
#ifdef Directives and Program Comprehension:

The Dilemma between Correctness and Preference

Wolfram Fenske1, Jacob Krüger2, Maria Kanyshkova2, Sandro Schulze2

Abstract: In this extended abstract, we summarize our paper with the homonymous title published at
the International Conference on Software Maintenance and Evolution (ICSME) 2020 [Fe20].

Keywords: Configurable Systems; Preprocessors; Program Comprehension; Refactoring; Empirical

Study

The C PreProcessor (CPP) is a simple, yet effective tool to implement configuration options

in a software system. For this purpose, the CPP provides text-based directives to enable

conditional compilation, following the annotate-and-remove paradigm. Each directive is

associated with a macro (i.e., the configuration option), which controls the presence or

absence of the source code surrounded by its opening (e.g., #ifdef) and closing (e.g., #endif)

directives. Due to its simplicity, the CPP is widely used in industrial and open-source

systems from various domains—prominent examples being the Linux Kernel with over 26

million lines of code and more than 15 thousand configuration options, Hewlett-Packard’s

printer firmware, and the Apache web server. The CPP allows developers to customize

such systems to specific customer requirements, safety regulations, resource restrictions, or

non-functional properties.

While the CPP is established in practice, it is also heavily criticized for several issues

perceived as problematic. For instance, researchers suspect that the CPP impedes program

comprehension, fosters code scattering as well as tangling, harms maintainability, and

increases fault proneness. The most prominent issue that has been investigated in greater

detail are undisciplined CPP directives, that is, directives that are not aligned with syntactic

units in the source code. However, some studies on the CPP led to contradicting results

and most studies are limited in their validity, for example, because they exclusively rely on

automated repository mining or because controlled experiments involved mostly a smaller

number of students. Only two previous experiments (one on undisciplined directives, one

on faults) involved a larger number of experienced practitioners.

In our paper, we present a large-scale empirical study on the impact of refactoring CPP

directives to be more comprehensible. We selected five real-world code example from Emacs

and Vim that previous work indicates to be particularly “smelly” (i.e., hard to comprehend).

Building on findings of previous studies, we employed three types of refactoring to improve

1 pure-systems GmbH, Magdeburg, Germany, Emailȷ wolfram.fenske@pure-systems.com
2 Otto-von-Guericke-University Magdeburg, Germany, Emailȷ jkrueger@ovgu.de, sanschul@ovgu.de

cba doi:10.18420/SE2021_06

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 35

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_06
mailto:wolfram.fenske@pure-systems.com
mailto:jkrueger@ovgu.de
mailto:sanschul@ovgu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_06


the comprehensibility of the source code by reducing the complexity of the present CPP

directives. We then designed an online study that comprised an experiment and a survey,

combining objective and subjective empirical data for the same code examples—which

has not been done in previous work that always focused on either experimental or survey

data. Our study was split into two different versions, both sharing one code example to

assure that we could compare between the versions. Moreover, each version comprised

two original and two refactored code examples. For each example, our participants solved

two program comprehension tasks (i.e., the experiment) during which we measured their

objective correctness. Afterwards, we asked them to assess the quality of the code and

CPP directives (i.e., the survey) to elicit their subjective opinion. We sent our study to

7,791 C developers of open-source projects hosted on GitHub who made their data publicly

available. Overall, we received 521 responses with an almost even split between the two

study versions (i.e., 260 to 261). Using this methodology, we considerably extend previous

studies by combining objective and subjective measurements in a large-scale study.

The core findings we derive from our results areȷ

• Our participants performed slightly worse on refactored code in terms of correctly solv-

ing the defined program-comprehension tasks, despite existing evidence suggesting

that the refactoring should have improved their program comprehension.

• Our participants preferred the refactored CPP directives over those in the original

code examples, aligning with existing evidence.

• Most interestingly, our participants’ objective comprehension performance and

their subjective preferences contradict each other and existing evidence on the

comprehensibility and refactoring of CPP directives.

• Refactoring CPP directives may result in developers perceiving the overall code

quality as worse, indicating a trade-off between the quality of the CPP directives and

the quality of the underlying source code.

Overall, our results imply a surprising dilemma not covered by previous studies, challenging

common beliefs in the context of program comprehension of CPP directives. In our future

work, we will investigate this dilemma between objective performance and subjective

preference in more detail using further empirical research methods.

Bibliography

[Fe20] Fenske, Wolfram; Krüger, Jacob; Kanyshkova, Maria; Schulze, Sandroȷ #ifdef Directives and
Program Comprehensionȷ The Dilemma between Correctness and Preference. Inȷ International
Conference on Software Maintenance and Evolution. ICSME. IEEE, pp. 255–266, 2020.

36 Wolfram Fenske, Jacob Krüger, Maria Kanyshkova, Sandro Schulze


