually straightforward to
detect smells manually or via automated tooling (Fowler, 2006; Azadi
et al., 2019; Sharma et al., 2020) like Arcan (Arcelli Fontana et al.,
2017), which we employ (cf. Section 4.3). Not every detected smell
represents an issue that has to be resolved (Olbrich et al., 2010), but
smells in themselves are often perceived to be deteriorating software
quality, fostering change propagation, risking ripple effects, and having
negative effects on compiling and runtime performance (Martini et al.,
2018; Arcelli Fontana et al., 2023; Lippert and Roock, 2006; Sas et al.,
2022a).

We can classify smells according to the level of abstraction they
impact. These levels range from fine-granular issues within meth-
ods/functions and classes, which are referred to as code smells, to
macro-level issues concerning the architectural design of systems,
referred to as architecture smells. While some studies found that the
presence of code smells can also correlate with architectural decay (Ma-
cia et al., 2012; Vidal et al., 2016), Arcelli Fontana et al. (2019) have

The Journal of Systems & Software 217 (2024) 112170

A dependson B =
unstable dependency

A: stable package B: unstable package

Fig. 2. A conceptual example for an unstable dependency based on Martin (2000).

shown in a large-scale study that, in most cases, the presence of archi-
tecture smells cannot be predicted from code smells. Therefore, we need
to consider architecture smells separately. Over time, different types of
architecture smells have been identified and categorized (Lippert and
Roock, 2006; Garcia et al., 2009b; Mo et al., 2015; Le and Medvidovic,
2016; Azadi et al.,, 2019). Frequently researched types that can be
reliably detected by open-source tools include cyclic dependencies, hub-
like dependencies, and unstable dependencies (Melton and Tempero, 2007;
Arcelli Fontana et al., 2016a; Avgeriou et al., 2016; Roveda, 2018; Diaz-
Pace et al., 2018; Martini et al., 2018; Sas et al., 2019; Herold, 2020;
Sas et al., 2022b). We detail each of these architecture smell types in
the following.

Unstable Dependencies. An unstable dependency is a component
that depends on less stable components, and thus violates the stable
dependency principle (Arcelli Fontana et al., 2016a). Depending on the
exact definition, a component is referred to as stable if it did not change
frequently in the past or if it can be expected to not change frequently
in the future (Mo et al., 2015; Azadi et al., 2019). Because changes may
require further propagation to other components, an otherwise stable
component can be forced to change due to its unstable dependencies.
Such cases can then increase the maintenance effort. Martin (2000,
1994) approximated a component’s stability based on the effort it
would need to perform a change. This approximation builds on the
hypothesis that developers avoid changing components that many other
components depend on, since this could lead to ripple effects and thus a
higher workload. We can compute a component’s instability as follows:

C

I= ¢ 1
C,+C, M

This metric builds on the numbers of a component’s incoming depen-
dencies (i.e., afferent coupling C,) as well as outgoing dependencies (i.e.,
efferent coupling C,). We visualize an example for this metric in Fig. 2,
where component A has an instability value of 0.25, while it depends on
the more unstable component B with an instability of 0.75. As Arcan is
using Martin’s instability metric, it also represents the basis for unstable
dependencies in this study.

In this article, we regard a component that depends on multiple
less stable components as a single instance of an unstable-dependency
smell. Furthermore, we follow Martin (2000) and Arcan by focusing
on unstable dependencies on the package-level, as opposed to the class-
level. Specifically, by following the former we only consider packages
that depend on less stable packages as unstable dependencies, whereas
dependencies between classes would be considered for the latter.

Hub-Like Dependencies. A hub-like dependency refers to a compo-
nent with a high number of both incoming and outgoing dependencies
(i.e., high fan-in and fan-out values). Hub-like dependencies are often
detected on the class-level, which we adhere to in our work. The
central component can thus be referred to as the hub-class. As we
show in Fig. 3, a hub-class is usually overloaded with responsibilities
and resembles a bottleneck in the dependency structure. This increases
coupling, reduces modularity, and violates the few-interfaces rule. More
precisely, a high number of incoming dependencies easily leads to

P. Gnoyke et al.

Classes Classes
that that the

depend Hub O hub

on the depends
hub on

Fig. 3. A conceptual example for a hub-like dependency based on Roveda (2018).

I 88T U s B

Tiny Clique Circle Chain Star Multi-hub Semi-clique

Fig. 4. The different topologies for cyclic dependencies based on Al-Mutawa et al.
(2014).

many changes being propagated to the hub, which in turn risks a high
number of necessary adaptations in the (many) classes that depend
on the hub. Such ripple effects of hubs can multiply the number of
changes required in a system (Meyer, 1997; Suryanarayana et al., 2014;
Arcelli Fontana et al., 2016a; Azadi et al., 2019).

The exact criteria for detecting hub-like dependencies vary between
tools (Azadi et al., 2019). In Arcan (Arcelli Fontana et al., 2017),
hub-like dependencies are defined as having both more incoming and
outgoing dependencies than the median class in the subject system.
Furthermore, the hub must be balanced, meaning that the difference
between incoming and outgoing dependencies must not be greater than
j—‘ of their sum. Through a case study on the effects of different types
of architecture smells, Martini et al. (2018) found that practitioners
tend to experience negative impacts of hub-like dependencies most
frequently.

Cyclic Dependencies. A cyclic dependency constitutes a series of de-
pendencies between components that results in at least two components
reciprocally depending on each other; either directly or indirectly via
other components (Melton and Tempero, 2007; Azadi et al., 2019).
As we outline in more detail in Section 3.2, some tools and studies
refer to strongly connected (i.e., potentially complex tangles with various
dependencies between them) components as cyclic dependencies (Tar-
jan, 1972; Al-Mutawa et al., 2014). In contrast, cyclic dependencies
are sometimes regarded as simple cyclic paths through a system’s de-
pendency structure (Sedgewick and Wayne, 2011; Roveda, 2018). We
build on the former definition. Cyclic dependencies violate the acyclic
dependency principle, increase coupling, and undermine modularity.
For instance, components that are affected by a cyclic dependency
can often not be maintained and deployed separately, because changes
ripple through the cycle, potentially in multiple iterations (Martin,
2000; Azadi et al., 2019; Lippert and Roock, 2006; Suryanarayana et al.,
2014). A cyclic dependency can be detected on the class-level and
package-level, both of which we investigate in our study. The latter
is often considered to be more critical (Sangwan et al., 2008; Azadi
et al., 2019). Martini et al. (2018) found that practitioners perceive
cyclic dependencies to affect quality, their speed, and the occurrence
of bugs the most among the studied architecture smell types.
Al-Mutawa et al. (2014) have introduced a distinction of cyclic
dependencies according to their shape, which they refer to as topol-
ogy. Specifically, they classify cyclic dependencies into seven different
shapes with varying levels of complexity. We display conceptual ex-
amples for the seven types in Fig. 4. If a cyclic dependency cannot be
assigned to any of the depicted shapes, it is classified as unknown.

2.3. Technical debt
While architecture smells are a way of identifying violated design

principles and rules, subpar design decisions and quality issues in a sys-
tem are often summarized as technical debt. The metaphor of technical

The Journal of Systems & Software 217 (2024) 112170

debt was first introduced by Cunningham (1992) and reflects financial
debt in multiple ways: technical debt can be taken on inadvertently or
deliberately, for example, to reduce the time to market by disregarding
the originally defined architectural layout or to fix an urgent security
breach. Moreover, the manner of accruing technical debt can be reckless
or prudent, meaning that developers may take the consequences of
reduced maintainability into account. Said maintainability reduction
represents the interest rate, as any further development becomes less
efficient, with the risk of technical bankruptcy in case the code be-
comes unmanageable. Ultimately, developers can repay technical debt
by investing time and effort into refactoring the system. Neglecting
refactoring may result in the uncontrolled growth of technical debt,
which causes the system to erode and can, for example, be seen in the
spread and growth of architecture smells (Cunningham, 1992; Fowler,
2009; Avgeriou et al., 2016; Suryanarayana et al., 2014; Allman, 2012).
Various different problems in a system can be expressed within the
metaphor of technical debt. This includes unclean code, violated design
principles and rules, architectural violations, low-quality documenta-
tion and test coverage, as well as — in some definitions — the presence
of bugs and non-conformity to requirements (Kruchten et al., 2012;
Power, 2013; Alves et al., 2016; Suryanarayana et al., 2014). In our
study, we focus on architectural technical debt.

To better estimate and analyze the presence and impact of tech-
nical debt, various quantification methods have been proposed. While
outright estimating how many person-hours would be required to
resolve every issue is not a straightforward task, many tools provide
an abstract approximation, which is often referred to as a technical debt
index (Arcelli Fontana et al., 2016b; Xiao et al., 2016; von Zitzewitz,
2019). Out of the various attempts for determining a system’s technical
debt index based on different input parameters (Letouzey, 2012; Curtis
et al., 2012; Verdecchia et al., 2018; Amanatidis et al., 2020; Sas and
Avgeriou, 2023), we selected a fully-documented open-source approach
that integrates well with our remaining toolchain. Precisely, since we
chose Arcan as our tool for detecting architecture smells, we identified
the approach by Roveda et al. (2018b) to match our requirements.
This approach measures the severity of architecture smells in a system
to calculate its technical debt index. Relating (architectural) technical
debt to smells ties in with a series of related work (Suryanarayana
et al., 2014; Nayebi et al., 2019; Das et al., 2022; Sas and Avgeriou,
2023). Specifically, in the approach of Roveda et al., each architecture
smell is assigned a severity score, which is a normalized index in the
range [0,1]. A dataset of 109 Qualitas Corpus (Tempero et al., 2010)
projects served as reference, with every type of architecture smell
being considered separately. For instance, for a cyclic dependency,
its number of affected components (i.e., vertices in the dependency
graph, which we refer to as order) is considered. Then, this number
is compared to the reference data and a quantile value from 0 to 1
is determined. The resulting severity score is then multiplied with the
smell’s centrality (using PageRank) and weighed by its order. Thus, the
impact of every architecture smell can be described via a respective
technical debt index. For the whole system, the sum of every smell’s
technical debt index represents the overall technical debt. Roveda et al.
further multiply every architecture smell with its trend evolution score,
which is set to two for growing smells, one for stagnating smells, and
0.5 for shrinking smells (Roveda, 2018; Roveda et al., 2018b). We
accounted for the concerns of Sas et al. (2019) in our study by excluding
this score, since it distorts the results. In Section 3.4, we specify in detail
how we quantify architecture smells and technical debt for our study.

3. Concepts for analyzing architecture smells

The evolution of architecture smells has not been researched ex-
tensively (cf. Section 6.1). Particularly, existing techniques for tracking
architecture smells throughout the evolution of a software system are
limited in their scope and precision. For this reason, we have pre-
viously extended existing techniques for tracking architecture smells

P. Gnoyke et al.

Version A Version B Version C Version D Version E

o0 0= O B0

Intra-version smell Intra-version smell Intra-version smell Intra-version smell Intra-version smell
I J

T
Inter-version smell

Fig. 5. Conceptual example for an inter-version cyclic-dependency smell that consists
of five intra-version smells.

to describe their evolution and measure their properties more pre-
cisely (Gnoyke et al.,, 2021, 2023). In this section, we describe the
terminology we use (i.e., intra- and inter-version smells), our tracking
and measuring techniques, and introduce feasible visualizations as well
as transition types (cf. Section 3.3), which are both a completely new
contribution compared to our previous work.

3.1. Intra-version and inter-version smells

We (Gnoyke et al., 2021) have established a distinction between
intra-version and inter-version architecture smells, referring to

+ intra-version smells if we consider the architecture smells that
exist in a single version of a system, and

- inter-version smells if we consider a set of intra-version smells
that are related and occur through multiple consecutive versions
of a system.

Specifically, since a system typically evolves gradually, when look-
ing at an intra-version smell in a particular version, we can often
identify intra-version smells in subsequent versions that affect the same
components and have the same properties or change slightly over time.
Thus, these intra-version smells are related and define an inter-version
smell. We illustrate a conceptual example for this scenario in Fig. 5, in
which one cyclic-dependency inter-version smell evolves through five
consecutive versions. The smell grows from version A to B and from
C to D, remains stable from B to C, and shrinks from D to E. So, each
version of that system comprises an intra-version smell. Since we can
identify a clear relationship between these intra-version smells, they
together represent an inter-version smell.

Note that one intra-version smell is always part of exactly one
inter-version smell, while one inter-version smell consists of one or
more intra-version smells. If an intra-version smell has no predecessors
and no successors (i.e., it is removed directly after its introduction),
the corresponding inter-version smell consists of only this one intra-
version smell. Not referring to both intra- and inter-version smells as
just smells is helpful to avoid misunderstandings and facilitate the
conceptualization of measurements that are specific to one or the
other kind. For example, measurements that concern the number of
affected components and their dependencies are only applicable for
intra-version smells, since these can considerably change over multiple
versions—which we discuss in detail in Section 3.4.

3.2. Smell tracking

To track inter-version smells along a system’s evolution, we first
have to identify intra-version smells in a number of consecutive system
versions. Then, we can compare the intra-version smells of adjacent
versions to match related ones. This idea of tracking architecture smells
has been introduced by Sas et al. (2019). We have extended and
improved their technique to identify and track architecture smells more
reliably (Gnoyke et al., 2021, 2023). Since our goal in this article is to
analyze evolution patterns, we only briefly summarize our technique
and, instead, focus on our novel visualizations.

In short, our technique matches system components being affected
by architecture smells in adjacent versions based on the components’

The Journal of Systems & Software 217 (2024) 112170

00
EO—®

Supercycle

& o0 ¢

Subcycle 1 Subcycle 2 Subcycle 3 Subcycle 4

Fig. 6. Conceptual example of a supercycle (left) that comprises four subcycles (right).

name. This means that we consider two components as the same only
if they share the same fully qualified name (i.e.,, package.class).
As a first step, we directly match hub-like and unstable dependencies
in different versions that have the same central component. For hub-
like dependencies, this central component is the hub class; while it
is the package that depends on less stable packages for an unstable
dependency.

Since this central component may be renamed between versions,
a second step is necessary to improve the tracking of smells. For this
purpose, similar to Sas et al., we use a greedy algorithm that iteratively
matches the most similar remaining intra-version smells if their overlap
in affected system components (using Jaccard set similarity) is high
enough. Specifically, we found a threshold of a Jaccard similarity of a
least 0.6 to be a good trade off of false-negatives and false-positives.
Consequently, we can identify and track inter-version hub-like and
unstable dependencies smells consisting of a one-dimensional sequence
of intra-version smells. Unfortunately, the same is not possible for cyclic
dependencies because of merging and splitting, which is why we pro-
pose the concepts of sub- and supercycles as well as cyclic-dependency
evolution graphs to track these.

Subcycles and Supercycles. When defining what system components
are impacted by a cyclic dependency, two different types have been
observed in the literature (Melton and Tempero, 2007), for which we
have previously established the following terminology (Gnoyke et al.,
2021):

Subcycles represent simple or elementary cycles, each of which starts
and ends in the same node (i.e., component) with no repeated
edges (i.e., dependencies) in-between (Sedgewick and Wayne,
2011). For instance, Sas et al. use this concept of subcycles.

Supercycles represent strongly connected components with any number
of edges between the nodes where each node can be reached
from every other node (Gross et al., 2013). For example, Al-
Mutawa et al. (2014) use this concept of supercycles.

Each subcycle is part of exactly one supercycle, while a supercycle
consists of at least one subcycle. In Fig. 6, we display a conceptual
example with a supercycle that comprises six components (nodes A-F)
and contains four subcycles. A component can be part of at most one
supercycle, while it can be part of an arbitrary number of subcycles,
for instance, component C in Fig. 6 is part of three subcycles.
Subcycles are usually easier to understand and visualize, since they
are simpler than supercycles (Laval et al., 2012). However, supercy-
cles, unlike subcycles, are unique in their components and provide
a more stable, and thus accurate, view on the evolution of an ar-
chitecture smell. Specifically, subcycles are easily broken if a single
edge is removed, while supercycles are not as easily broken and can
represent extensive tangles. For instance, removing the edge D — B
breaks subcycle 2 in Fig. 6. While the supercycle of the remaining
three subcycles (all of which are still valid) would also miss the edge
D — B, it would still conform to the definition of supercycles, and
thus represent the same cyclic dependency. Consequently, we track
evolving cyclic dependencies based on supercycles. As the criterion
for matching two intra-version cyclic dependencies in adjacent system
versions (i.e., two supercycles), we check that these share at least

P. Gnoyke et al.

FileOutput FileOutput
‘ Replace ‘ ‘ Replace m FileInput ‘ ‘ NestedString m Replace m FileInput
‘ Replacefilter ‘ ‘ Replacefilter ‘ Replacefilter

Ant 1.3 to Ant 1.6.5 Ant 1.7.0 to Ant 1.7.1 Ant 1.8.0 to Ant 1.8.4

Fig. 7. Evolution of the dependencies of a one-dimensional class-level (i.e., class
Replace and adjacent classes) cyclic dependency in the system Ant (package:
org.apache.tools.ant.taskdefs).

two components. Particularly, if there exists a cyclic path between
two components in both system versions, that path likely involves the
same dependencies, such as class calls, and thus constitutes the same
inter-version smell.

We display a real-world example for the evolution of a rather simple
class-level cyclic dependency in Fig. 7. This smell is centered around
the class Replace of the system Ant, and references its nested classes.
The cyclic dependency gradually grows from two impacted classes to
four and then to five, while the number of dependencies grows from
two to six to nine. As we outline in Section 3.4, we refer to the former
property as the smell’s order and to the latter as its size. The number
of subcycles also increases from one to three to five, ending up with:

(1) Replace — Replacefilter — Replace

(2) Replace — FileInput — Replace

(3) Replace - FileOutput — Replace

(4) Replace —» NestedString — Replace

(5) Replace —» Replacefilter — NestedString — Replace.

The smell’s shape evolves from tiny to star (cf. Section 2.2).

When visualizing each intra-version smell as a node, we can con-
struct the graph in Fig. 8. This graph shows the evolution of the
resulting inter-version smell. We display each intra-version smell’s
order, size, and number of subcycles as a triple below each node in
the graph, as well as its version within the analyzed time span. The
graph is a trivial case of a cyclic-dependency evolution graph, which we
describe in more detail in Section 3.3.

Merging and Splitting. While the cyclic dependency in Fig. 8 evolves
in a one-dimensional way, this is not the case for all cyclic dependen-
cies. Adding one or more dependencies among system components can
lead to the merging of two or more intra-version cyclic dependencies.
Similarly, removing one or more dependencies can cause the splitting
of an intra-version cyclic dependency into multiple ones.

We display a real-world example for this phenomenon from the
system Lucene in Fig. 9. Specifically, we show two class-level cyclic
dependencies that merge into a single one. Before the merge, there is
a circle cyclic dependency around the class MMapDirectory, which
references its nested classes, plus a chain cyclic dependency around
the class FSDirectory, which references its inherited classes. The
class MMapDirectory references the class FSDirectory, but not
the other way around, which is why the two intra-version cyclic de-
pendencies are not a single one from the beginning. Eventually, a
dependency from FSDirectory to MMapDirectory is introduced,
which is why all involved components become reachable from every
other component. If we reverse the chronological order of this example
(i.e., reading Fig. 9 from right to left), it would represent the splitting
of one cyclic dependency into two.

To correctly track cyclic dependencies, we implemented our tech-
nique to take merging and splitting into account. As we outline with
empirical data in Section 5.1, only by using this tracking concept, we
can analyze why particular intra-version cyclic dependencies span over
wide parts of a single version and why particular inter-version cyclic
dependencies span over extensive parts of a system’s evolution. The
resulting complex instances of smells considerably contribute to the
degeneration of software quality.

