
On Developing and Improving Tools for
Architecture-Smell Tracking in Java Systems

Philipp Gnoyke
Otto-von-Guericke University, Magdeburg,

and KSB SE & Co. KGaA, Pegnitz, Germany
philipp.gnoyke@t-online.de

Sandro Schulze
Anhalt University of Applied Sciences

Köthen, Germany
sandro.schulze@hs-anhalt.de

Jacob Krüger
Eindhoven University of Technology

Eindhoven, The Netherlands
j.kruger@tue.nl

Abstract—Architecture smells indicate violations of software-
design principles. So, identifying and assessing architecture
smells facilitates refactorings to reduce technical debt and ensure
maintainability. Detecting architecture smells in only one version
at a time provides a static and limited picture, since, for example,
historical trends remain obfuscated. Both, for practitioners and
researchers, obtaining information on how specific architecture
smells evolved over time can yield valuable insights, be it
for avoiding the growth of critical smells, grasping the code’s
degradation, or getting a better understanding of development
processes. To support such analyses, we developed our tool
AsTdEA, which tracks architecture smells throughout a system’s
evolution. AsTdEA runs a modified version of the architecture-
smell detection tool Arcan and allows the automated batch-
processing of multiple versions of one or multiple systems. First,
AsTdEA generates data on the components that are involved in
each smell on a version-to-version basis and how these intra-version
smells are related with one another across the entire system history,
forming inter-version smells. Second, for every intra-version
smell, inter-version smell, and system version, AsTdEA outputs a
multitude of properties, which we have already used for multiple
empirical studies. In this paper, we show the implementation and
use of AsTdEA, as well as the lessons that we learned during its
development and how we want to improve it in the future.

Index Terms—Architecture Smells, Software Quality, Tracking,
Software Tools, Source-Code Analysis, Software Evolution

I. INTRODUCTION

To remain relevant, software must be continuously main-
tained and evolved according to ever-changing requirements. If
a thorough quality assurance is not in place and if updates are
implemented without adhering to software-design principles
or to the intended architecture, software systems start to
exhibit smells that cause quality degradation over time (a.k.a.
aging or decaying) [1], [7], [23]. Software degradation reduces
maintainability, increases the costs for new features, and can
easily cause more bugs, which is commonly described with the
metaphor of technical debt [8], [9], [15], [37]. To identify the
violations of software-design principles, software developers
can use smell detection tools [3], [6]. As one particular type of
smells, Architecture Smells (ASs) represent violations against
best practices for designing software architectures, and thus
identifying them can be an essential means for assuring a
system’s quality [11], [18]. However, detecting ASs in only the
latest version of a software system provides limited insights, for
example, because developers cannot see what ASs are growing
rapidly or from what parts of a system an AS originated.

Gaining insights into such properties is helpful for practitioners
developing a specific system and for researchers understanding
general patterns on software evolution. Consequently, AS
tracking tools are needed to provide support for analyzing
and improving the quality of a software system [27].

In this paper, we present our open-source AS tracking tool
AsTdEA, which is available in an open-access repository.1

To develop AsTdEA, we modified Arcan, an academic tool
for AS detection, that detects three common types of ASs in
Java systems: cyclic, hub-like, and unstable dependencies [3].
AsTdEA can analyze the entire history of one or multiple Java
systems in a batch-mode by running Arcan, generating script-
readable output for further processes like visualizations or
statistical tests. We implemented novel concepts for analyzing
the evolution of ASs within AsTdEA and employed it in
empirical studies [12]. For instance, by linking related intra-
to inter-version smells (cf. Section III-A) and calculating their
properties, AsTdEA provides data that would not be available
by simply running Arcan sequentially on several versions.

