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Abstract—Many organizations and open-source projects use
the C preprocessor (CPP) to implement configurability in their
software systems. Despite extensive research, existing studies on
the effects of CPP use on program comprehension are still limited
to experiences, opinions, and empirical studies with narrow
scopes. So, it is unclear whether the CPP actually leads to what is
sometimes referred to as “#ifdef hell.” In this paper, we expand
the existing evidence on program comprehension in the presence
of CPP directives, but we also highlight a surprising dilemma.
We conducted an empirical study, including an experiment and
a questionnaire, on the impact of refactoring CPP directives
with 521 experienced software developers. The results indicate
that, in contrast to previous findings, comprehension performance
slightly worsened in terms of correctness when our participants
worked on code with refactored CPP directives. However, in
alignment with previous findings, they preferred the refactored
code, considering it more comprehensible and easier to work
with. This dilemma of objective performance versus subjective
preference is a surprising outcome that has not been found before.
We argue that our work motivates the need for more studies
to understand this dilemma—which may significantly impact
common beliefs in research and practice.

Index Terms—Configurable Systems, Preprocessors, Program
Comprehension, Refactoring, Empirical Study

I. INTRODUCTION

The C preprocessor (CPP) is a simple, yet effective text-based
tool for implementing configurability in a software system
following the annotate-and-remove paradigm [2], [11], [20].
Its conditional compilation directives (e. g., #ifdef, #endif)
allow developers to write code sections whose presence
or absence is controlled by a macro (i. e., a configuration
option). As an example, consider Line 23 on the left side
of Fig. 1, where the macro USE_LONG_FNAME makes the next
line of code optional. During preprocessing, the CPP evaluates
all conditional compilation directives, removing the code
between directives whose corresponding macro is undefined.
In the example in Fig. 1, Line 24 would be removed if the
macro USE_LONG_FNAME were undefined during preprocessing.
Otherwise, it would be compiled into the system.

The CPP is used in many open-source and industrial software
systems from numerous domains, allowing these systems to
be tailored to specific customer demands, safety regulations,
and resource restrictions [20], [21]. Prominent systems using
the CPP include the Linux Kernel, which comprises over 26
million lines of code and over 15 thousand configuration
options, the Apache web server, and Hewlett-Packard’s printer

firmware [11], [20], [21], [39]. Interestingly, while developers
use the CPP regularly, it is still heavily criticized for numerous
issues that may or may not be problematic. One of these issues
that has been prominently reported and that we particularly
focus on (cf. Sec. II) is the undisciplined use of CPP
directives [10], [15], that is, directives that do not align with
syntactic units [21]. Moreover, the CPP is suspected to impede
program comprehension [3], [5], [19], [22], [24], [25], [27],
[29], [34], [38], to foster code scattering and tangling [3],
[14], [38], to increase fault proneness [1], [3], [9], [26], [28],
[30], and to harm maintainability [4], [7], [25]. However,
besides the fact that some of the aforementioned studies exhibit
contradicting results, most of them either rely solely on source
code and repository analysis or on small-scale experiments
whose participants are mostly students. Solely Medeiros et
al. [25], [27], Malaquias et al. [24], and Muniz et al. [30]
conducted empirical studies involving experienced practitioners.

In this paper, we provide insights into developers’ compre-
hension of the CPP with a study that is the first to investigate
how well developers’ objective correctness during program
comprehension aligns with their subjective preference for
a certain style of CPP use. To this end, we conducted a large-
scale study with 521 developers from various GitHub projects,
such as Linux, FreeBSD, and PostgreSQL. In particular, we
designed an online study in which we showed the participants
examples of C functions that contained CPP directives for
configurability. We manually refactored four of these examples
in order to reduce the complexity of the CPP directives, while
keeping the functionality and configuration options equivalent
(see Sec. III-C for details on the refactorings). Our goal was to
investigate whether turning complex, fine-grained directives into
simpler, coarse-grained directives would improve program com-
prehension in a realistic setting. For this purpose, we chose code
examples from established open-source projects and performed
all refactorings that were applicable. Even though this design
prevented us from studying different refactorings individually,
it avoided the use of artificial examples. For each example,
the participants completed two program comprehension tasks
and subsequently rated the example’s code quality, especially
regarding CPP use. To analyze the impact of refactoring, half
of our participants worked on the original code of an example,
while the other half worked on the refactored code. Our results
provide insights into how developers perceive different styles
of using CPP directives and how these perceptions align with



their objective comprehension performance. In summary, we
make the following contributions in this paper:
• We analyze our participants’ correctness while solving two

program-comprehension tasks on five different examples. So,
we gain insights into whether refactoring CPP directives
impacts developers’ objective program comprehension.

• We analyze our participants’ subjective preference regarding
our examples. This enriches our quantitative data with
qualitative responses and shows the personal opinions of
our participants concerning the use of CPP directives.

• We compare and discuss the implications of our quantitative
and qualitative results.

• We provide a replication package comprising our study
design and our anonymized data.1

The results show that slightly fewer participants solved the
programs comprehension tasks correctly on the refactored code
than on the original code, which partly contradicts previous
findings. At the same time, our participants expressed a clear
subjective preference for the refactored code. This surprising
dilemma raises a number of questions, for instance: Why are
the subjective preferences of developers in line with previous
findings, while the objective correctness contradicts them? Are
certain patterns of CPP use (e. g., undisciplined directives)
really as problematic as assumed? For practitioners and tool
developers, our results suggest that coding style guides as
well as future analyses and programming tools could benefit
from relying more on empirical data and less on subjective
preferences or “common sense.”

II. RELATED WORK

Several researchers have discussed the CPP as a variability
mechanism from a theoretical point of view [4], [5], [14],
[38], also considering program comprehension. While such
works are based on expert knowledge and sound reasonable,
our work is more closely related to empirical studies, which
derive their insights from observations. We discuss such studies
next, distinguishing between (1) descriptive, (2) measurement,
(3) correlational, and (4) experimental studies.

