
An Evolutionary Analysis of
Software-Architecture Smells

Philipp Gnoyke
Otto-von-Guericke University Magdeburg

Magdeburg, Germany
philipp.gnoyke@t-online.de

Sandro Schulze
University of Potsdam

Potsdam, Germany
sandro.schulze@uni-potsdam.de

Jacob Krüger
Ruhr-University Bochum

Bochum, Germany
Jacob.Krueger@rub.de

Abstract—If software quality assurance is postponed or even
abandoned for a software system, maintenance and evolution
become harder or even impossible. One widely known symptom
for the degradation of system quality are Architecture Smells
(ASs), which violate fundamental principles of software design. In
this paper, we present a study on the evolution of ASs as well as on
how and when they foster system degradation. Thus, we provide
valuable insights regarding what ASs are meaningful to assure
system quality. To this end, we analyzed the evolution of three
types of ASs in 14 open-source systems with a total of 485 versions.
We adapted indicators used in previous studies to assess the
severity of ASs (e.g., growth, lifetime), and relate ASs to technical
debt as another established indicator. Our results indicate that
1) ASs remain mostly stable compared to the code size of a
system, 2) certain types of ASs, such as cyclic dependencies, have
a greater impact on system degradation, and 3) certain properties
determine how much an AS contributes to software degradation.
These findings are valuable for practitioners to identify and tackle
system degeneration, as well as for researchers to scope new
research on managing ASs and technical debt.

Index Terms—software maintenance, software evolution, archi-
tecture smells, software quality, technical debt, empirical study

I. INTRODUCTION

Software degradation (a. k. a. software aging [39] or software
decay [1], [22]) is a common phenomenon that can be
observed for long-living software systems. Essentially, software
degradation describes that evolving a system by changing its
code, adding features, or fixing bugs is likely to diminish the
original design and code structure [10]. As a result, the system
may become less maintainable, changeable, or even reliable,
and thus future evolution eventually becomes a tedious and
time-consuming task [25], [37], [58]. Recently, the process of
software degradation has increasingly been described by the
metaphor of Technical Debt (TD) [13], [26], considering the
aforementioned negative effects as interest rate to be paid for
postponing important design decisions.

Code Smells (CSs) [16] and Architectural Smells (ASs) [17],
[18] have been proposed as symptoms for software degradation
that help to locate the aforementioned effects in a system;
thus allowing developers to perform countermeasures, such
as refactoring [16], [29]. For CSs, a vast amount of research
on the longevity, maintenance effort, evolution, and impact on
software degradation as well as TD has been conducted [11],
[27], [47], [59]. Similarly, research on the detection, impact, and

refactoring of ASs has recently been performed [5], [8], [17],
[18], [44]. However, few studies have been concerned with the
evolution of ASs and their impact on software degradation [42],
[46], [48]. So, we are missing reliable empirical insights on
how and when ASs contribute to software degradation, which
are needed to conclude actionable recommendations.

In this paper, we contribute to understanding the evolution
of ASs and their impact on software degradation, especially
with respect to TD. To this end, we built on previous work by
Sas et al. [48] and Roveda et al. [46], which we extended as
follows. First, we present an improved technique for tracking
ASs through a system’s evolution. In particular, we propose the
notions of intra-version (i.e., smell instances in a single version)
and inter-version smells (i.e., smell instances over multiple
versions). By employing our adaptations, we argue that we can
more precisely distinguish smells that evolve over time, and can
also reuse properties of single smell instances by aggregating
them as part of inter-version smells (cf. Sec. III). Second, we
present a novel technique for tracking cyclic dependencies [29]
(CDs) by considering overlapping cycles as part of larger
supercycles. Moreover, we take into account that cycles may
be split and merged during a system’s evolution, which allows
for a more precise tracking of the corresponding ASs. Finally,
we relate ASs with TD to reason about the impact of ASs on
software degradation and their evolution.

Using our improved tracking technique, we conducted a case
study on three types of ASs (i.e., cyclic, hub-like, and unstable
dependencies) in 14 open-source systems encompassing 485
versions. While the case study also serves as an assessment of
our technique, our main goal was to gain empirical insights
to address the overarching question: To what extent and
under what circumstances do ASs contribute to software
degradation? By answering this question, we aim to provide
more precise insights into the nature and severity of ASs, and
thus support developers in identifying and removing ASs that
actually cause software degradation.

In summary, we make the following contributions:
• We propose an improved technique for tracking ASs

during system evolution (cf. Sec. III). In particular, we
introduce a novel evolution graph for CDs that allows for
a more fine-grained analysis, including the occurrences
of splitting and merging of intra-version smells. Based on
this graph, we propose new properties to characterize CDs.

philipp.gnoyke@t-online.de

Multi-hub Star Chain Circle Clique Tiny Semi-clique

Fig. 1. Different topologies for CDs based on Al-Mutawa et al. [2].

• We relate the evolution of ASs to TD (cf. Sec. III-D).
Thus, we are able to assess how and when a particular
type of ASs impacts TD over time, which has not been
done in previous research.

• We evaluate the previous points through a case study on
485 versions of 14 open-source systems.

• We publish an open-access repository with the implemen-
tation of our technique and our case-study results.1

Our findings show that our adaptations to the tracking technique
help reveal novel insights, particularly that specific types of
ASs seem to cause more TD (e.g., class-level CDs), and thus
impair software degradation more than others. Such findings
help to guide practitioners in their daily work and researchers
in designing novel techniques to tackle ASs and TD during
system evolution.

II. BACKGROUND

In this section, we introduce the notion of ASs with a particular
focus on the smells we consider in this paper. Moreover, we
briefly introduce the concept of TD.

A. Architectural Smells

A vast number of design principles exist that aim at keeping
a system vital, thus mitigating software degradation if these
principles are applied properly [29], [31], [34]. Design decisions
that violate these principles on an architectural level, and thus
have a negative impact on software quality, are referred to as
ASs [17]. In previous work, a variety of ASs has been proposed
and classified [18], [28], [29], [35], [52]. For this paper, we
focus on three types of these ASs: cyclic dependency, hub-like
dependency, and unstable dependency. We chose these types
of smells because they occur frequently, have been shown to
negatively impact software quality, and tools are available to
detect them automatically [6], [7], [21], [32], [33], [38], [45],
[48]. Next, we describe these smells in greater detail.
Cyclic Dependency (CD). This AS describes components (e.g.,
classes or packages) that depend on each other, so that their
dependency graph forms a cycle. In graph theory, this means
that all components of a CD are strongly connected. As a
result, these components exhibit a high coupling, and thus
decrease testability, hinder maintenance, challenge (isolated)
reuse, and violate the acyclic dependency principle [29], [52].
According to previous studies, we consider CDs on two levels
of granularity: on class level (i.e., CD exists between classes)
and on package level (i.e., CD exists between packages) [2],
[5]. Besides their size, CDs can be distinguished by their shape.
To this end, Al-Mutawa et al. [2] introduced seven commonly
observed topologies, which we show in Figure 1.

1 https://figshare.com/s/fa17e81cf4f27c84d059

Hub

Classes
that

depend
on the
hub

Classes
that the

hub
depends

on

Fig. 2. A conceptual example for a HD based on Roveda et al. [45].