In the remainder of this paper, we first define fundamental
terms in Section II before highlighting the benefits and use of
AsTdEA in Section III. Then, we provide an overview of our
implementation in Section IV. Moreover, we present a series
of overcome and persisting challenges in Section V, which
serve as lessons learned for other tool developers and as a
basis for future research in the direction of ASs. In Section VI,
we sketch our current ideas for further enhancing AsTdEA
that we aim to address in future work. Finally, we compare
AsTdEA with the related tool ASTracker in Section VII and
conclude this paper in Section VIII.

II. ARCHITECTURE SMELLS

A smell is an indicator for a deeper problem within a
software system [10], such as violated design principles or
rules. Such principles and rules, in turn, represent best practices
for ensuring maintainability when structuring source code [18].
Originally, the notion of smells stems from code smells [10],
which represent structures within the code that may hint at a
quality or maintainability problem. In contrast, a smell that
impacts a system’s architecture, specifically how the system is
structured into components and how these interact or depend

1https://github.com/PhilippGnoyke/AsTdEA

philipp.gnoyke@t-online.de
sandro.schulze@hs-anhalt.de
j.kruger@tue.nl
https://github.com/PhilippGnoyke/AsTdEA

on each other [34], is referred to as an architecture smell
(AS) [11], [18]. In the context of Java systems, a component
can either represent a class or a whole package. ASs often
reduce the maintainability of software by increasing coupling
and by propagating changes in one component to otherwise
unaffected components, called ripple effects [13], [20]. Smells
can be detected with automated tooling, such as the academic
tool Arcan for ASs [3], [6]. Arcan detects three types of
ASs in Java systems, which we also focus on with our tool
AsTdEA and research. We shortly outline the definition and
properties of each of these types of ASs in the following.

First, a cyclic dependency (CD) constitutes two or more
components that mutually depend on each other, which
increases the risk of ripple effects [18], [32]. We consider
both CDs among classes (i.e., class-level) and among packages
(i.e., package-level). CDs can be defined as simple cyclic paths
with no repeated vertices (i.e., components) or as strongly
connected components with any number of edges between
a set of vertices (cf. Section III-A) [21]. Second, a hub-like
dependency (HD) represents a hub class with a large number
of both incoming and outgoing dependencies. This results in
a bottleneck in the dependency structure and the propagation
of changes through the hub [4], [32]. Lastly, an unstable
dependency (UD) is a relatively stable component that depends
on less stable components. Stability refers to the rate of change
a component has exhibited or is expected to exhibit [4], [22].
Arcan employs Martin’s instability metric to detect UDs,
which assumes that components with many dependers are less
likely to change [19]. We are focusing on package-level UDs.

A concept related to smells is technical debt, which is
a metaphor to summarize and communicate various quality
issues in a software system akin to financial debt [5], [9],
[15], [32]. For example, technical debt can be accrued to
speed up development by disregarding the intended architecture,
design principles and rules, documentation, or software testing.
The consequently reduced maintainability leads to “interest
payments” in the form of increased efforts needed during the
further development, as well as the higher likelihood of bugs.
Technical debt is repayed by employing refactorings, but its
uncontrolled growth can lead to “technical bankruptcy.”

III. ASTDEA

In this section, we highlight the benefits and use case of
AsTdEA, starting with the novel concepts we have imple-
mented, before showcasing the output the tool generates, and
finally explaining how AsTdEA can be used.

A. Concepts Supported by AsTdEA

To conduct our own and partly inspired by related re-
search [2], [12], [24], [25], [27], [28], we have incrementally
introduced novel concepts for AS tracking into AsTdEA.
Specifically, these concepts include:

Differentiating between intra-version and inter-version
ASs. Intra-version ASs are AS instances in one particular
version. In contrast, inter-version ASs represent a set of related
intra-version ASs that span multiple versions of a system.