Descriptive studies (1) elicit insights into preprocessor use
through interviews [25], case studies [38], and qualitative
analyses [1], [3], [7], [18], [30]. Measurement studies (2)
employ metrics to quantify preprocessor use [3], [7], [16], [20],
[21], [23], [26], [31]. For example, they quantify how frequently
undisciplined directives occur in open-source software [21].
Correlational studies (3) investigate whether measurements of
preprocessor use correlate with some property of interest [8],
[9], [11], such as fault proneness [9]. The study in this paper
belongs to the last category, experimental studies (4).

The core idea of an experimental study is to manipulate one
aspect of preprocessor use and test whether that manipulation
affects an outcome of interest. In our study, we investigate the
highly human-centric activity of program comprehension [33],
[41]. For this reason, we focus on experiments with human
participants, which we summarize in Tbl. I. For each study,

1https://doi.org/10.5281/zenodo.3972411

TABLE I: Related experiments with human subjects.

Study
# Part. Manipulated

Aspect Measurements
Nov. Prof.

[6] (1) 43 0 colors Cc+t, Mc+t, S
[6] (2) 20 0 colors S
[6] (3) 14 0 colors Cc+t, Mc+t, S
[19] 25 6 colors Cc, Ct, S
[29] 63 6 # features Mc+t

[30] 0 110 faults Mc

[24] (1) 0 99 discipline S
[24] (2) 64 0 discipline Mc+t

[25] 0 202 discipline S
[27] (1) 0 246 discipline S
[27] (2) 0 ≤28 discipline S
[34] 19 0 discipline Cc+t, Mc+t

This study 0 521 complexity Cc, S

Cc, Ct: Correctness / time for comprehension tasks;
Mc, Mt: Correctness / time for maintenance tasks;

S: Subjective opinion
Nov.: Novices; Prof.: Professionals

we list the number of participants (novices and professionals),
the manipulated aspect (e. g., directive discipline), and the
measurements used. For publications comprising multiple
experiments, we append a suffix (i. e., 1, 2, 3). Unless the
authors reported their own classification, we counted under-
graduate, graduate, and PhD students as novices and considered
industrial, GitHub, and post-doc developers as professionals.
We distinguish between three ways of measuring program
comprehension: comprehension tasks (C), such as “How many
variants of this code are possible?”; maintenance tasks (M ),
such as locating bugs and suggesting fixes; and subjective
opinions (S), such as “How do you rate the code’s readability?”
For comprehension and maintenance tasks, the response time
(t), correctness (c), or both (c+t) can be measured.

Four controlled experiments [6], [19] studied background
colors as a replacement for textual directives. In the first
experiment, background colors increased both program com-
prehension correctness and speed [19]; in the other three
experiments, only speed increased but not correctness [6].
Interestingly, the participants of all four experiments preferred
background colors. In a controlled experiment involving
students and post-docs, higher degrees of configurability caused
the speed and accuracy of bug finding to deteriorate [29].
Later, it was demonstrated that even professional developers
have difficulties to identify faults in configurable code [30].
These experiments are complementary to ours, as we are not
concerned with background colors or identifying faults.

Six experiments [24], [25], [27], [34], investigated the effect
of directive discipline on program comprehension, four relying
solely on subjective opinions. Medeiros et al. [25], [27] used
online questionnaires to ask GitHub developers to rate the
quality of code examples, revealing preferences for disciplined
directives. Malaquias et al. [24] and Medeiros et al. [27]
identified instances of undisciplined directives in open-source
projects, refactored them into disciplined directives and sent
pull requests to the respective maintainers. Overall, 99 and 28
maintainers, respectively, were involved. In both experiments,
the majority of the pull requests was accepted.

https://doi.org/10.5281/zenodo.3972411


In the remaining two experiments [24], [34], students
completed comprehension and maintenance tasks on code
with disciplined and undisciplined directives. For the first
experiment, directive discipline had no significant effect [34],
but in the other one, it was clearly beneficial regarding
correctness and response times [24].

So, there is evidence that disciplined directives are subjec-
tively preferred by developers [24], [25], [27] and increase
the number of objectively correct solutions [24]. However,
this evidence originates from different experiments, involving
different participants working on different code examples.
Complementary, we collected both objective and subjective
measures for the same code examples in our experiment,
allowing us to connect both perspectives without threatening
a comparison. Consequently, our study fills the open gap of
studying and comparing objective correctness and subjective
preference regarding program comprehension in the presence
of #ifdef directives. Moreover, we involved a larger number
of experienced subjects, strengthening the empirical evidence.

III. METHODOLOGY

In this section, we report our research questions, code examples,
refactorings, study design, and selection of participants.

A. Research Questions

The goal of our study was to investigate to what extent
refactoring CPP directives (e. g., disciplining them) impacts
the program comprehension of software developers, combin-
ing subjective and objective measurements. We defined two
research questions:
RQ1 How do developers perform during program comprehen-

sion when facing CPP directives of varying complexity?
For RQ1, we aimed to obtain quantitative results by
conducting an experiment. To this end, we measured
our participants’ correctness while solving program-
comprehension tasks.

RQ2 What are the subjective preferences of developers con-
sidering the comprehensibility of the source code?
For RQ2, we aimed to understand whether developers
prefer refactored directives over the original ones based
on a questionnaire. To this end, we had our participants
rate the code quality on Likert-scales. Moreover, they
could expand on their ratings with free-text comments.

The independent variable in our study are the code examples
(either original or refactored) that we showed the participants.
For RQ1, the dependent variable is whether our participants
solved our program-comprehension tasks correctly. For RQ2,
the dependent variable is the quality rating assigned by
our participants. Additionally, we control for differences in
development experience. Note that we do not consider response
time as a dependent variable since (i) our objective was to
measure correctness and (ii) our experimental setup (an online
questionnaire) did not allow for reliable time measurements.
Still, we did exclude unreasonably fast responses, that is,
responses from users who just clicked through the questionnaire.
In summary, we obtained quantitative measures on program-

comprehension correctness, qualitative insights into developers’
preferences, and the possibility to compare both.