Hub-Like Dependency (HD). This AS describes a component
(e.g., class, package) that exhibits a high number of incoming
and outoing dependencies (i.e., edges in a dependency graph).
In Figure 2, we show a conceptual example for this AS. Usually
detected on class level (scope of this study), this smell indicates
violations of the few interfaces principle [34]—which leads to
a higher coupling, and thus increased effort during software
evolution, for example, due to a large number of changes
that must be propagated to the dependent components [52].
Moreover, previous research has shown that practitioners
perceive this smell as having the most negative impact [32].
Unstable Dependency (UD). This AS describes a compo-
nent that depends on other components that are less stable
than itself. As a result, the stable component suffers from
extensive change propagation (due to ripple effects from the
dependent components) and increased maintenance effort [6],
[35]. Different notions of stability exist, but in this paper we
adopt Martin’s [30] instability metric and focus on UDs on
package level. This metric is used in AS detection tools, such
as Arcan [6], which we used for our own tooling.

Martin’s instability metric assumes that a component with
many incoming dependencies (called afferent coupling; Ca)
is considered stable (i.e., less change-prone). A component
without any incoming, but potentially outgoing dependencies
(called efferent coupling; Ce), is considered to be unstable,
since it can be easily changed. This is also reflected by the
metric’s formula: I = Ce

Ce+Ca
, which covers a range from 0

for maximally stable to 1 for maximally unstable. We show
a simplified example in Figure 3, where according to the
instability metric, component A is stable (I = 0) and component
B is unstable (I = 1). Based on the instability metric, an UD
can be detected by identifying a component that depends on a
considerable number of other components that are less stable
than itself. In practice, the degree of unstable dependency
(DoUD) metric can be used to compute the ratio of outgoing
unstable dependencies to all dependencies [6]. With this metric,
a higher value is considered more severe, and thus indicates a
greater need for removal (e.g., by refactoring).

B. Technical Debt

Initially defined by Cunningham [13], TD is a metaphor to
describe that for certain (business) reasons, such as new features
or urgent adaptations, a debt is caused that negatively impacts
a software system regarding its design and (code) structure [7].
This debt usually hinders maintainability and evolvability, and
thus should be reimbursed regularly; for instance, by code
refactoring or design adaptations [13]. If this is neglected, the
TD grows and may even cause interest rates, that is, ripple
effects that amplify the negative impacts, and thus lead to
software erosion. TD can be distinguished by the parts of a

https://figshare.com/s/fa17e81cf4f27c84d059

B

A: stable package B: unstable package

A

Fig. 3. Examples for stable and unstable components based on Martin [30].

system that are affected, leading to different types of TD, such
as for code, design, architecture, or tests [3], [52]. In this paper,
we focus on and always refer to architectural technical debt.

III. TRACKING AND MEASURING ASS

In this section, we present central concepts of the technique
we implemented to conduct our case study. This includes the
definition of intra- and inter-version smells, tracking strategies
for the three types of ASs, and the definition of properties to
measure in the case study. To summarize our contributions on
tracking ASs, we compare our technique with Sas et al. [48]
in Table I. Finally, we present our implementation.

A. Intra- and Inter-Version Smells

To analyze the evolution of a system, we have to examine a
series of its versions. Consequently, we can identify a set of
ASs that exist in each analyzed version. We refer to ASs in a
single version as intra-version smells. Similar to how adjacent
versions usually represent gradual changes to a system, a smell
can exist in several consecutive versions—either completely
unchanged or evolved. Therefore, we refer to a set of intra-
version smells that are related to one another and span multiple
versions as inter-version smells.

To identify which intra-version smells constitute inter-version
smells, and thus analyze their evolution, we must apply a
tracking technique to all detected intra-version smells in a
system. In a related study, Sas et al. [48] proposed and applied
a greedy strategy to track smells based on the Jaccard set
similarity of components. For this purpose, each intra-version
smell was compared to each other intra-version smell of the
same type of ASs in the following version. Then, the most
similar pairs were iteratively matched if a predefined similarity
threshold was exceeded, which resulted in one-dimensional
inter-version smells. In this paper, we basically rely on the
tracking technique of Sas et al., but propose improvements that
aim at optimizing the runtime and achieving a more accurate
tracking over time. In the following, we present the details of
our improvements, separated by the type of ASs.

B. Tracking CDs

We can analyze CDs using two strategies: First, we can define
CDs as dependency graphs that represent strongly connected
components, that is, each vertex can be reached from every other
vertex with any number of edges between the vertices [33]. For
instance, Al-Mutawa et al. [2] rely on this definition, and thus
all graphs in Figure 1 constitute strongly connected components.
Second, we can define CDs as simple cycles, which are cyclic
paths with no repeated vertices [49].

A B

D C

A B

C

B

D C

Supercycle Subcycle 1 Subcycle 2

Fig. 4. Conceptual example for two subcycles that form a supercycle.

We propose to combine both definitions when analyzing
CDs. So, we refer to the former case as supercycles and to
the latter case as subcycles. By definition, each subcycle is
part of exactly one supercycle, but supercycles can comprise
an arbitrary number of subcycles. In Figure 4, we show
an example of a supercycle that consists of two subcycles,
which also indicates that subcycles may overlap to a certain
degree. Consequently, we focus on tracking supercycle CDs,
since subcycles may overlap or disappear over time. By
contrast, the usually larger and more complex supercycles
are unique over several versions, allowing us to track them
more accurately. By analyzing the source code of Arcan [5], we
found that it treats each subcycle as an individual CD instance.
Given the aforementioned limitations of tracking subcycles,
we recognized opportunities for improving the accuracy of our
tracking technique by tracking supercycles in contrast to Sas
et al. [48], who employed Arcan.

We show another phenomenon that we had to address to
accurately track CDs in Figure 5: The possibility of two or
more supercycles merging into one another, or one supercycle
splitting into two or more distinct supercycles. Merging occurs
when new dependencies are introduced between components of
different CDs (i.e., supercycles). Similarly, a code restructuring
that results in the removal of components or dependencies can
split a CD. In Figure 5, dependencies are added (merging) or
removed (splitting) between components C and E.

This phenomenon causes that CDs cannot be tracked as a
sequence of intra-version smells in a simple, one-dimensional
manner, because we would loose information about merging
and splitting. As a solution, we propose to represent the
evolution of the CDs in a system through a CD evolution
graph, which is a layered, directed, acyclic, and not necessarily
connected graph [51]. In Figure 6, we display such a graph for
an exemplary system with nine components and five versions.
At the top, we show the resulting CD evolution graph for the
entire system, with each vertex representing an intra-version
CD and an edge between two vertices indicating a relationship,
namely that the same CD occurred in two consecutive versions.

Version B:
One supercycle

(ABCDEF)

A B

C D

F E

Version A:
Two supercycles

(ABC, DEF)

A B

C

F E

D

Merging

Splitting

(Introduction of
dependency C→E)

(Removal of
dependency C→E)

Fig. 5. Conceptual example for the merging and splitting of CDs.

TABLE I
COMPARISON OF OUR TRACKING TECHNIQUE WITH SAS ET AL. [48].

tracking characteristic
CDs HDs, UDs

Sas et al. This study Sas et al. This study

topology of tracked instances path graph path path
matching criterion Jaccard ≥ 2 shared components Jaccard 1. same central component, 2. Jaccard
object of consideration affected components in subcycles affected components in supercycles affected components 1. central component, 2. affected components
determination of component identity name comparison name comparison name comparison name comparison

At the bottom, we show the dependency graphs for each version,
with each vertex representing a component.