Version 1

CD
(A,B,C,D)

Class A Class B

Class C Class D

Class E Class F

Version 2

CD
(A,B,C,D)

Version 3 Version 4

CD
(A,B)

CD
(E,F)

CD
(A,B,C,D,

E,F)

CD
(E,F)

Class A Class B

Class C Class D

Class E Class F

Class A Class B

Class C Class D

Class E Class F

Class A Class B

Class C Class D

Class E Class F D
e
p
e
n
d
e
n
cy

g
ra

p
h

C
D

 e
v
o
lu

ti
o
n

g
ra

p
h

merging splitting

affected
components

supercycle

Fig. 1. From cycles in the dependency graph to CD evolution graphs.

By distinguishing the two, we have clarified the terminology
and concepts we use—with our focus being on analyzing the
evolution of ASs in the source code (i.e., inter-version ASs).

Differentiating between subcycles and supercycles for CDs.
Subcycles are simple cyclic paths, while supercycles are
potentially complex strongly connected components. Subcycles
represent possible routes of change propagation and are easy to
understand/visualize, while introducing the concept of supercy-
cles facilitates accurate tracking of CDs during a system’s
evolution. That is because removing a single dependency
between two affected components breaks a subcycle, while
tangled supercycles usually require considerable changes to the
code to be resolved. Specifically, we regard two intra-version
CDs in adjacent versions as related if they share at least two
components, since every component can at most participate in
one supercycle and there exists a cyclic path between any two
components in a supercycle.

Considering merging and splitting in the evolution of CDs.
Adding or removing edges can change the structure of CDs.
For instance, adding edges into the dependency structure of a
system can cause two supercycles to merge, or to split when
removing edges. Considering merging and splitting improves
the tracking of evolving CDs, and allows for novel analyses.
For instance, we found CDs with many affected components
to often be the cause of extensive mergings over time.

Representing CD evolution as CD evolution graphs. Due
to the aforementioned merging and splitting, complex CDs
cannot be tracked in a one-dimensional manner. To resolve this
problem, we have developed the idea of CD evolution graphs to
properly document and visualize the evolution of CDs. Within a
CD evolution graph, every intra-version CD is represented by a
vertex, while predecessor/successor relationships between intra-
version CDs are drawn as edges. We visualize a conceptual
example of a CD evolution graph in Figure 1.

Tracking HDs and UDs in a two-step process. HDs and
UDs are both centered around a central component (hub class
and stable package depending on less stable packages). We use
that component to link related intra-version ASs in adjacent
versions if the same component can be found in both versions.
Only in a second step, we perform a set comparison of the
remaining components if, for instance, we could not match
the central component due to renaming. This improved the
tracking of HDs and UDs across different system versions.

B. Output

AsTdEA generates a series of .csv files that contain informa-
tion on the properties and affected components of all analyzed
ASs. These files can be parsed by other applications (e.g., to
create visualizations), queried by scripts to analyze a particular
system at hand, or used to perform empirical studies to better
understand the evolution of ASs and the respective software sys-
tem. For instance, an intra-version property can be analyzed as
a time series if the respective AS is part of an inter-version AS.

In more detail, the output includes various intra-version
AS properties, such as an AS’s order (number of affected
components), size (number of edges between components),
centrality (PageRank value in the dependency structure), or
overlap ratio (share of components shared with other ASs).
Moreover, AsTdEA generates properties for inter-version ASs,
system versions, and the entire system history. Particularly,
we want to highlight that AsTdEA provides a technical-
debt quantification based on Roveda et al. [24], [25] that
assigns a severity score and technical-debt value to every AS.
Furthermore, AsTdEA assigns one of the eight shapes proposed
by Al-Mutawa et al. [2] to every CD.

For every intra-version AS, AsTdEA provides a list of
affected components with information on their role in the
respective smell (e.g., for HDs: hub class, afferent component,
efferent component). Also, AsTdEA provides a dependency
matrix between all affected components within each CD. One
level of abstraction higher, AsTdEA generates .csv files linking
inter-version ASs with the intra-version ASs that constitute
them—again with additional CD-specific output for edges in
CD evolution graphs.

