
cba

(Hrsg.): Software Engineering 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 1

An Evolutionary Analysis of Software-Architecture Smells

Philipp Gnoyke1, Sandro Schulze2, Jacob Krüger3

Abstract: In this extended abstract, we summarize our paper with the homonymous title published at
the International Conference on Software Maintenance and Evolution (ICSME) 2021 [GSK21].

Keywords: software maintenance; software evolution; architecture smells; software quality; technical
debt; empirical study

Background: Since user and technological requirements evolve over time, software systems
must be maintainable to efficiently adapt; or they are at risk of becoming irrelevant. Design
principles aim to keep software understandable, changeable, extensible, reusable, and testable.
Violations of such principles on an architectural level are described as Architecture Smells
(ASs), which often indicate degrading system quality. The amount and severity of smells
in a system can furthermore be portrayed with Technical Debt (TD), which refers to interest
in the form of reduced maintainability. Postponing or abandoning quality assurance can
lead to technical bankruptcy if TD renders a system’s evolution economically or practically
impossible. In our study, we focused on three types of ASs: First, a Cyclic Dependency
(CD) is a set of components (classes or packages) that depend on each other, so that
their dependency graph forms a cycle. Second, a Hub-Like Dependency (HD) represents a
component with a high number of incoming and outgoing dependencies. Finally, anUnstable
Dependency (UD) describes a component that depends on less stable components than itself.

Objective: Only few studies have analyzed the evolution of ASs, as well as their long-term
influence on software degradation and TD. A noteworthy study has been performed by Sas
et al. [SAAF19], upon which we built. We aimed to expand the current understanding of
ASs by providing a more precise conceptual representation of the evolution of ASs and
TD, as well as by interpreting empirical observations. For this purpose, we analyzed how
the number and composition of ASs in software projects evolve over time. Additionally,
we studied how the evolution of ASs relates to the evolution of TD, and how the former
impacts the latter. Finally, we identified factors influencing the lifespan of ASs.

Method: We propose an improved technique for tracking ASs over the version history of
systems. This especially concerns CDs, for which we introduce the distinction between
subcycles and supercycles. Since supercycles can merge or split between versions, we
track their evolution in a novel way with cyclic dependency evolution graphs. Furthermore,
we propose to distinguish intra- and inter-version smells, with the former being a smell
1 Otto-von-Guericke University Magdeburg, Germany philipp.gnoyke@t-online.de
2 University of Potsdam, Germany sandro.schulze@uni-potsdam.de
3 Ruhr-University Bochum, Germany jacob.krueger@rub.de

cba

Lars Grunske, Janet Siegmund, Andreas Vogelsang (Hrsg.): SE 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 33

https://creativecommons.org/licenses/by-sa/4.0/


2 Philipp Gnoyke, Sandro Schulze, Jacob Krüger

instance in a particular version and the latter being a set of related intra-version smells
over multiple versions. We define several properties for both types to assess their severity
and growth/lifetime patterns. To empirically evaluate our new concepts and answer our
research questions, we analyzed the evolution of ASs and TD in 14 open-source systems
from the Qualitas Corpus with a total of 485 versions. For detecting intra-version smells
and calculating properties, we used a modified version of Arcan [Ar17]. Moreover, we
implemented our own tool ASTDEA to track and compute properties of inter-version smells.

Results: First, we found that TD and the number of ASs tend to increase along the code size
of systems. When looking at their relative sizes, they remained mostly stable and decreased
in some systems. So, we could not confirm exponential growth patterns. However, we found
many ASs that, after being introduced, persisted for the entire observation period. Second,
we noted that some AS types like CDs had a greater impact on TD and system degradation,
while not always corresponding to their share on the number of ASs. Rather, aspects like
the complexity of ASs seem to be more pivotal regarding their impact. Finally, we observed
no universal patterns between the lifespan and certain properties of all AS types. However,
especially complex CDs among classes tended to persist longer. For UDs, we observed this
longevity in case that they overlapped with other smells or had a large difference in stability.

Conclusion: Our results indicate that it is in the interest of practitioners to remove ASs
early on to prevent their manifestation, which especially holds true for CDs. Our improved
technique for conceiving AS and TD evolution helps practitioners to identify and contend
system degradation, as well as researchers to inspire new studies on ASs and TD.

Data Availability: Our replication package4 contains the source code and compilation of
ASTDEA and our modified version of Arcan, the raw output dataset, the queries we used to
aggregate information from it, as well as additional diagrams and evaluations.

Bibliography
[Ar17] Arcelli Fontana, Francesca; Pigazzini, Ilaria; Roveda, Riccardo; Tamburri, Damian;

Zanoni, Marco; Di Nitto, Elisabetta: Arcan: A Tool for Architectural Smells Detection.
In: Proceedings of the International Conference on Software Architecture Workshops
(ICSAW). IEEE, 2017.

[GSK21] Gnoyke, Philipp; Schulze, Sandro; Krüger, Jacob: An Evolutionary Analysis of Software-
Architecture Smells. In: Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021.

[SAAF19] Sas, Darius; Avgeriou, Paris; Arcelli Fontana, Francesca: Investigating Instability Archi-
tectural Smells Evolution: An Exploratory Case Study. In: Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 2019.

4 https://figshare.com/s/fa17e81cf4f27c84d059

34 Philipp Gnoyke, Sandro Schulze, Jacob Krüger