Building on the evolution and dependency graphs, we defined
our tracking technique as follows:

1) We define two CDs in consecutive versions of the
evolution graph as related if they share at least two vertices
in the dependency graph, since this is also the minimum
number of vertices required for a CD to exist. For instance,
in Figure 6, CDs A2 and B2 are related, because they
share the vertices D and E in the dependency graph. To
decide whether vertices are shared between CDs, we use
a text-based comparison of their names.

2) We check for all pairs of CDs in consecutive versions
whether they are related. As a result, we obtain one
or more connected subgraphs (including single vertices)
over all considered versions in our evolution graph that
eventually constitute inter-version smells. We refer to such
a subgraph as a family, because it may include multiple
CDs of one version. Our example shows three families,
encompassing one (B3), two (D3, E2), and nine (all other
vertices) CDs, respectively.

In summary, the bottom part of Figure 6 represents CDs (i.e.,
supercycles) and the top part relations (i.e., merging, splitting)
between these—as our technique would identify.

C. Tracking HDs and UDs

Similar to Sas et al. [48], we consider the evolution of HDs
and UDs as one-dimensional paths, because both types of ASs
contain a central component that is essential to the respective
smell (cf. Sec. II-A). For HDs, this is the hub class, while
it is the stable package for UDs. However, we argue that
if two intra-version smells of consecutive versions share the
same central component, they constitute the same smell (i.e.,
they form an inter-version smell), disregarding their potential

CD
A1

CD
C1

Version A Version B Version C Version D Version E

CD
B1

CD
D1

CD
E1

CD
A2

CD
C2

CD
D2

CD
D3

CD
B2

CD
E2

C

F

G H I G H I G

A

CD evolution graph (vertex: intra-version smell, edge: relationship between intra-version smells)

Dependency graphs (vertex: component, edge: dependency)

CD
B3

A B

D E

A B C

D E F

H I

A B C

D E F

G

A B C

D E F

H I

B C

D E F

G H I

CD A1

CD A2

CD B2

CD B3

C
D

 B
1

CD C1

CD C2

CD D1

CD D3

CD D2
CD E1

CD E2

Fig. 6. Conceptual example of a system-wide CD evolution graph.

growth or shrinkage. Thus, we modify the tracking technique by
introducing an additional step: We initially match all HDs and
all UDs (of consecutive versions) that share the same central
component. This step can be performed in log-linear time, since
it only requires to sort intra-version smells by their central
component and to linearly compare them. Since we observed
that most versions do neither remove nor introduce large
shares of ASs, this strategy increases the tracking efficiency.
Additionally, false-positive and false-negative mappings are
reduced, because ASs whose central component was not
renamed between versions are correctly matched.

As a result, we only map the remaining ASs (for which
the central component has been renamed) to each other by
using the Jaccard set similarity proposed by Sas et al. For this
comparison, we excluded the central component, since it would
always differ between pairs of smells. Similar to Sas et al., we
use a Jaccard index of at least 0.6 as the minimum threshold
for any matching, which means that sets like {A, B, C, D}
and {A, B, C, E} are considered to represent the same smell.
Moreover, for HDs, we compute separate Jaccard indexes for
the sets of afferent and efferent classes, because the same class
may appear on both sides of an HD, and thus may otherwise
distort our results. Afterwards, we aggregate the two Jaccard
values via their weighted harmonic mean, using the respective
sizes of the unions of afferent and efferent classes as weights.
This reduces false-positive matching in situations in which one
side of two HDs with few components is very similar, while
the other side with many components is very dissimilar [48].

D. Properties of ASs
Besides employing the tracking technique on evolving ASs, we
also compute a variety of metrics related to the three types of
ASs we consider. With these metrics, we can gain more detailed
insights on properties and effects of the ASs, allowing us to
reason on the impact and severity of each AS. In particular,
we compute metrics regarding intra-version and inter-version
ASs, but also for particular versions of the system. Some of
the metrics have been proposed in previous research, but we
defined some new metrics specifically for our study. In Table II,
we show an excerpt (due to space restrictions) of these metrics
with a brief explanation (cf. Sec. IV). The full list of metrics
can be found in our replication package.

With intra-version smell metrics, we gain insights on
properties that can help to estimate to what extent a smell
manifests itself in a system, such as the size or complexity of
ASs. Moreover, by considering these metrics over time (i.e., for
an inter-version smell), we can derive a time series, and thus
analyze the evolution of ASs regarding certain patterns (e.g.,
growth rate). Of particular interest for inter-version smells are

TABLE II
EXCERPT OF THE METRICS FOR OUR STUDY.

AS metric description

Intra-version smells

all order [2], [45], [48] number of affected components (vertices)
all size [48] number of dependencies between the af-

fected components (edges)
all size overcomplexity share of edges between affected components

that are not necessary to form the smell
all centrality [45], [48] PageRank of the smell in the dependency

structure (CD: highest PageRank of the
affected components; HD, UD: PageRank
of the central component)

all overlap ratio [48] share of components in the smell affected
by at least one other smell

CD shape [2], [48] one of the seven shapes in Figure 1 or
unknown

CD number of subcycles number of simple cycles in the supercycle
UD DoUD (degree of unstable

dependency) [45], [48]
ratio of less stable referenced packages to
all referenced packages of the main package

UD instability gap quartiles [48] quartiles of the distribution of the instability
difference to less stable referenced packages

Inter-version smells

all lifespan in versions [48] number of versions the smell is present in
CD family order total number of intra-version instances in the

CD family
CD median family width median of the number of co-existing intra-

version instances in the CD family
CD maximum family width maximum of the number of co-existing intra-

version instances in the CD family

System versions

TDI [45] amount of TD in the version
TD per LOC TDI normalized by LOC
#ASs number of intra-version smells in the version
#ASs per LOC number of ASs normalized by LOC
#AS introductions number of introduced ASs in the version
#AS introductions per LOC #AS introductions normalized by LOC
#AS removals number of removed smells in the version
#AS removals per LOC #AS removals normalized by LOC

lifespan properties, since they allow us to reason about when
and why certain smells appear or disappear.

For CDs, we propose a set of new metrics to account for our
tracking technique. For instance, we describe the number of
co-existing intra-version CDs of the same family in a version
as the family width. To describe the whole graph, statistical
reference points like the median and maximum family width
can be used. Furthermore, we refer to the total number of
intra-version CDs in a family as its family order. If a merge
or split occurs, multiple intra-version CDs of the same family
exist in the same version(s). In such a case, the family order is
higher than the total lifespan in terms of versions. Computing
the delta of intra-version smells per version in a family (i.e.,
growth or shrinkage) can be misleading. For example, merging
reduces the number of CDs, while not alleviating the underlying
complexity. Therefore, when counting smell introductions and
removals in CDs, we distinguish between 1) an entire family
appearing/disappearing in a certain version and 2) one ore
more intra-version smells joining in or disappearing from an
already existing family.