C. Usage

AsTdEA can be used via a terminal or by running its
main method in another Java program. Exact instructions are
provided in our repository.1 In the input folder, the user has
to provide data for every system that shall be analyzed. First,
this data includes one .jar file or a folder of .jar files per
system version that the user wants to analyze. Second, AsTdEA
requires metadata for the number of lines of code and the
release day of each version to compute its normalized and
time-based metrics. AsTdEA sorts the versions automatically
according to their version numbers, unless the user provides
explicit metadata for a different sorting. The input and output
folder locations can be customized, but default values exist
so that AsTdEA can be executed without any arguments. By
default, AsTdEA runs Arcan on every provided version before
tracking inter-version ASs and computing the properties of
ASs. Alternatively, Arcan can be suppressed in case that its
output has been generated previously, for example, as part
of a recurring code analysis. This also tackles the issue that
analyzing larger systems with Arcan can take a considerable
amount of time (cf. Section IV-A). For the same purpose,
AsTdEA provides information upon finishing the scan of every
version, but avoids extensive console output that would slow
down the program execution.

IV. IMPLEMENTATION

In this section, we provide details on the implementation
of AsTdEA, our modifications of Arcan, and how scripts are
integrated into the toolchain. We provide an overview of our
toolchain in Figure 2.

A. Modified Arcan

To implement the concepts we introduced in Section III-A
and generate the described output (cf. Section III-B), we
had to modify the available open-source version of Arcan
(release 1.2.1).2 We provide our modified version of Arcan
in another open-access repository.3 Specifically, we added
technical-debt quantification, changed the main definition of
CDs from subcycles to supercycles, altered the CD shape
classification to match the original algorithm by Al-Mutawa
et al. [2], and implemented measures for additional properties
of intra-version ASs and versions. For detecting supercycles,
we employed Tarjan’s [33] algorithm for identifying strongly
connected components. Arcan natively detects subcycles based
on depth-first search according to Sedgewick and Wayne
[30]. Consequently, every subcycle can be matched to its
supercycle in constant time complexity by selecting any of the
subcycle’s components and checking which supercycle affects
the component, as there is a 1:n relationship.

We eventually realized that Arcan requires by far the most
processing time in our tool chain. This is why we restructured
Arcan to support multi-threading by changing static variables
and singleton classes with a state into instance variables and
regular classes. Furthermore, we optimized Arcan by reducing
the number of repeated dependency graph traversals through
increased storing of intermediate results.

B. AsTdEA

We implemented AsTdEA as an open-source Java program
that is available both as source code and a ready-to-run
compiled download.1 AsTdEA is structured into a data, logic,
and I/O layer. It executes Arcan, which is provided in a
separate .jar file, by calling Arcan’s main method. Based on
the number of processors available to Java’s virtual machine,
AsTdEA creates several threads that each run Arcan for a
particular version that shall be analyzed. Each thread stores its
results in own .csv files. Only after analyzing all versions of
a system, we load all generated .csv files again to perform the
remaining computations for our inter-version ASs tracking and
properties. This separation enables modular changes to the
toolchain and the independent execution of Arcan and AsTdEA.
The tracking of ASs is based on determining the identity of
affected components in adjacent versions. For this purpose,
similar to the related tool ASTracker (cf. Section VII), we
compare their fully qualified names (i.e., package.class).

We ensured the implementation’s quality by creating unit
tests for central functionalities, such as the tracking of ASs.
Furthermore, we simulated the evolution of entire systems and

2https://gitlab.com/essere.lab.public/arcan
3https://github.com/PhilippGnoyke/arcan-1.2.1-modded

https://gitlab.com/essere.lab.public/arcan
https://github.com/PhilippGnoyke/arcan-1.2.1-modded

System versions
(.jar file or folders

of .jar files)

JAR

V1

JAR

V2
Modified
Arcan

AsTdEA

Parse

Control

CSV
CSV

CSV
CSV

CSV

Save

Detect and analyze
intra-version ASs,

calculate technical debt

Intra-version
components &

properties

Parse

CSV
CSV

CSV

Inter-version
components &

properties

Save

Parse

Metadata of versions
(lines of code, dates,

version names)