B. Code Examples

In our study, our participants were shown five code examples,
and for each example they had to perform two program
comprehension tasks and rate the usage of CPP directives.
As code examples, we used functions from VIM and EMACS,
two real-world text editors. The functions stem from a dataset of
Fenske et al. [7], which comprises C code with different extents
of code smells concerning the use of CPP directives. For our
study, we selected examples with particularly high smelliness
values because we assumed that refactoring them would
produce a strong impact on our participants’ comprehension
performance and preferences.

We picked the examples vim18, vim15, vim13, emacs12, and
emacs11. To control for differences in program comprehension
and address our research questions, we refactored four examples
(except vim18)—aiming to improve the code quality regarding
CPP directives. As a result, we used the following code
examples in our study (cf. Sec. III-D):
• The baseline (vim18) to introduce our study and to compare

directly between the two groups of participants (explained
in Sec. III-D).

• The original (smelly) code examples: vim15, vim13,
emacs12, and emacs11.

• The refactored examples: vim15_R, vim13_R, emacs12_R,
and emacs11_R.

Next, we describe the refactorings we performed (Sec. III-C)
and how we used them in our study (Sec. III-D).

C. Refactorings

Our objective while refactoring the examples was to simplify
the complexity of the CPP directives, while, at the same time,
preserving the underlying C code. The refactored code had
exactly the same functionality and configuration options as
the original code and adhered to the same indentation policies,
both for the C code and for nested CPP directives. If comments
clarified which condition an #else or #endif belonged to, we
inserted identical comments in the refactored code.

We applied the following three refactorings:
R1 Extract alternative function (applied three times)

We refactored one function into two when large blocks of
code were enclosed in CPP directives. This was the case
for vim15, emacs12, and emacs11.

R2 Discipline directives (applied five times)
We refactored one undisciplined directive in vim15 and
four in vim13, following the advice of Medeiros et al. [27].
The EMACS examples were free of undisciplined directives.

R3 Unify compile- and runtime-time variability (applied once)
In vim15, we found a piece of code that mixed compile-
time and runtime-time variability, namely an #ifdef and
an if statement that were controlled by the same CPP
macro. We refactored this code to comprise only compile-
time variability (i. e., #ifdef directives). None of our other
code examples had to be refactored in this manner.



 1     char_u  * 
 2 fix_fname(fname) 
 3     char_u  *fname; 
 4 { 
 5 #ifdef UNIX 
 6     return FullName_save(fname, TRUE); 
 7 #else 
 8     if (!vim_isAbsName(fname) 
 9             || strstr((char *)fname, "..") != NULL 
10             || strstr((char *)fname, "//") != NULL 
11 # ifdef BACKSLASH_IN_FILENAME 
12             || strstr((char *)fname, "\\\\") != NULL 
13 # endif 
14 # if defined(MSWIN) || defined(DJGPP) 
15             || vim_strchr(fname, '~') != NULL 
16 # endif 
17             ) 
18         return FullName_save(fname, FALSE); 
19  
20     fname = vim_strsave(fname); 
21  
22 # ifdef USE_FNAME_CASE 
23 #  ifdef USE_LONG_FNAME 
24     if (USE_LONG_FNAME) 
25 #  endif 
26     { 
27         if (fname != NULL) 
28             fname_case(fname, 0); 
29     } 
30 # endif 
31  
32     return fname; 
33 #endif 
34 }

 1 #ifdef UNIX 
 2     char_u  * 
 3 fix_fname(fname) 
 4     char_u  *fname; 
 5 { 
 6     return FullName_save(fname, TRUE); 
 7 } 
 8  
 9 #else /* !UNIX */ 
10  
11     char_u  * 
12 fix_fname(fname) 
13     char_u  *fname; 
14 { 
15     int is_rel_name = !vim_isAbsName(fname) 
16                           || strstr((char *)fname, "..") != NULL 
17                           || strstr((char *)fname, "//") != NULL; 
18 # ifdef BACKSLASH_IN_FILENAME 
19     is_rel_name = is_rel_name || strstr((char *)fname, "\\\\") != NULL; 
20 # endif 
21 # if defined(MSWIN) || defined(DJGPP) 
22     is_rel_name = is_rel_name || vim_strchr(fname, '~') != NULL; 
23 # endif 
24  
25     if (is_rel_name) 
26         return FullName_save(fname, FALSE); 
27  
28     fname = vim_strsave(fname); 
29  
30 # ifdef USE_FNAME_CASE 
31 #  if !defined(USE_LONG_FNAME) || USE_LONG_FNAME 
32     if (fname != NULL) 
33         fname_case(fname, 0); 
34 #  endif 
35 # endif 
36  
37     return fname; 
38 } 
39 #endif

1

2

3

Fig. 1: Refactorings of CPP directives in vim15 (left: original, right: refactored).

These refactorings were motivated by evidence from the litera-
ture [24], [25], [27]. In particular, the participants of the survey
of Medeiros et al. [25] expressed that they prefer alternative
function definitions over using conditional CPP directives in
functions to solve portability issues. Thus, R1 should improve
the code. R2 was motivated by the frequently documented
aversion of developers to undisciplined directives [24], [25],
[27]. At least some of our participants share this aversion:
On vim15
“This is a prime example of preprocessor abuse. Much too
fine grained. Very difficult to reason about. Impossible to test
[. . . ]”

We show the code in question on the left side of Fig. 1. Even
though the participant does not mention “discipline” by name,
their remark goes to the heart of the critique of undisciplined
directives. Based on such remarks and building on previous
findings, we believe that our refactorings are reasonable and that
practitioners would agree that we tackle the right problems. We
remark that we applied refactorings due to their applicability on
each example, aiming to understand the impact of refactoring
CPP directives overall, not the impact of individual refactorings.