The Journal of Systems & Software 217 (2024) 112170
3.3. Visualizing cyclic dependencies

We introduced parts of the above concepts for tracking the evolution
of architecture smells in our previous work (Gnoyke et al., 2021). How-
ever, we did not propose visualizations for the evolution of architecture
smells. Next, we describe our novel contribution of using evolution
graphs for visualizing how architecture smells evolve throughout a
system’s versions.

While the evolution of hub-like and unstable dependencies can
be displayed using a one-dimensional graph, this is not sufficient for
inter-version cyclic dependencies. For example, considering Fig. 9,
a one-dimensional graph does not allow to properly visualize code
restructurings that involve splitting and merging of the intra-version
smells. This is why we introduce the notion of cyclic-dependency evo-
lution graphs: to track the evolution of cyclic dependencies, we create
a system-wide graph of all intra-version cyclic dependencies. More
precisely, all intra-version cyclic dependencies of the same version are
part of the same layer. Then, we represent relationships using directed
edges pointing towards the successive version. We refer to these edges
as transitions. In the end, we can display the constructed evolution
graphs using the well-suited Sugiyama graphs (Sugiyama et al., 1981).

We display a conceptual example for such a system-wide cyclic-
dependency evolution graph in Fig. 10. Note that the colors in Fig. 10
constitute a visual aid. They represent neither the severity of the cyclic
dependencies nor any degree of relationship. The system consists of
the nine components A to I that undergo changes in their dependency
structure in the seven depicted versions. In total, 16 intra-version
cyclic dependencies exist (bottom). The system-wide cyclic-dependency
evolution graph is not connected (top). Instead, the evolution graph
involves three connected sub-graphs (families), each constituting an
inter-version cyclic dependency. The smallest of these three (family 2)
consists of only a single intra-version cyclic dependency, specifically
B3. In the largest sub-graph (family 1), 12 intra-version cyclic depen-
dencies and multiple splits as well as merges are involved. We refer
to an inter-version cyclic dependency as a family, because it can en-
compass multiple intra-version cyclic dependencies in the same version.
Each cyclic-dependency family can be represented as an individual,
connected evolution graph. We furthermore use the term branch to refer
to a subset of a cyclic-dependency evolution graph that forms a directed
path graph—a sequence of intra-version smells that evolve without
merging or splitting (Gross et al., 2013). For instance, A1—-B1—C1 as
well as B2—C2 form a branch.

We classify transitions into three types. A transition from the intra-
version smell A to the intra-version smell B is a

« pure transition if B is the only successor of A, and A is the only
predecessor of B.

+ merge transition if B has more than one predecessor.

« split transition if A has more than one successor.

A transition can be both, a merge and a split, at the same time. For
instance, the transitions in Fig. 10 are a

» pure transition: A1—B1, B1—Cl, B2—C2, F2—Gl, E3—F3,
F3—G2

» merge transition: C1—-D2, C2—D2, D1—E1, D2—E1, E1—-F2,
E2—F2

« split transition: D2—E1, D2—E2, E1—F1, E1»F2

Note that D2—E1 and E1—F2 are split and merge transitions at the
same time.

We show the cyclic-dependency evolution graph for the real-world
example of Fig. 9 in Fig. 11. Before and after the depicted merging
from version 18 (Lucene 3.0.3) to 19 (Lucene 3.1.0), changes to
the set of affected components and dependencies occur. This eventually
results in an order of ten, size of 20, and nine sub-cycles. We show
another example in Fig. 12, which represents a package-level cyclic-
dependency family from the system Jung with two merges and one
split.

P. Gnoyke et al.

. Intra-version CD (2,2,1) order, size, #subcycles of the CD

221y @21y @21 @21) @@21) @21y @21 (@2) (@221 @21 @20

@21 @21 (@@21) (463 (*#63) (595 (595 (595 (595 (595

The Journal of Systems & Software 217 (2024) 112170

== Predecessor/successor relation

*—o oo — — —— ——

N Order v

T T T T

3 6 9 12

T T T

15 18 21

Analyzed system version

Fig. 8. Example of an evolution graph for the one-dimensional class-level cyclic dependency (CD) from Fig. 7.

| MMapIndexInput | | MMapIndexInput |
¥ L) ¥ L)
| MMapDirectory | MMapDirectory |
12 1
[MultiMMapIndexInput | [MultiMMapIndexInput|
| S|mpIeFSD|rectory | | SimpleFSDirectory |
12 L
| FSD|rectory | FSDirectory r_:l FSDirectory |
¥ L ¥ L)
| NIOFSDirectory | | NIOFSDirectory |
¥ L 12 L
| NIOFSIndexinput | | NIOFSIndexinput |
Lucene 2.9.0 to Lucene 3.0.3 Lucene 3.1.0 to Lucene 3.2.0

Fig. 9. Merging (left to right) of two cyclic dependencies in the system
Lucene around the classes MMapDirectory and FSDirectory (package:
org.apache.lucene.store). Reversing the evolution (ie., from right to left)
represents the splitting of one cyclic dependency.

3.4. Smell properties

To describe architecture smells on a quantitative basis, we have
implemented our tooling to measure metrics for a variety of smell
properties. We differentiate between properties of intra-version smells,
inter-version smells, and system versions. In the following, we ex-
plain the intra-version and inter-version smell properties that we em-
ploy in our study, providing more details compared to our previous
work (Gnoyke et al., 2021). We display an overview of these properties
in Table 1. As we can see in the last column (references), more than half
of these properties have been used in previous studies.

Intra-Version Smell Properties. Exact values for intra-version smell
properties can only be determined for an individual intra-version smell.
These properties inform us on how a smell affects the system in the
respective version. Values of related intra-version smells can be ana-
lyzed as a time-series to understand how a smell’s severity evolves over
different versions of a system.

The general properties (listed as all in the column smells) can
be used to describe intra-version instances of any architecture smell
type. From Sas et al. (2019), we have adopted the notion of a smell’s
age. We define this age as the number of versions that have passed
since the intra-version smell’s first predecessor has been introduced,
equaling O if there are no predecessors. Regarding cyclic dependencies
with a non-one-dimensional evolution like in Fig. 11, we backtrack in
the cyclic-dependency evolution graph. For instance, the intra-version
smell’s age in version 30 equals 18, as its oldest predecessor was intro-
duced in version 12. When looking at the intra-version smell with three
affected classes in version 18, its oldest predecessor was introduced in
version 14, resulting in an age of 4 versions. On a similar note, we
define an intra-version smell’s remaining age as the number of versions
that are left before its last successor is removed. This property equals
1 when an intra-version smell has only a single successor and 0 if it
does not have any successors. It can only be determined retrospectively,
when the history of a system is analyzed. The age and remaining age are
our only intra-version smell properties that require information about
the smell’s relation to intra-version smells in other versions.

Following graph theory, we refer to the number of a smell’s affected
components as its order and to the number of dependencies among

them as its size (Gross et al.,, 2013). For example, the supercycle
cyclic dependency in Fig. 6 has an order of 6 and a size of 9. We
relate these two properties in the size overcomplexity. This property
measures the share of edges that could be removed without reducing
the number of affected components. In the case of cyclic dependencies,
this means that every vertex in the cyclic dependency remains part of
the strongly connected component despite the removed edges. High size
overcomplexities indicate tangled and complex smells with many paths
between their components. We calculate the corresponding metric with
the formula:
size — minimum size

size overcomplexity = - 2
size

Minimum size represents the smallest number of edges between the
affected components that are necessary to affect all of them. To simplify
the computation, we do not perform graph traversals to determine
the minimum edge set, but, instead, assume the following: for cyclic
dependencies, the minimum size equals their order, which is the case
for tiny and circle shaped cyclic dependencies, the least complex cyclic
dependencies. Consequently, the size overcomplexity for the example in
Fig. 6 equals % For hub-like and unstable dependencies, the minimum
size is: order—1. That is because, for both, all affected components must
at least be connected with one edge to the central component.

We also define the properties centrality and overlap ratio based on
the work of Sas et al., which put a smell’s position into the context
of other components and smells. The former represents the smell’s
PageRank value in the system’s dependency structure. Higher values
indicate that the affected components are more central, meaning that
these are referenced by many components or other central components.
The overlap ratio equals O if the smell does not overlap at all with other
smells. It equals 1 if the smell’s affected components are all affected by
at least one other smell. Given that we concentrate on supercycles when
analyzing cyclic dependencies (cf. Section 3.2), we mostly observe
lower overlap ratios for cyclic dependencies than Sas et al. did. Central
and overlapping smells tend to be harder to refactor and more severe,
as they are more interconnected within the system (Sas et al., 2019).

To relate architecture smells with technical debt, we adapt a quan-
tification proposed by Roveda (2018), as described in Section 2.3.
This quantification assigns a severity score to every intra-version smell,
representing a normalized value between 0 and 1 with higher values
indicating more severity. Simplified, the severity score is obtained by
determining the smell’s quantile (i.e., cumulative probability) when
comparing its order to a reference dataset from the Qualitas Corpus.
Together with the smell’s order and its centrality, we can determine an
individual technical debt value. The sum of all smells’ technical-debt
values constitutes the version’s technical-debt index. By assigning an
individual technical-debt value to each smell, smells can be identified
for refactoring in a goal-oriented way.

Other properties are specific to cyclic dependencies (listed as
CD in the column smells). These include the shape, which indicates
a smell’s complexity. The shape assignment algorithm by Al-Mutawa
et al. (2014) classifies each cyclic dependency as one of the shapes
in Fig. 4 or as unknown. As we outlined in Section 3.2, the number
of subcycles can be another indicator of a cyclic-dependency’s severity.
Following Laval et al. (2012) and Sas et al. (2019), we also employ
the number of inheritance edges as a property of cyclic dependencies.
Inheritance edges are a subset of the edges in the dependency graph of
a smell’s affected components. They can be an indicator of intentional

P. Gnoyke et al.

The Journal of Systems & Software 217 (2024) 112170

Version A Version B Version C Version D Version E Version F Version G
CD family 1
CD)) CD CD CcD
B3 CD family 2 CD family 3 E3 > R > @

CD evolution graph (vertex: intra-version CD, edge: relationship between intra-version CDs, connected component: inter-version CD, i.e. CD family)

Dependency graphs (vertex: component, edge: dependency, strongly connected component: intra-version CD)

600 000 GOC OO

®

CD AL CD B1 cbct g CD E1 CDFL p Ry CD G
: CD B2 CD C2 CD E2
— — — — o —
@@®O® O Ht WO 60600 HoD @ WO GTHT
CD B3 CDE3 CD F3 CD G2
Fig. 10. Conceptual example of a system-wide evolution graph of cyclic dependencies (CDs).
10
' Intra-version CD (2,2,1) order, size, #subcycles of the CD == Predecessor/successor relation
*—o—o—0—o 5
(3,42 (3,42 (3,4,2) (3,4,2) (3,42 'g
‘ ‘ ‘ ‘ ‘ ‘ 'AH, 7) (8,14,7) (7,12, 6) (7,12, 6) (7,12, 6) (7,12, 6) (7,12, 6) (10,20,9) (10,20,9) (10,20,9) (10,20,9) (10, 20,9)
@21 @21 (463 (463 (463 (463 (463
T T T T T T T T T T 2
12 14 16 18 20 22 24 26 28 30

Analyzed system version

Fig. 11. Example of a class-level cyclic-dependency (CD) evolution graph with merging in the system Lucene around the classes MMapDirectory and FSDirectory (cf.

Fig. 9).

. Intra-version CD (2,2,1) order, size, #subcycles of the CD

(6,16,5) 6,15,4) (7,16,3)

(6,15, 4)
—_— — —

(14,49, 10) (16, 61, 13) (16,61, 13) (16,61, 13) (16, 50,1}\

’
@21 (21,88,27) (21,88,27) (21,88,27) (21,88,

——0—0—0—0 00—

@221 @221 @22 @22 @22 3,42 3,42 3,42 342

@22

@221

21
== Predecessor/successor relation
472 47,2 .
—_—— — — —— — — —— —— —— — g
27) (2,88,27) (18,72,17) (21,88,42) (21,89,42) (21,90,42) (21,91,43) (21,92,43) (21,92,43) Is]

(9,35,17) (9,35,18)

N

0 3 6

12

18

Analyzed system version

Fig. 12. Example of a package-level cyclic-dependency (CD) evolution graph with mergings and a split in the system Jung.

design, whereas other references like method invocations are more
likely to unintentionally cause a cycle. We only consider inheritance
relationships in class-level cyclic dependencies, since an edge in a
package-level cyclic dependency can represent several dependencies
between various pairs of classes. To provide a normalized value, we
furthermore compute the relative number of inheritance edges in relation
to the size (i.e., the number of all edges in a cyclic dependency).

Two major properties specific to hub-like dependencies (listed as
HD in the column smells) are the number of incoming edges into the
hub class and the number of outgoing edges from the hub class. We
refer to the former as the afferent coupling C, and to the latter as the
efferent coupling C,. Using the hub ratio, we relate these two properties
as:

hub ratio =

G- Ce 3)
C, +C,

The hub ratio is positive for hubs with more incoming than outgoing
dependencies and negative for the other way around. As we use Arcan
to detect smells (cf. Section 4.3), a hub-like dependency is only detected
if its difference between the numbers of incoming and outgoing depen-

dencies is not higher than a quarter of their sum (Arcelli Fontana et al.,

2016a). Thus, the hub ratio ranges from —i to +i. For instance, the hub
in Fig. 3 has an afferent coupling of 6, efferent coupling of 5, and thus
a hub ratio of 11_1

Two properties describing specifically unstable dependencies
(listed as UD in the column smells) are the degree of unstable dependency
(DoUD) and the instability gap. The former has been introduced in
Arcan. It is defined as the number of less stable components divided
by the total number of components that the unstable dependency’s
main component depends on Arcelli Fontana et al. (2017). Meanwhile,
the instability gap represents the difference in the instability value
(cf. Section 2.3) between the main component and the less stable
components that it depends on. While Sas et al. (2019), who introduced
this property, utilize the mean value of the less stable components’
instabilities, we argue that their distribution can be of interest as well.
Thus, we measure both the median value and inter quartile range (IQR)
of the instability gap. High values of both the DoUD and instability gap
increase the risk of ripple effects to the less stable component.

Inter-Version Smell Properties. Some properties are applicable to
entire inter-version smells, and cannot be analyzed as time-series.
These properties consider lifetime aspects of smells and are of interest

P. Gnoyke et al.

The Journal of Systems & Software 217 (2024) 112170

Table 1
Properties of architecture smells that we measure in our study.
Smells Property Range Description Other names in literature References
intra-version smell properties
All Age [0..00) Number of versions since the introduction of the Sas et al. (2019)
smell’s first predecessor
All Remaining age [0..00) Number of versions before the removal of the -
smell’s last successor
All Order [2..00) Number of affected components (vertices in the size, architectural smell weight, Al-Mutawa et al.
dependency graph) number of vertices (2014), Roveda
(2018), Sas et al.
(2019)
All Size [1..00) Number of dependencies between the affected number of edges Sas et al. (2019)
components (edges in the dependency graph)
All Size overcomplexity [0,1) Share of edges between affected components that -
are not necessary to form the smell
All Centrality [0, o0) PageRank of the smell in the dependency structure PageRank Roveda (2018), Sas
(CD: highest PageRank of the affected components; et al. (2019)
HD, UD: PageRank of the central component)
All Overlap ratio [0,1] Share of the smell’s components that are affected Sas et al. (2019)
by at least one other smell
All Severity score [0,1] Normalized metric to assess the smell’s severity Roveda (2018)
All Technical debt [0, c0) Quantified TD that the smell contributes to the TDI Roveda (2018)
CDh Shape n/a One of the seven shapes in Fig. 4 or unknown topology Al-Mutawa et al.
(2014), Sas et al.
(2019)
CDh Number of subcycles [1..00) Number of simple cycles in the supercycle
c.-. CD Number of inheritance edges [0..00) Number of dependencies in the supercycle that Laval et al. (2012),
represent inheritance relationships Sas et al. (2019)
c.-l. CD Relative number of inheritance [0,1] Ratio of the number of inheritance edges to the -
edges size
HD Afferent coupling [1..00) Number of incoming edges into the hub class Martin (1994)
HD Efferent coupling [1..00) Number of outgoing edges from the hub class Martin (1994)
HD Hub ratio [-0.25,0.25] Difference of the number of incoming and Arcelli Fontana
outgoing dependencies divided by their sum et al. (2016a)
UD Degree of unstable dependency 0,17 Ratio of less stable referenced packages to all strength Roveda (2018), Sas
(DoUD) packages that are referenced by the main package et al. (2019)
UD Instability gap median 0,11 Median of the differences in instability between Sas et al. (2019)
the main package and its referenced less stable
packages
UD Instability gap inter-quartile range [0, 1) Inter quartile range of the differences in instability Sas et al. (2019)
(IQR) between the main package and its referenced less
stable packages
inter-version smell properties
All Version of introduction [0..00) First version the smell is present in -
All Version of removal [1..00) First version the smell is not present in -
All Lifespan in versions [1..00) Number of versions the smell is present in -
CD Family order [1..00) Total number of intra-version smells in the CD -
family
CD Family width [1..00) Number of co-existing intra-version smells in the -
same version of the CD family
CD Median family width [1..00) Median of the family width over all versions of -
the CD family
CD Maximum family width [1..00) Maximum of the family width over all versions of -

the CD family

CD: cyclic dependency; HD: hub-like dependency; UD: unstable dependency; TD: technical debt; c.-l.: class-level

from an evolutionary point of view. They provide a more in-depth
understanding of when smells are introduced, changed, or removed.
For all inter-version smells, we define lifetime-oriented properties,
such as the version of introduction and the version of removal. We regard
the first version in which an inter-version smell cannot be observed
anymore as its version of removal. The difference between these two
values constitutes the smell’s lifespan, which equals the number of intra-
version smells for hub-like dependencies, unstable dependencies, and
cyclic dependencies that evolved without splitting or merging. In a one-
dimensional inter-version smell with a lifespan of n versions, the initial
intra-version smell has an age of 0, while the last intra-version smell an
age of n — 1. For more complex cyclic-dependency families, we define
the family order as a family’s number of intra-version smells. We refer
to the number of co-existing intra-version smells of the same family in
the same version as the family width. This property is special because
it is time-dependent and can change from version to version—unlike
the aforementioned inter-version smell properties. For comparing the

complexity of cyclic-dependency evolution graphs, we therefore use the
median and maximum family width, which aggregate the family width
over an entire family.

On a final note, we remark that the time series of intra-version
smells can be considered as an inter-version smell property. For ex-
ample, the order of the inter-version cyclic dependency in Fig. 8
grows as a function of the version number from two to four to five.
Cyclic-dependency families that involve splitting or merging require
an additional step of aggregating values in co-existing intra-version
smells in the same version. This can be demonstrated in version two
of Fig. 12, which contains three intra-version smells. Consequently, a
three-value distribution exists for every intra-version smell property.
The distribution can be utilized for diverse statistical analyses (cf.
Section 5.1) or can be aggregated to a mean or median for time-series
examinations.

P. Gnoyke et al.
4. Case study design

Next, we describe our case study, including our research questions,
input dataset, and research method.

4.1. Research questions

Using our novel techniques, we aimed to study the evolution of
architecture smells to improve our understanding of how these change
throughout a system’s versions. For this purpose, we formulated three
research questions (RQs):

RQ; What evolution patterns can we observe for cyclic dependencies?
RQ;.; How do merging and splitting impact the evolution of cyclic
dependencies?
RQ; ., How does the shape of cyclic dependencies change over time?