Track and analyze inter-version ASs

Update

JAR JAR JAR

V3

CSV
CSV

CSV

Scripts

Parse
Generate

Study
results

Fig. 2. Data flow in our toolchain.

conducted studies on real-world systems [12] to verify that
AsTdEA correctly identifies, tracks, and quantifies the proper-
ties of all ASs. We encourage researchers and practitioners to
raise issues, create pull requests, and fork our repositories to
increase AsTdEA’s value for future users.

C. Scripts

For our previous studies, we queried the generated data
from AsTdEA by creating Python scripts that aggregate the
data, perform statistical tests, and generate visualizations. As a
further contribution, we provide all of these scripts within our
repository.1 Moreover, for each of our studies, we published
the respective versions of AsTdEA we used in a persistent
open-access repository on Zenodo.

V. CHALLENGES

While developing AsTdEA and modifying Arcan, we faced
and resolved several challenges. Next, we share our experiences
and lessons learned from building on existing research tools
to benefit future academic tool development—especially in the
area of ASs as well as code smells. Afterwards, we summarize
issues that were not trivial to solve, and are still persisting
within AsTdEA. Currently, we are working on resolving such
issues, for which we sketch a broader outlook in Section VI.

A. Lessons Learned

Comprehending code that has been written by other develop-
ers can be challenging [16], [31]. Accordingly, comprehending
Arcan’s code to the level of confidently modifying it required
considerable effort—especially given a different coding style,
partially long classes, and the heavy use of external libraries.
Building on our personal experiences, we recommend other
researchers to plan in enough time when undertaking similar
efforts and testing any changes they implement extensively.
Depending on the personal experience, it can be very valuable
to systematically familiarize oneself with different build tools
and pipelines such as Maven, especially when external libraries
are involved (Arcan alone has 217).

Initially, we conceptualized AsTdEA as a static tool for
analyzing past versions of systems in a batch mode. Later, we
intended to integrate AsTdEA into pipelines for continuously

checking code quality, which required running Arcan incre-
mentally on new versions. However, analyzing the entire system
history in batch mode for every new version has turned out a
considerable waste of time and resources, which is why we
adapted AsTdEA to allow the parsing of Arcan output without
running it again. This required the restructuring of fundamental
entry points into the program and represents a classical example
of software having to adapt to changing requirements [17], [36].
Such situations showcase the importance of modular and non-
monolithic design from the get-go, as this allows components
to be easily modified and exchanged without impacting wide
parts of the system, even for initially small academic tools. So,
we recommend to structure future academic tools into concise
units of functionality that can be modified in more isolation.

B. Persisting Challenges

The primary challenge persisting within our toolchain is
the efficient use of Arcan, whose runtime (as indicated in
Section IV-A) is usually several orders of magnitude slower
than AsTdEA’s. We observed a highly non-linear scaling of the
execution time with the system size. In our experiments, this
ranged from seconds for smaller systems to hours for larger
ones. This is not surprising given that creating dependency
structures and traversing them for various AS detection and
metric computation purposes becomes increasingly complex for
larger systems. Partially due to this phenomenon, we previously
excluded the system Eclipse from our empirical analyses
of the Qualitas Corpus Evolution Distribution dataset [35].
Moreover, the runtime problem impedes running a fine-grained
evolutionary analysis on many snapshots of a system to gain
more accurate insights. We present our ideas for mitigating
this issue in Section VI-A.

Another challenge concerns the tracking accuracy of
AsTdEA when a considerable share of components is renamed
(cf. Section III-A)—even if the renaming affects only the
package structure. Specifically, if enough components of
an intra-version AS are renamed in the subsequent version,
including the central component of HDs and UDs, it cannot
be linked to related intra-version ASs. This represents false-
negative tracking results and incorrectly increases the removal
and introduction rates of inter-version ASs. Furthermore,
statistical analyses like time series of properties or survival

analyses are confronted with noisy data. So far, we have
addressed this problem by performing manual analyses and
validations of AsTdEA’s output. In Section VI-C, we discuss
possible solutions for improving the tracking accuracy for ASs.