We also compute several metrics for each version of an
analyzed system (cf. Table II) that allow us to reason about
smells in the whole system, independent of the type of ASs.
Finally, since we wanted to study the impact of ASs on TD, we
needed to quantify the latter. To this end, we adapted a metric

System
versions

JAR

V1

JAR

V2 Modified
Arcan

AsTdEA

Parse

Control

CSV
CSV

CSV
CSV

CSV

Save

Detect and analyze
intra-version smells,

calculate TDI

Intra-version
properties

Parse

CSV
CSV

CSV

Inter-version
properties

Save

Parse
Metadata

of versions

Track and analyze
inter-version smells

Update

JAR JAR JAR

V3

Fig. 7. Workflow of our tracking technique.

from Roveda [45]: Each smell is assigned a severity score,
which depends on the type of ASs. For example, the number of
less stable packages is counted for UDs, which equals the order
minus 1. Then, the respective value is related to a reference
dataset extracted from the Qualitas Corpus, and normalized
(range: [0,1]) to obtain a severity score. In combination with
its centrality and order, a TD value is calculated for each AS
and summarized as a TD index (TDI) for the whole system in
each version. Given the shortcomings pointed out by Sas et
al. [48], we excluded the “History” information from the TDI
calculation, which doubles the TD of smells that increase in
affected components and halves the TD of shrinking smells.

E. Implementation

We implemented our tracking technique in a tool called
ASTDEA (“Architecture Smell and Technical Debt Evolution
Analyzer”), for which we show the overall workflow in Figure 7.
Conceptually, ASTDEA controls a tool for detecting and
measuring ASs, using its output and additional metadata to
track and analyze the evolution of ASs. As detection tool,
we used a modified version of Arcan [6]. Next, we highlight
crucial modifications, which are mainly caused by our novel
concept for tracking the evolution of CDs (cf. Sec. III-B).

First, we slightly changed the TD computation for CDs
proposed by Roveda et al. [45]. While they computed the TD
for each subcycle, we consider supercycles as intra-version
smell instances. So, we compute the TD value of an intra-
version CD as the sum of its subcycles’ TD values.

Second, for Arcan, we added the TD computation, which
was not implemented in the open-source version 1.2.1. Next,
we added the detection of supercycles. Since we still needed to
detect subcycles, we used Arcan’s original detection algorithm
for this purpose, but complemented it with an algorithm for
supercycle detection. To this end, we employ Tarjan’s [53]
algorithm for strongly connected components. For the same
reason (i.e., use of supercycles for CD detection), we replaced
the CD shape detection technique of Arcan with the algorithm
of Al-Mutawa et al. [2]. Finally, we added the metrics that
were not contained in Arcan (cf. Sec. III-D) and implemented
some optimizations, such as multi-threading.

IV. CASE STUDY

In the following, we report the design of our case study and
describe as well as discuss our findings.

TABLE III
OVERVIEW OF OUR SUBJECT SYSTEMS FROM THE QUALITAS CORPUS DATASET [54].

system domain
versions first version last version

original included id date loc id date loc

Ant build system 23 23 1.1 2000-07-18 7,837 1.8.4 2012-05-23 105,007
ANTLR parser generator 22 22 2.4.0 1998-09-18 2,834 4.0 2013-01-22 21,919
ArgoUML diagram application 16 16 0.16.1 2004-09-04 106,500 0.34 2011-12-15 192,410
Azureus/Vuze database 63 63 2.0.8.2 2004-03-14 62,388 4.8.1.2 2012-12-17 484,739
Freecol game 32 32 0.3.0 2004-09-30 21,309 0.10.7 2013-01-07 100,748
FreeMind diagram application 16 16 0.0.2 2000-06-27 2,712 0.9.0 2011-02-19 50,198
Hibernate database 115 106 0.8.1 2001-11-30 3,555 4.2.2 2013-05-23 217,163
JGraph diagram application 39 37 5.4.4-java1.4 2005-03-28 10,780 5.13.0.0 2009-09-28 22,758
JMeter software testing 24 24 1.8.1 2003-02-03 34,170 2.9 2013-01-28 90,612
JStock stock trading 31 31 1.0.6 2011-03-29 43,811 1.0.7c 2013-06-20 48,842
Jung diagram application 23 23 1.0.0 2003-07-31 7,206 2.0.1 2010-01-25 37,989
JUnit software testing 24 23 2.0 1998-01-08 1,346 4.11 2012-11-16 7,428
Lucene text search 36 31 1.2-final 2003-09-10 6,505 4.3.0 2013-04-27 285,804
Weka machine learning 63 38 3.1.7 2000-02-22 57,194 3.7.9 2013-02-21 247,805

A. Subject Systems

To conduct our case study, we required a dataset of established
systems with diversity regarding the involved developers,
domains, number of versions, and sizes. Ensuring such
properties helps to improve the external validity of our
findings. Since we adapted Arcan [5], we considered only Java
systems and required compiled jars of each version. For
this purpose, we built on the Qualitas Corpus dataset [54] that
fulfills these criteria and has been used in related studies [2],
[46], [48]. We provide an overview of the systems and
versions we selected in Table III.

As we can see, the 14 systems are well-established, cover
various domains, span up to around 15 years of evolution
(involving between 16 to 115 versions), and vary considerably
in size as well as growth. We had to exclude 42 of the 527
versions provided. Namely, we excluded versions that refer to
different branches of a system, which partly overlap regarding
the periods they cover. Analyzing such versions would bias
our results, for instance, by invalidating time-related metrics
(e.g., JGraph 5.4.4 was released for Java 1.3 and 1.4 on the
same day; thus, we used only the version for Java 1.4).

B. Research Questions

The overall goal of our study was to gain insights into how
ASs and their evolution contribute to software degradation. To
this end, we formulated three research questions (RQs), each
addressing a certain aspect of AS evolution.
RQ1 How does the number of ASs evolve over time?

We wanted to investigate how ASs in general evolve
over time (i.e., increase/decrease), and how this relates
to the evolution of other system properties, such as size,
number of classes/packages, or TD. Rationale: A growing
number of ASs indicates that system quality decreases,
and thus the system becomes less maintainable over time.

RQ2 What is the impact of ASs on TD?
Since TD is an indicator for software degradation, our
focus with this RQ was to analyze whether and how ASs
impact TD over time, and thus cause an interest rate.
Rationale: If we find a relation between TD and ASs
(or certain types of ASs), corresponding cases should be
considered more urgent for removal, since they have a

greater impact on software degradation. As a result, find-
ing such relations can help developers identify refactoring
candidates among ASs earlier in a system’s lifetime.

RQ3 What influences the lifespan of ASs?
A longer lifespan of an AS indicates that it manifests
itself in the system, and thus continuously contributes to
system degradation and may be more difficult to remove,
since it is tightly integrated in the system. Rationale: We
wanted to understand what properties mainly influence
the lifespan of ASs. The results can help to identify and
remove potentially long-living ASs early on.

By addressing these RQs, we provide insights for researchers
and practitioners into how ASs manifest in a system, and which
ASs may cause more software degradation.

C. Analyses

We performed multiple analysis steps on our dataset. First,
we executed several queries to elicit different metrics-based
properties of each system’s evolution (cf. Table II). Second, we
performed a regression analysis and statistical tests to study the
evolution of ASs and TD in the systems. Finally, we analyzed
which of the properties have a major influence on the lifespan
of ASs. For this purpose, we determined the number of versions
for each intra-version smell until its last successor was removed
or the analyzed time period was fully covered. We aggregated
the results of all 14 systems, but looked at each type of ASs
individually. Each property was divided into bins, so that a
similar number of ASs fell into each bin, to allow aggregated
statistical analyses. As minimum bin size for UDs and class-
level CDs, we used 1/20 of their total number. For HDs and
package-level CDs, we used 1/10 instead. We found these bin
sizes to be appropriate through manual tests, since they ensure
a fine enough granularity for differentiated analyses and a high
enough aggregation to minimize noise in the results.