We manually applied the refactorings and validated the
results with colleagues from other organizations. This way,
we discovered a small number of errors, which we fixed before
deploying the actual study. Some participants complained about
additional errors in the refactored code, but we found that all
of these complaints except for one were unjustified. The one
remaining error affected the refactored version of emacs11
(i. e., emacs11_R), where we inadvertently changed an #if into
an #ifdef, thus slightly changing the syntax and semantics.
However, this change was not the problem; the problem was

that one question continued to refer to this directive as an #if,
not an #ifdef, which may have confused our participants.
Despite this error, the responses to this question were not
particularly unusual, which we interpret as meaning that our
participants’ correctness was not substantially affected. We
therefore argue that this error does not threaten our results.

We exemplify our refactorings based on vim15 in Fig. 1. In
this example, we show a function from VIM that translates
filenames into a canonical form for internal use. We show the
original code on the left side of Fig. 1 and the refactored code
on the right. For each of the refactoring types, we applied one
refactoring on this example, which we highlight with the red
circles and numbers (using the same numbers as before):
R1 The first change (see ¬ in Fig. 1) constitutes an extract

alternative function refactoring. As a result, the original
function definition was split into one definition for UNIX-
style operating systems (see Lines 1–8 on the right) and
an alternative definition for other operating systems, such
as WINDOWS (see Lines 9–39). Although the refactored
code is longer overall, the individual function definitions
are shorter, more cohesive, and contain fewer nested CPP
directives. Consequently, it should become clearer how the
CPP directives influence the behavior of the source code.

R2 The second change (see  in Fig. 1) highlights a discipline
directive refactoring. In the original code on Line 8, there is
an if statement with a long conditional expression of which
several sub-expressions are controlled by CPP directives
(see Lines 11–13 and Lines 14–16 on the left). With the
refactoring, we extracted the first part of the condition
into a variable and the sub-expressions into statements that
modify that variable (see Lines 18–20 and Lines 21–23
on the right). So, the refactored version no longer exhibits



undisciplined CPP directives below statement level.
R3 The third change (see ® in Fig. 1) highlights a unify

compile-time and runtime-time variability refactoring. The
original code mixed an #ifdef and a runtime if to
essentially encode a logical implication. We refactored
this mix into a more explicit version that solely relies on
compile-time variability. As a result, we removed mixed
variability mechanisms and improved consistency, which
should improve program comprehension.

According to previous findings [24], [25], [27], the refactored
code on the right side of Fig. 1 should be easier to comprehend.

D. Study Design

One crucial decision we made was to develop two versions of
our study (denoted S1 and S2 in the following), which differed
in the code examples they contained. Each version started with
the same baseline example, vim18, in its original form. For
the examples 2–5, the studies alternated between original and
refactored code examples, with S1 starting with an original
example and S2 with a refactored example (cf. Tbl. II). This
design allowed us to compare different versions of the same
code in one experiment, while, at the same time, avoiding
learning biases. Moreover, the baseline example allowed us
to identify systematic differences between the groups working
on S1 and S2. In Tbl. II, we display the code examples and
the questions that were part of each study. Essentially, the
studies comprised three parts, split across six sections. The
order in which we presented Q1 to Q7 is the same as in Tbl. II.
Moreover, for each example, we defined a separate section,
consisting of the corresponding source code listing and the
questions Q8 to Q11, also following the order in Tbl. II.

In the first part (Background: Q1 to Q7 in Tbl. II), we
asked our participants for background information. The answers
allowed us to control for differences in our participants’
age, sex, and programming experience. We formulated these
questions following existing guidelines [35].

The second and third part of our study (Examples and For
each example in Tbl. II) were split across the remaining five
sections, with each section comprising one code example. In
particular, we asked two comprehension questions (i. e., Q8
defining Task 1 and Q9 defining Task 2) about each example.
For Q8, we provided a small number of statements about the
code from which the participants had to select the correct one.
For Q9, in turn, we defined several options that aligned with
the CPP directives in the example and the participants had
to “configure” their selection so that a certain line would be
executed. We assumed this question to be more challenging,
as it required our participants to understand all the CPP
directives in the example. Independently of whether the original
or the refactored code was shown, we always asked for the
same line, not the same line number. To avoid biasing our
participants against CPP use, we designed the questions so
that the participants needed to understand the CPP directives
to give the correct answer, but we formulated the question
texts in a way that did not emphasize this focus.

TABLE II: Overview of the questions and possible answers
in our study. We mark refactored examples with _R and state
the corresponding version (S1 or S2). The questions for the
examples did not differ, we only adapted the line numbers to
refer to the appropriate line of code.

ID Questions & Answers

Background
Q1 How old are you?

◦ 15–19 years — ◦ 65+ years (5 year periods)
Q2 Gender

◦ Female ◦ Male ◦ Other ◦ Prefer not to tell
Q3 How many years of programming experience do you have?

Open number
Q4 How many years of experience with C/C++ do you have?

Open number
Q5 Roles in projects

Multiple selection (e. g., Developer) and open text
Q6 Which open-source projects have you worked on so far?

Open text
Q7 How would you rank your programming skills in C/C++?

◦ Beginner ◦ Intermediate ◦ Advanced ◦ Expert

Examples
Q8 Which of the following statements is true? (Task 1)

Single selection out of
vim18 S1 vim18 S2 5 options
vim15 S1 vim15_R S2 5 options
vim13_R S1 vim13 S2 5 options
emacs12 S1 emacs12_R S2 5 options
emacs11_R S1 emacs11 S2 6 options

Q9 When would line <x> be executed? (Task 2)
Choosing a combination out of
vim18 S1 vim18 S2 9 conditions
vim15 S1 vim15_R S2 11 conditions
vim13_R S1 vim13 S2 11 conditions
emacs12 S1 emacs12_R S2 7 conditions
emacs11_R S1 emacs11 S2 9 conditions

For each example
Q10 Do you consider the use of preprocessor annotations in the example

appropriate?
◦ Yes ◦ No, because (Open text)

Q11 Please rate the presented code regarding the following questions:
Q11-1 How easy was it to understand this code?
Q11-2 How easy would it be to maintain this code?
Q11-3 How easy would it be to extend this code?
Q11-4 How easy would it be to detect bugs in this code?