The last point relates to changing requirements as outlined
in Section V-A. Over time, our scripts to extract data from
the output of AsTdEA have grown considerably in size and
complexity, which makes them increasingly error-prone, hard to
maintain, and hard to extend further for new analyses. Building
on related insights into scripting [29], we describe our strategy
for mitigating this trend in the future within Section VI-D.

VI. OUTLOOK

To address the persisting challenges we described in
Section V-B, we now sketch a series of ideas we plan to
realize to overcome these challenges. While these future
directions are based on our experiences and limited to AsTdEA
as part of our own future work, other researchers working on
ASs may benefit form these ideas to develop or improve their
own techniques—or feel inspired to propose solutions for these.

A. Accelerating Arcan

A central goal of improving our toolchain is to speed up
Arcan. While we already performed some optimizations like
multi-threading (cf. Section IV-A), we argue that there is a
lot of potential for improvement left. For this purpose, we
first want to critically analyze what procedures in Arcan are
consuming the most time and how they could be optimized.
Possible bottlenecks are the parsing of .jar files, inefficiencies in
TinkerPop queries (which Arcan is built upon), or redundant
graph traversals. In case we identify improvable bottlenecks,
we will update our modification of Arcan in our future work.
Meanwhile, we realize that certain algorithms in property
calculation and smell detection tend to scale non-linearly
and limit the potential for optimization. Therefore, a possible
solution could be to avoid re-performing every graph traversal
with every analyzed version. Especially when we frequently
analyze snapshots instead of releases, adjacent versions will
only differ marginally from one another. Thus, we want to
develop strategies to identify the set of changed components and
limit graph traversals to as few components as possible without
sacrificing accuracy. For instance, if no dependencies have
been added to or removed from a CD’s affected components,
we can exclude its section of the dependency graph from both
algorithms for detecting supercycles and subcycles.

B. Enhancing the Output of Arcan

While working on Arcan, we also want to enhance its
output. Currently, from a user point of view, the information
on dependencies between classes does not discriminate whether
it represents static method calls, member variables, parameters
in methods, or anything else. Furthermore, Arcan does not
output the strength of dependencies, specifically in how many
contexts the dependent class references the depending class.
Within Arcan, information on whether an edge represents
an inheritance relationship exists, which we aggregate as a

property of class-level CDs, but this is not on a fine-grained
level. Instead, we aim to provide more extensive information
on the type and strength of dependencies—both within the
source code for further computations and as .csv output. The
former can be useful to quantify how easy the refactoring of
intra-version ASs can be, as it can be assumed that loosely
coupled dependency edges are easier to remove. We presume
that this information could be especially useful for analyzing
CDs, because, in some cases, breaking a single edge can
resolve an entire supercycle or at least cause a split into more
manageable, less severe CDs.

C. Increasing Tracking Accuracy

The next challenge, which we discussed in Section V-B,
relates to the tracking accuracy of ASs that comprise renamed
components. We aim to reduce the share of false-negative
mappings by changing how we determine the identity of
components. While we can maintain comparing full names
as a primary step (and as is done in related work), we
intend to include a secondary step that is based on code
clone detection [26]. While code clone detection primarily
serves purposes like identifying technical debt in the form
of copied code segments—which are considered to reduce
maintainability (especially when faulty code has been copied),
detecting plagiarism, or comprehending a system’s source
code evolution [14], we can also employ it for our use case.
Essentially, we have to compare smell-affected classes whose
intra-version ASs of the same type have not been matched yet
with another intra-version AS. For HDs and UDs, this can again
happen in a two-stage process, where the central components
are compared first to not harm AsTdEA’s performance. For
CDs, it may be sufficient to take a sample of a few classes
given our matching criterion of two shared components. We will
test different techniques and measure their tracking accuracy,
precision, and recall against manually matched classes.