D. Results & Discussion

To address our RQs, we measured different properties of our
14 subject systems. Since we cannot visualize all of them in
this paper, we exemplify five systems in Figure 8 that represent
the most interesting findings and are also representative for
the other systems. We provide detailed visualizations and data

0 2 4 6 8 10 12 14
0

20

40

60

KL
OC

FreeMind

0 4 8 12 16 20 24 28 32 36
0

10

20

JGraph

0 3 6 9 12 15 18 21
0

25

50

75

JMeter

0 3 6 9 12 15 18 21
0

10

20

30

Jung

0 4 8 12 16 20 24 28 32 36
0

100

200

Weka

KLOC #Classes per LOC #Packages per class

0 2 4 6 8 10 12 14
0

20

40

Cu
m

ul
at

ed
#

AS
s

0 4 8 12 16 20 24 28 32 36
0

5

10

15

0 3 6 9 12 15 18 21
0

50

100

0 3 6 9 12 15 18 21
0

20

40

0 4 8 12 16 20 24 28 32 36
0

100

200

0 2 4 6 8 10 12 14
0

1

2

3

Cu
m

ul
at

ed
#

AS
s

pe
r K

LO
C

0 4 8 12 16 20 24 28 32 36
0.00

0.25

0.50

0.75

0 3 6 9 12 15 18 21
0.0

0.5

1.0

0 3 6 9 12 15 18 21
0

1

2

0 4 8 12 16 20 24 28 32 36
0.00

0.25

0.50

0.75

0 2 4 6 8 10 12 14
0

5

10

Cu
m

ul
at

ed
TD

I

0 4 8 12 16 20 24 28 32 36
0

2

4

0 3 6 9 12 15 18 21
0

2

5

7

0 3 6 9 12 15 18 21
0.0

0.2

0.4

0.6

0 4 8 12 16 20 24 28 32 36
0

1

2

3

0 2 4 6 8 10 12 14
0.0

0.2

0.4

Cu
m

ul
at

ed
TD

 p
er

 K
LO

C

0 4 8 12 16 20 24 28 32 36
0.0

0.2

0.4

0 3 6 9 12 15 18 21
0.00

0.05

0.10

0 3 6 9 12 15 18 21
0.00

0.02

0.04

0.06

0 4 8 12 16 20 24 28 32 36
0.00

0.02

0.04

0.06

Class-level CDs Package-level CDs HDs UDs Median #ASs per KLOC, TD per KLOC of all systems

0 2 4 6 8 10 12 14

0.5

0.0

0.5

#
AS

 in
tro

du
ct

io
ns

,
#

re
m

ov
al

s
pe

r K
LO

C

0 4 8 12 16 20 24 28 32 36

0.25

0.00

0.25

0 3 6 9 12 15 18 21

0.5

0.0

0.5

0 3 6 9 12 15 18 21

1

0

1

0 4 8 12 16 20 24 28 32 36

0.2

0.0

0.2

#AS introductions per KLOC #AS removals per KLOC 0.9 quantile of #ASs introductions per KLOC of all systems 0.9 quantile of #ASs removals per KLOC of all systems

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

#
Cl

as
se

s
pe

r L
OC

,
#

pa
ck

ag
es

 p
er

 c
la

ss

Version
Fig. 8. Measurement results for five exemplary subject systems, for each from top to bottom row: (1) system size, (2) absolute ASs per type, (3) relative ASs
per type, (4) absolute TD per type of ASs, (5) relative TD per type of ASs, and (6) introductions and removal of ASs.

for all systems in our replication package. From top to bottom,
we display in each row the evolution of:

1) the system’s size in thousand lines of code (KLOC) (left
axis) as well as ratios of classes and packages (right axis);

2) the system’s absolute number of ASs per type;
3) the relative number of ASs per type;
4) the system’s absolute TD per type of ASs;
5) the relative TD per type of ASs; and
6) AS-introducing and AS-removing changes.

Below, we describe and discuss the results for each RQ.

E. RQ1: Evolution of ASs

Results. Unsurprisingly, we see in Table III and the first row of
Figure 8 that most systems grew considerably in size (KLOC).
Only JStock remained relatively stable in the observed period.
Thus, most systems exhibit similar trends to JMeter, Jung, or
Weka. However, we can also see that a few drastic increases in
code size have been caused by a single version, for instance, in
FreeMind and JGraph. Moreover, most systems have decreased
in code size between a few versions, potentially caused by
refactoring source code or architectural redesign. Still, the ratio

of classes per LOC varies only slightly and the ratio of packages
per class typically decreases (JGraph is an exception here, too).

Since most systems increased in size, it is also not surprising
that the absolute number of ASs (second row in Figure 8) also
increases. Particularly for FreeMind and JGraph, both values
seem to be directly related. Interestingly, the total number of
ASs rarely decreases throughout the versions we considered,
and does not always correspond to a decreased code size (e.g.,
for FreeMind). Similarly, the total amount of TD is increasing
the more ASs are incorporated in the system. An exception is
JGraph, in which the TD decreased drastically, even though
the code size and number of ASs increased.

In the third and fifth rows, we relate ASs and TD with
the code size to mitigate the impact of sheer size from
our analysis. We can see that the ratio of ASs and TD are
mostly stable throughout a system’s evolution, but they can
vary considerably between different systems. FreeMind is an
exception, since the relative number of ASs and the amount
of TD decrease over time, independently from the change
in code size. Also, in JGraph, the pattern of ASs increasing
while TD decreased remains.

RQ1: How does the number of ASs evolve over time?
Most systems increased in code size throughout their
versions, which relates to more ASs and TD. However,
considering the relative number of ASs and amount of
TD, they remained mostly stable and even decreased in
some systems, and thus do not exhibit an exponential
growth. Still, our data indicates that once ASs have
infected a system, they won’t disappear but rather manifest
themselves, and thus contribute to software degradation.

Discussion. Considering the total number of ASs, our findings
are similar to those of Sas et al. [48], who found that the
absolute number of ASs mostly increased during a system’s
evolution. We observed that the relative number of ASs stays
mostly stable, and sometimes decreases, which somewhat con-
tradicts the previous findings of Sas et al., who found increasing
relative levels of package-level CDs. A possible reason could be
the different perspective on CDs (i.e., supercycles vs. subycles,
cf. Sec. III-B). However, similar results to our study have been
found for CSs [50]. Reflecting on such findings, we argue that
ASs also seem to be caused more by the sheer amount of source
code rather than architectural properties. While we require
further studies to strengthen such evidence, this finding has
important, direct implications for researchers and practitioners:
we should first focus on understanding to what extent ASs
are actually a problem. Otherwise, we may run into the same
problems as with CSs [50], for which considerable research
efforts have been spent on specific refactorings and tools
that may not address an actual problem. Similar issues have
been identified and have partly caused considerable paradigm
shifts for other areas, such as code clones [24], refactoring
in general [55], or preprocessor use [15]. Consequently, our
findings can help researchers scope their work and avoid costly
endeavors into directions that could be misguided—instead
focusing on understanding the real problem first.

Interestingly, but out of the scope of this paper, is the
decrease in ASs and TD that we found for a few systems
(e.g., FreeMind). Exploring whether this has been caused
by a shift in the systems’ architecture (and not just the size
change) could help to identify architectural designs that
prevent ASs. Similarly, it may indicate that the developers
of these systems are aware of ASs and try to avoid them.
Consequently, comparing between such and the remaining
systems more qualitatively may help unveil to what extent
ASs are an actual problem in practice, and how to avoid them.