Supercycle cyclic dependencies often grow extensively and eventu-
ally entangle large parts of their system (Melton and Tempero, 2007).
According to a case study by Martini et al. (2018), most practitioners
consider cyclic dependencies as the type of architecture smell that has
the most impact on software quality, is the most relevant to identify,
and requires on average the most effort during refactoring. Cyclic
dependencies and their impact on software quality erosion are also
a heavily researched subject and detected by many smell detection
tools (Melton and Tempero, 2007; Laval et al., 2012; Al-Mutawa et al.,
2014; Arcelli Fontana et al.,, 2016a; Avgeriou et al., 2016; Roveda,
2018; Diaz-Pace et al., 2018; Martini et al., 2018; Azadi et al., 2019; Sas
et al., 2019; Herold, 2020; Sas et al., 2022b). Because of this relevance,
we focused on understanding the evolution of cyclic dependencies,
particularly with respect to the novel concepts of merges and splits,
which no other study has focused on so far. Specifically, we investigated
the circumstances under which large and complex cyclic dependencies
emerge and persist in systems (RQ;), the influence of merging and
splitting (RQ; ;) and the shape as an indicator for complexity (RQ;).

In the following research questions, we additionally consider hub-
like dependencies and unstable dependencies. As we want to better
understand how complex and severe cyclic dependencies evolve, while
the other two architecture smell types do merge and split in a similar
way, we excluded them from RQ;. The remainder of the research ques-
tions focuses on evolutionary patterns of architecture smells in general,
which is why more architecture smell types increase generalizability.

RQ, How do the properties of architecture smells evolve over time?

Another point of view for understanding how complex and hard to
refactor architecture smells manifest themselves in a software system
is to analyze the evolution of their properties. Doing so, we aimed to
discover whether particular properties grow or shrink over time and
what values can be expected with an increasing smell age (RQ,). For
instance, if architecture smell instances with extreme values require a
particular time span to reach this state, we can gain valuable insights
for practitioners on refactoring strategies to prevent such an extreme
state.

RQ3 How do the evolution of architecture smells and technical debt relate
to the compound-interest metaphor?

Describing poor system quality with the metaphor of technical debt
includes representing reduced maintainability as an interest rate. In
real-world debt, interest is often accompanied by compound interest,
which causes the debt to grow exponentially if it is not reimbursed.
Within the context of software, we want to explore whether and how
technical debt exhibits compound interest—specifically, whether re-
duced maintainability leads to a faster accumulation of technical debt
(RQ3). We want to clarify that we are not studying the interest of

10

The Journal of Systems & Software 217 (2024) 112170

technical debt itself, which can describe various effects outside of the
system design, but rather how technical debt can feedback on itself. We
focus on architecture smells as an indicator of architectural technical
debt (cf. Section 2.3). This research question also contributes to under-
standing how issues like architecture smells establish themselves and
spread in software.

Overall, we contribute novel insights into the evolution and impact
of architecture smells by addressing these research questions. Our
results can help practitioners in managing architecture smells, and
researchers in designing new techniques.

4.2. Subject systems

To answer our research questions, we conducted a multi-case study
(Yin, 2018). For this purpose, we needed a dataset of well-established
systems with a variety of domains, developers, number of versions,
and code sizes. Such a diverse dataset increases the external validity
of our findings and conclusions. We decided to focus on open-source
systems to ensure reproducibility. Moreover, due to Java’s continued
relevance as a programming language® especially for open source sys-
tems (Karus and Gall, 2011), we selected a Java-based dataset. This also
accounts for Arcan as our tool of choice for architecture-smell detec-
tion, whose open-source version analyzes Java systems (Arcelli Fontana
et al., 2017). Finally, we decided to use the established Qualitas Corpus
Evolution Distribution dataset (Tempero et al., 2010),> which satisfies
all aforementioned requirements and has been studied extensively in
related research (Sas et al., 2019; Al-Mutawa et al., 2014; Roveda et al.,
2018b; Gnoyke et al., 2021). In Table 2, we provide an overview about
each system in the Qualitas Corpus dataset, including their domain,
number of analyzed versions, covered time span, and code size in lines
of code (LOC).

In total, we analyzed 485 versions (i.e., releases) of 14 well-
established systems spanning various code sizes. Each system involves
between 2 and 15 years of continued development in the form of 16 to
115 versions. Within these timespans, some systems remained mostly
stable regarding their code size (e.g., JStock, ArgoUML), while others
grew considerably (e.g., Hibernate with a factor of 61). We omitted
Eclipse from the original Qualitas Corpus dataset, as our current tool
chain does not scale to its large size. Furthermore, we excluded 42 of
the 527 original versions in cases where parallel development branches
were included in the corpus. We selected versions from one branch in
such cases, because our analysis includes time-related measures, and is
thus assuming a one-dimensional progression from version to version.
For example, JGraph 5.4.4 was released on the same day for Java 1.3
and 1.4 separately, which is why we only utilized the version for Java
1.4.

4.3. Implementation

To automatically analyze the evolution of a software system’s archi-
tecture smells and technical debt, we implemented the concepts we in-
troduced in Section 3 in a toolchain, which we illustrate in Fig. 13. For
detecting architecture smells, we chose to use Arcan (Arcelli Fontana
et al., 2016a), which is able to detect all types of architecture smells
that we are interested in (cyclic dependencies, hub-like dependencies,
unstable dependencies). As version 1.21 of Arcan is open-source,’
we can retrace all computations and adapt their functionality if re-
quired. Related tools with a similar scope of architecture smells, such

2 Since its first publication in 2014, the IEEE Spectrum ranking constantly
placed Java in the top five of the most relevant programming languages—
exept for 2022 constantly in the top three (Cass, 2014, 2015, 2016, 2017,
2018, 2019, 2020, 2021, 2022, 2023).

3 http://qualitascorpus.com/download/

4 https://gitlab.com/essere.lab.public/arcan

http://qualitascorpus.com/download/
https://gitlab.com/essere.lab.public/arcan

P. Gnoyke et al.

Table 2
Overview of our subject systems from the Qualitas Corpus dataset (Tempero, 2013).

The Journal of Systems & Software 217 (2024) 112170

System Domain # versions First version Last version
Original Included ID Date (YMD) LOC ID Date (YMD) LOC
Ant Build system 23 23 1.1 2000-07-18 7,837 1.8.4 2012-05-23 105,007
ANTLR Parser generator 22 22 2.4.0 1998-09-18 2,834 4.0 2013-01-22 21,919
ArgoUML Diagram application 16 16 0.16.1 2004-09-04 106,500 0.34 2011-12-15 192,410
Azureus/Vuze Database 63 63 2.0.8.2 2004-03-14 62,388 4.8.1.2 2012-12-17 484,739
Freecol Videogame 32 32 0.3.0 2004-09-30 21,309 0.10.7 2013-01-07 100,748
FreeMind Diagram application 16 16 0.0.2 2000-06-27 2,712 0.9.0 2011-02-19 50,198
Hibernate Database 115 106 0.8.1 2001-11-30 3,555 4.2.2 2013-05-23 217,163
JGraph Diagram application 39 37 5.4.4-javal.4 2005-03-28 10,780 5.13.0.0 2009-09-28 22,758
JMeter Software testing 24 24 1.8.1 2003-02-03 34,170 2.9 2013-01-28 90,612
JStock Stock trading 31 31 1.0.6 2011-03-29 43,811 1.0.7¢ 2013-06-20 48,842
Jung Diagram application 23 23 1.0.0 2003-07-31 7,206 2.0.1 2010-01-25 37,989
JUnit Software testing 24 23 2.0 1998-01-08 1,346 4.11 2012-11-16 7,428
Lucene Text search 36 31 1.2-final 2003-09-10 6,505 4.3.0 2013-04-27 285,804
Weka Machine learning 63 38 3.1.7 2000-02-22 57,194 3.7.9 2013-02-21 247,805
System versions Track and analyze inter-version ASs
(.jar file or folders Y
of jar files) Control Parse
AsTdEA D
\N
Metadata of versions
JAR \ Parse T l Update l Save (lines of code, dates,
‘ Porse 'Y} version names)
V2 | — ’ Save
Modified — parse Generate | N\
AR Arcan e P e
Detect and analyze Intra-version Inter-version Scripts Study
|| results

intra-version ASs,

JAR calculate technical debt

components &
properties

components &
properties

Fig. 13. Workflow of our toolchain for tracking architecture smells.

as Designite, did not offer this flexibility for us. Eventually, we
modified Arcan to detect cyclic dependencies on the supercycle level
in addition to the pre-implemented subcycle level (cf. Section 3.2).
For this purpose, we utilized the algorithm by Tarjan (1972) for iden-
tifying strongly connected components. To determine the shape of a
cyclic dependency, we also modified Arcan to resemble the original
algorithm by Al-Mutawa et al. (2014), which was designed for super-
cycles. Furthermore, we added the quantification of technical debt, the
computation of several properties we describe in Section 3.4, and opti-
mized Arcan’s runtime, which included multi-threading and avoiding
repeated graph traversals. As Arcan is designed to analyze one system
version at a time, we control its iteration through a system’s evolution
using our own tool ASTdEA (“Architecture Smell and Technical Debt
Evolution Analyzer”). AsTdEA tracks inter-version smells according to
our concept (cf. Section 3) and computes additional properties that
require data over multiple versions. The source code and compilation
of both the modified Arcan and ASTdEA (Gnoyke et al., 2023) are
available in our replication package.'

4.4. Workflow

As depicted in Fig. 13, using our toolchain and the input dataset, we
generated an output dataset to answer our research questions, which
is also part of our replication package.! For each subject system, our
output dataset consists of inter-version and intra-version data. The
former includes metrics for the entire system, as well as properties of
each inter-version smell including references to the intra-version smells
that they consist of. Subdivided by releases, the latter contains metrics
and all intra-version smells associated to a particular release. Data on
an intra-version smell includes its intra-version smell properties (cf.
Section 3.4) as well as a reference to the components that are affected.

To extract information and derive conclusions from the dataset, we
wrote Python queries that aggregate data, calculate statistical indica-
tors, and generate visualizations. All of these queries are included in

11

our replication package, too. We describe the particular data that we
queried for each research question in the beginning of each respective
subsection in Section 5.

5. Results and discussion

In this section, we present and discuss our results, based on the
research questions we defined in Section 4.1. For this purpose, we
outline the data we analyzed to answer each question, describe and
summarize the consequent results, as well as discuss their implications.

5.1. RQ ;: Merging and splitting

Data Analysis. To answer RQ, ;, how merging and splitting impact
the evolution of cyclic dependencies, we queried all intra-version cyclic
dependencies alongside their properties, transitions (cf. Section 3.3),
and resulting cyclic-dependency families. We investigated class-level
and package-level cyclic dependencies separately to identify patterns
that only apply to either of these two types. In the following, we pro-
vide detailed information from different perspectives based on this data
to contribute a comprehensive overview. For clarity, we provide further
information on the analyzed data together with the corresponding
results.

Results. In Table 3, we summarize the numbers for all cyclic depen-
dencies we identified in our dataset. We observed merges and splits
(i.e., a maximum family width > 1) only in 20 (1.3%) of all 1578
class-level inter-version cyclic-dependency families. This number in-
creases to 5822 (23.3%) when considering the class-level intra-version
cyclic dependencies that are part of such non-trivial cyclic-dependency
families—in total 24,955 occurrences across all families. Consequently,
we conclude that cyclic-dependency families with non-trivial evolution
graphs tend to have considerably higher family orders compared to
cyclic dependencies that do not merge or split. To be precise, the

P. Gnoyke et al.

Table 3

The Journal of Systems & Software 217 (2024) 112170

Overview of the cyclic dependencies within our dataset, and those involved in merging and/or splitting.

Scope Class-level

Package-level

Inter-version

Intra-version

Inter-version Intra-version

Absolute Relative Absolute Relative Absolute Relative Absolute Relative
One-dimensional families 1,558 98.7% 19,133 76.7% 69 90.8% 1,031 70.0%
Families with merges/splits 20 1.3% 5,822 23.3% 7 9.2% 442 30.0%
Total 1,578 24,955 76 1,473
Table 4
Counts and shares of transition types in cyclic-dependency evolution graphs within our dataset.
type Class-level Package-level
Absolute Relative Absolute Relative
Pure 22,772 97.2% 1,357 97.1%
Merge 390 1.7% 33 2.4%
Split 281 1.2% 8 0.6%
Both merge & split® 19 0.1% 0 0.0%
Total 23,424 1,398

a counted twice; must be subtracted from total.

median family order of the former is 81.5, while it is only seven for the
latter. On the package-level, seven (9.2%) of all 76 inter-version cyclic-
dependency families merged or split at least once, with 442 (30.0%) of
all 1473 intra-version cyclic dependencies belonging to such families.
The median family order across non-trivial cyclic-dependencies is 37,
whereas it is 10 for one-dimensional cases.

Another perspective on the evolution of cyclic dependencies are
transitions in cyclic-dependency evolution graphs, for which we pro-
vide an overview in Table 4. We observed a total of 23,424 class-level
transitions. Out of these, 22,772 (97.2%) are pure. The remainder
represents 390 (1.7%) merge and 281 (1.2%) split transitions, which
occurred in 102 merges and 55 splits. So, merges and merge transi-
tions can be observed more frequently than splits and split transitions.
Moreover, 19 (0.1%) edges in class-level cyclic-dependency evolution
graphs are merge and split transitions at the same time. On the package-
level, 1398 transitions occurred, 1357 (97.1%) of which are pure.
We observed 33 (2.4%) merge transitions and eight (0.6%) split tran-
sitions spanning 15 merges and 4 splits. Consequently, the relative
difference between the frequency of merges and splits is considerably
larger for package-level than for class-level cyclic dependencies. Not a
single package-level transition was both a merge and split transition
simultaneously.

In Fig. 14, we illustrate how many class-level intra-version smells
participated in merges and splits. Each of the two plots contains a
cumulative distribution function (CDF) for two perspectives:

 unweighted: every merge and split has the same weight, regardless
of the number of its transitions.

* weighted: every merge and split is weighted by the number of
involved transitions, representing the number of intra-version
smells that either merge into each other or split from the same
intra-version smell.

The data reveals that the majority (~#60%) of both class-level merges
and splits involve just two intra-version cyclic dependencies. Moreover,
less than 10% of both merges and splits involve more than 10 intra-
version cyclic dependencies. We found that the largest merge involves
42 intra-version smells, while the largest split resulted in 101 intra-
version smells. Both occurred in the system Azureus in the same
inter-version smell.

When investigating the weighted CDFs, only about a third of all
merge transitions took place in merges with two intra-version cyclic
dependencies, while we can see an approximately gradual increase for
merges up to approximately 10 incoming edges. Less than a quarter
of all split transitions occurred in splits with only two outgoing edges.
The outlier in Azureus represents approximately every tenth merge

12

transition and about one third of all split transitions. It is also the
widest cyclic dependency family in our dataset with a maximum family
width of 109 co-existing intra-version smells, as well as the cyclic
dependency family with the highest family order of 2500 intra-version
smells. This constitutes nearly a third of all class-level intra-version
cyclic dependencies in Azureus. Meanwhile, on the package-level,
every split constituted exactly two outgoing edges, while 80% of the
merges (~73% of merge transitions) involved only two incoming edges
(i.e., two intra-version cyclic depedencies merging with each other).
The remaining merges did not involve more than three incoming edges.

One way of assessing patterns in cyclic-dependency evolution graphs
is to see how family widths develop over time. Therefore, we provide
two different perspectives on the evolution of family widths in non-
trivial cyclic-dependency evolution graphs in Fig. 15—both for the
class-level and package-level:

» exclusive: we consider only versions with a family width > 1
» inclusive: we consider all versions

In each plot, we show how the median family width, as well as its
range, evolve over time; specifically the number of versions since the
introduction of the first family member. For this purpose, we aggregate
data from all cyclic-dependency families—weighting them equally.

The data on family widths reveals several insights. First, the median
family width tends to increase for class-level cyclic dependencies,
especially in the exclusive data, while, in comparison, it stagnates for
package-level cyclic dependencies. In other words: class-level cyclic-
dependency families tend to grow wider over time. Second, extreme
family widths tend to occur regardless of the age of the respective
smell. Finally, older class-level cyclic-dependency families either have
a width of a single branch or widths greater than two branches.
We can attribute the maximum class-level family width of 109 to
the aforementioned cyclic-dependency family in Azureus. The next
widest families occurred in Azureus with a maximum family width
of 32, in Hibernate with 22, and in ArgoUML with 21.

A pattern that we observed in many non-trivial cyclic-dependency
evolution graphs is that a particular path through the graph “attracts”
many merges with its intra-version smells—leading to disproportional
growth in complexity (i.e., order, size, and number of subcycles). We
display an example for this trend in Fig. 16, which contains the evolu-
tion graph of a class-level cyclic dependency in the system Lucene. It
starts with a set of relatively small intra-version cyclic dependencies,
lasts for the entire observed period, and ends in a considerably larger
cyclic dependency affecting 189 classes (among two small intra-version
cyclic dependencies). The graph is also a fitting example for merges
involving more than two intra-version cyclic dependencies, as well as

P. Gnoyke et al.

The Journal of Systems & Software 217 (2024) 112170

Merges Splits
Lo 102 & . — Lo 55 splits & :
n= merges n = 55 splits I
_.é“ 390 transitions 281 transitions (= Outlier at 101)
a 081 (— Outlierat42) | 08 1
©
Qo
O o6 - 0.6 -
Q.
©
Y 04 A 04
o
>
E 02 02 A :
=} m— Unweighted
@) weighted with the number of transitions
0.0 T T T T T T T T T 0.0 T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
#Incoming edges #0utgoing edges
Fig. 14. Distribution of the number of incoming and outgoing edges in merges and splits of class-level cyclic dependencies.
Class-level CDs (Exclusive) Package-level CDs (Exclusive) Class-level CDs (Inclusive) Package-level CDs (Inclusive)
100 fh-16t03 Jn-4t01 100 f'h =215 Tn=7w02 — Median family width
PR Family width range
=3
o
=
<
=
©
2 104 10 4 10 4 10 4
=
£
L
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Number of versions since the introduction of the first family member
Fig. 15. Evolution of the family width median and family width range in non-trivial cyclic-dependency (CD) evolution graphs.
189
i A e A il o . Intra-version CD (2,2,1) order, size, #subcycles of the CD = Predecessor/successor relation
152
\b—o—-o—o—q 14
Q—Q—Q—Q—Q—Q—.A—H—H —— g
/ oo oo 7
.)) ()) @ S S A S S A S O D)
39

@iy @ay @ay @y @Ay @2y @2y @2n @iy @a) @zd @ay @y @2y

@z

a2y @y a2y @2y

@y @iy @iy @y

16

20 24 28

Analyzed system version

Fig. 16. Example of a class-level cyclic-dependency (CD) evolution graph with merges, splits, and merges of previously split branches in the system Lucene, resulting in a large

intra-version cyclic dependency and two smaller ones.

branches re-merging after having split. In particular, the latter implies
that cyclic-dependency evolution graphs cannot be generalized as trees.

To quantify our observation about increasing inequalities in cyclic-
dependency evolution graphs over time, we considered how the order,
size, and number of subcycle properties are distributed in co-existing
intra-version smells over time. In our example, the order distribution in
the last version in Fig. 16 is {10, 189, 2}. For each of these distributions,
we calculated the Gini index to assess how balanced or imbalanced the
values are. We considered only versions in cyclic-dependency families
with a family width of at least two to enable the Gini index calculation.
This corresponds to the exclusive perspective in Fig. 15. We show
how the mean Gini value of all non-trivial cyclic dependency families
evolves over time for both the order and size properties on both the

13

class-level and package-level in Fig. 17. The light outline represents
the confidence interval, and we note the respective alpha value in each
plot.

All three properties (we do not display the number of subcycles,
but it differs only marginally) follow similar patterns: the results indi-
cate that the Gini index increases over time and eventually plateaus,
resulting in approximately a doubling for class-level cyclic-dependency
families. This implies that cyclic-dependency families tend to become
more imbalanced in their order, size, and number of subcycles the older
they become, as we can see in Fig. 16. The graph for package-level
cyclic dependencies is shown a lower alpha value and is cut off after a
lower number of versions because of a lack of data points, but follows
a similar trend in the observed period.