D. Reducing the Complexity of Scripts

After having performed multiple empirical studies using
AsTdEA’s output, we developed a more precise conception
about what parts of that data are useful. We intend to reduce the
complexity of subsequent scripts by including the computation
of more metrics and properties, as well as providing the same
data in alternative ways that reduce the need for aggregating.
By doing so, we can limit scripts to statistical tests and
visualizations, which reduces inter-dependencies of script
functions and ensures the scripts’ maintainability. Eventually,
we want to make AsTdEA more customizable by dividing
computations and output into modules that can be switched on
and off based on the user’s requirements—all while maintaining
an easy access to AsTdEA with default parameter values.

VII. RELATED WORK

The most similar tool to AsTdEA is ASTracker4 (Ar-
chitecture Smell Tracker) developed by Sas et al. [27]. It
also executes Arcan—but a version that generates .graphML

4https://github.com/darius-sas/astracker

https://github.com/darius-sas/astracker

files, which contain the dependency graph of each analyzed
version, with ASs being represented as vertices pointing to
affected components. ASTracker tracks smells by performing
a Jaccard set comparison of the affected components of each
AS of the same type. This is related to our AsTdEA, as
we outlined in Section III-A. However, we expanded this
concept by including a primary step of comparing the central
components of HDs and UDs. Moreover, Sas et al. detect CDs
as subcycles and also link them via set comparison, while
our supercycle-based approach only requires two matching
components to link two intra-version CDs. In both tools, the
identity of components is determined by comparing their full
names—which we plan to extend though (cf. Section VI-C).

VIII. CONCLUSION

In this paper, we presented our toolchain for tracking ASs and
computing various of their properties, consisting of a modified
version of Arcan for detecting intra-version ASs and our own
tool AsTdEA, which executes Arcan and connects identified
ASs as inter-version ASs. We highlighted the use case of
AsTdEA by summarizing its usage, its output, and the novel
concepts on the evolutionary analysis of ASs that we imple-
mented. By providing lessons learned based on challenges we
faced during the development of AsTdEA, such as modifying
existing code or changing requirements, we hope to ease the
creation of other academic tools. Furthermore, we shared open
challenges and how we intend to solve them in order to inspire
research in the domain of ASs. This includes, for instance,
accelerating and enhancing Arcan, improving the tracking
accuracy by introducing code-clone detection techniques, or
reducing script complexity by extending AsTdEA’s output.

REFERENCES

[1] I. Ahmed, U. A. Mannan, R. Gopinath, and C. Jensen, “An Empirical
Study of Design Degradation: How Software Projects Get Worse Over
Time,” in Proceedings of the International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 2015.

[2] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, “On the
Shape of Circular Dependencies in Java Programs,” in Proceedings of the
Australian Software Engineering Conference (ASWEC). IEEE, 2014.

[3] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni,
and E. Di Nitto, “Arcan: A Tool for Architectural Smells Detection,” in
Proceedings of the International Conference on Software Architecture
(ICSA). IEEE, 2017.

[4] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
Detection of Instability Architectural Smells,” in Proceedings of the
International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2016.

[5] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. B. Seaman, “Managing
Technical Debt in Software Engineering,” Dagstuhl Reports, vol. 6, no. 4,
2016.

[6] U. Azadi, F. Arcelli Fontana, and D. Taibi, “Architectural Smells Detected
by Tools: A Catalogue Proposal,” in Proceedings of the International
Conference on Technical Debt (TechDebt). IEEE, 2019.

[7] L. A. Belady and M. M. Lehman, “A Model of Large Program
Development,” IBM Systems Journal, vol. 15, no. 3, 1976.