F. RQ2: ASs and TD

Results. To answer this RQ, we focus on the diagrams in
the second to fifth rows (absolute and relative ASs, and TD
compositions) of Figure 8. Our results reveal that there are
considerable differences in the ratio of each type of ASs to the
overall number of ASs. Particularly, class-level CDs constitute
the type that is mostly present for the whole period of the
systems’ evolution (e.g., for JMeter, Jung, Weka) with only few
exceptions (i.e., JGraph, Freecol, partially Hibernate). More-
over, FreeMind shows a special evolution pattern, since its class-

level CDs have a low share, but then increase sharply in version
14. By contrast, the share of package-level CDs is almost
neglectable (exceptions: ANTLR, JGraph, Jung). Apart from
class-level CDs, UDs constitute the second most present type of
ASs in all systems (except JGraph). Finally, HDs occur only to
a minor extent, but with a higher share than package-level CDs.
For some systems (i.e., Weka, JUnit, ArgoUML), this smell type
is neglectable or even disappears during the systems’ evolution.

For the impact of ASs on TD (i.e., how much a certain smell
type contributes to the TDI), the most prevalent type of ASs
(class-level CD) has also the greatest impact on TD except for
three systems (i.e., JMeter, Jung, Hibernate). Interestingly, for
JGraph, the share of class-level CDs is rather low, whereas
this type almost solely accounts for the TD. Next, even though
having low shares of the overall number of ASs, package-level
CDs contribute considerably (second most) to TD for almost
half of the systems. For this type of ASs, we also observe cases
(e.g., JMeter, Weka) in which the difference between its share
of the total number of ASs and its impact on TD is considerable.
Eventually, both HDs and UDs do not substantially amount
for TD in most systems. In particular, UDs have an impact
on three systems (i.e., ANTLR, Jung, JUnit), and HDs on five
systems (e.g., JStock, Freemind).

In the last row of Figure 8, we show how AS introductions
and removals evolve over time to evaluate whether this has an
influence on TD. Our results indicate that ASs are introduced
and removed simultaneously and in an irregular fashion. We
assume that this is due to introduced smells subsuming existing
ones (e.g., due to excessive growth or renaming), which is
then interpreted as removal by our tracking technique. We
also performed a correlation analysis for various combinations
(e.g., AS level vs. TD increase rate, AS removal rate vs. TD
increase rate; see replication package), but could not find any
correlation that is significant for the majority of systems.

RQ2: What is the impact of ASs on TD?
We found considerable differences regarding the shares
of types of ASs, with class-level CDs being the most
prevalent type. These differences are also reflected by the
types’ impact on TD. However, our results show that for
half of the systems, certain types of ASs (package-level
CDs, HDs) have considerable impact on TD, even though
they constitute only a small share. So, we conclude that the
number of occurrences of a certain type does not necessar-
ily impact software degradation. Rather, other properties
(e.g., the complexity of ASs) seem to play a pivotal role.

Discussion. Overall, we obtained several interesting insights
for this RQ. First of all, the prevalence of class-level CDs is a
complementary finding that extends on Sas et al. Interestingly,
despite having a considerably lower relative number than for
Sas et al.; as a result of our different definition (supercycles);
class-level CDs remained the most prevalent type of ASs in our
study. A more in-depth analysis is required to explain this result.

Second, and maybe the most important finding: The share of
the types of ASs does not necessarily determine their impact on

1 10
0
3
6
9

12
15
18
21
24

Order (log)

1 10 100
0
3
6
9

12
15
18
21
24

Size (log)

10 1 100 101

0
3
6
9

12
15
18
21
24
27

Centrality (log)

0.0 0.2 0.4 0.6 0.8 1.0
0
3
6
9

12
15
18
21
24
27

DoUD

0.0 0.2 0.4 0.6 0.8 1.0
0
4
8

12
16
20
24
28

Instability gap median
Re

m
ai

ni
ng

 li
fe

sp
an

in
 #

ve
rs

io
ns

Fig. 9. Impact of different properties of UDs on the remaining lifespan. We show confidence intervals (α = 5%). Horizontal lines indicate bin ranges.

TD, and thus on software degradation. Possible reasons could
be that some ASs are complex and tangled with the underlying
system, thus affecting many components and contributing con-
siderably to the overall TD. These observations are also stable
for the whole evolution period, indicating that once such an
intricating AS has entered a system, it is unlikely to disappear
or be removed by chance. We argue that this constitutes a
highly valuable result, since it allows practitioners to focus
on specific, rather complex ASs with a high impact on TD as
candidates to be removed. However, we are still analyzing what
properties may be good proxies for such intricating smells.

G. RQ3: Lifespans of ASs
Results. By studying changes that introduced or removed ASs
(cf. sixth row in Figure 8), we found that ASs are often
introduced into, but rarely removed from, a system. So, we
aimed to understand for what reasons (i.e., properties) ASs
may persist throughout many versions. In the lifespan analysis,
we found no clear correlation between most properties and
the lifespan of ASs. However, depending on their type, ASs
with increasing values for specific properties showed longer
lifespans (with some fluctuation). As an example, we show the
corresponding data for UDs in Figure 9 (explained shortly).

For class-level CDs, such properties include the order, size,
size overcomplexity, severity score, and number of subcycles.
The size overcomplexity exhibited the highest difference in
average lifespans between the lowest and the highest bin of
values (ca. 15 vs. 23 versions). For properties like the order and
size, the mean lifespan ranges from around 15 to 20 versions.

Package-level CDs showed less clear tendencies and higher
fluctuations. However, much more than for class-level CDs,
the shape correlated with the lifespan. On average, cliques
persisted for the highest number of versions (ca. 25), followed
by multi-hubs. By contrast, chains were the least persistent
shape (ca. 6 versions), followed by unknown shapes and stars.

Similarly, HDs exhibited no clear relationships between any
property and the lifespan. For several ones, such as the order or
size, bins with midsize values showed the highest mean lifes-
pans. However, surrounding bins had mostly lower lifespans.

On average, the lifespan of UDs (cf. Figure 9) remained
mostly similar for different orders, sizes, and size overcom-
plexities. By contrast, it showed a clear correlation with the
centrality (first bin: ca. 13 vs. penultimate bin: ca. 26 versions),
the DoUD (first bin: ca. 16 vs. last bin: ca. 26 versions), and
the median of the instability gap (first bin: ca. 13 vs. last bin:
ca. 28 versions). Furthermore, UDs that fully overlapped with
other ASs typically persisted longer (ca. 21 versions) than
those with lower overlap ratios (ca. 16 versions).

RQ3: What influences the lifespan of ASs?
We found no universal correlations between the properties
of all types of ASs with their lifespans. However, in-
creasingly complex class-level CDs persisted considerably
longer, while UDs showed high lifespans if they are central,
overlapping, or have high instability gaps.

Discussion. While a naive assumption would be that especially
large ASs persist longer, our findings show that this only applies
for class-level CDs. Given their high shares on both the number
of ASs and the TDI in many systems (cf. Figure 8), our results
suggest that developers should target large class-level CDs first.
This finding contradicts Sas et al. [48], who found tiny CDs
(i.e., an order and size of two) to be the most persistent shape.
A potential reason is the different tracking technique, since they
tracked subcycle CDs, which can be expected to be less stable
for larger instances than supercycle CDs (cf. Sec. III-B). We
can apply a similar reasoning for the shapes of package-level
CDs, for which our results also differ from Sas et al. (albeit
they did not separate between class- and package-level in their
survival analysis regarding shapes).