For each a Likert scale: ◦ very hard ◦ hard ◦ easy ◦ very easy

After performing the tasks in Q8 and Q9, we asked our
participants in Q10 and Q11 about their preferences regarding
each code example. To this end, we first asked for a simple
yes / no assessment of the appropriateness of the CPP directives,
providing an option to explain why the participants did not
consider the directives appropriate. In a second assessment,
we asked our participants to refine that initial assessment
on four-level Likert scales regarding four typical software
development activities: program comprehension, maintenance,
extension, and bug detection. This way, we aimed to identify
whether specific styles of CPP use (e. g., disciplined versus
undisciplined directives) are perceived positive regarding one
activity, but negative regarding another.

E. Selection of Participants

Most empirical studies in software engineering have limited
population sizes, resulting in limited external validity [36]. To
tackle this issue, we contacted C developers from several open-
source projects hosted on GitHub whose e-mail addresses were
publicly available. We selected the projects based on previous
works of Liebig et al. [20] and Medeiros et al. [25], and selected



(a) Task 1 (Q8): Which of the following statements is true? (b) Task 2 (Q9): When would line <x> be executed?
Fig. 2: Correctness of our participants’ responses for both program comprehension tasks.

additional ones that were trending on GitHub in October 2018
(e. g., redis,2 FFmpeg3). Using this procedure, we aimed to
mitigate sampling and coverage biases. We invited 7,791
developers of which 1,117 started and 521 finished our study
(~7 %). As the minimum sample size (however large the overall
population) to achieve a confidence level of 95 % is 385, we
mitigated external threats and our results are of high confidence.

IV. RESULTS

In this section, we report the results of our study with respect to
the effect of the refactorings we applied. To this end, we report
the details of our participants’ background, the results for our
two research questions, and summarize our observations. We
provide an overview of all statistical tests we used to test our
observations and the corresponding results in Tbl. III.

A. Participants’ Background

Overall, 521 participants completed our study, with an almost
even split between S1 and S2 (260 vs. 261 responses). Next, we
analyze our participants’ background based on the first seven
questions in our study (cf. Tbl. II). Afterwards, we compare
their responses for the baseline example (vim18). Based on
these comparisons, we assess whether both study versions can
be compared without introducing bias.

Considering their age (Q1), most participants of S1 are 32
to 42 years old, and most of S2 are 27 to 42 years old.
For both groups, median and mean are identical (37 and 36
years). The majority of our participants are male (Q2), with
S1 involving three females, one other, and 16 who preferred
not to tell, while S2 involves eight females, five others, and
nine who preferred not to tell. For their general programming
experience (Q3), most participants in S1 stated between 11
and 25 years; in S2, most stated between 12 and 25 years. The
median and mean in both groups are identical (20 years). The
C/C++ programming experience (Q4) is almost equal between
both groups, with most participants stating 8 to 20 years of
experience (median and mean are 15 years). Concerning their
roles (Q5), most of our participants stated that they work

2https://github.com/antirez/redis
3https://github.com/FFmpeg/FFmpeg

as developers (S1: 250, S2: 249), while considerably fewer
participants selected team manager (S1: 76, S2: 69), project
manager (S1: 57, S2: 57), and quality assurance (S1: 40, S2: 40).
As we allowed multiple answers, these numbers do not add up
to 100 %. Our participants stated to have worked on a large
variety of open-source projects (Q6), including Linux (kernel
and distributions), PostgreSQL, and OpenSSL. The average
self-assessment of the participants’ C/C++ programming skills
(Q7) is “advanced” (3.32 for S1 and 3.29 for S2).

Each group comprises participants with varying experience
levels and, due to their roles, with different perspectives.
Overall, however, the demographics of the two groups are
highly similar. Consequently, we do not need to control
for development experience and argue that our participants’
demographics do not threaten the results of our study.

Our second control mechanism was our baseline example
(vim18), which was identical in both studies. We show the
results of the program comprehension tasks in Fig. 2, the appro-
priateness ratings in Fig. 3, and the general comprehensibility
ratings in Fig. 4. Without going into detail, we can see that
both groups performed similarly regarding the correctness of
solving our two program comprehension tasks and had similar
opinions of the baseline example. This indicates that there are
no biases or imbalances between both groups, which, in turn,
allows us to compare the results of both study versions.

B. RQ1: Objective Correctness

We show the results for the first comprehension task (Q8) in
Fig. 2a and for the second comprehension task (Q9) in Fig. 2b.
For each example, we display how many participants solved
each task correctly, incorrectly, or did not know the solution.
Note that for vim15 (S1) in Task 1, the 5 and the 1 are actually
two numbers (incorrect and “don’t know,” respectively), even
though they look like a 51 in the figure.
Observation1: For Comprehension Task 1, we observe only
marginal differences (Q8). In Fig. 2a, we can see that our
data indicates almost no difference between the original and
refactored code regarding the correctness for Task 1. For all
code examples, the amount of correct, incorrect, and “don’t
know” answers is almost identical between the code versions—
with slightly fewer correct answers for the refactored examples.

https://github.com/antirez/redis
https://github.com/FFmpeg/FFmpeg


TABLE III: Statistical test results for our observations regarding the effect of refactoring CPP directives.
ID Measure Observation Test sig. Effect Size Reason

Q8 Comprehension Task 1 O1 Fisher Exact Test 0.18 (negative tendency) Not significant
Q9 Comprehension Task 2 O2 Fisher Exact Test < 0.001 Negative OR=0.74 61 % vs. 54 % correct
Q10 Appropriateness O3 Fisher Exact Test < 0.001 Positive OR=1.60 52 % vs. 64 % positive ratings
Q11 Code Quality O4 Wilcox & Cliff’s Delta < 0.05 (positive tendency) 0.05 – 0.07 Negligible