P. Gnoyke et al.

Order of class-level CDs

Order of package-level CDs

The Journal of Systems & Software 217 (2024) 112170

Size of class-level CDs Size of package-level CDs

1.0 1.0
a =095 a=0.67 a=0.95 a=0.67
n=16t3 n=4to2 n=16t03 n=4to2
0.8 1 0.8 0.8 1 0.8
)
o 0.6 0.6 0.6 1 0.6
£
c o4 04 04 04
(O]
0.2 A 0.2 A 0.2 4 0.2 A
m=== Mean Gini index
Confidence interval
0.0 T T T T — 0.0 T T T T — 0.0 T T T T — 0.0 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Number of versions since the introduction of the first family member

Fig. 17. Gini index evolution for the order and size distributions of intra-version cyclic dependencies (CDs) in the same version of non-trivial cyclic-dependency evolution graphs.

RQ, ;: How do merging and splitting impact the evolution of cyclic dependencies?

« Merges and splits occur in few cyclic-dependency families, which tend to encompass many intra-version cyclic dependencies. « Most transitions in
cyclic-dependency evolution graphs are pure. « Merges occur more often than splits. « Most merges and splits involve only two intra-version cyclic
dependencies, but many merge and split transitions can be seen in larger merges and splits. « The family width of class-level cyclic dependencies tends
to increase over time, while it tends to stagnate for package-level cyclic dependencies. » Cyclic-dependency families tend to become imbalanced over
time with a single path accumulating many merged cyclic dependencies, resulting in high numbers for order, size, and subcycles. « Merges, on average,
result in an increase in the number of subcycles, while splits do not exhibit a consistent trend.

Table 5
Average relative change in the number of subcycles in cyclic dependencies during
merging and splitting (« = 0.95).

Class-level Package-level

+38% +22%
—34% + 89%

+40% + 20%
+0.7% + 8.2%

Merging
Splitting

To assess how merges and splits affect the overall complexity of a
system, we analyzed whether they significantly affect the total number
of subcycles. For this purpose, we compared the set of intra-version
smells before a merge with the intra-version smell after the merge
and vice versa for splits. As an example, the split in version 14 to
15 in Fig. 16 reduces the number of subcycles from 114 to 102, as
it splits into two intra-version smells with 83 and 19 subcycles. To
avoid potential biases caused by large smells, we computed the relative
difference in subcycles, which is approximately —11% in this example.
When considering all merges and all splits in all systems of our dataset
with an alpha value of 0.95, we obtain the results in Table 5. We can see
that merges cause, on average, a considerable increase in the number of
subcycles, while we did not find a consistent trend for splits, regardless
whether class-level or package-level.

Discussion. Our results indicate that merges and splits in cyclic
dependencies are a comparatively rare event, since only few cyclic-
dependency families involve the respective transitions. The low number
of merge and split transitions can be explained by the observation that
most branches in cyclic-dependency evolution graphs persist for several
versions without merging or splitting. Thus, merge and split transitions
are a subset of non-trivial cyclic-dependency evolution graphs that
are a subset of all cyclic-dependency families. Still, ignoring merges
and splits because of these observations would result in a consider-
ably skewed picture considering the high family orders of non-trivial
cyclic-dependency families. In other words:

About a quarter of intra-version cyclic dependencies on the class-
level and a third on the package-level would be tracked incorrectly
if merging and splitting were not taken into account.

14

The distribution of incoming and outgoing edges in merges and
splits follows a similar pattern. While only a minority of merges and
splits involve more than two intra-version smells, most merge and split
transitions occur within larger merges and splits. We argue that:

Developers should be aware of large-scale merge events, as they
can considerably increase the cyclic dependencies’ and ultimately the
system’s complexity.

At first glance, our observation that class-level cyclic-dependency
families tend to grow wider over time seems to contradict the fact that
we observed more merges than splits. Using Fig. 16 as an example,
we can see a possible explanation: In the depicted cyclic-dependency
evolution graph, not a single branch ends because the last intra-version
smell was removed from the system. Instead, new branches are intro-
duced in various versions due to the manifestation of a new cyclic
dependency without predecessors. When in each version, on average,
more branches are created this way than merged into other branches,
the family width increases over time.

We thus suggest that developers should not ignore newly introduced
cyclic dependencies for too long, as they otherwise may merge into
large cyclic dependencies, rendering refactoring harder and harder.

We can draw a similar conclusion for the trend in cyclic-dependency
families of developing a main path with considerably higher orders,
sizes, and numbers of subcycles.

If large intra-version cyclic dependencies are not actively reduced in
complexity, they tend to attract merges, and thus grow even larger
over time.

Tool support that regularly checks for cyclic-dependency merges and
growing instances could warn developers in advance before wide span-
ning and tangled smells propagate themselves through the system.

We consider few large cyclic dependencies as more critical than
many small cyclic dependencies that affect the same set of com-
ponents. Larger cyclic dependencies mean that changes propagate
through many more parts of the system with more tangled and com-
plex inter-dependencies between components. Furthermore, resolving
small cyclic dependencies requires removing only a small number of
dependencies—if not a single one, which follows the divide and conquer
principle. We can derive empirical evidence for this from the significant

P. Gnoyke et al.

increase in the number of subcycles in merges: Each subcycle represents
a possible path for change propagation, causing ripple effects. A merge
can easily cause many new subcycles in an unchanged set of affected
components, and thus decreases the components’ maintainability. In-
terestingly, splits do not seem to reduce complexity in the same way
that merges increase it, given their insignificant impact on the number
of subcycles. Also considering that merges occur more often than splits,
we stress that:

Merges and splits do not cancel each other out, which is why developer
intervention is needed to refactor cyclic dependencies and stop their
growth.

5.2. RQ, ,: Cyclic-dependency shapes

Data Analysis. To answer RQ, 5, how the shape of cyclic dependencies
evolves over time, we investigated all transitions between intra-version
cyclic dependencies. For every transition, we queried the following
data:
» the type of transition: pure, merge, or split;
+ the shape of the head vertex (i.e., older intra-version cyclic de-
pendency); and
« the shape of the tail vertex (i.e., younger intra-version cyclic
dependency).

Using this data and depending on the type of transition, as well as the
level of cyclic dependency (i.e., class or package), we determined

» how many transitions occurred from which shape to which shape,

 how likely a particular shape transitions into a particular shape,
and

» how likely a particular shape participates in merges and splits,
both incoming and outgoing.

So, we could identify to what extent shapes transition into each other,
or remain stable throughout the life-cycle of a cyclic dependency.

Results. In Table 6, we summarize the primary results for our analysis
of the shape evolution in cyclic dependencies. Specifically, Table 6 rep-
resents a 1st-order right stochastic matrix per combination of level (i.e.,
class-level and package-level) and transition type (i.e., pure, merge,
and split). This means that every percentage represents the observed
probability of a particular shape (row) transitioning into a particular
shape (column) in the following version of a system. Every row adds
up to 100% (rounding errors may lead to slight deviations). So, Table 6
represents the tabular equivalent to a markov chain (Gagniuc, 2017).
We do not show semi-cliques in Table 6, because we classified only a
single intra-version package-level cyclic dependency as such. It transi-
tioned into a multi-hub in the following version. When referring to “all
shapes” in the following, we therefore do not include semi-cliques.

A large majority of pure transitions did not lead to a change in the
shape of cyclic dependencies. For example, 99% of all class-level tiny
intra-version cyclic dependencies remained tiny in the following ver-
sion. On the package-level, this ratio of cyclic dependencies remaining
in the same shape after pure transitions was slightly lower, with down
to 89% for unknown shapes. If pure package-level transitions did not
result in the same shape, they most often led to a multi-hub, which was
not the case for class-level cyclic dependencies.

When looking at merge transitions, we can see that all package-
level and most (89% or more) class-level transitions lead to multi-hubs.
Merges that did not lead to multi-hubs led to star shapes and two
unknowns (from tiny cyclic dependencies). Class-level multi-hubs that
merged with other cyclic dependencies remained a multi-hub in 99% of
cases. Interestingly, all shapes on the class-level and almost all shapes
on the package-level (except cliques and chains) merged at least once
with an intra-version cyclic dependency of another shape.

15

The Journal of Systems & Software 217 (2024) 112170

The stochastic matrices of split transitions indicate almost the op-
posite compared to merge transitions. Here, only stars, multi-hubs, and
unknowns on the class-level, as well as multi-hubs on the package-
level split into multiple cyclic dependencies in the following version.
On the class-level, 97% of split transitions occurred from a multi-hub.
Meanwhile, splits resulted in a diverse set of shapes. Around a third
of the class-level and half of the package-level split transitions from
multi-hubs resulted in another multi-hub.

To evaluate the likelihood of a specific shape participating in a
merge and/or split, we show their share of merge and split transitions
in Fig. 18. On the class-level, the most likely shape to participate in
merges are cliques, as one eighth of the transitions we observed from
cliques are merge transitions. Since very few cyclic dependencies were
classified as cliques and we only registered a single merge from a clique,
this entry should be considered with caution. Among the remaining
shapes on the class-level, by far the most likely shape to participate
in merges are multi-hubs with ~4% of transitions. On the package-
level, the most likely shape to merge are unknowns with ~5% of
merges stemming from unknown shapes, followed by circles and multi-
hubs. Out of these, only merges from multi-hubs occurred more than
once. At the same time, the only shape with a considerable share of
merge transitions among all incoming transitions, both on the class-
and package-level, are multi-hubs. For instance, more than every tenth
class-level transition into multi-hubs is a merge transition.

About 8% of transitions from class-level multi-hubs are split tran-
sitions, and thus twice as many as merge transitions from multi-hubs.
With 1.5%, transitions from package-level multi-hubs are considerably
less likely to be split transitions. On the class-level, multi-hubs are the
shape with the highest share of split transitions among all of their
incoming transitions (2.5%), followed by stars. In contrast, on the
package-level, 5.6% of transitions to unknowns are split transitions,
followed by circles (both only one data point). Overall, disregarding
the singular clique-merge transition, the shape with the lowest shares
of pure incoming and outgoing transitions on the class-level is the
multi-hub with ~88 and 87%. For the package-level, multi-hubs and
unknowns have comparably low shares (i.e., 95 to 93%) of pure
transitions.

In total, 92 class-level merges (~90% of all class-level merges)
resulted in a multi-hub. Out of those, in ~92% (85) of the cases, at least
one multi-hub was already present before the merge. In other words,
most merges caused an existing multi-hub to grow. On the package-
level, every one of the 15 merges we observed resulted in a multi-hub,
and in all cases a multi-hub was already present. This means that at
least one architecture smell that participated in the merge transition
already had the shape of a multi-hub.

We can perform a similar analysis for splits. On the class-level, 51
splits (~93%) of all class-level splits occurred from a multi-hub. Out
of those, all except one split resulted in at least one multi-hub after
the split. Thus, most splits caused an existing multi-hub to shrink. As
we can see in Table 6, all four package-level splits emerged from a
multi-hub. In three cases, a multi-hub remained after the split.

Discussion. The low shape-change rate during pure transitions we
observed aligns to our intuition: Usually, a considerable change in the
set of components affected by a cyclic dependency or the dependencies
among these components would be required to change the shape of
the smell. If a change leads to the expansion of a cyclic dependency
with additional components, a merge occurs if one of these components
is already affected by a cyclic dependency and no dependencies are
removed. In contrast, removing affected components or dependencies
between components in a cyclic dependency potentially leads to a split.
It requires more detailed (and qualitative) analyses to determine the
reason why class-level cyclic dependencies maintain their shape during
pure transitions more often than package-level cyclic dependencies;

P. Gnoyke et al.

Table 6

The Journal of Systems & Software 217 (2024) 112170

The 1st-order right stochastic matrices for shape transitions of related class-level and package-level cyclic dependencies in adjacent versions in our dataset. Note that we
observed empty transitions zero times, whereas transitions with 0% occurred at least once.

from | class-level cyclic dependencies package-level cyclic dependencies
to — tiny clique circle chain star m.-hub unkn. Total tiny clique circle chain star m.-hub unkn. Total
tiny 99% 1% 0% 0% 0% 0% 10,296 98% 0% 1% 0% 1% 0% 571
clique 100% 7 99% 1% 82
circle 1% 98% 0% 1% 0% 0% 3,734 95% 3% 2% 60
Pure transitions chain 0% 1% 97% 0% 1% 404 93% 7% 29
star 0% 0% 0% 99% 0% 5,144 1% 1% 92% 5% 78
m.-hub 0% 0% 0% 0% 99% 0% 2,913 0% 1% 99% 518
unkn. 2% 1% 97% 274 11% 89% 18
tiny 7% 91% 2% 114 100% 12
clique 100% 1 0
circle 11% 89% 46 100% 2
Merge transitions chain 11% 89% 9 0
star 9% 91% 87 100% 1
m.-hub 1% 99% 129 100% 17
unkn. 100% 4 100% 1
tiny 0 0
clique 0 0
circle 0 0
Split transitions chain 0 0
star 33% 17% 50% 6 0
m.-hub 23% 10% 0% 35% 32% 0% 273 25% 13% 50% 13% 8
unkn. 50% 50% 2 0
(m.-hub = multi-hub, unkn. = unknown, total = number of observed edges in cyclic-dependency evolution graphs).
4% Merge transitions from ... 4% Split transitions from ...
. 12.5% BN class-level
S 12% 1 12% 1 B package-level
s 10% A 10% A
a 8.3%
g 8% - 8%
‘s 6% 1 5.3% 6% 1
% 4% - 3.2% 22 4% 1
G 2% 1 1% 2% 1.2% 22 1.7% 1 39, 1.4% 2% A L5%
0% 0% . . . i 0.1%
114 12 1 46 2 9 87 1 129 17 41 6 273" 8 2
tiny clique circle chain star m.-hub unkn. tiny clique circle chain star m.-hub unkn.
Merge transitions to ... Split transitions to ...
14% 14%
g 12% L05% 12%
s 10% 4 10% A
£
o 8% - 8%
=]
“5 6% - 6% - 5.6%
QO a4y A 4% A
2 29 29 A 1.6% 1.9%
n 0.4% 0.6% 0.49%
0% i i i i T 365 33 2 0% 65 2 29 1 1 99
tiny clique circle chain star m.-hub unkn. tiny clique circle chain star m.-hub unkn.

Fig. 18. Share of outgoing merge and split transitions from cyclic-dependency shapes in relation to their total number of outgoing transitions, as well as the share of incoming
merge and split transitions to cyclic dependency shapes in relation to their total number of incoming transitions. We display the absolute number of observed transitions of each

type below the bars. Note that the provided percentages and absolute numbers refer to the share and number of specific transition types from/to each shape individually. For
instance, the share of 1.1% merge transitions and 0% split transitions from tiny instances implies that 98.9% transitions outgoing from tiny instances were pure. In absolute
numbers: 10,296, as given in Table 6.

RQ, ,: How does the shape of cyclic dependencies change over time?

« The shape of cyclic dependencies remains mostly the same during pure transitions. « Most merge transitions result in multi-hubs and specifically
in the growth of existing multi-hubs involving merges with various other shapes. « Splits usually originate from multi-hubs and result in a smaller
multi-hub plus one or more intra-version cyclic dependencies of various other shapes. « Transitions from and to multi-hubs are particularly likely to

be merge or split transitions compared to other shapes. o

and why only package-level cyclic dependencies tend to change into
multi-hubs during pure transitions. Potential reasons may be different
patterns in introducing dependencies among packages than among
classes during software development.

Merge transitions to tiny cyclic dependencies or split transitions
from them are not possible given that a single component cannot

16

constitute a cyclic dependency, which is why we did not observe
such transitions. Similarly, we did not find merges into a circle or a
circle splitting, which we consider unlikely based on intuition—since
a very specific introduction or removal of dependencies is required
during the transition. The lack of merge and split transitions from and
to cliques can be explained with their low frequency in our dataset.

P. Gnoyke et al.

It appears logical that merges often lead to multi-hubs, given their
polycentric and complex shape. Following this reasoning, their rela-
tively frequent splitting is also comprehensible: Multi-hubs consist of
multiple clusters of components that are only interconnected by a low
number of components and dependencies. As such complex structures
are probably not intentionally designed by developers, refactorings can
lead to rearranging the easily breakable dependencies between the
clusters of components. The fact that chains and unknowns almost
never were the result of merges or the origin of splits seems counter-
intuitive and requires further investigation, given that, for example,
the result of a merge could be complex enough to be classified as an
unknown. Stars almost never being split could be explained by them
being introduced intentionally, as suspected in a related case study on
architecture smell evolution in C++ systems by Sas et al. (2022b).

We regard the finding that merges and splits often constitute the
growth and shrinking of an existing multi-hub that continues to exist
as important. It means that the already complex multi-hub shape tends
to spread to more components, involving an increasing number of sub-
cycles, and adding even more clusters of components to the supercycle.
This underpins our conclusions in Section 5.1 that:

Developers should be aware of cyclic-dependency merges to avoid that
the system quality degrades.

At the same time, as multi-hubs are rarely resolved by splits, cyclic-
dependency splitting often does not result in reduced complexity, even
though it does represent the divide and conquer paradigm.

The study by Sas et al. can also serve as a frame of reference for
our findings, as the authors analyzed how cyclic-dependency shapes
transition into each other as well. Still, there are major differences
in the experimental setup, specifically the dataset (open-source vs.
industrial), the language of the subject systems (Java vs. C++), the
definition of cyclic-dependency instances (supercycle vs. subcycle), the
consideration of cyclic-dependency merges and splits by us, and the
set of detected cyclic-dependency shapes (multi-hubs, semi-cliques, and
unknowns were not included by Sas et al.). In our study, ~96% of
class-level and ~94% of package-level transitions were pure and did
not result in a change of shape. Sas et al. report only a 73% rate
of transitions without shape changes. They found stars and chains to
be especially prone to changes, whereas circles showed the lowest
relative change rate, which is not the case in our results. A possible
explanation for these divergent results is the set of listed differences in
the experimental setup. This is supported by the share of shapes among
the entire cyclic-dependency population reported by Sas et al., which
highly differs from our results. For example, they found 86% circles
in their dataset, while for us, tiny cyclic dependencies were the most
frequent shape with 45% of intra-version smells on the class-level and
42% on the package-level.

5.3. RQy: Architecture-smell properties

Data Analysis. To answer RQ,, how the properties of architecture
smells evolve over time, we examined the distribution of each prop-
erty’s values depending on the age of the corresponding smells. For this
purpose, we used a set of typical quantile values (0.25, 0.50, 0.75, 0.90,
0.95, and 0.98) for every numerical property and every smell age de-
pending on the type of the architecture smell. These values include the
quartile values, which provide an overview of the general trend, as well
as samples for extreme values. The latter enable us to assess whether
extreme values are more prevalent for older smells. Extreme values
are of interest because they usually have a higher relevance for the
technical debt in a system and require more refactoring effort. While
this quantile analysis does not provide information on the evolution of
individual smells and their properties, it provides an overview about
the distribution of a property’s values depending on the age of smells.
We analyzed our data through four different perspectives:

P, smell age assuming that a smell existent in the first version we

cover was introduced in that version.

17

The Journal of Systems & Software 217 (2024) 112170

smell age without considering inter-version smells that are
present in the first version covered in our data.

remaining smell age assuming that every smell still existent in
the last version covered in our data was removed in that version.
remaining smell age without considering inter-version smells
that still exist in the last version in our data.

P,

Specifically, we used perspectives P, and P, to account for the
assumption that the results may be rendered incorrect by including
smells whose actual age and remaining age are unknown. We used per-
spectives P; and P5 to account for all architecture smells in our dataset
and to provide a reasonable estimate about each smell’s evolution until
its (potential) removal. During our analysis, we found that the results
for all four perspectives are highly similar across most properties, which
is why we focus on presenting and discussing them based on P; in
the following. The details of all perspectives are part of our replication
package.!