For UDs, it could be expected that the DoUD and instability
gap correlate with the lifespan: UDs with only few less stable
packages and a low difference in instability can be assumed to
more quickly loose their status as a smell even without targeted
refactoring. For example, the addition of a new dependency
changes by definition the instability metric of both affected
components. If more persistent ASs are considered more severe,
our findings support the suggestion of Roveda et al. [46]
to concentrate on UDs with a high DoUD for refactoring.
Finally, the observation that more central UDs persist longer
can be particularly interesting for practitioners, since such UDs
potentially propagate changes to more parts of a system, and
thus should be given higher priority during refactoring.

H. Tracking Evaluation

Given that our tracking of CDs as graphs (cf. Sec. III-B)
introduces additional complexity, we checked whether it
increases the accuracy when analyzing the evolution of ASs.
In our case study, we found that 23.3 % of intra-version class-
level CDs were part of a CD family in which at least one
split or merge occurred. For package-level CDs, this number
amounted to 30.0 %. We observed the highest maximum family
width of 109 parallel branches in Azureus with a family
order of 2,500 smells, which alone represents nearly 30 %
of all intra-version class-level CDs in Azureus. These results
indicate that not considering CD evolution as graphs would

lead to a considerable loss in information when analyzing the
relationship between smell instances in consecutive versions.

I. Threats to Validity

A threat to the internal validity is that we implemented our
own tooling to track ASs and to collect metrics on them. Thus,
our results may be biased by bugs or a misconception in the
design of our technique (or metrics). Since it is not possible to
ensure that an implementation works as intended, we cannot
overcome this threat. Nonetheless, to mitigate potential biases,
we tested our implementation extensively and performed sanity
checks during its design (e.g., inspecting ASs manually) to
improve our confidence that our tooling works as intended.

A threat to the external validity of our case study are the
selected subject systems. Some involve rather few versions,
are comparably small, or involve parallel versions. Thus, our
results may not be generalizable for other systems. We aimed
to mitigate this problem by building on an established dataset
of well-known open-source systems and ensuring the quality of
our data (e.g., excluding parallel versions). Our results reveal
different patterns regarding the evolution of ASs and TD, which
we would expect for a wider range of systems. So, we argue
that the potential threat caused by the selected systems is small.

V. RELATED WORK

Evolution of CSs. First studies [58] on the evolution of CSs
involved only a few subject systems. For instance, Vaucher et
al. [57] studied the evolution of god classes in Eclipse JDT
(21 versions) and Xerces (34 versions), Olbrich et al. [37] god
classes as well as shotgun surgery in Xerces (51 versions) and
Lucene (25 versions), or Chatzigeorgiou and Manakos [12] long
method, feature envy, state checking, and god class in JFlex (10
versions) and JFreeChart (14 versions). Interestingly, these stud-
ies obtained similar findings, namely that the ratios of different
CSs can vary heavily between systems, but remain relatively
stable within each system. Moreover, many CSs are introduced
when creating the code, and most stay in a system for a long
time. Recent studies [12], [40], [56] have been performed on
larger numbers of systems, versions, and domains, for instance,
for SQL [36], Android [19], [20], JavaScript [23], or PHP [43].
Not surprisingly, these studies suggest that some types of
CSs are more actively removed in some systems, and thus
different evolutionary patterns exist. Still, they largely agree on
the previous finding, providing extensive empirical evidence
regarding the evolution of CSs. However, the empirical evidence
on the impact of CSs on software degradation is somewhat
inconclusive [47], [50], [59]. Even though some results of
these studies are comparable to ours, we had a different focus.
Namely, we focused on ASs (not CSs) and advance on pure
evolutionary analyses by also considering the impact ASs have
on software degradation. Consequently, our work is comple-
mentary to, and advances upon, existing research on CSs.
Evolution of ASs. As we described, we built upon two existing
works, which are among few investigating the evolution of
ASs empirically. Sas et al. [48] conducted a study on three
types of ASs on 524 versions of 14 systems, revealing that

ASs differ regarding their growth and life-span. Since our
study is inspired by Sas et al., the findings are partly similar.
Nonetheless, we advance on this study and reveal new insights
by considering TD, involving different ASs, and extending as
well as improving the technique for tracking ASs. Similarly, we
built on the work of Roveda et al. [46] who propose a so-called
architectural debt index to measure the TD caused by ASs—
also involving evolutionary aspects. However, the index itself
is not derived from empirical findings, which we elicited with
our analysis. Finally, Rangnau [42] studied six open-source
systems to understand why developers introduce ASs. The
results suggest that ASs are mostly resolved when developers
fix a bug, and developers are unaware of introducing ASs. We
complement existing studies on ASs, and provide a means to
improve or validate proposed metrics based on real-world data.
Evolution of TD. Similarly to ASs, the evolution of TD has
not been extensively studied, but is often associated with CSs.
Potdar and Shihab [41] analyzed four open-source systems,
which Bavota and Russo [9] extended to 159 systems—with
both studies revealing similar findings. Most importantly in
the context of this work, that TD becomes more expensive
over time, but survives for a long time (similar to CSs).
Similarly, Amanatidis et al. [4] found that it is more expensive
to correct higher degrees of TD. Related to our findings,
Digkas et al. [14] found that the TD in 66 Java systems of
the Apache ecosystem increases over time, but it actually
decreases when normalized to the systems’ sizes. Since we
built on the concept of TD, it is not surprising that we found
partly overlapping results. However, we complement previous
works, since we studied TD in relation to ASs, and thus
revealed new insights that have not been reported previously.

VI. CONCLUSION

In this paper, we presented considerable extensions to an
established technique for tracking ASs through a system’s
evolution. Using the improved technique, we performed a case
study in which we analyzed 485 versions of 14 open-source
systems to study the evolution of ASs. Advancing further on
previous works, we related ASs to TD to also study the impact
of each type of ASs on software degradation. Our results
indicate that our improved technique helps to uncover novel
insights that are relevant for practitioners and researchers. For
instance, we found that certain types of ASs seem to have far
more impact than others, since they occur less often but still
cause most TD. In the end, we argue that researchers first have
to explore ASs in more detail to understand whether they are
an actual problem and how to tackle them. Practitioners can
benefit from our results by identifying, reviewing, and resolving
potentially problematic ASs (i.e., class- and package-level CDs)
to improve the design of their system. We aim to explore our
findings in more detail in the future, particularly why ASs
survive for such a long time and whether developers actually
care to resolve ASs for what reasons. Using our insights, we
intend to derive actionable recommendations and to potentially
design new tool support for developers.

REFERENCES

[1] I. Ahmed, U. A. Mannan, R. Gopinath, and C. Jensen, “An empirical
study of design degradation: How software projects get worse over time,”
in Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 2015.

[2] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, “On the
shape of circular dependencies in Java programs,” in Proceedings of the
Australian Software Engineering Conference (ASWEC). IEEE, 2014.

[3] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça Neto, R. O. Spı́nola,
F. Shull, and C. B. Seaman, “Identification and management of technical
debt: A systematic mapping study,” Information and Software Technology,
vol. 70, 2016.

[4] T. Amanatidis, A. Chatzigeorgiou, and A. Ampatzoglou, “The relation
between technical debt and corrective maintenance in PHP web applica-
tions,” Information and Software Technology, vol. 90, 2017.