[8] T. Besker, A. Martini, and J. Bosch, “Technical Debt Cripples Software
Developer Productivity,” in Proceedings of the International Conference
on Technical Debt (TechDebt). ACM, 2018.

[9] W. Cunningham, “The WyCash Portfolio Management System,” Pro-
ceedings of the Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), vol. 4, no. 2, 1992.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2019.

[11] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
Architectural Bad Smells,” in Proceedings of the European Conference
on Software Maintenance and Reengineering (CSMR). IEEE, 2009.

[12] P. Gnoyke, S. Schulze, and J. Krüger, “An Evolutionary Analysis
of Software-Architecture Smells,” in Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2021.

[13] I. Gorton, Essential Software Architecture. Springer, 2011.
[14] K. Inoue and C. K. Roy, Code Clone Analysis: Research, Tools, and

Practices. Springer, 2021.
[15] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor

to Theory and Practice,” IEEE Software, vol. 29, no. 6, 2012.
[16] J. Krüger, J. Wiemann, W. Fenske, G. Saake, and T. Leich, “Do You

Remember This Source Code?” in Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 2018.

[17] E. Kuiter, J. Krüger, and G. Saake, “Iterative Development and Changing
Requirements: Drivers of Variability in an Industrial System for Veterinary
Anesthesia,” in Proceedings of the International Systems and Software
Product Line Conference (SPLC). ACM, 2021.

[18] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006.

[19] R. C. Martin, “OO Design Quality Metrics: An Analysis of Dependencies,”
1994.

[20] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying
and Prioritizing Architectural Debt Through Architectural Smells: A Case
Study in a Large Software Company,” in Proceedings of the European
Conference on Software Architecture (ECSA). Springer, 2018.

[21] H. Melton and E. D. Tempero, “An Empirical Study of Cycles among
Classes in Java,” Empirical Software Engineering, vol. 12, no. 4, 2007.

[22] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot Patterns: The
Formal Definition and Automatic Detection of Architecture Smells,”
in Proceedings of the Working Conference on Software Architecture
(WICSA). IEEE, 2015.

[23] D. L. Parnas, “Software Aging,” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 1994.

[24] R. Roveda, “Identifying and Evaluating Software Architecture Erosion,”
Ph.D. dissertation, University of Milano-Bicocca, 2018.

[25] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni, “Towards an
Architectural Debt Index,” in Proceedings of the International Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2018.

[26] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach,”
Science of Computer Programming, vol. 74, no. 7, 2009.

[27] D. Sas, P. Avgeriou, and F. Arcelli Fontana, “Investigating Instability
Architectural Smells Evolution: An Exploratory Case Study,” in Pro-
ceedings of the International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2019.

[28] D. Sas, P. Avgeriou, and U. Uyumaz, “On the Evolution and Impact
of Architectural Smells: An Industrial Case Study,” Empirical Software
Engineering, vol. 27, no. 4, 2022.

[29] S. Schulze and W. Fenske, “Analyzing the Evolution of Preprocessor-
Based Variability: A Tale of a Thousand and One Scripts,” in Proceedings
of the Working Conference on Source Code Manipulation and Analysis
(SCAM). IEEE, 2018.

[30] R. Sedgewick and K. Wayne, Algorithms. Addison-Wesley, 2011.
[31] D. Spinellis, Code Reading: The Open Source Perspective. Addison-

Wesley, 2003.
[32] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for

Software Design Smells: Managing Technical Debt. Elsevier, 2014.
[33] R. E. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM

Journal on Computing, vol. 1, no. 2, 1972.
[34] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:

Foundations, Theory, and Practice. Wiley, 2010.
[35] E. D. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,

H. Melton, and J. Noble, “The Qualitas Corpus: A Curated Collection
of Java Code for Empirical Studies,” in Proceedings of the Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2010.

[36] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press,
2013.

[37] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the
Impact of Design Debt on Software Quality,” in Proceedings of the
International Workshop on Managing Technical Debt (MTD). ACM,
2011.