Results. In Fig. 19, we provide an overview of how the different
properties of class-level cyclic dependencies evolve throughout the
versions in our dataset. We can see that for all measures of complexity
(i.e., order, size, severity score, technical debt, number of subcycles),
the range of values in our dataset increases with a higher smell age.
The lower bound usually remains stable, for instance, the 0.25 quantile
for the order or size, while the upper quantiles become more extreme
over time. Especially the 0.98 quantile increases substantially for the
measures of complexity, usually by an order of magnitude within the
time span we consider. For instance, it increases from 23 to 168 for the
order, from 46 to 456 for the size, and from 21 to 113 for the number
of subcycles. Considering the technical debt, only the extreme quantiles
increase, while lower quantiles even reduce over time. Meanwhile,
the centrality increases slightly over time, the overlap ratio remains
zero for most instances, and the relative number of inheritance edges
remains mostly stable. The absolute number of inheritance edges shows
a similar trend to the size property. Lastly, the share of tiny class-
level cyclic dependencies decreases with an increasing smell age, while
the shares of multi-hubs and stars grows. The number of intra-version
smells that we examined for these results decreases from 1819 with an
age of zero versions to 253 with an age of 27 versions.

We provide equivalent overviews to Fig. 19 for all other types of
architecture smells and perspectives in our replication package. For
package-level cyclic dependencies, we can generally identify similar
patterns to class-level cyclic dependencies. The 0.90, 0.95, and 0.98
quantiles increase over time for the measures of complexity. For the
0.98 quantile from a smell age of zero to 27 versions, this includes
the order rising from 35 to 232, the size from 255 to 1919, and the
number of subcycles from 130 to 1057. These numbers are all higher
than for class-level cyclic dependencies. At the same time, the number
of datapoints (i.e., intra-version smells with particular ages) is lower,
with 93 to 20 in the covered time period. For several properties of
package-level cyclic dependencies, the median increases at first with
an increasing age, while dropping again around an age of 20 versions.
Especially the size overcomplexity is interesting, because the median
newly created instance does not have any excess edges, while this
number rises to more than 50% at an age of nine versions. Unlike for
class-level cyclic dependencies, we identified a decrease in the median
of several properties for higher ages. Moreover, the rise in centrality
at higher quantiles, as well as the increase in the share of multi-hubs
and the decline in the share of tiny shapes, are more pronounced for
package-level cyclic dependencies compared to the class-level.

The evolution of hub-like dependency property quantiles differs
considerably from cyclic dependencies. Most quantiles grow slowly
over time or stagnate, while the relative difference of low to high
quantiles did not increase for most properties. In the measures of
complexity (e.g., the order, size, or severity score), extreme quantiles
like 0.98 remain mostly stable, while lower quantiles like 0.90 and
0.75 grow with an increasing smell age. For example, the order’s 0.75

P. Gnoyke et al.

Order (log)

Size (log)

The Journal of Systems & Software 217 (2024) 112170

Size overcomplexity

———

1 T T T T T T T T 1 T T T T T T T T
0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27
, Severity score (log) Centrality (log)
10
=" N\ //__,__/ —
N L ——— .

d -
10! 4 !

10°

107! T T T T T T T T

Cumulated share of shapes

1.0 1.0
~
N
0.8 - \'f/ ~a 0.8
06 \ /\ 0.6
b e \ LA, . N
04 .. 0.4
02 A T 0.2 4 EEATIny NSNCicle BE==Star BXX3 Semi-Clique
[Clique [Chain S Multi-Hub EEE8 Unknown
0.0 T T T T T T T T 0.0 t ’ , T T ; ; T
0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27
Number of inheritance edges (log) 10 Relative number of inheritance edges Number of intra-version smells
7~ — B
_ - 1800 -+ #Observed intra-version smells
/ 0.8 1600 with the respective age
R 1400 A
—— — vy ~
0y _/ I 1200
T - 1000
I 7 800
......................... 600
................. 400
200 A
1 r r r r r v r r 0.0 T T T T T T T T 0 T T T T T T T T
0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27
Smell age in #versions
— — 0.98 quantile e 0.95 quantile - 0.90 quantile —-— 0.75 quantile -—-- 0.50 quantile = —— 0.25 quantile

Fig. 19. Quantile evolution of class-level cyclic dependency property values.

quantile increases from 81 to 156 in the period we cover, while it
increases from 472 to 1287 for the size. Moreover, hub-like dependen-
cies are the architecture smell type with the least diverse distribution
of size overcomplexities, whose quantiles remain mostly stable and
close to each other. For instance, the two central quartiles remain
entirely within the bounds of 0.75 to 0.9. The centrality of hub-like
dependencies shows a slowly increasing trend, while the overlap ratio
remains stable with a decreasing range between major quantiles. Lastly,
the median hub ratio slightly grows over time, which means that hub
classes slowly shift towards more incoming than outgoing edges. The
number of hub-like dependencies per age that we considered for this
analysis shifts from 158 to 14.

Most property quantiles for unstable dependencies slowly increase
with an increasing smell age—and for most properties the key quan-
tiles show similar trends. For example, the 0.98 quantile of the order
increases from 8 to 20 in the period we cover, while it increases
from 19 to 59 for the size. Median unstable dependencies in our data
never feature excess edges, and thus their size overcomplexity equals
zero, while higher quantiles show increasing to fluctuating trends.
The centrality slightly increases in all quantiles over time, while most
quantiles of the technical debt stagnate or decrease. For any smell age,
most unstable dependencies overlap entirely with other unstable depen-
dencies or package-level cyclic dependencies. Moreover, the DoUD and
the instability-gap median both increase over time in most quantiles.

18

The range of the IQR also increases along the smell age. Eventually, the
number of considered intra-version unstable dependencies decreases
from 885 with an age of zero to 246 with an age of 27 versions.

Discussion. By aggregating all smell instances with the same age to
calculate quantiles, we trade details of individual smells for a more
comprehensive overall understanding of the evolution of architecture-
smell properties. This perspective introduces a possible bias: with an
increasing smell age, the dataset contains fewer instances. For example,
if small smells tend to be removed faster, it may appear that smells
grow over time, even if bigger instances remain unchanged in size
or order. In our previous work (Gnoyke et al., 2021), we observed
increasingly complex class-level cyclic dependencies to persist longer.
Similarly, Sas et al. (2019, 2022b) found through two studies that
around 30 to 50% of cyclic, hub-like, and unstable dependencies remain
rather constant regarding order and size during their lifespan. However,
a considerably higher share of the remaining instances grew over time
as opposed to reduce in order and size. These findings indicate that
our aggregation is feasible, and thus we argue that we can draw
conclusions from the general trends in our results. Moreover, insights
on the distribution of property values depending on the smell age are a
novel and helpful result on their own. The fact that all four perspectives
we outlined yielded similar trends further supports the validity of our

P. Gnoyke et al.

RQ,: How do the properties of architecture smells evolve over time?

The Journal of Systems & Software 217 (2024) 112170

« For cyclic dependencies, extreme values in properties of complexity, such as the order, size, number of subcycles, severity score, or technical debt,
become more prevalent with an increasing smell age. « Hub-like dependencies are the architecture smell type with the least change over time regarding
their properties. « Most properties of unstable dependencies grow slowly over time in most quantiles. For all architecture smell types, the centrality

tends to grow over time. o

results. Given that there is little difference between querying by smell
age since introduction and the remaining smell before removal, we
conclude that:

Architecture-smell instances share common trends as they grow older.

An impending removal seems to be less pivotal on the values of
architecture-smell properties.
We argue that the increasingly extreme upper quantile values that
arise over time for the measures of complexity of cyclic dependencies
are an indication that:

An early identification and targeted removal of smell instances is
critical to keep a system maintainable.

If a large cyclic dependency is not detected or left untreated, it tends
to merge with other instances as we demonstrate in Section 5.1. This
results in a complex tangling with many affected components, edges
between them, and subcycles propagating changes to components.
The growing share of multi-hubs and stars supports our results in
Section 5.2, highlighting increasing complexity in aging smells.

The increasing hub ratio of hub-like dependencies implies that:

Over time, more and more classes reference the hub class, which
undermines the principle of modularity.

A possible explanation is that it may seem easier to developers to
fetch information directly from the hub class instead of introducing a
specialized interface when a new feature is being introduced.

While the absolute quantile values of some unstable dependency
properties are considerably less extreme than for cyclic dependencies,
their increasing trends highlight that:

Also unstable dependencies require a constant monitoring and tar-
geted refactoring.

Otherwise, the change propagation needed becomes stronger over
time—especially given that the measures of instability (degree of un-
stable dependency and instability gap) also tend to increase with the
smell age.

Our conclusions are further supported by the increasing trend in
the centrality of all types of architecture smells. This is caused by a
smell being located more centrally in a system, and thus ripple effects
becoming more likely. Analyzing the evolution of architecture-smell
properties opens several new questions for future work. This includes
finding reasons for specific trends, such as the increasing centrality over
time or why the instability measures in unstable dependencies tend to
become more pronounced.

5.4. RQ3: Compound interest

Data Analysis. To answer RQ3, how architecture smells and technical

debt relate to compound interest, we performed a regression and a cor-

relation analysis. For both, we defined the following six key variables

that we tracked through the evolution of each subject system:

. the total number of architecture smells,

. the technical debt index (TDI),

. the number of components impacted by all smells,

. the total order (i.e., the sum of all smells’ orders),

. the total size (i.e., the sum of all smells’ sizes), and

. the total number of subcycles (i.e., the sum of all cyclic depen-
dencies’ subcycles).

U A WN -

19

In every version, we determined the absolute and a normalized
value for each of these variables. The latter serves as a means for us
to investigate how relative levels of architectural problems evolve over
time. This can be helpful to eliminate a potential bias caused by system
growth, which is likely to cause key variables to increase. Given that
each of the architecture-smell types in our study is defined as a set
of components interacting in a specific way, we normalize values by
dividing the absolute value with the number of components in a version
(i.e., sum of classes or packages).

We chose the above six variables, because they provide insights on
architectural erosion from different points of view. In detail, we expect
that the effort to refactor increases with the number of individual issues
(in this case architecture smells), but also with the overall severity of
the issues, represented by the technical debt index. The more compo-
nents are affected by smells, the easier changes may ripple through a
system. If a component is affected by multiple smells, we expect this
effect to be more distinct, which is represented by the total order. We
can furthermore assume that more connections between components
accelerate the propagation of changes, which the total size accounts
for. Eventually, as we discuss in Section 5.1, each subcycle constitutes
a possible path for ripple effects, which renders their total number an
interesting subject for our analysis.

Regression Analysis. If the metaphor of compound interest applies to
architecture smells and the consequent technical debt, we can assume
the key variables to grow exponentially over time. We tested whether
this is the case using a regression analysis, in which we considered
the progression of time (i.e., the version number) of each system
as the independent variable and the key variables as the dependent
variables. To obtain a more comprehensive overview, we performed
the regression analysis both for the absolute and normalized variables.
Consequently, we analyzed 14 - 6 - 2 = 168 (systems - variables -
absolute/normalized) data series.

For every combination, our null hypothesis is that the dependent
variable does not grow exponentially. To evaluate the hypothesis,
we applied a logarithmic transformation to each dependent variable
and performed a simple linear regression to obtain the regression line’s
gradient. Additionally, we extracted the slope’s p-value and coefficient
of determination i.e., R*>. We selected a minimum R? value of 0.5 as
the first criterion to reject the null hypothesis, as only in this case
the majority of the data’s variance can be explained by exponential
growth (Fahrmeir et al., 2013). Furthermore, only positive slopes mean
that the dependent variable is increasing, marking the second crite-
rion. Additionally, we consider only significant slopes. Given the high
number of hypotheses, a multiple test correction is necessary to control
the number of random null hypothesis rejections. For this purpose, we
employed the Benjamini—-Hochberg method (Benjamini and Hochberg,
1995) and set the false discovery rate (FDR) to 5%. We deemed this
false discovery rate an acceptable compromise of false-positives and
false-negatives, given the various criteria to accept the null hypothesis
in this analysis. We chose this method, as it reduces the number of
false-negatives in comparison to other multiple test correction methods.

Afterwards, we performed a manual validation on the remaining
data series to check whether the actual graphs resemble exponential
growth. For this purpose, we compared the expected values assuming
exponential growth with the actual observations. Cases in which the
data grows over time, but follows a more logarithmic line constitute

P. Gnoyke et al.

linear or polynomial growth because of the initial logarithmic transfor-
mation. Only when we could not observe such patterns, we rejected the
respective null hypothesis, and thus assume exponential growth.

Correlation Analysis. While we tested for the existence of exponential
growth in the regression analysis, we evaluated the existence of a more
general relationship between the severity of existing issues in the code
and the aggravation of issues — be it old or new ones — using a
correlation analysis. This is based on the hypothesis that a high level of
technical debt, as well as high architecture smell quantity and severity,
amplifies the manifestation of new and growth of existing technical
debt and architecture smells. For this analysis, we considered only the
normalized variables, as large systems can be expected to both have a
higher absolute number of issues, as well as a quicker absolute rate of
introducing new issues. Therefore, absolute variables would introduce
a bias towards seemingly high correlations.

Similarly to the regression analysis, we tested for various combi-
nations of variables to obtain a comprehensive understanding of the
data. Specifically, in each combination, the independent variable was
one of the six key variables we defined above. The normalized growth
of one of the six key variables served as the dependent variable (i.e.,
relating each variable to every other variable and itself). To determine
a variable’s growth, we considered the following with respect to each
system version:

» A newly introduced smell — Take the value of the key variable.
» A smell whose key variable grew — Take the delta of the key
variable.

In the case of cyclic-dependency families, we summed up the key
variable over all parallel branches in the same version to determine
the growth. We did not consider smells that have been removed or that
reduced in size in the correlation analysis to account for the effect of
deliberate refactoring, which would reduce the number and severity of
issues.

The simplest method to discover causal effects would be to compare
the independent variable’s value with the dependent variable’s value
in the subsequent version. We realized that doing so would induce a
considerable degree of noise, and thus could result in very few signifi-
cant correlations, since many of our subject systems fluctuated locally
within otherwise clear trends. For smoothing out local fluctuations and
eliminating their effect on the global trend, we employed a low-pass
filter to both the independent and dependent variable. Specifically,
we employed a moving average with binomial weighting, which weights
the central data point of the sampling width the highest (Nixon and
Aguado, 2002). While this causes a certain overlap between two ad-
jacent data points in the correlation analysis, we regard this as an
acceptable trade-off to investigate causalities. We found a sampling
width of seven versions to have the best effect on suppressing local
fluctuations and limiting information loss.

As different systems can be expected to exhibit varying levels of
technical debt as well as architecture smell numbers and severity, we
tested each system individually. Ultimately, we tested 14 - 6 - 6 = 504
(systems - variables - variables) combinations. Our null hypothesis
for every data series is that there is no positive correlation between
the independent and dependent variable. Similarly to the regression
analysis, we performed a Benjamini-Hochberg multiple test correction
based on the correlations’s p-value to account for the high number of
hypothesis tests. We again set the false discovery rate to 5% to avoid
that we miss correlations, given that we are mainly interested in the
aggregated picture and less in individual correlations. As we do not test
for linear correlation, but the presence of a correlation in general, we
decided to use a rank correlation procedure. Specifically, we employed
the rank correlation by Spearman (1904), because of its wide use in
research (Linebach et al., 2014) and related studies (Sas et al., 2019).

Results. Next, we describe the results of our regression and correlation
analysis.

Regression Analysis. Out of the 168 data series for the regression analy-
sis, we observed an R? of least 0.5 in 104 cases. Of these, 85 regression

20

The Journal of Systems & Software 217 (2024) 112170

Table 7
Data series in our regression analysis whose null hypothesis we rejected, thus assuming
exponential growth.

Dependent variable Absolute Normalized

#cases Share #cases Share
#architecture smells 6 43% 0 0%
Technical debt index 6 43% 1 7%
#affected components 8 57% 1 7%
Total order 8 57% 3 21%
Total size 8 57% 1 7%
Total #subcycles 7 50% 4 29%
Mean 7 51% 2 12%

lines showed a positive gradient, which all had a lower p-value than the
Benjamini-Hochberg corrected threshold. Even when lowering the false
discovery rate to, for example, 1%, this was still the case. By examining
the data, we can see that the null hypothesis was only accepted accord-
ing to the multiple hypothesis test in data series with a negative slope
or with low R? values. We eventually accepted exponential growth in
53 cases after our manual validation, which involves 43 absolute and
10 normalized dependent variables. The basis for the manual validation
is part of our replication package.!

We visualize the workflow of our regression analysis in Fig. 20. In
detail, we exemplify three key variable from three different systems
(rows) and show how each is transformed from the original data via
a logarithmic transformation into the validation graph. The first row
illustrates an example for an accepted case of exponential growth,
namely the total number of subcycles per component in the system
Weka. It is one of the few cases, in which the null hypothesis was
rejected with a normalized key variable. When examining the curve
of the original data series, a convex trend can be identified, while the
logarithmically transformed data approximates a linear line. In the sec-
ond row, we show an example (affected components in Azureus) for
a data series that passed the requirements for a positive regression line
gradient (+0.02) and sufficiently high R? (0.58). As its validation graph
is clearly logarithmic, we did not accept exponential growth. Lastly,
the null hypothesis for the technical debt index per component in the
system ANTLR cannot be rejected, because the R? is only 0.2—which
can be seen in the scattering of the individual data points.

We provide a summary about how many null hypotheses we re-
jected for each key variable in Table 7. The share of systems for which
we accepted exponential growth is at least 43% for each absolute
key variable, with a maximum of 57% for the number of affected
components, the total order, and total size. On average, we accepted
exponential growth in half of the subject systems for absolute key
variables. For normalized key variables, the average is only 12%. This
ranges from zero rejected null hypotheses regarding the number of
architecture smells to 29% for the total number of subcycles.

Correlation Analysis. In total, 293 of the 504 data series showed posi-
tive correlations. After employing the Benjamini-Hochberg correction,
we accepted 105 of these as significant positive correlations. These
correlations range from a Spearman coefficient of 0.24 to 1. If we
consider coefficients higher than 0.5 as a strong correlation, 93 data
series exhibit a strong positive correlation. We summarize the results
in Table 8, which contains the share of positive correlations for every
combination of independent and dependent variables. Furthermore, we
provide the mean share for every variable and the entire analysis.
The share of significant positive correlations ranges from 43% for
the normalized number of architecture smells correlating with the
growth of the share of affected components down to 7% for five
correlations of several variables. Four of these correlations constitute
the normalized total number of subcycles as the independent variable.
On average, the normalized total order, size, number of architecture
smells, and number of affected components correlate the most with
the growth of other variables (24%). In contrast, the normalized total

P. Gnoyke et al.

The Journal of Systems & Software 217 (2024) 112170

" Original data Log. transformed data Validation data
Q
g“ °.°~‘ 0.9 ™ 0.9 !
c i ® —U.7 1 o® o Y7 7 o
_g] 0.40 .: ...o % o
2 5 . -1.0 A e > -1.0 A Lo
. .
> o3 4 X .o g . a
© £ ° -1.1 A LYY ® = 11 A . .
oG] ® e ° o~ — .
|9] o'y o * e o/ °
.. @ 030 4% “12 17 B -124 ¥
T Q ’ ee < (1]
5 -13 “13 4
0 10 20 30 0 10 20 30 -13 =12 -1.1 -1.0 -0.9
(%]
]
c 4 i
o5 5000 JJ’-P‘_.-F 8.5 S ™ o |
25] / L F v
3 a 4000 8.0 - IS ”
St e 5 50
=8 3000 - s5] @ g §
%'8) = 7.5 1
L 200 4 @ 2 ?
59 7.0 Q
Sg ¢ T e < 70 - .
<< 1000 A
e S— r —
0 20 40 60 0 20 40 60 70 75 80 85
° o, 5 °
i . -5 = 1 e
_, & 0008 * e g -
g 3
S o006 - o o oo [-
i 000 - -6 4 *»
& g. ®ee -6 * Tee o 6 L
o
=] © =
£ g 0o ve . = .
= o b o 00 -7 A ° 2 °
< g 0002 - . o 27
*
0.000 +— , , = , ; . . .
0 10 20 0 10 20 -7 -6 -5

Version number

Version number

Expected log. value

Fig. 20. Three example data series for our regression analysis.