However, it seems that vim13 is particularly difficult, as it
received significantly fewer correct answers (for both versions
of the code) than the other code examples.
Observation2: For Comprehension Task 2, we see a slight
tendency towards negative effects of refactoring (Q9). In
contrast to Task 1, our data reveals slightly fewer correct
answers to Task 2 from participants working on the refactored
code compared to participants working on the original code.
The only exception is vim13, for which the number of correct
answers was equally low for the original and the refactored
code. Moreover, if we ignore correct and “don’t know” answers,
and only consider the incorrect answers, our data reveals that
for all code examples, participants performed better on the
original code compared to the refactored code. As we described
in Sec. III, Task 2 was arguably more challenging to solve, as
our participants had to “configure” the example (i. e., specify
CPP macros) so that a particular line is executed. The increased
difficulty is directly visible, as our participants performed
considerably worse on all examples, except for emacs12 in S1.
Hypothesis Testing. To test whether our observations are
statistically significant, we used Fisher’s exact test and the
R statistics suite [12], [32]. With this test, we can determine
how likely it is that our observations are merely the result
of chance. Consequently, our null hypotheses are that (H01)
participants perform equally well for Task 1, and that (H02)
they perform equally well for Task 2.

As we show in Tbl. III, the p-value for Observation1 is 0.18.
Consequently, our observation may be purely accidental and
we cannot reject H01. By contrast, the p-value for Observation2
is< 0.001, which means that we can reject H02. To determine
the effect size, we computed the average ratios of correct
answers for the original and the refactored code examples,
noting that the odds of correct answers decrease from 595:381
to 532:462, which amounts to an odds ratio (OR) of 0.74. In
other words, the percentage of correct answers drops by 7
percent points, from 61 % to 54 %. The negative trend persists
even if we calculate more pessimistically and consider “don’t
know” answers as incorrect (p=0.006, OR=0.78). While these
effects may be too small to conclude that our refactorings
actually hurt program comprehension, they at least suggest that
the refactorings were not beneficial.

C. RQ2: Subjective Preference

In Fig. 3, we show the subjective preference ratings of our
participants concerning the appropriateness of the CPP direc-
tives in each example (Q10). We can see that our participants
considered vim13 to comprise the least appropriate directives.
This example was also the most challenging one during the
program comprehension tasks.

In Fig. 4, we show the responses for question Q11-1, in which
our participants rated the ease to comprehend the examples
on a Likert-scale. For simplicity, we omit the remaining plots
for maintenance, extension, and bug detection (Q11-2 through
Q11-4), because the responses were very similar. Interestingly,
multiple examples are considered to be harder to comprehend,
despite achieving a similar rating in terms of properly used
CPP directives. For instance, emacs11 and emacs12 as well
as their refactored counterparts are considered as similarly
appropriate in terms of CPP use. However, emacs11 and
emacs11_R are both considered far more difficult to understand
than emacs12 and emacs12_R—which is in line with the results
of comprehension Task 2, but not Task 1 (cf. Fig. 2).
Observation3: Regarding the appropriateness of CPP di-
rectives, we observe a slight preference towards refactored
code (Q10). Overall, our participants generally consider the
refactored CPP directives to be more appropriate than their
original counterparts (cf. Fig. 3). The sole exception is emacs11,
for which the refactored and original code performed almost
identically. For vim15, we find the largest differences with
ratings rising from 45 % to 70 %. Moreover, among the four
examples in which less than 50 % of our participants considered
CPP use appropriate, only vim13_R (most challenging during
Q8 and Q9) is refactored.
Observation4: For comprehension, maintenance, extending,
and bug fixing, we observe a marginal difference (Q11).
Similar to Observation3, we find (cf. Fig. 4 for comprehension)
that our participants rate two refactored examples marginally
better. We remark that this represents the averaged results,
combining the ratings from Q11-1 through Q11-4. However, our
participants also consider one original code example (emacs11)
as marginally better compared to its refactored counterpart,
and one as equal (emacs12).
Hypothesis Testing. To test whether our observation regarding

Fig. 3: Subjective rating of CPP directives use (Q10).



Fig. 4: Subjective rating of comprehensibility (Q11-1).

appropriateness (Q10) is significant, we applied the same
procedure as for the comprehension tasks (cf. Sec. IV-B). The
corresponding null hypothesis is that (H03) the proportions of
participants rating a code example as appropriate are the same
for the original and the refactored code.

For the subjective ratings of Q11, we applied the Wilcoxon-
Mann-Whitney U test as the significance test and Cliff’s delta
as the effect size measure. The null hypothesis is that (H04) the
rating distributions regarding understandability, maintainability,
extensibility, and ease of bug detection are the same for the
original and the refactored code.

Considering Observation3, Fisher’s test indicates a significant
p-value of< 0.001, and we calculated that the odds of favorable
ratings rise from 544:489 (for the original code) to 663:379 (for
the refactored code). This is an OR of 1.60 and is equivalent
to a 12 percent points rise in favorable ratings. Therefore, we
reject H03 and can assume that our refactorings improved the
perceived appropriateness of CPP use. For Observation4, in
turn, the U test indicates significance with a p-value< 0.05
(cf. Tbl. III). However, the effect sizes for all four sub-questions
are negligible (Cliff’s delta ranges from 0.05 to 0.07). In
other words, even though we can reject H04, our participants’
preference for the refactored code is hardly noticeable when
they judge CPP use and the underlying C code as a whole.

D. Summary

In summary, we observe that our participants preferred the
refactored examples, considering them to be more appropriate
and helpful concerning program comprehension. At the same
time, we observe that our participants gave slightly more
correct answers for the original code when answering questions
regarding its configurability. The differences regarding both
measures, subjective preference and objective correctness, are
small, but they are statistically significant. Consequently, we
find a discrepancy in the actual correctness versus preference
regarding program comprehension in the context of CPP use.
This result indicates a surprising dilemma that has not been
identified in previous works, challenging established beliefs in
academia and practice. We discuss our results in more detail
within the next section.