[5] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni,
and E. D. Nitto, “Arcan: A tool for architectural smells detection,” in
Proceedings of the International Conference on Software Architecture
(ICSA). IEEE, 2017.

[6] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Proceedings of the
International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2016.

[7] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. B. Seaman, “Managing
technical debt in software engineering (Dagstuhl Seminar 16162),”
Dagstuhl Reports, vol. 6, no. 4, 2016.

[8] U. Azadi, F. Arcelli Fontana, and D. Taibi, “Architectural smells detected
by tools: A catalogue proposal,” in Proceedings of the International
Conference on Technical Debt (TechDebt). IEEE, 2019.

[9] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in Proceedings of the International Conference on Mining
Software Repositories (MSR). ACM, 2016.

[10] L. A. Belady and M. M. Lehman, “A model of large program develop-
ment,” IBM Systems Journal, vol. 15, no. 3, 1976.

[11] A. S. Cairo, G. de F. Carneiro, and M. P. Monteiro, “The impact of code
smells on software bugs: A systematic literature review,” Information,
vol. 9, no. 11, 2018.

[12] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of code
smells in object-oriented systems,” Innovations in Systems and Software
Engineering, vol. 10, no. 1, 2014.

[13] W. Cunningham, “The WyCash portfolio management system,” Pro-
ceedings of the Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), vol. 4, no. 2, 1992.

[14] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolution
of technical debt in the apache ecosystem,” in Proceedings of the
European Conference on Software Architecture (ECSA). Springer, 2017.

[15] W. Fenske, J. Krüger, M. Kanyshkova, and S. Schulze, “#ifdef directives
and program comprehension: The dilemma between correctness and
preference,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2020.

[16] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2019.

[17] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
architectural bad smells,” in Proceedings of the European Conference
on Software Maintenance and Reengineering (CSMR). IEEE, 2009.

[18] ——, “Toward a catalogue of architectural bad smells,” in Proceedings
of the International Conference on the Quality of Software Architectures
(QoSA). Springer, 2009.

[19] S. Habchi, N. Moha, and R. Rouvoy, “Android code smells: From
introduction to refactoring,” Journal of Systems and Software, vol. 177,
2021.

[20] S. Habchi, R. Rouvoy, and N. Moha, “On the survival of Android code
smells in the wild,” in International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, 2019.

[21] S. Herold, “An initial study on the association between architectural
smells and degradation,” in Proceedings of the European Conference on
Software Architecture (ECSA). Springer, 2020.

[22] C. Izurieta and J. M. Bieman, “How software designs decay: A pilot study
of pattern evolution,” in Proceedings of the International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2007.

[23] D. Johannes, F. Khomh, and G. Antoniol, “A large-scale empirical study
of code smells in JavaScript projects,” Software Quality Journal, vol. 27,
no. 3, 2019.

[24] C. J. Kapser and M. W. Godfrey, ““Cloning considered harmful”
considered harmful: Patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, 2008.

[25] F. Khomh, M. D. Penta, and Y. Guéhéneuc, “An exploratory study of the
impact of code smells on software change-proneness,” in Proceedings of
the Working Conference on Reverse Engineering (WCRE). IEEE, 2009.

[26] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, 2012.

[27] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
smells and refactoring: A tertiary systematic review of challenges and
observations,” Journal of Systems and Software, vol. 167, 2020.

[28] D. M. Le and N. Medvidovic, “Architectural-based speculative analysis
to predict bugs in a software system,” in Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 2016.

[29] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006.

[30] R. C. Martin, “OO design quality metrics: An analysis of dependencies,”
1994.

[31] ——, “Design principles and design patterns,” Object Mentor, 2000.
[32] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying

and prioritizing architectural debt through architectural smells: A case
study in a large software company,” in Proceedings of the European
Conference on Software Architecture (ECSA). Springer, 2018.

[33] H. Melton and E. D. Tempero, “An empirical study of cycles among
classes in Java,” Empirical Software Engineering, vol. 12, no. 4, 2007.

[34] B. Meyer, Object-Oriented Software Construction. Prentice Hall, 1997.
[35] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal

definition and automatic detection of architecture smells,” in Proceedings
of the Working Conference on Software Architecture (WICSA). IEEE,
2015.

[36] B. A. Muse, M. M. Rahman, C. Nagy, A. Cleve, F. Khomh, and
G. Antoniol, “On the prevalence, impact, and evolution of SQL code
smells in data-intensive systems,” in Proceedings of the International
Conference on Mining Software Repositories (MSR). ACM, 2020.

[37] S. M. Olbrich, D. S. Cruzes, V. R. Basili, and N. Zazworka, “The
evolution and impact of code smells: A case study of two open source
systems,” in Proceedings of the International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 2009.

[38] J. A. D. Pace, A. Tommasel, and D. Godoy, “Towards anticipation of
architectural smells using link prediction techniques,” in Proceedings
of the Working Conference on Source Code Manipulation and Analysis
(SCAM). IEEE, 2018.

[39] D. L. Parnas, “Software aging,” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 1994.

[40] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Proceedings of the European Conference
on Software Maintenance and Reengineering (CSMR). IEEE, 2012.

[41] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical
debt,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014.

[42] T. Rangnau, “Determining the rationale of architectural smells from issue
trackers,” Master’s thesis, University of Groningen, 2020.

[43] A. Rio and F. B. e Abreu, “PHP code smells in web apps: Survival and
anomalies,” 2020. [Online]. Available: https://arxiv.org/abs/2101.00090v1

[44] L. Rizzi, F. Arcelli Fontana, and R. Roveda, “Support for architectural
smell refactoring,” in Proceedings of the International Workshop on
Refactoring Tools (WRT). ACM, 2018.

[45] R. Roveda, “Identifying and evaluating software architecture erosion,”
Ph.D. dissertation, University of Milano-Bicocca, 2018.

[46] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni, “Towards an
architectural debt index,” in Proceedings of the International Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2018.

[47] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S. do Nascimento,
M. F. Freitas, and M. G. de Mendonça, “A systematic review on the
code smell effect,” Journal of Systems and Software, vol. 144, 2018.

[48] D. Sas, P. Avgeriou, and F. Arcelli Fontana, “Investigating instability
architectural smells evolution: An exploratory case study,” in Proceedings
of the International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2019.

[49] R. Sedgewick and K. Wayne, Algorithms. Addison-Wesley, 2011.
[50] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå,

“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering (TSE), vol. 39, no. 8, 2012.

https://arxiv.org/abs/2101.00090v1

[51] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding
of hierarchical system structures,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 11, no. 2, 1981.

[52] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt. Elsevier, 2014.

[53] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, 1972.

[54] E. D. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas Corpus: A curated collection
of Java code for empirical studies,” in Proceedings of the Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2010.

[55] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
Proceedings of the International Conference on Software Engineering

(ICSE). IEEE, 2015.
[56] ——, “When and why your code starts to smell bad (and whether the

smells go away),” IEEE Transactions on Software Engineering (TSE),
vol. 43, no. 11, 2017.

[57] S. Vaucher, F. Khomh, N. Moha, and Y. Guéhéneuc, “Tracking design
smells: Lessons from a study of god classes,” in Proceedings of the
Working Conference on Reverse Engineering (WCRE). IEEE, 2009.

[58] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating
the impact of design debt on software quality,” in Proceedings of the
International Workshop on Managing Technical Debt (MTD). ACM,
2011.

[59] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: A review of
current knowledge,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, 2011.