Table 8

Share of data series in our correlation analysis whose null hypothesis we rejected, for which we thus assume a relationship. All variables are normalized according to the number

of components in the respective version.

Dependent variable, i.e., growth of... Mean
#ASs TDI #aff. comp. Total order Total size Total #subcycles
#architecture smells 29% 14% 43% 21% 21% 14% 24%
Technical debt index 7% 36% 14% 14% 14% 29% 19%
Independ. var. #affected components 14% 14% 36% 29% 21% 29% 24%
pend. var. Total order 21% 14% 29% 29% 29% 21% 24%
Total size 21% 21% 29% 29% 29% 14% 24%
Total #subcycles 7% 21% 14% 7% 7% 7% 11%
Mean 17% 20% 27% 21% 20% 19% 21%

RQ;: How does the evolution of architecture smells and technical debt relate to the metaphor of compound interest?

« On average, absolute key variables on architecture smells and technical debt severity show exponential growth (i.e., compound interest) in half of
the cases, while it is only 12 % for normalized variables. « Out of the latter, we accepted the highest shares of exponential growth for the total order
and total number of subcycles. « High values of normalized key variables relate to higher growth rates of normalized key variables for an average of
21% of dll cases. « The growth of most key variables correlates to a similar degree with the level of various variables. e

number of subcycles is the independent variable with the lowest share
of significant positive correlations (11%). Moreover, the growth of the
share of affected components shows the highest share of significant
positive correlations with independent variables (mean: 27%). With
17% on average, the growth of the normalized number of architecture
smells is the least correlating dependent variable. Overall, 21% of all
series exhibit significant positive correlations.

Discussion. We now discuss the implications we can derive from our
regression and correlation analysis, respectively.

Regression Analysis. The huge difference between the shares of accepted
exponential growth for absolute and normalized variables in the regres-
sion analysis shows that it is important to consider both. Additionally,

21

given the growth of all subject systems (cf. Table 2) in the period
covered in our data, we regard our hypothesis that absolute variables
would often appear to grow exponentially as confirmed. It is because
of the low share of normalized variables showing exponential growth
that:

We cannot confirm that there is a general compound interest effect
on architectural issues in software systems.

This falls in line with our previous work where we analyzed the
general evolution of normalized architecture smell counts and technical
debt levels using descriptive statistics (Gnoyke et al., 2021).

Still, the individual results of the normalized total order and nor-
malized total number of subcycles are interesting, because of their
relatively high shares of null hypothesis rejections. For instance, the
total order can increase in four ways:

P. Gnoyke et al.

1. by new architecture smells emerging in previously unaffected
components,

2. by new architecture smells emerging in already affected compo-
nents (i.e., a new cyclic dependency in addition to an existing
hub-like dependency),

3. by existing architecture smells spreading to previously unaf-
fected components, or

4. by existing architecture smells spreading to already affected
components.

Given that we did not accept exponential growth for the normalized
number of architecture smells in any system, and only one system
exhibited exponential growth for the normalized number of affected
components:

We conclude that existing architecture smells spreading to already
affected components probably contributes the most to a growing total
order.

Having a closer look at the data, we can see that in several systems
the share of packages that are affected by more than one architecture
smell increases over time. This matches our observation in Section 5.3
that especially larger package-level cyclic dependencies and unstable
dependencies tend to grow steadily over time. While there are fewer
packages than classes, the share of architecture smell-affected packages
is higher in most systems than the share of affected classes—balancing
out the overall distribution of architecture smell types. This implies
that:

Package-level architecture smells should not be considered less rele-
vant than class-level architecture smells.

Furthermore, we can conclude that:

Tolerating the presence of architectural issues accelerates both their
own growth and the growth of adjacent architectural issues.

We also consider the comparatively high share of exponential
growth for the normalized total number of subcycles as reasonable,
since few additional edges in the dependency graph of a cyclic de-
pendency smell can cause a considerable increase in the number of
subcycles. In Section 5.1, we established that merges cause signifi-
cant increases in the number of subcycles, while splitting does not
significantly decrease it, which is further supported by our correlation
analysis. Overall, we can see another indicator that:

The evolution of cyclic dependencies should be closely monitored and
the formation of hard-to-refactor tangling should be prevented.

Moreover, we note that the lack of accepting exponential growth for
architectural issues in a system does not imply that they did not grow
at all. Even accelerating polynomial or just a constant linear growth
of issues can present a challenge to developers. As we described above,
more than four in five data series with a low variance (R? > 0.5) exhibit
a regression line with a positive gradient. Ultimately, any exponential
growth can only be sustained for a limited time period. In this case,
if every component was affected by every architecture smell type,
most key variables would reach their maximum possible value. Our
correlation analysis serves as a means to better understand such general
growth patterns in future research.

Correlation Analysis. The correlation analysis indicates that most inde-
pendent variables have similar shares of significant positive correla-
tions. From this, we can conclude that:

Our set of key variables provides a balanced view on architectural
degradation and developers should focus on its entirety.

22

The Journal of Systems & Software 217 (2024) 112170

A possible explanation for the lower share of significant positive
correlations for the normalized total number of subcycles is that it
is cyclic-dependency-specific. In contrast, the other key variables we
investigated are influenced by all architecture smell types. Thus, we
can expect a less general relationship to exist for this variable. Given
our observations in Sections 5.1 and 5.2, this does not indicate that the
total number of subcycles should be ignored though.

The dependent variables’ means are within a confined range, too.
This further affirms that all key variables are relevant to understand
the evolution of a software system’s architectural quality. Moreover, the
“diagonal” in Table 8 is among the highest share of significant positive
correlations for several dependent variables. While this short feedback
loop can be expected, many variables are correlating to a similar degree
with several other variables. We thus infer that:

Degradations in specific parts of a software system tend to affect
wider parts of the system in various ways.

This highlights the importance of regular refactoring.

In summary, we can see a higher share of significant positive
correlations than significant normalized regressions (cf. Table 7). Given
that we are searching for general relationships and not specifically
exponential growth, this is plausible. An initially unintuitive result is
the normalized total number of subcycles, whose share of significant
positive correlations is considerably lower than its share of accepted
exponential growth—even when correlating with its own growth. In
addition to differences in how we measure growth in both cases, when
looking closer at the data, we can see that eight subject systems (57%)
exhibit a positive correlation for the last-mentioned combination. Six
of these have a p-value below 0.14. With a higher false discovery rate,
we would thus have accepted more correlations as significant.

6. Related work

In this section, we summarize related work that concerns the evo-
lution of architecture smells, code smells, other types of smells, as well
as technical debt.

6.1. Evolution of architecture smells

In our own previous work (Gnoyke et al., 2021), we first presented
new conceptual techniques for analyzing the evolution of architecture
smells, including new metrics, the distinction between intra- and inter-
version-smells, as well as sub- and supercycles. For this article, we
based on these techniques and metrics, but expanded their descriptions,
presented more practical examples, novel visualizations for cyclic-
dependency evolution graphs, and conducted a novel empirical study.
Specifically, in our previous work, we asked how the number of ar-
chitecture smells evolves over time, how architecture smells impact
technical debt, and what factors influence the lifespan of architec-
ture smells. We found that the number of architecture smells and
the amount of technical debt remain mostly stable when normalizing
them to the system size, but that architecture smells tend to persist
in a system once they are established. Furthermore, we concluded
that in different systems, different types of architecture smells con-
tribute considerably to the technical debt despite some existing in
small numbers only. In most systems, class-level cyclic dependencies
contributed the most to technical debt. Lastly, we saw that class-level
cyclic dependencies showed longer lifespans if they are more complex
(e.g., higher order, size, number of subcycles). For unstable dependen-
cies, longer lifespans correlated with higher centralities, overlap ratios
and instability gaps, while the other types of architecture smells did
not show clear patterns. So, we mostly focused on analyzing the effect
of architecture smell evolution on the entire system. In contrast, in
this article we studied the evolution of individual smells—especially in
RQ,; and RQ, for which we investigated cyclic-dependency evolution
graphs and how properties of architecture smells evolve over time, and

P. Gnoyke et al.

how different properties of architecture smells correlate with each other
(RQ3). We (Gnoyke et al., 2023) have also reported our experiences of
developing our tool-chain by using existing tools, but this is a different
topic than what we cover in this article.

Sas et al. (2019) have introduced the concept of tracking architec-
ture smells by determining the Jaccard set similarity of component
names in adjacent versions, thereby linking smell instances that we
used and expanded. For cyclic dependencies, they focused on subcycles
and only traced one-dimensional sequences of related intra-version
smells. Sas et al. analyzed cyclic dependencies, hub-like dependencies,
and unstable dependencies in the same Qualitas Corpus dataset of
14 systems and employed a toolchain of Arcan and their own tool
ASTracker. They determined the normalized levels of architecture
smell numbers and measured how the order, size,> and centrality of
each smell evolved over time. For this purpose, they employed trend-
evolution classification, which classified each smell into one of seven
patterns, such as gradual increase or sharp decrease. This is different
from our property-evolution analysis, in which we followed specific
property quantiles along their increasing age and did not just determine
a single label for an entire architecture-smell type. Sas et al. found
the order of especially cyclic dependencies and unstable dependencies
to remain mostly constant, while the size of most smells grew over
time. Cyclic dependencies and hub-like dependencies showed both high
shares of decreasing and increasing trends in the centrality property,
while unstable dependencies mostly became less central. Given our
different methods for analyzing the evolution of smell properties, we
cannot directly relate the results. Nonetheless, we can conclude from
our results that the order and size properties showed mostly similar
trends in their distribution with increasing smell ages. Most centrality
quantiles of all smell types remained either approximately constant or
grew slowly over time,

In a later study Sas et al. (2022b) expanded their study to a dataset
of nine C/C++ industrial closed-source systems and added the god
component as a fourth architecture smell type. The same toolchain with
Arcan and ASTracker was employed, while Arcan was extended to
support the new language. They performed a similar survival analysis
and trend evolution classification (with additional properties) as in the
previous paper. In both publications, cyclic dependencies (especially
on the class-level) were found to exhibit the lowest survival rates. We
argue that this is due to the used definition of cyclic dependencies
as subcycles, which only require a single removed dependency to
be broken. Furthermore, Sas et al. analyzed how frequently different
types of architecture smells co-affect the same components, whether
specific types tend to precedent other types, and how cycle shapes
evolve. They found cyclic dependencies to overlap the most, while
god components overlapped the least. Furthermore, hub centers mostly
were the center of unstable dependencies, which was very rarely the
case vice-versa. Sas et al. concluded that once a cyclic dependency
was introduced, other smells had a high chance to affect (some of) the
same components initially, while hub-like dependencies and unstable
dependencies increased the chance of cyclic dependencies and god
components with increasing ages. In Section 5.2, we elaborate on the
differences between our findings and those of Sas et al.. Lastly, Sas et al.
interviewed 12 developers on the usefulness of architecture-smell anal-
ysis and how smells impact a system’s maintainability and evolvability.
The developers mostly attested that the highly architecture smell-
affected parts of the systems were the most change- and issue-prone,
and that architecture-smell trackers facilitate the exact identification
of components that should be refactored. Commonly stated effects of
architecture smells, namely ripple effects, architectural erosion, bug-
proneness, and organizational challenges during development have also
been confirmed by the interviewees.

5 What we refer to as order is referred to as size by Sas et al., while our
size is referred to as number of edges (cf. Section 3.4).

23

The Journal of Systems & Software 217 (2024) 112170
6.2. Evolution of code smells and design smells

Besides architecture smells, software-engineering researchers have
worked extensively on code smells and their evolution. Li and Shatnawi
(2007) analyzed three releases of the open-source system Eclipse
and studied the relation of reported errors of three different severity
levels to the occurrence of code smells. They focused on six smell types:
(shotgun surgery, god class, god method, data class, refused bequest, feature
envy). They found the former three types to occur more often in error-
prone classes of all severity levels, and thus concluded that such code
smells can serve to identify error-prone classes during development.

Olbrich et al. (2009) studied the evolution of the two open-source
systems Lucene (25 aggregated versions) and Xerces (51 aggregated
versions), regarding code smells that represent a god class or shotgun
surgery. They analyzed the relative smell frequencies over time and
saw alternating sequences of growing, stable, and shrinking trends.
In our previous paper, we observed similar trends for architecture
smells (Gnoyke et al., 2021). Also, the authors studied the change-
proneness of smell-affected classes, which can be an indication of
reduced maintainability. Classes that remained god classes for a pro-
longed time saw both increased change frequency and intensity, while
for shotgun surgery-affected classes only the change frequency in-
creased.

Vaucher et al. (2009) investigated the evolution of god class code
smells in two open-source systems, namely Xerxes (36 versions)
and Eclipse JDT (22 versions). The normalized number of smell
instances remained relatively constant over time. They tracked the
severity of each god class via dynamic-time warping, which showed
that most instances remained constant, while the share of degrading
classes was slightly higher than the share of improving classes. Only
a minority of god classes seem to have been removed during the
observation period. This observation is shared by several related studies
we describe in this section for various smell types, including our own
studies.

Chatzigeorgiou and Manakos (2010, 2013) analyzed the open-
source systems JFlex (10 versions) and JFreeChart (14 versions)
with respect to the number of occurrences and the lifespan of long
method, feature envy, state checking, and god class code smells. They
found that the number of code smells tends to increase, with many
being introduced alongside their class and persisting until the end
of the analyzed timespan. Removed smells were often not linked to
targeted refactorings, indicating that developers did not specifically aim
to remove the smells.

Peters and Zaidman (2012) studied the lifespans of five code smell
types (god class, feature envy, data class, message chain class, long pa-
rameter list class) in three industrial and five open-source systems. They
found that code smells tend to either be removed quickly after their
introduction or become persistent in the system, as the rate of smell
removals declines over time. Smells were often removed as side effects
of maintenance activities or the implementation of new features as
opposed to targeted refactoring.

Tufano et al. (2015) analyzed 200 open-source systems from which
they mined half a million commits and manually examined 9164. They
studied when and why the code smell types blob class, class data should
be private, complex class, functional decomposition, and spaghetti code
were introduced. The conclusions include that most classes are smell-
affected since their creation, that smells are mostly introduced while
implementing and enhancing features but also many times during refac-
toring activities, and that developers with high workloads and release
pressure tend to introduce a lot of smells rather than newcomers.

Tahmid et al. (2016) studied the evolution of smell clusters of five
code smell types (god class, long method, feature envy, type checking)
in 10 releases of the open-source system JUnit. They found that
the number of smell clusters (i.e., smells in the same or adjacent
classes and methods) increased over time. Meanwhile, a rising share
of smells was located in the same mega-cluster, as clusters merged

P. Gnoyke et al.

and the mega-cluster affected new components. On average over all
versions, the mega-cluster encompassed more than two thirds of all
smell-affected components. This bears similarity to how we found some
cyclic dependencies to merge with each other, eventually spanning
wide parts of their system. Similarly, Johannes et al. (2019) studied
12 types of code smells in 15 open-source JavaScript systems with a
total of 1807 releases. They found that clean components exhibited
about one third less faults than smell-affected components. Similar to
the previous studies, code smells were often introduced alongside their
components and persisted for a considerable time.

Habchi et al. (2019) researched eight Android-specific code-smell
types in 255 thousand commits of 324 open-source Android apps. They
found that some code smells remained in the code for years, while most
code smells were removed after a few dozen commits. The removal
rate was found to be higher for larger systems with more commits,
developers, and classes. Moreover, Habchi et al. concluded that, on
average, the code smell types that are detected by the static code
analysis tool Android Lint were removed faster. Habchi et al. (2021)
later extended the study by interviewing 25 Android developers and
manually analyzing 561 smell-removing commits. They did not find
that release pressure has an influence on the frequency of code smell
introductions and removals. Code-smell removals were found to be
mostly caused by large source-code removals, while refactoring was the
cause in a minority of cases. Also, developers’ awareness for particular
smells rarely led to the smells’ removal.

Rio and Brito e Abreu (2020) investigated patterns in the survival
of six code-smell types (long method, god class, long parameter list,
deep inheritance, high coupling, high number of children) in eight open-
source PHP server-side web apps with 622 versions in total. They
differentiated between localized code smells and scattered code smells,
with the former being on a method or class scope and the latter
affecting larger parts of the system (i.e., smelly inheritance structures).
Scattered code smells were found to persist longer, but also introduced
less frequently. Eventually, 60% of the observed smells were removed,
while some persisted for the entire observed time period. The authors
could not conclude that increasing the awareness of smells led to
generally reduced survival rates.

Muse et al. (2020) analyzed 19 code-smell types and four SQL
smell-types in 150 open-source data-intensive systems with a total of
1648 versions. They found that SQL smells are prevalent in the sub-
ject systems and only weakly co-occur with conventional code smells.
Moreover, SQL-smell-affected components were less error-prone than
code smell-affected components. Lastly, SQL smells were more often
introduced alongside their component than code smells and usually
remained untouched for the observation period.

Aversano et al. (2020b,a) studied the evolution of 16 design-smell
types in 17,252 commits of eight open-source systems. Design smells
can be categorized on a level of abstraction between code smells and
architecture smells, with some overlaps in the set of considered smell
types—in this case, cyclic dependencies and hub-like dependencies
were included. The researchers found that smell-affected classes were
more change-prone, especially when multiple smells were present in
the same class. They concluded that smell removals were usually not
linked to refactoring activities and that smell removals often constitute
multiple smells at once.

Overall, code-smell research is an active and ongoing area, with
various studies aiming to provide a better understanding of code-smell
evolution. In contrast to such research, we are focusing on architecture
smells, which represent software issues on a different layer of abstrac-
tion. Still, there are some overlaps regarding the methods used and
findings obtained. This is not surprising and rather underpins that our
results are reasonable, which also extend and complement the current
state-of-the-art knowledge.

24

The Journal of Systems & Software 217 (2024) 112170
6.3. Evolution of test smells

Another type of smells that has been researched in recent years are
test smells that indicate poorly designed software tests. We focus on
a different kind of smells. Still, the methodologies employed and the
findings provide interesting insights for architecture smells as well, and
can serve to guide future research in this direction, too.

For instance, Tufano et al. (2016) performed a case study on five
types of test smells in the open-source Apache and Eclipse ecosys-
tems with a total of 190 systems and 472,116 commits. They found that
test smells are mostly introduced alongside their test code and remain
in the systems for a long time—which is similar to findings on code
and architecture smells. The authors interviewed 19 developers and
found that the interviewees did not perceive test smells as problematic.
Moreover, Tufano et al. checked for relations between test smells and
five types of code smells, which revealed that the presence of specific
test smells often correlated with specific code smells.

Qusef et al. (2019) analyzed the evolution of 11 test-smell types in
28 versions of the open-source system Apache Ant. While the system
grew, more test smells were observed. However, the relative level only
increased very slightly with fluctuations. Several types of test smells
were found to correlate with faults in production code. Similarly, Kim
(2020) studied how 19 test-smell types evolved in seven open-source
systems and manually analyzed commit messages in 50 commits. He
found that, over time, twice as many test smells were introduced as
removed. Most smell removals were linked to removing the affected
code.

Later, Kim et al. (2021) performed a study on 18 test-smell types
in 12 open-source systems with 102 versions in total. The researchers
observed that the absolute number of test smells increased, while their
relative density decreased over time. Again, most test-smell removals
could be linked to inadvertent by-products of feature maintenance,
while almost half of the removed test smells were found to be migrating
to other test cases because of refactoring. Only a small share of test-
smell removals was deliberate and concentrated on particular types of
test smells.