V. DISCUSSION

In this section, we first answer our two research questions.
Based on these answers, we discuss the acceptance of refactor-
ings for CPP directives and the dilemma between correctness
and preference we identified for our participants.

A. Answering our Research Questions

In both comprehension tasks, we observed a tendency towards
worse (or at least, not better) results on the refactored examples.
For Task 1, the differences regarding correctness proved to
be insignificant, but for Task 2 they were significant with an
effect size of OR=0.74. We therefore answer RQ1 as follows:

RQ1: Our refactorings of CPP directives failed to facili-
tate objective program comprehension correctness.

Most of our refactorings were extract alternative function and
discipline directives refactorings, with which we targeted overly
fine-grained and undisciplined directives. The literature has
repeatedly documented that professional developers see both
of these issues as problematic [24], [25], [27], which is why
we expected our refactorings to be beneficial. To our surprise,
we found the opposite, despite using particularly smelly code.

Regarding RQ2, our findings were more in line with the
evidence and the prevailing opinion in the literature. In
particular, our participants rated CPP use in the refactored
examples as clearly preferable in Q10 and expressed a slight
preference in Q11. Thus, our answer to RQ2 is:

RQ2: Our refactorings of CPP directives slightly improved
the subjective preference of the source code, especially
regarding the appropriateness of CPP use.

The rating differences were more pronounced for Q10 than for
Q11, and we are unsure why. A possible explanation is that
we specifically asked about CPP use in Q10, but asked about
quality in general in Q11. Therefore, our participants may have
taken other factors, such as the complexity of the underlying
C code, into account when answering Q11. In fact, it appears
that developers mostly ignore CPP directives when judging
the quality of a piece of code.

Question Q11 had four sub-questions, in which our partic-
ipants had to rate the ease of comprehension, maintenance,
extension, and bug detection. We only showed the responses
regarding comprehension in Fig. 4, because the responses
regarding the other three aspects were distributed virtually
identically. The data from the survey by Medeiros et al. [25]
exhibits a similar trend: Irrespective of whether the participants
were asked to rate understandability, maintainability, or fault-
proneness, they gave similar ratings for each aspect. Their
data and ours suggests that practitioners are either unable or
unwilling to distinguish between different aspects of program
comprehension and maintenance. Further research is needed
to clarify whether awareness is the problem or whether the
distinction is irrelevant in practice.



B. Acceptance of Refactorings

In preparing the examples for our study, we mainly performed
two refactorings, extract alternative function and discipline
directives. From the quantitative results we presented in
Sec. IV-C, we can infer that our participants generally see
these refactorings as beneficial. However, there were also some
unexpected results, such as emacs11_R, which our participants
considered to be just as good or bad as emacs11. To gain
deeper insights into our participants’ reasoning, we analyzed
the qualitative comments given in Q10.

We performed extract alternative function refactorings on
three examples: vim15_R, emacs11_R, and emacs12_R. Given
the existing evidence [25], we expected all examples to receive
better ratings than their original counterparts, but surprisingly,
this only happened for vim15_R. We believe the reason to be
that the EMACS examples are shorter than the VIM examples.
Moreover, their underlying C code is less complex. Due to
these factors, they were already so easy to understand that
extract alternative function brought no further improvement.
Some participants even voiced critical remarks:
On emacs11_R
“[T]he function definitions are duplicated. This can confuse
static analysis tools, but worse, it can confuse humans.”

These insights make extract alternative function appear detri-
mental for short, easy functions. Whether this refactoring is
advisable in other contexts, for example, for long, complex
functions, should be investigated in future work.

In their free-text answers to Q10, our participants clarified
that they dislike great extents of fine-grained CPP directives
inside function bodies:
On vim18
“Preprocessor macros should not be used like this, ever, be-
cause it makes the code hilariously and needlessly complicated
and very hard to comprehend.”

This dislike of certain usage patterns of CPP directives may
also explain why the refactored vim13_R was criticized almost
as much as its original counterpart, vim13:
On vim13
“I’m now considering giving up using VIM if that is how its
code looks like.”

On vim13_R
“When I considered use of preprocessor inappropriate in
previous examples, now I think I was too harsh.”

We created vim13_R from vim13 by applying five discipline
directives refactorings, but applied no other refactorings.
Disciplining directives improved the ratings, which we expected
given the evidence in the literature [24], [25], [27]. However,
the improvement was small, causing vim13_R to still receive
the second-worst ratings among all examples. This suggests
that the main issue in vim13 was not discipline, but the sheer
number of CPP directives inside the function body. Since this
issue was not addressed in the refactored version, the perceived
code quality remained low.

We received 232 qualitative comments on vim13 and 195 on

vim13_R, which we analyzed to understand why these examples
were criticized so heavily. Using open coding to group the
comments, three main themes emerged, understandability, com-
plexity, and code quality. Interestingly, the relative frequency
with which these themes were mentioned differed between
vim13 and vim13_R: For vim13, understandability was the most
frequent theme (49 % of the comments) and code quality the
least frequent one (14 %). For vim13_R, however, code quality
was the most frequent theme (53 %) and understandability
was only the second-most frequent (34 %). In other words,
disciplining directives led more participants to judge CPP use
as appropriate (see Fig. 3), but it also shifted the perceived
root of the problems from understandability to code quality.
Thus, our answer to RQ2 (see Sec. V-A) must be refined:

Addition to RQ2: Sometimes, refactoring improves the
perceived quality of CPP directives, but at the expense of
decreasing the perceived quality of the underlying C code.

C. Correctness versus Preferences

The most interesting and surprising result of our experiment
are the contradicting answers to our research questions. As
expected, our refactorings improved the subjective quality
ratings, and thus our participants’ preferences for the source
code (RQ2). At the same time, our participants’ objective
program comprehension performance failed to improve (RQ1).
In fact, it slightly worsened.

The objectively inferior correctness of solving comprehen-
sion tasks conflicts with the existing evidence, but only at
first glance. Unlike us, no previous experiment has measured
the comprehensibility of CPP directives both objectively
and subjectively using the same code examples and the
same developers. Moreover, the existing objective evidence
against overly complex CPP directives (especially undisciplined
directives) is largely based on experiments with novices. By
contrast, most of our participants were highly experienced.
It is therefore possible that our experimental setup and the
reliance on professionals as subjects led us to obtain different
results. We welcome future studies to replicate or refute our
findings, and we argue that they are essential to understand
and potentially resolve this dilemma.

Our results indicate that fine-grained or undisciplined CPP
directives do not necessarily influence program comprehension
of professional developers. In particular, our results show that
developers’ preferences of CPP use may contradict their ability
to correctly solve program comprehension tasks. From this
perspective, the importance of aligning CPP directives with
syntactic code structures— something advised by professionals
and academics alike— may have been overestimated. Similarly
surprising results have been obtained in relation to code
clones [13], code smells [37], and refactoring [40]. Our study
is the first to show such a dilemma in the context of CPP use.

VI. THREATS TO VALIDITY

Next, we discuss internal and external threats to validity [36].



A. Internal Validity

While we tried to not influence our subjects, we may have done
so nevertheless. For instance, some questions may have implied
critique towards the CPP. Similarly, some participants reported
that they thought some questions were ambiguous. In particular,
this affected Q9 and Q10, and may also be connected to the
wording we used. Even though we formulated the questions
with the goal of avoiding biases caused by strong wording,
our wording may have caused ambiguity, which threatens the
internal validity of our study.

Refactoring choices are always subjective. In preparing our
examples, we followed advice from the literature and discussed
all refactorings with multiple colleagues. Nevertheless, better
refactoring choices may have been possible, which remains
a threat to the internal validity of our study.

We aimed to minimize the time to complete our study. Still,
the average completion time was half an hour, which is quite
long and may have discouraged developers who were unwilling
to spend that much time. A shorter study may have been an
alternative, but it may have prevented us from observing, for
example, the dilemma between correctness and preference.
Thus, this issue remains a threat to the validity of our study.

B. External Validity

We controlled the external validity by using real-world exam-
ples and inviting a large number of participants (cf. Sec. III-E).
In the end, we obtained enough participants to ensure that
our results and statistical tests provide reasonable insights. We
further controlled for our participants’ experiences to ensure
that we could compare between both studies. Nonetheless,
some participants may have used some kind of external help,
as we conducted an unsupervised study. Consequently, this
issue may threaten the generalizability of our results.

Another threat are the examples that we used: They are from
the same domain (open-source text editors), we refactored them
ourselves, and we only used a small number of examples.
However, research shows that industrial and open-source
software is comparable considering the use of the CPP [11],
and the refactorings we employed are based on established
research (cf. Sec. II). We took further design decisions to
improve the response rate (e. g., duration of the study, online
study) and ensure that we can compare both groups (e. g.,
distribution of the examples). These decisions are potential
threats to the external validity of our study.

Additionally, our participants were generally not familiar
with the code examples they worked on. They may have
performed better on known code and may have judged code
quality differently [17]. While this threatens the external
validity of our study, it improves the internal validity since all
participants had the same degree of knowledge about the code.

Finally, we are aware that several human factors can threaten
the external validity of our study. We aimed to mitigate
some factors with our study design, for example, controlling
our participants’ experience and avoiding learning biases by
using different examples. However, other factors are much
harder to control. For instance, some participants may have

been less motivated. Moreover, the cognitive processes of
program comprehension are highly dependent on the individual
developer. We partly mitigated these threats by involving
experienced developers, reducing the workload, and removing
unfinished responses. While especially the detailed responses
to our free-text questions indicate that our participants were
motivated, these threats remain a potential bias.

VII. CONCLUSIONS

In this paper, we reported the results of a large-scale empirical
study in which we analyzed how refactoring CPP directives
impacts program comprehension. For this purpose, we created
an online study consisting of five real-world code examples
with particularly smelly CPP directives. Four of those examples
were refactored to reduce the complexity of the directives, and
we deployed our study such that each participant worked on
two original examples and on two refactored examples. The
first example was the same for all participants, allowing us to
establish that the groups of participants were comparable in
terms of programming experience, age, and other individual
factors. For every example, our participants solved two program
comprehension tasks and provided their opinions on the quality
of the code, combining objective measurements with subjective
preferences. We distributed our study among open-source devel-
opers and received 521 responses. To the best of our knowledge,
this is the first large-scale study to combine objective and
subjective perspectives, thus considerably extending previous
research. We derived the following insights:
• Regarding correctness, our participants failed to perform

better on the refactored code, despite previous evidence
suggesting that this code should be considerably less smelly.
Indeed, our participants performed slightly worse.

• Our participants preferred the way that CPP directives were
used in the refactored examples over the original ones.

• Our results contradict each other and previous findings
regarding the usefulness of refactoring CPP directives.

• Refactoring CPP directives is a trade-off with the quality
of the underlying code, meaning that refactoring smelly
directives may result in a net decrease in overall quality.

Our results indicate a surprising dilemma that has not been
reported in previous work. This dilemma challenges established
beliefs on refactoring certain CPP usage patterns, such as
undisciplined directives, to improve program comprehension.

In future work, we plan to analyze the dilemma we identified
to shed light on its causes. This may involve other forms
of program comprehension, such as dataflow analysis, which
the present study did not cover. Also, it seems promising to
empirically investigate the interplay of CPP directives and code
quality, as our results suggest that one may be traded against the
other. Finally, we argue that we need to better understand what
CPP-related refactorings are actually helpful in what situations.
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