6.4. Evolution of technical debt

Lastly, technical debt has been used in research as a common
metaphor for software and systems problems stemming from postponed
or sub-optimal design decisions.

Bavota and Russo (2016) studied the evolution of self-admitted
technical debt in 159 open-source systems with over 600 thousand
commits in total. They found that the absolute amount of technical debt
increases over time alongside system growth, and that the lifespan of
technical-debt artifacts is relatively long with over 1000 commits on
average. Digkas et al. (2020), in turn, performed a study on 27 open-
source systems in the Apache ecosystem with around 57 thousand
commits. The authors analyzed how clean code commits can influence
the density of technical debt. They observed that most revisions had a
higher quality than existing code and that clean code commits strongly
correlated with reducing the overall technical debt density. By analyz-
ing meeting minutes, they found that frequently discussing code quality
in board meetings led to more clean code commits.

In a related study, Digkas et al. (2017) studied 66 open-source
systems in the Apache ecosystem with between 127 and 767 weekly
snapshots each. The absolute amount of technical debt increased in
the subject systems, while the relative density decreased over time in
most systems. A majority of technical debt could be linked to a few
specific issue types like duplicated code. Similarly, Amanatidis et al.
(2017) analyzed 1564 versions of 10 open-source PHP web-application
systems regarding how technical debt density in components relates
to the frequency and intensity of corrective maintenance, which is a
typical example of technical debt interest “payments.” They confirmed
a correlation in both cases.

P. Gnoyke et al.

Molnar and Motogna (2020) studied the evolution of technical debt
in 110 versions of three Java open-source systems. They also found
that most technical debt was caused by a small number of issue types.
Technical debt fluctuated in early versions and was later mostly intro-
duced during feature-expanding releases. The authors found technical
debt reductions in versions with high refactoring activities.

Martini and Bosch (2015, 2017) focused on a related concept to
compound interest in technical debt: contagious debt. It represents prob-
lematic parts of a system that spread to other components, risking an
accelerating technical-debt growth. The authors performed a qualita-
tive study by interviewing developers in five (later six) companies,
identifying architectural technical debt items and understanding their
causes as well as consequences. Using this input, they categorized
sources of technical debt and mechanisms of contagious debt. Martini
and Bosch concluded that the studied contagious debt did result in
a compound effect. Our study is different to theirs by focusing on
quantitative patterns.

7. Threats to validity

We summarize threats to validity of our study in the following. We
hereby distinguish between construct, external, and internal validity.

7.1. Construct validity

We aimed to measure various aspects regarding the evolution of
architecture smells. As a consequence, there are several factors that
may threaten the construct validity of our work. The detected intra-
version smell instances may not be complete or may represent uncritical
false-positive instances. By employing the validated tool Arcan, which
has been used in many case studies and received practitioners’ feed-
back (Arcelli Fontana et al., 2016a; Martini et al., 2018; Sas et al., 2019,
2022b), we aimed to mitigate this threat. Also, all architecture smell
types we analyzed and the software design principles they violate have
been well-studied. We validated all of our modifications to Arcan and
checked that our tools still produced the expected results. Furthermore,
the matching of related intra-version smells could represent a threat
to the construct validity. By performing unit tests and examining the
tracking results of real systems, we made sure that our toolchain
did not deviate from our concepts. One specific risk is the renaming
of many components at once, which leads to false-negative tracking
results, introducing seemingly high smell removal and introduction
rates in the same version, as well as reducing observed smell lifespans.
Solving this issue systematically (cf. Section 8) remains a future work,
but we concluded that such events were rare enough in our dataset
to not considerably deteriorate the results. Lastly, regarding RQs, as
compound interest in technical debt and software degradation is a
broad field, no set of studied variables is likely to fully quantify the
real world. We mitigated this issue by including a wide range of depen-
dent and independent variables, so that, in aggregation, we can draw
conclusions on our research question. Moreover, in financial debt, the
principal amount, interest, and compound interest can all be quantified
in the same unit of account. However, in technical debt, while the
principal represents problematic system design, the interest stands for
many (organizational) effects that go beyond the system. Thus, just
considering increased technical debt as the compound interest is not a
holistic view. This study is not meant to provide a definitive answer on
the topic, but rather represent an increment to a better understanding
and inspire further research.

7.2. External validity

Several external threats arise to the generalizability of this study
to similar contexts. Different architecture smell types may evolve in
different manners. However, as we mostly focused on particularities
of our set of architecture smell types—especially cyclic dependencies,

25

The Journal of Systems & Software 217 (2024) 112170

the need to generalize the observed evolution patterns is debatable.
Our most general question RQ4 aggregates data from all studied smell
types, which is why we assume that adding further smell types to the
analysis would not alter the results considerably. Furthermore, the set
of selected subject systems could represent a barrier for generalizing the
results. While they all represent open-source Java systems, they stem
from diverse domains, were developed by diverse development teams,
and span many versions as well as long development periods. This way,
we aimed to mitigate this threat.

7.3. Internal validity

Since we answered RQ; and RQ, via qualitative analyses, we do
no discuss internal validity for these. However, for RQ3, the ques-
tion arises whether the studied relationships in the correlation and
regression analysis are trustworthy and not determined by factors we
did not consider. A threat to determining whether we can observe
the exponential growth of technical debt is an exponentially growing
system size, which we mitigated by including normalized variables in
our analysis. As we studied many combinations of variables to increase
construct validity, we risk observing significant trends at random. We
dealt with this threat by applying the Benjamini-Hochberg multiple test
correction and by being strict about accepting a scenario as significant,
for example, by applying manual validations.

8. Conclusion

In this article, we advanced techniques for studying the evolution
patterns of architecture smells and conducted an empirical study based
on these techniques. With our empirical case study, we, first, aimed
to understand the merging and splitting of cyclic dependencies, as
well as how their shape (i.e., topology) evolves over time. Second, we
analyzed how properties of architecture smells in general change as
they manifest and evolve in a system. Lastly, we studied how the evo-
lution of architecture smells and technical debt relate to the metaphor
of compound interest (i.e., exponential growth). For this purpose, we
explored 485 releases of 14 open-source Java systems, ranging up to
14 years of evolution per system and up to 485 thousand lines of
code per version. We determined the set of intra-version smells and an
extensive range of metrics in every version using a modification of the
tool Arcan. We then used our own tool ASTAEA to trace architecture
smells through time and to identify inter-version smells.

In summary, we found that cyclic-dependency merges contribute
to the manifestation of very complex and hard to refactor cyclic de-
pendencies, while splits occur less frequently and do not significantly
reduce the number of subcycles—which is an indicator of proneness
to change propagation in tangled cyclic dependencies. Our results on
how cyclic-dependency shapes evolve support these findings: merges
mostly result in the creation or growth of existing complex multi-
hub cyclic dependencies, while splits often represent few components
breaking away from a multi-hub without resolving the actual smell.
Using our technique for visualizing inter-version cyclic dependencies
as cyclic-dependency evolution graphs facilitates retracing such phe-
nomena. Furthermore, we found complex cyclic dependencies to be-
come even more complex as they age, while most unstable dependen-
cies slowly grow over time, and hub-like dependencies mostly remain
stable. Lastly, when looking at absolute (i.e., non-normalized) key
variables of architecture-smell and technical-debt impact on software
systems, we could accept exponential growth in half of the cases.
Meanwhile, when normalizing said variables according to the size of
the respective system version, only a minority of data series showed
exponential growth. The latter also applied when observing how the
severity of existing issues correlates to the growth of key variables.
Overall, our results can help practitioners understand how complex
architecture smells manifest themselves in their software systems. This
eases coming to an informed decision where and when to efficiently

P. Gnoyke et al.

perform refactoring for avoiding such complexity from becoming un-
manageable. For researchers, our contributions shed new light into
the evolution of architecture smells, confirm but also question some
established findings, and provide an advanced tool-base for future
explorations.

As future work, we intend to transform our research methods and
visualizations into new tool support for productive systems and col-
lect feedback from developers along the way. Moreover, we want
to improve the scalability of the tools’ performance for large soft-
ware systems. For this purpose, we aim to develop and implement
concepts for detecting architecture smell-relevant differences between
adjacent versions, so that repeated and redundant graph traversals can
be avoided. Lastly, we intend to systematically analyze the accuracy
of smell tracking to identify and implement potential improvements.
For example, this could include introducing code-clone detection tech-
niques between adjacent versions to determine the identity of two
components instead of a mere name comparison. While this study
focused more on cyclic dependencies than on hub-like dependencies
and unstable dependencies, we intend to expand the knowledge on
their evolution by analyzing how splits and mergings of their central
components due to refactorings such as extract package or inline class
relate to patterns in their introduction, lifespan, growth, and removal.

CRediT authorship contribution statement

Philipp Gnoyke: Writing — review & editing, Writing — original
draft, Visualization, Validation, Resources, Methodology, Investigation,
Data curation, Conceptualization. Sandro Schulze: Writing — review
& editing, Validation, Methodology, Investigation, Conceptualization.
Jacob Kriiger: Writing — review & editing, Validation, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.

References

Ahmed, 1., Mannan, U.A., Gopinath, R., Jensen, C., 2015. An empirical study of design
degradation: How software projects get worse over time. In: Proceedings of the
International Symposium on Empirical Software Engineering and Measurement.
ESEM, IEEE.

Al-Mutawa, H.A., Dietrich, J., Marsland, S., McCartin, C., 2014. On the shape of
circular dependencies in Java programs. In: Proceedings of the Australian Software
Engineering Conference. ASWEC, IEEE, pp. 48-57.

Allman, E., 2012. Managing technical debt. Commun. ACM 55 (5), 50-55.

Alves, N.S.R., Mendes, T.S., de Mendonca Neto, M.G., Spinola, R.O., Shull, F., Sea-
man, C.B., 2016. Identification and management of technical debt: A systematic
mapping study. Inf. Softw. Technol. 70, 100-121.

Amanatidis, T., Chatzigeorgiou, A., Ampatzoglou, A., 2017. The relation between
technical debt and corrective maintenance in php web applications. Inf. Softw.
Technol. 90, 70-74.

Amanatidis, T., Mittas, N., Moschou, A., Chatzigeorgiou, A., Ampatzoglou, A., Ange-
lis, L., 2020. Evaluating the agreement among technical debt measurement tools:
Building an empirical benchmark of technical debt liabilities. Empir. Softw. Eng.
25 (5), 4161-4204.

Arcelli Fontana, F., Camilli, M., Rendina, D., Taraboi, A.G., Trubiani, C., 2023.
Impact of architectural smells on software performance: an exploratory study.
In: Proceedings of the International Conference on Evaluation and Assessment on
Software Engineering. EASE, IEEE, pp. 22-31.

Arcelli Fontana, F., Lenarduzzi, V., Roveda, R., Taibi, D., 2019. Are architectural smells
independent from code smells? An empirical study. J. Syst. Softw. 154, 139-156.

Arcelli Fontana, F., Pigazzini, 1., Roveda, R., Tamburri, D.A., Zanoni, M., Di Nitto, E.,
2017. Arcan: A tool for architectural smells detection. In: Proceedings of the
International Conference on Software Architecture. ICSA, IEEE.

26

The Journal of Systems & Software 217 (2024) 112170

Arcelli Fontana, F., Pigazzini, 1., Roveda, R., Zanoni, M., 2016a. Automatic detection
of instability architectural smells. In: Proceedings of the International Conference
on Software Maintenance and Evolution. ICSME, IEEE, pp. 433-437.

Arcelli Fontana, F., Roveda, R., Zanoni, M., 2016b. Technical debt indexes provided by
tools: A preliminary discussion. In: Proceedings of the International Workshop on
Managing Technical Debt. MTD, IEEE, pp. 28-31.

Aversano, L., Bernardi, M.L., Cimitile, M., lammarino, M., Romanyuk, K., 2020a.
Investigating on the relationships between design smells removals and refactorings.
In: Proceedings of the International Conference on Software Technologies. ICSOFT,
Scite Press, pp. 212-219.

Aversano, L., Carpenito, U., lammarino, M., 2020b. An empirical study on the evolution
of design smells. Information 11 (7), 348.

Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.B., 2016. Managing technical debt in
software engineering. Dagstuhl Rep. 6 (4), 110-138.

Azadi, U., Arcelli Fontana, F., Taibi, D., 2019. Architectural smells detected by tools:
A catalogue proposal. In: Proceedings of the International Conference on Technical
Debt. TechDebt, IEEE, pp. 88-97.

Bass, L., Clements, P., Kazman, R., 2013. Software Architecture in Practice, third ed.
Addison-Wesley.

Bavota, G., Russo, B., 2016. A large-scale empirical study on self-admitted techni-
cal debt. In: Proceedings of the International Conference on Mining Software
Repositories. MSR, ACM, pp. 315-326.

Belady, L.A., Lehman, M.M., 1976. A model of large program development. IBM Syst.
J. 15 (3), 225-252.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 (1), 289-300.
Besker, T., Martini, A., Bosch, J., 2018. Technical debt cripples software developer
productivity. In: Proceedings of the International Conference on Technical Debt.

TechDebt, pp. 105-114.

Besker, T., Martini, A., Bosch, J., 2019. Software developer productivity loss due
to technical debt: A replication and extension study examining developer’s
development work. J. Syst. Softw. 156 (10), 41-61.

Cairo, A.S., de F. Carneiro, G., Monteiro, M.P., 2018. The impact of code smells on
software bugs: A systematic literature review. Information 9 (11).

Cass, S., 2014. Top 10 programming languages: Spectrum’s 2014 ranking. https://
spectrum.ieee.org/top-10-programming-languages.

Cass, S., 2015. The 2015 top programming languages. https://spectrum.ieee.org/the-
2015-top- ten-programming-languages.

Cass, S., 2016. The 2016 top programming languages.
2016-top-programming-languages.

Cass, S., 2017. The 2017 top programming languages.
2017-top-programming-languages.

Cass, S., 2018. The 2018 top programming languages.
2018-top-programming-languages.

Cass, S., 2019. The top programming languages 2019.
top-programming-languages-2019.

Cass, S., 2020. Top programming languages 2020.
programming-language-2020.

Cass, S., 2021. Top programming languages 2021.
programming-languages-2021.

Cass, S., 2022. Top programming languages 2022.
programming-languages-2022.

Cass, S., 2023. The top programming languages 2023.
top-programming-languages-2023.

Chatzigeorgiou, A., Manakos, A., 2010. Investigating the evolution of bad smells in
object-oriented code. In: Proceedings of the International Conference on the Quality
of Information and Communications Technology. QUATIC, IEEE, pp. 106-115.

Chatzigeorgiou, A., Manakos, A., 2013. Investigating the evolution of code smells in
object-oriented systems. Innov. Syst. Softw. Eng. 10 (1), 3-18.

Cunningham, W., 1992. The WyCash portfolio management system. In: Proceedings
of the Conference on Object-Oriented Programming, Systems, Languages and
Applications, Vol. 4, No. 2. OOPSLA, pp. 29-30.

Curtis, B., Sappidi, J., Szynkarski, A., 2012. Estimating the principal of an application’s
technical debt. IEEE Softw. 29 (6), 34-42.

Das, D., Maruf, A.A., Islam, R., Lambaria, N., Kim, S., Abdelfattah, A.S., Cerny, T.,
Frajtak, K., Bures, M., Tisnovsky, P., 2022. Technical debt resulting from archi-
tectural degradation and code smells: A systematic mapping study. ACM SIGAPP
Appl. Comput. Rev. 21 (4), 20-36.

Diaz-Pace, J.A., Tommasel, A., Godoy, D., 2018. Towards anticipation of architectural
smells using link prediction techniques. In: Proceedings of the Working Conference
on Source Code Manipulation and Analysis. SCAM, IEEE, pp. 62-71.

Digkas, G., Chatzigeorgiou, A., Ampatzoglou, A., Avgeriou, P., 2020. Can clean
new code reduce technical debt density? IEEE Trans. Softw. Eng. (TSE) 48 (5),
1705-1721.

Digkas, G., Lungu, M., Chatzigeorgiou, A., Avgeriou, P., 2017. The evolution of
technical debt in the apache ecosystem. In: Proceedings of the European Conference
on Software Architecture. ECSA, Springer, pp. 51-66.

Fahrmeir, L., Kneib, T., Lang, S., Marx, B., 2013. Regression: Models, Methods and
Applications, first ed.

Fowler, M., 2006. CodeSmell. https://martinfowler.com/bliki/CodeSmell.html.

https://spectrum.ieee.org/the-
https://spectrum.ieee.org/the-
https://spectrum.ieee.org/the-
https://spectrum.ieee.org/the-
https://spectrum.ieee.org/top-
https://spectrum.ieee.org/top-
https://spectrum.ieee.org/top-

https://spectrum.ieee.org/the-

http://refhub.elsevier.com/S0164-1212(24)00215-2/sb1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb2
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb2
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb2
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb2
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb2
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb3
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb4
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb4
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb4
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb4
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb4
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb5
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb5
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb5
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb5
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb5
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb6
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb6
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb6
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb6
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb6
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb6
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb6
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb7
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb7
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb7
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb7
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb7
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb7
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb7
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb8
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb8
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb8
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb9
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb9
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb9
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb9
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb9
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb10
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb10
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb10
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb10
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb10
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb11
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb11
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb11
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb11
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb11
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb12
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb12
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb12
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb12
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb12
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb12
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb12
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb13
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb13
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb13
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb14
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb14
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb14
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb15
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb15
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb15
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb15
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb15
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb16
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb16
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb16
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb17
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb17
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb17
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb17
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb17
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb18
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb18
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb18
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb19
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb19
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb19
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb20
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb20
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb20
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb20
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb20
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb21
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb21
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb21
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb21
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb21
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb22
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb22
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb22
https://spectrum.ieee.org/top-10-programming-languages
https://spectrum.ieee.org/top-10-programming-languages
https://spectrum.ieee.org/top-10-programming-languages
https://spectrum.ieee.org/the-2015-top-ten-programming-languages
https://spectrum.ieee.org/the-2015-top-ten-programming-languages
https://spectrum.ieee.org/the-2015-top-ten-programming-languages
https://spectrum.ieee.org/the-2016-top-programming-languages
https://spectrum.ieee.org/the-2016-top-programming-languages
https://spectrum.ieee.org/the-2016-top-programming-languages
https://spectrum.ieee.org/the-2017-top-programming-languages
https://spectrum.ieee.org/the-2017-top-programming-languages
https://spectrum.ieee.org/the-2017-top-programming-languages
https://spectrum.ieee.org/the-2018-top-programming-languages
https://spectrum.ieee.org/the-2018-top-programming-languages
https://spectrum.ieee.org/the-2018-top-programming-languages
https://spectrum.ieee.org/the-top-programming-languages-2019
https://spectrum.ieee.org/the-top-programming-languages-2019
https://spectrum.ieee.org/the-top-programming-languages-2019
https://spectrum.ieee.org/top-programming-language-2020
https://spectrum.ieee.org/top-programming-language-2020
https://spectrum.ieee.org/top-programming-language-2020
https://spectrum.ieee.org/top-programming-languages-2021
https://spectrum.ieee.org/top-programming-languages-2021
https://spectrum.ieee.org/top-programming-languages-2021
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/the-top-programming-languages-2023
https://spectrum.ieee.org/the-top-programming-languages-2023
https://spectrum.ieee.org/the-top-programming-languages-2023
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb33
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb33
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb33
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb33
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb33
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb34
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb34
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb34
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb35
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb35
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb35
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb35
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb35
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb36
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb36
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb36
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb37
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb37
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb37
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb37
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb37
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb37
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb37
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb38
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb38
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb38
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb38
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb38
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb39
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb39
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb39
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb39
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb39
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb40
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb40
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb40
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb40
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb40
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb41
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb41
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb41
https://martinfowler.com/bliki/CodeSmell.html

P. Gnoyke et al.

Fowler, M., 2009. TechnicalDebtQuadrant.
TechnicalDebtQuadrant.html.

Fowler, M., 2019. Refactoring: Improving the Design of Existing Code, second ed.
Addison-Wesley.

Gagniuc, P.A., 2017. Markov Chains:
Experimentation, first ed.

Garcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009a. Identifying architectural
bad smells. In: Proceedings of the European Conference on Software Maintenance
and Reengineering. CSMR, IEEE, pp. 255-258.

Garcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009b. Toward a catalogue of
architectural bad smells. In: Proceedings of the International Conference on the
Quality of Software Architectures. QoSA, Springer, pp. 146-162.

Gnoyke, P., Schulze, S., Kriiger, J., 2021. An evolutionary analysis of software-
architecture smells. In: Proceedings of the International Conference on Software
Maintenance and Evolution. ICSME, IEEE, pp. 413-424.

Gnoyke, P., Schulze, S., Kriiger, J., 2023. On developing and improving tools for
architecture-smell tracking in java systems. In: Proceedings of the Working
Conference on Source Code Manipulation and Analysis. SCAM, IEEE.

Gorton, 1., 2011. Essential Software Architecture, second ed. Springer.

Gross, J.L., Yellen, J., Zhang, P., 2013. Handbook of Graph Theory, second ed. CRC
Press.

Habchi, S., Moha, N., Rouvoy, R., 2021. Android code smells: From introduction to
refactoring. J. Syst. Softw. 177 (7).

Habchi, S., Rouvoy, R., Moha, N., 2019. On the survival of android code smells
in the wild. In: Proceedings of the International Conference on Mobile Software
Engineering and Systems. MOBILESoft, IEEE, pp. 87-98.

Herold, S., 2020. An initial study on the association between architectural smells and
degradation. In: Proceedings of the European Conference on Software Architecture.
ECSA, Springer, pp. 193-201.

ISO/IEC 25010:2011(E), 2011. Systems and Software Engineering — Systems and
Software Quality Requirements and Evaluation (SQuaRE) - System and Software
Quality Models. Standard, International Organization for Standardization.

Izurieta, C., Bieman, J.M., 2007. How software designs decay: A pilot study of pattern
evolution. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement. ESEM, IEEE, pp. 449-451.

Johannes, D., Khomh, F., Antoniol, G., 2019. A large-scale empirical study of code
smells in JavaScript projects. Softw. Qual. J. 27 (3), 1271-1314.

Karus, S., Gall, H.C., 2011. A study of language usage evolution in open source software.
In: Proceedings of the International Conference on Mining Software Repositories.
MSR, ACM, pp. 13-22.

Khombh, F., Di Penta, M., Guéhéneuc, Y., 2009. An exploratory study of the impact
of code smells on software change-proneness. In: Proceedings of the Working
Conference on Reverse Engineering. WCRE, IEEE, pp. 75-84.

Kim, D.J., 2020. An empirical study on the evolution of test smell. In: Companion
Proceedings of the International Conference on Software Engineering. ICSE, ACM,
pp. 149-151.

Kim, D.J., Chen, T.-H., Yang, J., 2021. The secret life of test smells — an empirical
study on test smell evolution and maintenance. Empir. Softw. Eng. 26 (5).

Kruchten, P., Nord, R.L., Ozkaya, 1., 2012. Technical debt: From metaphor to theory
and practice. IEEE Softw. 29 (6), 18-21.

Lacerda, G., Petrillo, F., Pimenta, M., Guéhéneuc, Y.-G., 2020. Code smells and
refactoring: A tertiary systematic review of challenges and observations. J. Syst.
Softw. 167 (9).

Laval, J., Falleri, J., Vismara, P., Ducasse, S., 2012. Efficient retrieval and ranking
of undesired package cycles in large software systems. J. Object Technol. 11 (1),
260-275.

Le, D.M., Medvidovic, N., 2016. Architectural-based speculative analysis to predict bugs
in a software system. In: Proceedings of the International Conference on Software
Engineering. ICSE, ACM, pp. 807-810.

Letouzey, J., 2012. The SQALE method for evaluating technical debt. In: Proceedings of
the International Workshop on Managing Technical Debt. MTD, IEEE, pp. 31-36.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101 (3), 193-220.

Li, W., Shatnawi, R., 2007. An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution. J. Syst. Softw. 80,
1120-1128.

Linebach, J.A., Tesch, B.P., Kovacsiss, L.M., 2014. Nonparametric Statistics for Applied
Research, first ed. Springer.

Lippert, M., Roock, S., 2006. Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully, first ed. Wiley.

Macia, 1., Arcoverde, R., Garcia, A., Chavez, C., von Staa, A., 2012. On the relevance of
code anomalies for identifying architecture degradation symptoms. In: Proceedings
of the European Conference on Software Maintenance and Reengineering. CSMR,
IEEE, pp. 277-286.

Martin, R.C., 1994. OO design quality metrics: An analysis of dependencies.

Martin, R.C., 2000. Design principles and design patterns. http://staff.cs.utu.fi/staff/
jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf.

Martini, A., Arcelli Fontana, F., Biaggi, A., Roveda, R., 2018. Identifying and prioritizing
architectural debt through architectural smells: A case study in a large software
company. In: Proceedings of the European Conference on Software Architecture.
ECSA, Springer, pp. 320-335.

https://martinfowler.com/bliki/

From Theory to Implementation and

27

The Journal of Systems & Software 217 (2024) 112170

Martini, A., Bosch, J., 2015. The danger of architectural technical debt: Contagious
debt and vicious circles. In: Proceedings of the Working Conference on Software
Architecture. WICSA, IEEE, pp. 1-10.

Martini, A., Bosch, J., 2017. On the interest of architectural technical debt: Uncovering
the contagious debt phenomenon. J. Softw.: Evol. Process 29 (10).

Melton, H., Tempero, E.D., 2007. An empirical study of cycles among classes in Java.
Empir. Softw. Eng. 12 (4), 389-415.

Meyer, B., 1997. Object-Oriented Software Construction, second ed. Prentice Hall.

Mo, R., Cai, Y., Kazman, R., Xiao, L., 2015. Hotspot patterns: The formal definition
and automatic detection of architecture smells. In: Proceedings of the Working
Conference on Software Architecture. WICSA, IEEE, pp. 51-60.

Molnar, A.-J., Motogna, S., 2020. Long-term evaluation of technical debt in open-source
software. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement. ESEM, ACM, pp. 1-9.

Muse, B.A., Rahman, M.M., Nagy, C., Cleve, A., Khomh, F., Antoniol, G., 2020. On the
prevalence, impact, and evolution of SQL code smells in data-intensive systems.
In: Proceedings of the International Conference on Mining Software Repositories.
MSR, ACM, pp. 327-338.

Naik, K., Tripathy, P., 2008. Software Testing and Quality Assurance: Theory and
Practice, first ed. Wiley.

Nayebi, M., Cai, Y., Kazman, R., Ruhe, G., Feng, Q., Carlson, C., Chew, F., 2019. A lon-
gitudinal study of identifying and paying down architecture debt. In: Proceedings
of the International Conference on Software Engineering: Software Engineering in
Practice. ICSE-SEIP, IEEE, pp. 171-180.

Nixon, M.S., Aguado, A.S., 2002. Feature Extraction and Image Processing, first ed.
Newnes.

Olbrich, S.M., Cruzes, D.S., Basili, V.R., Zazworka, N., 2009. The evolution and impact
of code smells: A case study of two open source systems. In: Proceedings of the
International Symposium on Empirical Software Engineering and Measurement.
ESEM, IEEE, pp. 390-400.

Olbrich, S.M., Cruzes, D.S., Sjgberg, D.LK., 2010. Are all code smells harmful? A study
of god classes and brain classes in the evolution of three open source systems. In:
Proceedings of the International Conference on Software Maintenance. ICSM, IEEE,
pp. 1-10.

Parnas, D.L., 1994. Software aging. In: Proceedings of the International Conference on
Software Engineering. ICSE, IEEE, pp. 279-287.

Peters, R., Zaidman, A., 2012. Evaluating the lifespan of code smells using software
repository mining. In: Proceedings of the European Conference on Software
Maintenance and Reengineering. CSMR, IEEE, pp. 411-416.

Power, K., 2013. Understanding the impact of technical debt on the capacity and
velocity of teams and organizations: Viewing team and organization capacity as
a portfolio of real options. In: Proceedings of the International Workshop on
Managing Technical Debt. MTD, IEEE, pp. 28-31.

Qusef, A., Elish, M.O., Binkley, D., 2019. An exploratory study of the relationship
between software test smells and fault-proneness. IEEE Access 7.

Rachow, P., Riebisch, M., 2022. An architecture smell knowledge base for managing
architecture technical debt. In: Proceedings of the International Conference on
Technical Debt. TechDebt, pp. 1-10.

Rangnau, T., 2020. Determining the Rationale of Architectural Smells from Issue
Trackers (Master’s thesis). University of Groningen.

Rio, A., Brito e Abreu, F., 2020. PHP code smells in web apps: Survival and anomalies.
https://arxiv.org/abs/2101.00090v1.

Rizzi, L., Arcelli Fontana, F., Roveda, R., 2018. Support for architectural smell
refactoring. In: Proceedings of the International Workshop on Refactoring Tools.
WRT, ACM, pp. 7-10.

Roveda, R., 2018. Identifying and Evaluating Software Architecture Erosion (Ph.D.
thesis). University of Milano-Bicocca.

Roveda, R., Arcelli Fontana, F., Pigazzini, 1., Zanoni, M., 2018a. Towards an archi-
tectural debt index. In: Proceedings of the International Conference on Software
Engineering and Advanced Applications. SEAA, IEEE, pp. 408-416.

Roveda, R., Arcelli Fontana, F., Pigazzini, 1., Zanoni, M., 2018b. Towards an archi-
tectural debt index. In: Proceedings of the International Conference on Software
Engineering and Advanced Applications. SEAA, IEEE, pp. 408-416.

Sangwan, R.S., Vercellone-Smith, P., Laplante, P.A., 2008. Structural epochs in the
complexity of software over time. IEEE Softw. 25 (4), 66-73.

Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., do Nascimento, R.S., Freitas, M.F.,
de Mendonca, M.G., 2018. A systematic review on the code smell effect. J. Syst.
Softw. 144, 450-477.

Sas, D., Avgeriou, P., 2023. An Architectural Technical Debt Index Based on Ma-
chine Learning and Architectural Smells. IEEE Trans. Softw. Eng. (TSE) 49 (8),
4169-4195.

Sas, D., Avgeriou, P., Arcelli Fontana, F., 2019. Investigating instability architectural
smells evolution: An exploratory case study. In: Proceedings of the International
Conference on Software Maintenance and Evolution. ICSME, IEEE, pp. 557-567.

Sas, D., Avgeriou, P., Pigazzini, 1., Arcelli Fontana, F., 2022a. On the relation between
architectural smells and source code changes. J. Softw.: Evol. Process 34 (1).

Sas, D., Avgeriou, P., Uyumaz, U., 2022b. On the evolution and impact of architectural
smells: An industrial case study. Empir. Softw. Eng. 27 (4).

Sedgewick, R., Wayne, K., 2011. Algorithms, fourth ed. Addison-Wesley.

Sharma, T., Singh, P., Spinellis, D., 2020. An empirical investigation on the relationship
between design and architecture smells. Empir. Softw. Eng. 25 (5), 4020-4068.

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb44
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb44
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb44
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb45
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb45
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb45
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb46
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb46
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb46
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb46
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb46
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb47
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb47
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb47
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb47
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb47
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb48
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb48
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb48
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb48
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb48
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb49
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb49
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb49
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb49
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb49
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb50
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb51
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb51
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb51
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb52
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb52
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb52
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb53
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb53
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb53
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb53
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb53
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb54
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb54
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb54
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb54
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb54
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb55
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb55
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb55
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb55
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb55
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb56
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb56
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb56
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb56
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb56
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb57
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb57
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb57
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb58
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb58
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb58
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb58
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb58
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb59
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb59
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb59
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb59
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb59
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb60
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb60
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb60
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb60
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb60
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb61
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb61
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb61
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb62
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb62
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb62
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb63
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb63
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb63
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb63
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb63
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb64
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb64
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb64
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb64
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb64
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb65
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb65
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb65
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb65
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb65
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb66
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb66
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb66
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb67
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb67
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb67
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb68
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb68
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb68
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb68
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb68
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb69
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb69
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb69
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb70
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb70
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb70
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb71
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb71
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb71
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb71
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb71
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb71
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb71
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb72
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb74
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb74
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb74
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb74
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb74
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb74
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb74
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb75
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb75
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb75
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb75
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb75
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb76
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb76
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb76
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb77
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb77
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb77
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb78
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb79
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb79
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb79
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb79
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb79
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb80
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb80
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb80
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb80
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb80
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb81
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb81
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb81
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb81
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb81
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb81
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb81
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb82
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb82
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb82
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb83
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb83
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb83
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb83
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb83
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb83
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb83
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb84
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb84
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb84
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb85
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb85
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb85
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb85
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb85
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb85
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb85
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb86
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb86
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb86
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb86
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb86
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb86
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb86
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb87
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb87
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb87
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb88
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb88
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb88
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb88
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb88
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb89
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb89
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb89
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb89
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb89
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb89
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb89
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb90
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb90
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb90
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb91
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb91
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb91
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb91
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb91
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb92
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb92
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb92
https://arxiv.org/abs/2101.00090v1
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb94
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb94
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb94
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb94
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb94
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb95
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb95
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb95
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb96
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb96
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb96
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb96
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb96
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb97
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb97
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb97
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb97
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb97
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb98
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb98
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb98
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb99
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb99
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb99
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb99
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb99
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb100
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb100
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb100
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb100
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb100
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb101
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb101
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb101
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb101
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb101
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb102
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb102
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb102
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb103
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb103
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb103
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb104
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb105
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb105
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb105

P. Gnoyke et al.

Sjgberg, D.LK., Yamashita, A., Anda, B.C.D., Mockus, A., Dyba, T., 2012. Quantifying
the effect of code smells on maintenance effort. IEEE Trans. Softw. Eng. (TSE) 39
(8), 1144-1156.

Spearman, C., 1904. The proof and measurement of association between two things.
Am. J. Psychol. 15 (1), 72-101.

Stevens, W.P., Myers, G.J., Constantine, L.L., 1974. Structured design. IBM Syst. J. 13
(2), 115-139.

Sugiyama, K., Tagawa, S., Toda, M., 1981. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11 (2), 109-125.
Suryanarayana, G., Samarthyam, G., Sharma, T., 2014. Refactoring for Software Design

Smells: Managing Technical Debt, first ed. Elsevier.

Tahmid, A., Nahar, N., Sakib, K., 2016. Understanding the evolution of code smells by
observing code smell clusters. In: Proceedings of the International Conference on
Software Analysis, Evolution, and Reengineering. SANER, IEEE, pp. 8-11.

Tarjan, R.E., 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1
(2), 146-160.

Taylor, R.N., Medvidovic, N., Dashofy, E.M., 2010. Software Architecture: Foundations,
Theory, and Practice, first ed. Wiley.

Tempero, E.D., 2013. Qualitas corpus index: Release 20130901 (evolution dis-
tribution). http://qualitascorpus.com/docs/catalogue/20130901/corpus_catalogue-
evolution.html.

Tempero, E.D., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.,
2010. The Qualitas Corpus: A curated collection of Java code for empirical studies.
In: Proceedings of the Asia-Pacific Software Engineering Conference. APSEC, IEEE,
pp. 336-345.

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshy-
vanyk, D., 2016. An empirical investigation into the nature of test smells. In:
Proceedings of the International Conference on Automated Software Engineering.
ASE, ACM, pp. 4-15.

28

The Journal of Systems & Software 217 (2024) 112170

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., Poshy-
vanyk, D., 2015. When and why your code starts to smell bad. In: Proceedings of
the International Conference on Software Engineering. ICSE, IEEE, pp. 403-414.

Vaucher, S., Khomh, F., Moha, N., Guéhéneuc, Y.-G., 2009. Tracking design smells:
Lessons from a study of god classes. In: Proceedings of the Working Conference on
Reverse Engineering. WCRE, IEEE, pp. 145-154.

Verdecchia, R., Malavolta, 1., Lago, P., 2018. Architectural technical debt identifica-
tion: The research landscape. In: Proceedings of the International Conference on
Technical Debt. TechDebt, ACM, pp. 11-20.

Vidal, S.A., Guimaraes, E.T., Oizumi, W.N., Garcia, A., Pace, J.A.D., Marcos, C.A.,
2016. Identifying architectural problems through prioritization of code smells. In:
Proceedings of the Brazilian Symposium on Software Components, Architectures
and Reuse. SBCARS, IEEE, pp. 41-50.

Xiao, L., Cai, Y., Kazman, R., Mo, R., Feng, Q., 2016. Identifying and quantifying
architectural debt. In: Proceedings of the International Conference on Software
Engineering. ICSE, ACM, pp. 488-498.

Yin, R.K., 2018. Case study research and applications: Design and methods. Sage.

Zazworka, N., Shaw, M.A., Shull, F., Seaman, C., 2011. Investigating the impact of
design debt on software quality. In: Proceedings of the International Workshop on
Managing Technical Debt. MTD, ACM, pp. 17-23.

Zazworka, N., Vetro’, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F., 2014.
Comparing four approaches for technical debt identification. Softw. Qual. J. 22 (3),
403-426.

Zhang, M., Hall, T., Baddoo, N., 2011. Code bad smells: A review of current knowledge.
J. Softw. Maint. Evol. 23 (3), 179-202.

von Zitzewitz, A., 2019. Mitigating technical and architectural debt with sonargraph:
Using static analysis to enforce architectural constraints. In: Proceedings of the
International Conference on Technical Debt. TechDebt, IEEE, pp. 66-67.

http://refhub.elsevier.com/S0164-1212(24)00215-2/sb106
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb106
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb106
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb106
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb106
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb107
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb107
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb107
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb108
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb108
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb108
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb109
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb109
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb109
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb110
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb110
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb110
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb111
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb111
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb111
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb111
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb111
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb112
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb112
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb112
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb113
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb113
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb113
http://qualitascorpus.com/docs/catalogue/20130901/corpus_catalogue-evolution.html
http://qualitascorpus.com/docs/catalogue/20130901/corpus_catalogue-evolution.html
http://qualitascorpus.com/docs/catalogue/20130901/corpus_catalogue-evolution.html
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb115
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb115
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb115
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb115
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb115
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb115
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb115
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb116
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb116
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb116
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb116
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb116
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb116
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb116
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb117
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb117
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb117
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb117
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb117
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb118
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb118
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb118
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb118
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb118
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb119
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb119
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb119
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb119
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb119
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb120
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb120
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb120
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb120
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb120
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb120
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb120
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb121
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb121
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb121
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb121
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb121
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb122
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb123
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb123
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb123
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb123
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb123
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb124
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb124
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb124
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb124
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb124
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb125
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb125
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb125
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb126
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb126
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb126
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb126
http://refhub.elsevier.com/S0164-1212(24)00215-2/sb126

	Evolution patterns of software-architecture smells: An empirical study of intra- and inter-version smells
	Introduction
	Background
	Software Quality and Architecture
	Architecture Smells
	Technical Debt

	Concepts for Analyzing Architecture Smells
	Intra-Version and Inter-Version Smells
	Smell Tracking
	Visualizing Cyclic Dependencies
	Smell Properties

	Case Study Design
	Research Questions
	Subject Systems
	Implementation
	Workflow

	Results and Discussion
	lst9048: Merging and Splitting
	lst9049: Cyclic-Dependency Shapes
	lst9050: Architecture-Smell Properties
	lst9051: Compound Interest

	Related Work
	Evolution of Architecture Smells
	Evolution of Code Smells and Design Smells
	Evolution of Test Smells
	Evolution of Technical Debt

	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

